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ABSTRACT. A classical theorem of Burnside asserts that if X is a faithful com- 
plex character for the finite group G, then every irreducible character of G is 
a constituent of some power Xn of X . Fifty years after this appeared, Stein- 
berg generalized it to a result on semigroup algebras K[G] with K an arbitrary 
field and with G a semigroup, finite or infinite. Five years later, Rieffel showed 
that the theorem really concerns bialgebras and Hopf algebras. In this note, we 
simplify and amplify the latter work. 

Let K be a field and let A be a K-algebra. A map A: A -+ A A is said to 
be a comultiplication on A if A is a coassociative K-algebra homomorphism. 
For convenience, we call such a pair (A, A) a b-algebra. Admittedly, this is 
rather nonstandard notation. One is usually concerned with bialgebras, that 
is, algebras which are endowed with both a comultiplication A and a counit 
e: A -- K. However, semigroup algebras are not bialgebras in general, and the 
counit rarely comes into play here. Thus it is useful to have a name for this 
simpler object. 

Now a b-algebra homomorphism 6: A -k B is an algebra homomorphism 
which is compatible with the corresponding comultiplications, and the kernel 
of such a homomorphism is called a b-ideal. It is easy to see that I is a 
b-ideal of A if and only if I ' A with A(I) C I A+A +A I. Of course, 
the b-algebra structure can be used to define the tensor product of A-modules. 
Specifically, if V and W are left A-modules, then A acts on V X W via 
a(vow) =A(a)(v?w) for all a e A, v E V, we W. Notice that if I is 
a b-ideal of A, then the set of all A-modules V with annA V D I is closed 
under tensor product. Conversely, we have 

Proposition 1. Let A be a b-algebra and let Y be a family of A-modules closed 
under tensor product. Then 

I= n annA V 
VEY 

is a b-ideal of A. 
Proof. Certainly I is an ideal of A. Now let X = EZVEJ" V be the direct sum 
of the modules in Y. Then X is an A-module and annA X = vE- annA V = 
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I. Furthermore, since X X X = EE v, we _ V o W and since each V O W E FY, 
it follows that I annihilates X 0 X. In other words, 

A(I) C annAOA X 0 X = I 0 A + A X I 
and I is a b-ideal of A. 0 

The assumption that Y is closed under tensor product can be weakened 
somewhat in the above. Indeed, suppose that for each V, W E _ there exists 
U E S with annA U 5 annA V 0 W. Then certainly I C annA U annihilates 
V 0 W, so I annihilates X 0 X and hence I is a b-ideal of A. 

Now if (A, A, e) is a bialgebra with counit E, then I is a bi-ideal of A if 
and only if it is a b-ideal with e (I) = 0 . Furthermore,-we can trivially guarantee 
that the ideal I of the previous proposition satisfies e (I) = 0 by including the 
principal module KE in the set S. Thus we have 
Proposition 1*. Let A be a bialgebra and let Y be a family of A-modules closed 
under tensor product. If K, E e , then 

I= n annA V 
VE9 

is a bi-ideal of A. 
Since the coassociativity of A guarantees that the tensor product of A- 

modules is associative, it makes sense to define the nth tensor power of V 
by 

Von= V? V? *.*.*. V (n times) 
for all n > 1. Here, V?l = V and V?m (& Von = V?(m+n) for all m n> 1 
It is now a simple matter to prove the following result of [Ri]. 
Corollary 2. Let A be a b-algebra and let V be an A-module. If annA V 
contains no nonzero b-ideal, then g9(V) = EDE, , V?n is a faithful A-module. 
Proof. 9 = { V@" I n = 1, 2, ... } is a set of A-modules which is clearly 
closed under tensor product. Thus, by Proposition 1, 

00 

I = n annA Von = annA 9f(V) 
n=1 

is a b-ideal of A. But I C annA V?1 = annA V, so the hypothesis implies that 
I = 0 and hence that 9(V) is faithful. o 

If A is a bialgebra, then one usually defines V?O to equal KE, since the 
latter module behaves like the identity element under tensor product. Thus we 
have 
Corollary 2*. Let A be a bialgebra and let V be an A-module. If annA V 
contains no nonzero bi-ideal, then 9'* (V) = 9EZ % Von is a faithful A-module. 

