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OVERVIEW In this chapter we extend our study of differential equations to those of second
order. Second-order differential equations arise in many applications in the sciences and
engineering. For instance, they can be applied to the study of vibrating springs and electric
circuits. You will learn how to solve such differential equations by several methods in this
chapter.

17-1

SECOND-ORDER

DIFFERENTIAL EQUATIONS

C h a p t e r

17

Second-Order Linear Equations

An equation of the form

(1)

which is linear in y and its derivatives, is called a second-order linear differential equa-
tion. We assume that the functions , and are continuous throughout some open
interval I. If is identically zero on I, the equation is said to be homogeneous; other-
wise it is called nonhomogeneous. Therefore, the form of a second-order linear homoge-
neous differential equation is

(2)

We also assume that is never zero for any .
Two fundamental results are important to solving Equation (2). The first of these says

that if we know two solutions and of the linear homogeneous equation, then any
linear combination is also a solution for any constants and .c2c1y = c1y1 + c2y2

y2y1

x H IP(x)

P(x)y– + Q(x)y¿ + R(x)y = 0.

G(x)
GP, Q, R

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x),

17.1

THEOREM 1—The Superposition Principle If and are two solutions
to the linear homogeneous equation (2), then for any constants and , the
function

is also a solution to Equation (2).

y(x) = c1y1(x) + c2y2(x)

c2c1

y2(x)y1(x)
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Proof Substituting y into Equation (2), we have

144442444443 144442444443
is a solution � 0, is a solution

Therefore, is a solution of Equation (2).

Theorem 1 immediately establishes the following facts concerning solutions to the
linear homogeneous equation.

1. A sum of two solutions to Equation (2) is also a solution. (Choose 
.)

2. A constant multiple of any solution to Equation (2) is also a solution. (Choose
and .)

3. The trivial solution is always a solution to the linear homogeneous equa-
tion. (Choose .)

The second fundamental result about solutions to the linear homogeneous equation
concerns its general solution or solution containing all solutions. This result says that
there are two solutions and such that any solution is some linear combination of them
for suitable values of the constants and . However, not just any pair of solutions will
do. The solutions must be linearly independent, which means that neither nor is a
constant multiple of the other. For example, the functions and are
linearly independent, whereas and are not (so they are linearly de-
pendent). These results on linear independence and the following theorem are proved in
more advanced courses.

g(x) = 7x2ƒ(x) = x2
g(x) = xexƒ(x) = ex

y2y1

c2c1

y2y1

c1 = c2 = 0
y(x) K 0

c2 = 0c1 = k
y1ky1

c2 = 1
c1 =y1 + y2

y = c1y1 + c2y2

= c1(0) + c2(0) = 0.

y2= 0,  y1

(P(x)y2– + Q(x)y2¿ + R(x)y2)c2(P(x)y1– + Q(x)y1¿ + R(x)y1) += c1

= P(x)(c1y1– + c2 y2–) + Q(x)(c1y1¿ + c2 y2¿) + R(x)(c1y1 + c2 y2)

= P(x)(c1y1 + c2 y2)– + Q(x)(c1y1 + c2 y2)¿ + R(x)(c1y1 + c2 y2)

P(x)y– + Q(x)y¿ + R(x)y

17-2 Chapter 17: Second-Order Differential Equations

THEOREM 2 If and are continuous over the open interval I and is
never zero on I, then the linear homogeneous equation (2) has two linearly
independent solutions and on I. Moreover, if and are any two linearly
independent solutions of Equation (2), then the general solution is given by

where and are arbitrary constants.c2c1

y(x) = c1y1(x) + c2 y2(x),

y2y1y2y1

P(x)RP, Q,

We now turn our attention to finding two linearly independent solutions to the special
case of Equation (2), where and are constant functions.

Constant-Coefficient Homogeneous Equations

Suppose we wish to solve the second-order homogeneous differential equation

(3)ay– + by¿ + cy = 0,

RP, Q,
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where a, b, and c are constants. To solve Equation (3), we seek a function which when
multiplied by a constant and added to a constant times its first derivative plus a constant
times its second derivative sums identically to zero. One function that behaves this way is
the exponential function , when r is a constant. Two differentiations of this expo-
nential function give and , which are just constant multiples of the
original exponential. If we substitute into Equation (3), we obtain

Since the exponential function is never zero, we can divide this last equation through by
. Thus, is a solution to Equation (3) if and only if r is a solution to the algebraic

equation
y = erxerx

ar2erx
+ brerx

+ cerx
= 0.

y = erx
y– = r2erxy¿ = rerx

y = erx

17.1 Second-Order Linear Equations 17-3

(4)ar2
+ br + c = 0.

