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ABSTRACT. A classical theorem of Burnside asserts that if y is a faithful com-
plex character for the finite group G, then every irreducible character of G is
a constituent of some power x” of yx . Fifty years after this appeared, Stein-
berg generalized it to a result on semigroup algebras K[G] with K an arbitrary
field and with G a semigroup, finite or infinite. Five years later, Rieffel showed
that the theorem really concerns bialgebras and Hopf algebras. In this note, we
simplify and amplify the latter work.

Let K be a field and let 4 be a K-algebra. Amap A:4 — A® A is said to
be a comultiplication on A4 if A is a coassociative K-algebra homomorphism.
For convenience, we call such a pair (4, A) a b-algebra. Admittedly, this is
rather nonstandard notation. One is usually concerned with bialgebras, that
is, algebras which are endowed with both a comultiplication A and a counit
€: A — K. However, semigroup algebras are not bialgebras in general, and the
counit rarely comes into play here. Thus it is useful to have a name for this
simpler object.

Now a b-algebra homomorphism 6:4 — B is an algebra homomorphism
which is compatible with the corresponding comultiplications, and the kernel
of such a homomorphism is called a b-ideal. It is easy to see that I is a
b-ideal of 4 if and only if 1<« A with A(J) CI® A+ A®I. Of course,
the b-algebra structure can be used to define the tensor product of A4-modules.
Specifically, if V' and W are left 4-modules, then 4 acts on V ® W via
avew)=A(@)(vew) forall ae 4, veV, we W. Notice that if I is
a b-ideal of A, then the set of all 4-modules V' with anny V D I is closed
under tensor product. Conversely, we have

Proposition 1. Let A be a b-algebra and let F be a family of A-modules closed
under tensor product. Then
I= () ann,V
ves
is a b-ideal of A.
Proof. Certainly I isanidealof 4. Nowlet X =a),, .5 V be the direct sum
of the modules in & . Then X is an 4-module and anng X =), cgann, V =
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I . Furthermore, since X®X = o)., s V®W and since each VoW € F,
it follows that I annihilates X ® X . In other words,

A(l) Cannes X X =1 A+A®I1
and I isab-idealof 4. O

The assumption that ¥ is closed under tensor product can be weakened
somewhat in the above. Indeed, suppose that for each V', W € F there exists
Ue% with annyU C anny V' ® W . Then certainly I C ann, U annihilates
V ® W,so I annihilates X ® X and hence I is a b-ideal of 4.

Now if (4, A, €) is a bialgebra with counit €, then [ is a bi-ideal of A4 if
and only if it is a b-ideal with €(I) = 0. Furthermore, we can trivially guarantee
that the ideal I of the previous proposition satisfies €(/) = 0 by including the
principal module K. in the set # . Thus we have

Proposition 1*. Let A be a bialgebra andlet F be a family of A-modules closed
under tensor product. If K. € & , then

I= ﬂ anng V
VeF
is a bi-ideal of A.

Since the coassociativity of A guarantees that the tensor product of A4-
modules is associative, it makes sense to define the nth tensor power of V
by

Ve =V eVe---®V (n times)
forall n>1. Here, V®' =V and V®" @ V®" = ®m+n) forall m,n> 1.
It is now a simple matter to prove the following result of [Ri].

Corollary 2. Let A be a b-algebra and let V be an A-module. If anny V
contains no nonzero b-ideal, then I (V) = oy_,2, V®" is a faithful A-module.
Proof. & ={V® | n=1,2,...} is a set of A-modules which is clearly
closed under tensor product. Thus, by Proposition 1,

I= ﬂ anny V®" = ann, 9 (V)

n=1

is a b-ideal of 4. But I C anny V'®! = anny V', so the hypothesis implies that
I =0 and hence that J (V) is faithful. O

If A is a bialgebra, then one usually defines V®° to equal K., since the
latter module behaves like the identity element under tensor product. Thus we
have

Corollary 2*, Let A be a bialgebra and let V' be an A-module. If anny V
contains no nonzero bi-ideal, then T *(V) = o) -, V®" is a faithful A-module.