Let V be an A-module. If J is an ideal of A contained in annA V, then 
we can think of V as having been lifted from an A/J-module. In particular, 
V is faithful if and only if it is not lifted from any proper homomorphic image 
of A. Similarly, if A is a b-algebra, we might say that V is b-faithful if it is 
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not lifted from any proper b-algebra homomorphic image of A. In other words, 
V is b-faithful if and only if annA V contains no nonzero b-ideal of A. Thus 
Corollary 2 asserts that any b-faithful module V gives rise to the faithful tensor 
module 9(V). This is essentially Burnside's Theorem. 

Let us look at some examples. To start with, recall that a multiplicative semi- 
group G is a set having an associative multiplication and an identity element 1. 
Semigroups may contain a zero element 0 # 1 satisfying Og = gO = 0 for all 
g E G, and as usual we let G# = G \ { 0 } denote the set of nonzero elements 
of G. The semigroup algebra K[G] is then a K-vector space with basis G# 
and with multiplication inherited from that of G. Notice that the zero element 
of G, if it exists, is identified with the zero element of K[G]. Furthermore, 
K[G] is a b-algebra with A defined by A(g) = g 0 g for all g E G#. Given 
this comultiplication, it is easy to see that the only possible bialgebra structure 
on K[G] would have counit e given by e(g) = 1 for all g E G#. But then, 
e is an algebra homomorphism if and only if GO is multiplicatively closed, or 
equivalently if and only if there are no zero divisors in G. In other words, 
most semigroup algebras are just not bialgebras in this way. 

If H is also a semigroup, then a semigroup homomorphism 6: G -k H pre- 
serves the multiplication and, by definition, it satifies 0(1) = 1 and 6(0) = 0 if 
G has a zero element. In particular, it follows that 0 extends to a K-algebra ho- 
momorphism 6: K[G] -- K[H] which is clearly a b-algebra map. Hence ker 6 
is a b-ideal of K[G]. As is well known, these are the only possible b-ideals. 
Since the argument is so simple, we briefly sketch it here. 

Let I be a b-ideal of K[G] and let q be the b-algebra epimorphism de- 
fined by q: K[G] -k K[G]/I = C. Then H = +(G) is a multiplicative sub- 
semigroup of C and, since b is a b-algebra homomorphism, it is easy to see 
that H consists of group-like elements. In particular, it follows from [Sw, 
Proposition 3.2.1(b)] that H# is a linearly independent subset of C. Further- 
more, since G# spans K[G], we know that H# spans C. Thus it is clear that 
C = K[H] and that the map q: K[G] -k K[H] is the natural extension of the 
semigroup epimorphism q: G H, namely, the restriction of q to G. Since 
I = ker +b, this fact is proved. 

By combining the above with Corollary 2, we can quickly obtain Steinberg's 
generalization of the classical result of Burnside [B, ?226]. The original Burnside 
theorem concerned modules for the complex group algebra C[G] with I GI < 00, 
and the proof used the character theory of finite groups. The argument in [St] 
is more transparent and, of course, it is more general. But the following proof, 
due to Rieffel in [Ri], shows precisely why the G-faithfulness assumption on 
the K[G]-module V is both natural and relevant. 

Let G be a semigroup and let V be a K[G]-module. We say that G acts 
faithfully on V if for all distinct g1, g2 E G we have (gi - g2) V 0 0. Of 
course, if G is a group, then this condition is equivalent to (g - 1) V # 0 for 
all 1:geG. 

Theorem 3. Let G be a semigroup and let G act faithfully on the K[G]-module 
V. Then K[G] acts faithfully on the tensor module S9(V) = EDE'i Von2. 
Proof. Let I be a b-ideal of K[G] contained in annK[G] V. As we observed, 
there exists a semigroup epimorphism 0: G -- H such that I is the kernel of 
the corresponding algebra map q: K[G] --+ K[H]. If I 0 0, then 0 cannot be 
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one-to-one on G and hence there exist distinct g1, g2 E G with qS(g1 - g2) = 0. 
In particular, this implies that g1 - g2 E I, so (gi - g2) V = 0, contradicting the 
fact that G is faithful on V. In other words, the G-faithfulness assumption 
implies that annK[G] V contains no nonzero b-ideal. Corollary 2 now yields the 
result. 0 

An analogous result holds for enveloping algebras. For simplicity of notation, 
let us assume that either 

(1) K is a field of characteristic 0, L is a Lie algebra over K, and U(L) 
is its enveloping algebra, or 

(2) K has characteristic p > 0, L is a restricted Lie algebra over K, and 
U(L) is its restricted enveloping algebra. 