Equation (4) is called the auxiliary equation (or characteristic equation) of the differen-
tial equation . The auxiliary equation is a quadratic equation with
roots

and

There are three cases to consider which depend on the value of the discriminant 

Case 1: In this case the auxiliary equation has two real and unequal roots
and . Then and are two linearly independent solutions to Equation

(3) because is not a constant multiple of (see Exercise 61). From Theorem 2 we
conclude the following result.

er1 xer2 x
y2 = er2 xy1 = er1 xr2r1

b2 � 4ac>0.

b2
- 4ac.

r2 =

-b - 2b2
- 4ac

2a
.r1 =

-b + 2b2
- 4ac

2a

ay– + by¿ + cy = 0

THEOREM 3 If and are two real and unequal roots to the auxiliary
equation , then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
r1 x

+ c2e
r2 x

ar2
+ br + c = 0

r2r1

EXAMPLE 1 Find the general solution of the differential equation

Solution Substitution of into the differential equation yields the auxiliary
equation

which factors as

The roots are and Thus, the general solution is

y = c1e
3x

+ c2e
-2x.

r2 = -2.r1 = 3

(r - 3)(r + 2) = 0.

r2
- r - 6 = 0,

y = erx

y– - y¿ - 6y = 0.
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Case 2: In this case To simplify the notation, let
. Then we have one solution with . Since multiplication

of by a constant fails to produce a second linearly independent solution, suppose we try
multiplying by a function instead. The simplest such function would be , so let’s
see if is also a solution. Substituting into the differential equation gives

The first term is zero because ; the second term is zero because solves the
auxiliary equation. The functions and are linearly independent (see
Exercise 62). From Theorem 2 we conclude the following result.

y2 = xerxy1 = erx
rr = -b>2a

 = 0(erx) + (0)xerx
= 0.

 = (2ar + b)erx
+ (ar2

+ br + c)xerx

ay2– + by2¿ + cy2 = a(2rerx
+ r2xerx) + b(erx

+ rxerx) + cxerx

y2y2 = xerx
u(x) = x

erx
2ar + b = 0y1 = erxr = -b>2a

r1 = r2 = -b>2a.b2 � 4ac � 0.

17-4 Chapter 17: Second-Order Differential Equations

THEOREM 4 If r is the only (repeated) real root to the auxiliary equation
, then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
rx

+ c2 xerx

ar2
+ br + c = 0

EXAMPLE 2 Find the general solution to

Solution The auxiliary equation is

which factors into

Thus, is a double root. Therefore, the general solution is

Case 3: In this case the auxiliary equation has two complex roots
and , where and are real numbers and . (These real

numbers are and .) These two complex roots then give
rise to two linearly independent solutions

and

(The expressions involving the sine and cosine terms follow from Euler’s identity in Sec-
tion 9.9.) However, the solutions and are complex valued rather than real valued.
Nevertheless, because of the superposition principle (Theorem 1), we can obtain from
them the two real-valued solutions

and

The functions and are linearly independent (see Exercise 63). From Theorem 2 we
conclude the following result.

y4y3

y4 =
1
2i

 y1 -
1
2i

 y2 = eax sin bx.y3 =
1
2

 y1 +
1
2

 y2 = eaxcos bx

y2y1

y2 = e (a- ib)x
= eax(cos bx - i sin bx).y1 = e (a+ ib)x

= eax(cos bx + i sin bx)

b = 24ac - b2>2aa = -b>2a

i2
= -1bar2 = a - ibr1 = a + ib

b2�4ac<0.

y = c1e
-2x

+ c2 xe-2x.

r = -2

(r + 2)2
= 0.

r2
+ 4r + 4 = 0,

y– + 4y¿ + 4y = 0.
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EXAMPLE 3 Find the general solution to the differential equation

Solution The auxiliary equation is

The roots are the complex pair or and 
Thus, and give the general solution

Initial Value and Boundary Value Problems

To determine a unique solution to a first-order linear differential equation, it was sufficient
to specify the value of the solution at a single point. Since the general solution to a second-
order equation contains two arbitrary constants, it is necessary to specify two conditions.
One way of doing this is to specify the value of the solution function and the value of its
derivative at a single point: and . These conditions are called initial
conditions. The following result is proved in more advanced texts and guarantees the exis-
tence of a unique solution for both homogeneous and nonhomogeneous second-order
linear initial value problems.

y¿(x0) = y1y(x0) = y0

y = e2x(c1 cos x + c2 sin x).

b = 1a = 2
r2 = 2 - i.r1 = 2 + ir = (4 ; 216 - 20)>2

r2
- 4r + 5 = 0.

y– - 4y¿ + 5y = 0.