Let V be an A-module. If J is an ideal of 4 contained in anny, V', then
we can think of V' as having been lifted from an 4/J-module. In particular,
V is faithful if and only if it is not lifted from any proper homomorphic image
of A. Similarly, if 4 is a b-algebra, we might say that V" is b-faithful if it is
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not lifted from any proper b-algebra homomorphic image of 4. In other words,
V' is b-faithful if and only if anny V' contains no nonzero b-ideal of 4. Thus
Corollary 2 asserts that any b-faithful module V' gives rise to the faithful tensor
module J (V). This is essentially Burnside’s Theorem.

Let us look at some examples. To start with, recall that a multiplicative semi-
group G is a set having an associative multiplication and an identity element 1.
Semigroups may contain a zero element 0 # 1 satisfying 0g = g0 =0 for all
g € G, and as usual we let G* = G\ {0} denote the set of nonzero elements
of G. The semigroup algebra K[G] is then a K-vector space with basis G*
and with multiplication inherited from that of . Notice that the zero element
of G, if it exists, is identified with the zero element of K[G]. Furthermore,
K[G] is a b-algebra with A defined by A(g) = g ® g for all g € G*. Given
this comultiplication, it is easy to see that the only possible bialgebra structure
on K[G] would have counit € given by €(g) = 1 for all g € G*. But then,
€ is an algebra homomorphism if and only if G* is multiplicatively closed, or
equivalently if and only if there are no zero divisors in G. In other words,
most semigroup algebras are just not bialgebras in this way.

If H is also a semigroup, then a semigroup homomorphism 6:G — H pre-
serves the multiplication and, by definition, it satifies (1) = 1 and 6(0) =0 if
G has a zero element. In particular, it follows that 6 extends to a K-algebra ho-
momorphism @: K[G] — K[H] which is clearly a b-algebra map. Hence ker @
is a b-ideal of K[G]. As is well known, these are the only possible b-ideals.
Since the argument is so simple, we briefly sketch it here.

Let I be a b-ideal of K[G] and let ¢ be the b-algebra epimorphism de-
fined by #:K[G] — K[G]/I = C. Then H = ¢(G) is a multiplicative sub-
semigroup of C and, since ¢ is a b-algebra homomorphism, it is easy to see
that H consists of group-like elements. In particular, it follows from [Sw,
Proposition 3.2.1(b)] that H* is a linearly independent subset of C. Further-
more, since G* spans K[G], we know that H* spans C. Thus it is clear that
C = K[H] and that the map ¢: K[G] — K[H] is the natural extension of the
semigroup epimorphism ¢: G — H , namely, the restriction of ¢ to G. Since
I = ker ¢, this fact is proved.

By combining the above with Corollary 2, we can quickly obtain Steinberg’s
generalization of the classical result of Burnside [B, §226]. The original Burnside
theorem concerned modules for the complex group algebra C[G] with |G| < oo,
and the proof used the character theory of finite groups. The argument in [St]
is more transparent and, of course, it is more general. But the following proof,
" due to Rieffel in [Ri], shows precisely why the G-faithfulness assumption on
the K[G]-module V is both natural and relevant.

Let G be a semigroup and let V' be a K[G]-module. We say that G acts
faithfully on V if for all distinct g;, g0 € G we have (g — &)V # 0. Of
course, if G is a group, then this condition is equivalent to (g — 1)V # 0 for
all 1 #g€G.

Theorem 3. Let G be a semigroup and let G act faithfully on the K[G]-module
V. Then K[G] acts faithfully on the tensor module T (V) = &y po, V®".

Proof. Let I be a b-ideal of K[G] contained in anngg; V' . As we observed,
there exists a semigroup epimorphism ¢:G — H such that I is the kernel of
the corresponding algebra map ¢: K[G] — K[H]. If I # 0, then ¢ cannot be
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one-to-one on G and hence there exist distinct g;, g2 € G with ¢(g;—g) =0.
In particular, this implies that g, —g, € I, s0 (g1 — &)V = 0, contradicting the
fact that G is faithful on V. In other words, the G-faithfulness assumption
implies that anngs) V' contains no nonzero b-ideal. Corollary 2 now yields the
result. O

An analogous result holds for enveloping algebras. For simplicity of notation,
let us assume that either
(1) K is a field of characteristic 0, L is a Lie algebra over K, and U(L)
is its enveloping algebra, or
(2) K has characteristic p > 0, L is a restricted Lie algebra over K, and
U(L) is its restricted enveloping algebra.