In either case, U(L) is a b-algebra, and in fact a Hopf algebra, with comulti- 
plication determined by A(t) = ? 0 1 + 1 0 ? for all ? E L. Furthermore, if 
H is a second (restricted) Lie algebra and if 6: L -, H is a (restricted) Lie al- 
gebra homomorphism, then 6 extends uniquely to a b-algebra homomorphism 
6: U(L) --, U(H) . In particular, ker H is a b-ideal of U(L) . As is well known, 
the converse is also true, namely, every b-ideal of U(L) arises in this manner. 
The argument for this is elementary and similar to the one for semigroup rings. 
A sketch of the proof is as follows. 

Let I be a b-ideal of U(L) and let q be the b-algebra epimorphism defined 
by q: U(L) -, U(L)/I = C. Then H = +(L) is a (restricted) Lie subalgebra 
of C and H generates C as a K-algebra. In particular, if { hi I i E JY } 
is a basis for H, indexed by the ordered set (J, <), then C is spanned by 
monomials of the form h h2 ... hfn with il -< i2 -' < in and with integers 
ej > O . Furthermore, when char K = p > 0 and L is restricted, then ej < p 
for all j. Since q is a b-algebra epimorphism, it follows that the elements of 
H are primitive. Thus, by the work of [Sw, Chapter 13], these straightened 
monomials are K-linearly independent and therefore C = U(H). In other 
words, the map +: U(L) -- U(H) is the natural extension of the (restricted) 
Lie algebra epimorphism q: L --k H where, of course, 0 is the restriction of q 
to L. Since I = ker qS, this fact is proved. 

Now let V be a U(L)-module. We say that L acts faithfully on V if, for 
all 0 :$ ? E L, we have ? V 5$ 0. The Lie algebra analog of the preceding result 
is then 
Theorem 4. Let U(L) be a (restricted) enveloping algebra satisfying (1) or (2) 
above. If L acts faithfully on the U(L)-module V, then U(L) acts faithfully 
on the tensor module J(V) = 9EZ=l V??n. 

As indicated in [M], a theorem of this nature can be used to prove the fol- 
lowing interesting result of Harish-Chandra [H, Theorem 1]. Recall that a K- 
algebra A is residually finite if the collection of its ideals I of finite codimen- 
sion has intersection equal to 0. In other words, these algebras are precisely the 
subdirect products of finite-dimensional K-algebras. 
Corollary 5. If L is a finite-dimensional Lie algebra over a field K of charac- 
teristic 0, then U(L) is residually finite. 
Proof. By Ado's theorem (see [J, ?VI.2]), A = U(L) has a finite K-dimensional 
module V on which L acts faithfully. Thus, the preceding theorem implies 
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that 0 = annA?f(V) = fl?i= I, where In = annA Von. But each Von is 
a finite-dimensional A-module, so In = annA Von is an ideal of A of finite 
codimension, and the result follows. o 

If L is a finite-dimensional restricted Lie algebra, then its restricted en- 
veloping algebra U(L) is also finite dimensional. Thus the characteristic p > 0 
analog of the above is trivial. On the other hand, infinite-dimensional analogs 
in all characteristics are obtained in [M]. 

In the remainder of this paper we will restrict our attention to finite-dimen- 
sional Hopf algebras. To start with, a Hopf algebra (A, A, E, S) is a bialgebra 
with antipode S: A -* A, and a Hopf ideal is the kernel of a Hopf algebra 
homomorphism. It is easy to see that I4A is a Hopf ideal if and only if it is a b- 
ideal with e (I) = 0 and S(I) C I. Similarly, a K-subalgebra B of A is a Hopf 
subalgebra if and only if it is a b-subalgebra which is closed under the antipode 
S. Of course, the b-subalgebra condition means that A(B) 5 B X B. The 
following is a special case of a surprising result due to Nichols [N, Theorem 1]. 
A simple proof of the subalgebra case can also be found in [Ra, Lemma 1]. 

Lemma 6. If A is a finite-dimensional Hopf algebra, then any b-subalgebra of 
A is a Hopf subalgebra and any b-ideal of A is a Hopf ideal of A . 
Proof. Let B denote either a b-subalgebra of A or a b-ideal of A. Further- 
more, let E = HomK(A , A) be the convolution algebra of A and set 

F={f EEjf(B)5B}. 