17.1 Second-Order Linear Equations 17-5

THEOREM 5 If and are two complex roots to the
auxiliary equation , then

is the general solution to ay– + by¿ + cy = 0.

y = eax(c1 cos bx + c2 sin bx)

ar2
+ br + c = 0

r2 = a - ibr1 = a + ib

THEOREM 6 If and are continuous throughout an open interval I,
then there exists one and only one function satisfying both the differential
equation

on the interval I, and the initial conditions

and

at the specified point .x0 H I

y¿(x0) = y1y(x0) = y0

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x)

y(x)
GP, Q, R,

It is important to realize that any real values can be assigned to and and Theorem 6
applies. Here is an example of an initial value problem for a homogeneous equation.

y1y0

 Copyright © 2010 Pearson Education, Inc.  All rights reserved 



EXAMPLE 4 Find the particular solution to the initial value problem

Solution The auxiliary equation is

.

The repeated real root is giving the general solution

Then,

From the initial conditions we have

Thus, and The unique solution satisfying the initial conditions is

The solution curve is shown in Figure 17.1.

Another approach to determine the values of the two arbitrary constants in the general
solution to a second-order differential equation is to specify the values of the solution
function at two different points in the interval I. That is, we solve the differential equation
subject to the boundary values

and ,

where and both belong to I. Here again the values for and can be any real
numbers. The differential equation together with specified boundary values is called a
boundary value problem. Unlike the result stated in Theorem 6, boundary value prob-
lems do not always possess a solution or more than one solution may exist (see Exercise
65). These problems are studied in more advanced texts, but here is an example for which
there is a unique solution.

EXAMPLE 5 Solve the boundary value problem

.

Solution The auxiliary equation is , which has the complex roots .
The general solution to the differential equation is

.

The boundary conditions are satisfied if

.

It follows that and . The solution to the boundary value problem is

.y = 2 sin 2x

c2 = 2c1 = 0

y ap
12
b = c1 cos ap

6
b + c2 sin ap

6
b = 1

 y(0) = c1
#  1 + c2

#  0 = 0

y = c1 cos 2x + c2 sin 2x

r = ;2ir2
+ 4 = 0

y– + 4y = 0,    y(0) = 0,  y ap
12
b = 1

y2y1x2x1

y(x2) = y2y(x1) = y1

y = ex
- 2xex.

c2 = -2.c1 = 1

1 = c1 + c2
# 0  and  -1 = c1 + c2

# 1.

y¿ = c1e
x

+ c2(x + 1)ex.

y = c1e
x

+ c2 xex.

r = 1,

r2
- 2r + 1 = (r - 1)2

= 0

y– - 2y¿ + y = 0,  y(0) = 1, y¿(0) = -1.

17-6 Chapter 17: Second-Order Differential Equations

–4 –3 –2 –1 0 1

–6

–8

–4

–2

y

x

y = ex – 2xex

FIGURE 17.1 Particular solution curve
for Example 4.
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17.1 Second-Order Linear Equations 17-7

EXERCISES 17.1

In Exercises 1–30, find the general solution of the given equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–40, find the unique solution of the second-order
initial value problem.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. 9
d2y