In either case, U(L) is a b-algebra, and in fact a Hopf algebra, with comulti-
plication determined by A({) =£® 1+ 1® ¢ for all £ € L. Furthermore, if
H is a second (restricted) Lie algebra and if 6:L — H is a (restricted) Lie al-
gebra homomorphism, then 6 extends uniquely to a b-algebra homomorphism
6:U(L) — U(H). In particular, kerf is a b-ideal of U(L). As is well known,
the converse is also true, namely, every b-ideal of U(L) arises in this manner.
The argument for this is elementary and similar to the one for semigroup rings.
A sketch of the proof is as follows.

Let I be a b-ideal of U(L) and let ¢ be the b-algebra epimorphism defined
by ¢:U(L) — U(L)/I = C. Then H = ¢(L) is a (restricted) Lie subalgebra
of C and H generates C as a K-algebra. In particular, if {h; | i € F}
is a basis for H, indexed by the ordered set (¥, <), then C is spanned by
monomials of the form hfl‘ hfz2 e hf: with iy < i <--- < i, and with integers
e; > 0. Furthermore, when charK = p > 0 and L is restricted, then e; < p
for all j. Since ¢ is a b-algebra epimorphism, it follows that the elements of
H are primitive. Thus, by the work of [Sw, Chapter 13], these straightened
monomials are K-linearly independent and therefore C = U(H). In other
words, the map ¢:U(L) — U(H) is the natural extension of the (restricted)
Lie algebra epimorphism ¢: L — H where, of course, ¢ is the restriction of @
to L. Since I =ker@, this fact is proved.

Now let V' be a U(L)-module. We say that L acts faithfully on V' if, for
all 0#¢ € L, wehave £V # 0. The Lie algebra analog of the preceding result
is then

Theorem 4. Let U(L) be a (restricted) enveloping algebra satisfying (1) or (2)
above. If L acts faithfully on the U(L)-module V', then U(L) acts faithfully
on the tensor module I (V) = &y o, V"

As indicated in [M], a theorem of this nature can be used to prove the fol-
lowing interesting result of Harish-Chandra [H, Theorem 1]. Recall that a K-
algebra A is residually finite if the collection of its ideals I of finite codimen-
sion has intersection equal to 0. In other words, these algebras are precisely the
subdirect products of finite-dimensional K-algebras.

Corollary 5. If L is a finite-dimensional Lie algebra over a field K of charac-
teristic 0, then U(L) is residually finite.

Proof. By Ado’s theorem (see [J, §VI.2]), 4 = U(L) has a finite K-dimensional
module ¥V on which L acts faithfully. Thus, the preceding theorem implies
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that 0 = ann, 9 (V) = N2, I, where I, = ann, V®". But each V®" is
a finite-dimensional A4-module, so I, = anny V'®” is an ideal of 4 of finite
codimension, and the result follows. O

If L is a finite-dimensional restricted Lie algebra, then its restricted en-
veloping algebra U(L) is also finite dimensional. Thus the characteristic p > 0
analog of the above is trivial. On the other hand, infinite-dimensional analogs
in all characteristics are obtained in [M].

In the remainder of this paper we will restrict our attention to finite-dimen-
sional Hopf algebras. To start with, a Hopf algebra (4, A, €, S) is a bialgebra
with antipode S:4 — A4, and a Hopf ideal is the kernel of a Hopf algebra
homomorphism. It is easy to see that /<4 is a Hopf ideal if and only if it is a b-
ideal with €(I) =0 and S(I) C I. Similarly, a K-subalgebra B of A4 is a Hopf
subalgebra if and only if it is a b-subalgebra which is closed under the antipode
S. Of course, the b-subalgebra condition means that A(B) C B® B. The
following is a special case of a surprising result due to Nichols [N, Theorem 1].
A simple proof of the subalgebra case can also be found in [Ra, Lemma 1].

Lemma 6. If A is a finite-dimensional Hopf algebra, then any b-subalgebra of
A is a Hopf subalgebra and any b-ideal of A is a Hopf ideal of A.