Certainly F is a K-subspace of E and, in fact, F is closed under convolution 
multiplication. To see the latter, let f, g E F. If B is a b-subalgebra of A, 
then A(B) 5 B X B implies that 

(f*g)(B) 5 f(B)g(B) C B2 = B. 

On the other hand, if B is a b-ideal of A, then A(B) 5 A X B + B X A implies 
that 

(f*g)(B) C f(A)g(B) + f(B)g(A) C AB + BA = B 
since B AA. 

Now observe that the identity map Id is contained in F. Thus, by the above, 
F contains the convolution powers Id*n of Id for all n > 0. Furthermore, since 
A is finite dimensional, E is also finite dimensional and hence the map Id is 
algebraic over K. In particular, for some m > 1 , we can write Id*m as a finite 
K-linear combination of the powers Id*i with i > m. But Id has convolution 
inverse S, so by multiplying the expression for Id*m by S*m and by S*(m+l) 
in turn, we deduce first that e = Id*? E F and then that S = Id*(-l) E F. In 
other words, e(B) 5 B and S(B) 5 B. 

Finally, if B is a b-subalgebra of A , then S(B) 5 B implies that B is a Hopf 
subalgebra. On the other hand, if B is a b-ideal of A, then e (B) C B n K = 0 . 
Thus, since S(B) C B, we conclude that B is a Hopf ideal of A. 0 

The preceding result is false in general for infinite-dimensional Hopf algebras. 
Some rather complicated counterexamples appear in [N]. 
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Theorem 7. Let A be a finite-dimensional Hopf algebra. 
(i) If - is a family of A-modules which is closed under tensor product, then 

nvEy- annA V is a Hopf ideal of A. 
(ii) Suppose V is an A-module whose annihilator contains no nonzero Hopf 

ideal of A. Then g9(V) = IeZni V>>" is a faithful A-module. 

This follows immediately from Proposition 1, Corollary 2, and Lemma 6. We 
can now obtain some consequences of interest. First, recall that an A-module 
V is semisimple if it is a direct sum of simple modules. 
Corollary 8. If A is a finite-dimensional Hopf algebra, then the set ofsemisimple 
A-modules is closed under tensor product ifand only if the Jacobson radical J(A) 
is a Hopf ideal of A. 
Proof. Let g be the set of all semisimple A-modules. If Y is closed under 
o, then Theorem 7(i) implies that J(A) = nVEl, annA V is a Hopf ideal of 
A. Conversely, if J(A) is a Hopf ideal, then Y consists of all the modules 
for the Hopf algebra A/J(A) and therefore Y is surely closed under tensor 
product. 0 

In a similar manner, we prove 
Corollary 9. Let A be a finite-dimensional semisimple Hopf algebra and let JY 
be a family of simple A-modules. Suppose that, for all V, W E -Y, every 
irreducible submodule of V X W is contained in J . Then I = nVEY annA V 
is a Hopf ideal of A and JY is the set of all simple A/I-modules. 
Proof. Let 9 be the set of all finite direct sums (with multiplicities) of elements 
of .J. Since A is semisimple, the hypothesis implies that - is closed under 
tensor product. Hence, by Theorem 7(i), I = nVEg annA V = nWEl annA W 
is a Hopf ideal of A. Furthermore, since A/I is semisimple, it follows that 
.. must be the set of all simple A/I-modules. 0 

Our final consequence uses the fact that any finite-dimensional Hopf algebra 
A is a Frobenius algebra [LS, ?5] and hence that every simple A-module is 
isomorphic to a minimal left ideal of A. 

Corollary 10. Let A be a finite-dimensional Hopf algebra and let V be an A- 
module whose annihilator contains no nonzero Hopf ideal of A. Then every 
simple A-module is isomorphic to a submodule of V?n for some n > 1. 
Proof. It follows from Theorem 7(ii) that 9(V) = eZ?1 V?n is a faithful 
A-module. Now let W be a simple A-module, so that W is isomorphic to 
a minimal left ideal L C A. Since L # 0, we have Lg9(V) # 0 and hence 
LV?n # 0 for some n > 1. In particular, there exists u E V?n with Lu # 
0. But then the minimality of L implies that W " L " Lu C Von, as 
required. 0 
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