dx2 - 12
dy

dx
+ 4y = 0, y(0) = -1, 

dy

dx
(0) = 1

4
d2y

dx2 + 12
dy

dx
+ 9y = 0, y(0) = 2, 

dy

dx
(0) = 1

4y– - 4y¿ + y = 0, y(0) = 4, y¿(0) = 4

y– - 4y¿ + 4y = 0, y(0) = 1, y¿(0) = 0

y– + 4y¿ + 4y = 0, y(0) = 0, y¿(0) = 1

y– + 8y = 0, y(0) = -1, y¿(0) = 2

12y– + 5y¿ - 2y = 0, y(0) = 1, y¿(0) = -1

y– + 12y = 0, y(0) = 0, y¿(0) = 1

y– + 16y = 0, y(0) = 2, y¿(0) = -2

y– + 6y¿ + 5y = 0, y(0) = 0, y¿(0) = 3

9
d2y

dx2 - 12
dy

dx
+ 4y = 09

d2y

dx2 + 6
dy

dx
+ y = 0

4
d2y

dx2 - 4
dy

dx
+ y = 04

d2y

dx2 + 4
dy

dx
+ y = 0

4
d2y

dx2 - 12
dy

dx
+ 9y = 0

d2y

dx2 + 6
dy

dx
+ 9y = 0

d2y

dx2 - 6
dy

dx
+ 9y = 0

d2y

dx2 + 4
dy

dx
+ 4y = 0

y– + 8y¿ + 16y = 0y– = 0

4y– - 4y¿ + 13y = 0y– + 4y¿ + 9y = 0

y– - 2y¿ + 3y = 0y– + 2y¿ + 4y = 0

y– + 16y = 0y– - 2y¿ + 5y = 0

y– + y = 0y– + 25y = 0

y– + 4y¿ + 5y = 0y– + 9y = 0

3y– - 20y¿ + 12y = 08y– - 10y¿ - 3y = 0

9y– - y = 02y– - y¿ - 3y = 0

y– - 64y = 0y– - 4y = 0

y– - 9y = 0y– + 3y¿ - 4y = 0

3y– - y¿ = 0y– - y¿ - 12y = 0

In Exercises 41–55, find the general solution.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

In Exercises 56–60, solve the initial value problem.

56.

57.

58.

59.

60.

61. Prove that the two solution functions in Theorem 3 are linearly in-
dependent.

62. Prove that the two solution functions in Theorem 4 are linearly in-
dependent.

63. Prove that the two solution functions in Theorem 5 are linearly in-
dependent.

64. Prove that if and are linearly independent solutions to the
homogeneous equation (2), then the functions and

are also linearly independent solutions.

65. a. Show that there is no solution to the boundary value problem

b. Show that there are infinitely many solutions to the boundary
value problem

66. Show that if a, b, and c are positive constants, then all solutions of
the homogeneous differential equation

approach zero as x : q .

ay– + by¿ + cy = 0

y– + 4y = 0, y(0) = 0, y(p) = 0.

y– + 4y = 0, y(0) = 0, y(p) = 1.

y4 = y1 - y2

y3 = y1 + y2

y2y1

4y– + 4y¿ + 5y = 0, y(p) = 1, y¿(p) = 0

3y– + y¿ - 14y = 0, y(0) = 2, y¿(0) = -1

4y– - 4y¿ + y = 0, y(0) = -1, y¿(0) = 2

y– + 2y¿ + y = 0, y(0) = 1, y¿(0) = 1

y– - 2y¿ + 2y = 0, y(0) = 0, y¿(0) = 2

6y– - 5y¿ - 4y = 0

4y– + 16y¿ + 52y = 09y– + 24y¿ + 16y = 0

6y– - 5y¿ - 6y = 016y– - 24y¿ + 9y = 0

y– + 4y¿ + 6y = 04y– + 4y¿ + 5y = 0

6y– + 13y¿ - 5y = 025y– + 10y¿ + y = 0

y– + 2y¿ + 2y = 04y– + 20y = 0

9y– + 12y¿ + 4y = 04y– + 4y¿ + y = 0

6y– - y¿ - y = 0y– - 2y¿ - 3y = 0
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17-8 Chapter 17: Second-Order Differential Equations

Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous
differential equations with constant coefficients. These are the methods of undetermined
coefficients and variation of parameters. We begin by considering the form of the general
solution.

Form of the General Solution

Suppose we wish to solve the nonhomogeneous equation

(1)

where a, b, and c are constants and G is continuous over some open interval I. Let
be the general solution to the associated complementary equation

(2)

(We learned how to find in Section 17.1.) Now suppose we could somehow come up
with a particular function that solves the nonhomogeneous equation (1). Then the sum

(3)

also solves the nonhomogeneous equation (1) because

Moreover, if is the general solution to the nonhomogeneous equation (1), it must
have the form of Equation (3). The reason for this last statement follows from the observa-
tion that for any function satisfying Equation (1), we have

Thus, is the general solution to the homogeneous equation (2). We have
established the following result.

yc = y - yp

 = G(x) - G(x) = 0.

 = (ay– + by¿ + cy) - (ayp– + byp¿ + cyp)

a(y - yp)– + b(y - yp)¿ + c(y - yp)

yp

y = y(x)

 = G(x).