Proof. Let B denote either a b-subalgebra of 4 or a b-ideal of 4. Further-
more, let £ = Homg (A4, A) be the convolution algebra of A4 and set

F={feE|f(B)SB}.

Certainly F is a K-subspace of E and, in fact, F is closed under convolution
multiplication. To see the latter, let f, g € F. If B is a b-subalgebra of 4,
then A(B) C B® B implies that

(f+g)(B) C f(B)g(B) C B* = B.

On the other hand, if B is a b-ideal of A4, then A(B) C A® B+ B® A implies
that
(f*g)(B) C f(A)g(B) + f(B)g(4) C AB+BA=B

since B<A4.

Now observe that the identity map Id is contained in F . Thus, by the above,
F contains the convolution powers Id*” of Id for all n > 0. Furthermore, since
A 1is finite dimensional, E is also finite dimensional and hence the map Id is
algebraic over K . In particular, for some m > 1, we can write Id*” as a finite
K-linear combination of the powers Id* with i > m . But Id has convolution
inverse S, so by multiplying the expression for Id*” by S$*” and by S*(m+1)
in turn, we deduce first that € = Id*0 € F and then that S = Id*-D e F. In
other words, €(B) C B and S(B) C B.

Finally, if B is a b-subalgebra of 4,then S(B) C B implies that B is a Hopf
subalgebra. On the other hand, if B is a b-ideal of 4, then ¢(B) C BNK =0.
Thus, since S(B) C B, we conclude that B is a Hopfideal of 4. O

The preceding result is false in general for infinite-dimensional Hopf algebras.
Some rather complicated counterexamples appear in [N].
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Theorem 7. Let A be a finite-dimensional Hopf algebra.

(i) If & is a family of A-modules which is closed under tensor product, then
Nyesanny V' is a Hopf ideal of A.

(i) Suppose V isan A- module whose annihilator contains no nonzero Hopf
ideal of A. Then T (V) =&y ,o, V®" is a faithful A-module.

This follows immediately from Proposition 1, Corollary 2, and Lemma 6. We
can now obtain some consequences of interest. First, recall that an A4-module
V is semisimple if it is a direct sum of simple modules.

Corollary 8. If A is a finite-dimensional Hopf algebra, then the set of semisimple
A-modules is closed under tensor product if and only if the Jacobson radical J(A)
is a Hopf ideal of A.

Proof. Let & be the set of all semisimple A-modules. If ¥ is closed under
®, then Theorem 7(i) implies that J(4) = [,y anny V' is a Hopf ideal of
A. Conversely, if J(A) is a Hopf ideal, then % consists of all the modules
for the Hopf algebra A/J(A) and therefore F is surely closed under tensor
product. O

In a similar manner, we prove

Corollary 9. Let A be a finite-dimensional semisimple Hopf algebra and let .7
be a family of simple A-modules. Suppose that, for all V,W € %, every
irreducible submodule of V ® W is contained in % . Then I =\, annyV
is a Hopf ideal of A and .# is the set of all simple A]/I-modules.

Proof. Let & be the set of all finite direct sums (with multiplicities) of elements
of .# . Since A is semisimple, the hypothesis implies that # is closed under
tensor product. Hence, by Theorem 7(i), I =y anngV =y yanng W
is a Hopf ideal of 4. Furthermore, since A/ is semisimple, it follows that
< must be the set of all simple 4/I-modules. O

Our final consequence uses the fact that any finite-dimensional Hopf algebra
A is a Frobenius algebra [LS, §5] and hence that every simple A4-module is
isomorphic to a minimal left ideal of 4.

Corollary 10. Let A be a finite-dimensional Hopf algebra and let V be an A-
module whose annihilator contains no nonzero Hopf ideal of A. Then every
simple A-module is isomorphic to a submodule of V®" for some n> 1.

Proof. Tt follows from Theorem 7(ii) that (V) = &y ., V®" is a faithful
A-module. Now let W be a simple 4-module, so that W is isomorphic to:
a minimal left ideal L C 4. Since L # 0, we have L7 (V) # 0 and hence
Lv®" £ 0 for some n > 1. In particular, there exists u € V®" with Lu #
0. But then the minimality of L implies that W = L = Lu C V®", as
required. O
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