 = 0 + G(x)

 = (ayc– + byc¿ + cyc) + (ayp– + byp¿ + cyp)

a(yc + yp)– + b(yc + yp)¿ + c(yc + yp)

y = yc + yp

yp

yc

ay– + by¿ + cy = 0.

yc = c1y1 + c2y2

ay– + by¿ + cy = G(x),

17.2

solves Eq. (2) and solves Eq. (1)ypyc

THEOREM 7 The general solution to the nonhomogeneous differen-
tial equation (1) has the form

,

where the complementary solution is the general solution to the associated
homogeneous equation (2) and is any particular solution to the nonhomoge-
neous equation (1).

yp

yc

y = yc + yp

y = y(x)
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The Method of Undetermined Coefficients

This method for finding a particular solution to the nonhomogeneous equation (1) ap-
plies to special cases for which is a sum of terms of various polynomials multi-
plying an exponential with possibly sine or cosine factors. That is, is a sum of terms
of the following forms:

For instance, and represent functions in this category.
(Essentially these are functions solving homogeneous linear differential equations with
constant coefficients, but the equations may be of order higher than two.) We now present
several examples illustrating the method.

EXAMPLE 1 Solve the nonhomogeneous equation 

Solution The auxiliary equation for the complementary equation is

It has the roots and giving the complementary solution

.

Now is a polynomial of degree 2. It would be reasonable to assume that a
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2
because if y is a polynomial of degree 2, then is also a polynomial of de-
gree 2. So we seek a particular solution of the form

We need to determine the unknown coefficients A, B, and C. When we substitute the poly-
nomial and its derivatives into the given nonhomogeneous equation, we obtain

or, collecting terms with like powers of x,

This last equation holds for all values of x if its two sides are identical polynomials of
degree 2. Thus, we equate corresponding powers of x to get

and

These equations imply in turn that A � , B � , and C � Substituting these
values into the quadratic expression for our particular solution gives

By Theorem 7, the general solution to the nonhomogeneous equation is

1
3

 x2
-

4
9

 x +

5
27

.+c1e
- x

+ c2e
3xy = yc + yp =

yp =
1
3

 x2
-

4
9

 x +

5
27

.

5>27.-4>91>3
2A - 2B - 3C = 1.-4A - 3B = 0,-3A = -1,

-3Ax2
+ (-4A - 3B)x + (2A - 2B - 3C) = 1 - x2.

2A - 2(2Ax + B) - 3(Ax2
+ Bx + C) = 1 - x2

yp

yp = Ax2
+ Bx + C.

y– - 2y¿ - 3y

G(x) = 1 - x2

yc = c1e
- x

+ c2e
3x

r = 3r = -1

r2
- 2r - 3 = (r + 1)(r - 3) = 0.

y– - 2y¿ - 3y = 0

y– - 2y¿ - 3y = 1 - x2.

5ex
- sin 2x1 - x, e2x, xex, cos x,

p3(x)eax sin bx.p2(x)eax cos bx,p1(x)erx,

G(x)
p(x)G(x)

yp

17.2 Nonhomogeneous Linear Equations 17-9
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EXAMPLE 2 Find a particular solution of 

Solution If we try to find a particular solution of the form

and substitute the derivatives of in the given equation, we find that A must satisfy the
equation

for all values of x. Since this requires A to equal both 2 and 0 at the same time, we con-
clude that the nonhomogeneous differential equation has no solution of the form .

It turns out that the required form is the sum

.

The result of substituting the derivatives of this new trial solution into the differential
equation is

or

.

This last equation must be an identity. Equating the coefficients for like terms on each side
then gives

and .

Simultaneous solution of these two equations gives and . Our particular
solution is

.

EXAMPLE 3 Find a particular solution of .

Solution If we substitute

and its derivatives in the differential equation, we find that

or

.

However, the exponential function is never zero. The trouble can be traced to the fact that
is already a solution of the related homogeneous equation

.

The auxiliary equation is

which has as a root. So we would expect to become zero when substituted into
the left-hand side of the differential equation.

The appropriate way to modify the trial solution in this case is to multiply by x.
Thus, our new trial solution is

.yp = Axex

Aex

Aexr = 1

r2
- 3r + 2 = (r - 1)(r - 2) = 0,

y– - 3y¿ + 2y = 0

y = ex

0 = 5ex

Aex
- 3Aex

+ 2Aex
= 5ex

yp = Aex

y– - 3y¿ + 2y = 5ex

yp = cos x - sin x

B = 1A = -1

A + B = 0B - A = 2

(B - A) sin x - (A + B) cos x = 2 sin x

-A sin x - B cos x - (A cos x - B sin x) = 2 sin x

yp = A sin x + B cos x

A sin x
-

-A sin x + A cos x = 2 sin x

yp

yp = A sin x

y– - y¿ = 2 sin x.
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The result of substituting the derivatives of this new candidate into the differential equation is

or

.

Thus, gives our sought-after particular solution

.

EXAMPLE 4 Find a particular solution of .

Solution The auxiliary equation for the complementary equation

has as a repeated root. The appropriate choice for in this case is neither nor
because the complementary solution contains both of those terms already. Thus, we

choose a term containing the next higher power of x as a factor. When we substitute

and its derivatives in the given differential equation, we get

or

.

Thus, , and the particular solution is

.

When we wish to find a particular solution of Equation (1) and the function is the
sum of two or more terms, we choose a trial function for each term in and add them.

EXAMPLE 5 Find the general solution to .

Solution We first check the auxiliary equation

.

Its roots are and . Therefore, the complementary solution to the associated ho-
mogeneous equation is

.

We now seek a particular solution . That is, we seek a function that will produce
when substituted into the left-hand side of the given differential equation.

One part of is to produce , the other .
Since any function of the form is a solution of the associated homogeneous equa-

tion, we choose our trial solution to be the sum

,

including where we might otherwise have included only . When the derivatives of 
are substituted into the differential equation, the resulting equation is

- (Axex
+ Aex

- 2B sin 2x + 2C cos 2x) = 5ex
- sin 2x

(Axex
+ 2Aex

- 4B cos 2x - 4C sin 2x)

ypexxex

yp = Axex
+ B cos 2x + C sin 2x

yp

c1e
x

-sin 2x5exyp

5ex
- sin 2x

yp

yc = c1e
x

+ c2

r = 0r = 1

r2
- r = 0

y– - y¿ = 5ex
- sin 2x

G(x)
G(x)

yp =
1
2

 x2e3x

A = 1>2
2Ae3x

= e3x

(9Ax2e3x
+ 12Axe3x

+ 2Ae3x) - 6(3Ax2e3x
+ 2Axe3x) + 9Ax2e3x

= e3x

yp = Ax2e3x

Axe3x
Ae3xypr = 3

r2
- 6r + 9 = (r - 3)2

= 0

y– - 6y¿ + 9y = e3x

yp = -5xex

A = -5

-Aex
= 5ex

(Axex
+ 2Aex) - 3(Axex

+ Aex) + 2Axex
= 5ex
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or

.

This equation will hold if

or and Our particular solution is

.

The general solution to the differential equation is

.

You may find the following table helpful in solving the problems at the end of this
section.

+ 5xex
-

1
10

 cos 2x +
1
5 sin 2xc1e

x
+ c2y = yc + yp =

yp = 5xex
-

1
10

 cos 2x +
1
5 sin 2x

C = 1>5.B = -1>10,A = 5,

2B - 4C = -1,4B + 2C = 0,A = 5,

Aex
- (4B + 2C ) cos 2x + (2B - 4C ) sin 2x = 5ex

- sin 2x
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TABLE 17.1 The method of undetermined coefficients for selected equations
of the form

.

If has a term Then include this
that is a constant expression in the
multiple of . . . And if trial function for 

r is not a root of
the auxiliary equation

r is a single root of the
auxiliary equation

r is a double root of the
auxiliary equation

sin kx, cos kx ki is not a root of
the auxiliary equation

0 is not a root of the
auxiliary equation

0 is a single root of the
auxiliary equation

0 is a double root of the
auxiliary equation

Dx4
+ Ex3

+ Fx2

Dx3
+ Ex2

+ Fx

Dx2
+ Ex + Fpx2

+ qx + m

B cos kx + C sin kx

Ax2erx

Axerx

Aerxerx

yp.

G(x)

ay– + by¿ + cy = G(x)

The Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation
(1) once the general solution of the associated homogeneous equation is known. The
method consists of replacing the constants and in the complementary solution by
functions and and requiring (in a way to be explained) that they2 = y2(x)y1 = y1(x)

c2c1
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resulting expression satisfy the nonhomogeneous equation (1). There are two functions to
be determined, and requiring that Equation (1) be satisfied is only one condition. As a sec-
ond condition, we also require that

. (4)

Then we have

If we substitute these expressions into the left-hand side of Equation (1), we obtain

The first two parenthetical terms are zero since and are solutions of the associated
homogeneous equation (2). So the nonhomogeneous equation (1) is satisfied if, in addition
to Equation (4), we require that

. (5)

Equations (4) and (5) can be solved together as a pair

for the unknown functions and . The usual procedure for solving this simple system
is to use the method of determinants (also known as Cramer’s Rule), which will be demon-
strated in the examples to follow. Once the derivative functions and are known, the
two functions and can be found by integration. Here is a summary
of the method.

y2 = y2(x)y1 = y1(x)
y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

a(y1¿y1¿ + y2¿y2¿) = G(x)

y2y1

+ a(y1¿y1¿ + y2¿y2¿) = G(x).y1(ay1– + by1¿ + cy1) + y2(ay2– + by2¿ + cy2)

y– = y1y1– + y2y2– + y1¿y1¿ + y2¿y2¿.

 y¿ = y1y1¿ + y2y2¿,

 y = y1y1 + y2y2,

y1¿y1 + y2¿y2 = 0

17.2 Nonhomogeneous Linear Equations 17-13

Variation of Parameters Procedure

To use the method of variation of parameters to find a particular solution to the
nonhomogeneous equation

,

we can work directly with Equations (4) and (5). It is not necessary to rederive
them. The steps are as follows.

1. Solve the associated homogeneous equation

to find the functions and .
2. Solve the equations

simultaneously for the derivative functions and .
3. Integrate and to find the functions and .
4. Write down the particular solution to nonhomogeneous equation (1) as

.yp = y1y1 + y2y2

y2 = y2(x)y1 = y1(x)y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

y2y1

ay– + by¿ + cy = 0

ay– + by¿ + cy = G(x)
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EXAMPLE 6 Find the general solution to the equation

Solution The solution of the homogeneous equation

is given by

.

Since and , the conditions to be satisfied in Equations (4) and
(5) are

Solution of this system gives

Likewise,

After integrating and we have

,

and

.

Note that we have omitted the constants of integration in determining and . They
would merely be absorbed into the arbitrary constants in the complementary solution.

Substituting and into the expression for in Step 4 gives

The general solution is

.y = c1 cos x + c2 sin x - (cos x) ln ƒ sec x + tan x ƒ

 = (-cos x) ln ƒ sec x + tan x ƒ.

yp = [- ln ƒ sec x + tan x ƒ + sin x] cos x + (-cos x) sin x

ypy2y1

y2y1

y2(x) = Lsin x dx = -cos x

 = - ln ƒ sec x + tan x ƒ + sin x

 = -L (sec x - cos x) dx

y1(x) = L
-sin2 x
 cos x  dx

y2¿,y1¿

y2¿ =

`  cos x 0

-sin x tan x
`

`  cos x  sin x

-sin x  cos x
`

= sin x.

y1¿ =

` 0  sin x

tan x  cos x
`

`   cos x  sin x

-sin x  cos x
`

=

- tan x sin x
cos2 x + sin2 x

=

-sin2 x
 cos x .

a = 1-y1¿ sin x + y2¿ cos x = tan x.

 y1¿ cos x + y2¿ sin x = 0,

y2(x) = sin xy1(x) = cos x

yc = c1 cos x + c2 sin x

y– + y = 0

y– + y = tan x.

17-14 Chapter 17: Second-Order Differential Equations
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EXAMPLE 7 Solve the nonhomogeneous equation

.

Solution The auxiliary equation is

giving the complementary solution

The conditions to be satisfied in Equations (4) and (5) are

Solving the above system for and gives

Likewise,

Integrating to obtain the parameter functions, we have

and

Therefore,

The general solution to the differential equation is

where the term in has been absorbed into the term in the complementary
solution.

c2e
xyp(1>27)ex

y = c1e
-2x

+ c2e
x

-
1
9

 xex
+

1
6

 x2ex,

 =
1
27

 ex
-

1
9

 xex
+

1
6

 x2ex.

yp = c(1 - 3x)e3x

27
de-2x

+ ax2

6
bex

y2(x) = L
x
3

 dx =

x2

6
.

 =
1
27

(1 - 3x)e3x,

 = -
1
3
axe3x

3
- L

e3x

3
 dxb

y1(x) = L -  
1
3

 xe3x dx

y2¿ =

` e - 2x 0

-2e - 2x xex `
3e-x =

xe-x

3e-x =

x
3

.

y1¿ =

` 0 ex

xex ex `
` e - 2x ex

-2e - 2x ex `
=

-xe2x

3e - x = -  
1
3

 xe3x.

y2¿y1¿

a = 1-2y1¿e - 2x
+ y2¿ex

= xex.

 y1¿e - 2x
+ y2¿ex

= 0,

yc = c1e
- 2x

+ c2e
x.

r2
+ r - 2 = (r + 2)(r - 1) = 0

y– + y¿ - 2y = xex

17.2 Nonhomogeneous Linear Equations 17-15
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EXERCISES 17.2

Solve the equations in Exercises 1–16 by the method of undetermined
coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13. 14.

15. 16.

Solve the equations in Exercises 17–28 by variation of parameters.

17.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

In each of Exercises 29–32, the given differential equation has a par-
ticular solution of the form given. Determine the coefficients in 
Then solve the differential equation.

29.

30.

31.

32.

In Exercises 33–36, solve the given differential equations (a) by
variation of parameters and (b) by the method of undetermined
coefficients.

33. 34.

35. 36.
d2y

dx2 - 9
dy

dx
= 9e9x

d2y

dx2 - 4
dy

dx
- 5y = ex

+ 4

d2y

dx2 - 4
dy

dx
+ 4y = 2e2x

d2y

dx2 -

dy

dx
= ex

+ e-x

y– + y¿ - 2y = xex, yp = Ax2ex
+ Bxex

y– + y = 2 cos x + sin x, yp = Ax cos x + Bx sin x

y– - y¿ = cos x + sin x, yp = A cos x + B sin x

y– - 5y¿ = xe5x, yp = Ax2e5x
+ Bxe5x

yp.yp

d2y

dx2 -

dy

dx
= ex cos x, x 7 0

d2y

dx2 + y = sec x,  -

p

2
6 x 6

p

2

y– - y¿ = 2xy– + 4y¿ + 5y = 10

y– - y = sin xy– - y = ex

y– - y = xy– + 2y¿ + y = e-x

y– + 2y¿ + y = exy– + y = sin x

y– + y = tan x,  -

p

2
6 x 6

p

2

y– + y¿ = x

d2y

dx2 + 7
dy

dx
= 42x2

+ 5x + 1
d2y

dx2 - 3
dy

dx
= e3x

- 12x

d2y

dx2 -

dy

dx
= -8x + 3

d2y

dx2 + 5
dy

dx
= 15x2

y– + 3y¿ + 2y = e-x
+ e-2x

- x

y– - y¿ - 6y = e-x
- 7 cos x

y– + 2y¿ + y = 6 sin 2xy– - y = ex
+ x2

y– + y = 2x + 3exy– - y¿ - 2y = 20 cos x

y– + y = e2xy– + y = cos 3x

y– + 2y¿ + y = x2y– - y¿ = sin x

y– - 3y¿ - 10y = 2x - 3y– - 3y¿ - 10y = -3

Solve the differential equations in Exercises 37–46. Some of the equa-
tions can be solved by the method of undetermined coefficients, but
others cannot.

37.

38.

39. 40.

41. 42.

43. 44.

45.

46.

The method of undetermined coefficients can sometimes be used to
solve first-order ordinary differential equations. Use the method to
solve the equations in Exercises 47–50.

47. 48.

49. 50.

Solve the differential equations in Exercises 51 and 52 subject to the
given initial conditions.

51.

52.

In Exercises 53–58, verify that the given function is a particular solu-
tion to the specified nonhomogeneous equation. Find the general solu-
tion and evaluate its arbitrary constants to find the unique solution sat-
isfying the equation and the given initial conditions.

53.

54.

55.

56.

57.

58.

In Exercises 59 and 60, two linearly independent solutions and 
are given to the associated homogeneous equation of the variable-
coefficient nonhomogeneous equation. Use the method of variation of
parameters to find a particular solution to the nonhomogeneous equa-
tion. Assume in each exercise.

59.

60. x2y– + xy¿ - y = x, y1 = x - 1, y2 = x

x2y– + 2xy¿ - 2y = x2, y1 = x - 2, y2 = x

x 7 0

y2y1

yp = xex ln x,  y(1) = e, y¿(1) = 0

y– - 2y¿ + y = x-1ex, x 7 0,

y– - 2y¿ + y = 2ex,  yp = x2ex,  y(0) = 1, y¿(0) = 0

y– - y¿ - 2y = 1 - 2x,  yp = x - 1,  y(0) = 0, y¿(0) = 1

yp = 2ex cos x,  y(0) = 0, y¿(0) = 1

1
2

y– + y¿ + y = 4ex(cos x - sin x),

y– + y = x, yp = 2 sin x + x,  y(0) = 0, y¿(0) = 0

y– + y¿ = x, yp =

x2

2
- x,  y(0) = 0, y¿(0) = 0

d2y

dx2 + y = e2x; y(0) = 0, y¿(0) =

2
5

d2y

dx2 + y = sec2 x, -

p

2
6 x 6

p

2
; y (0) = y¿(0) = 1

y¿ + y = sin xy¿ - 3y = 5e3x

y¿ + 4y = xy¿ - 3y = ex

y– - 3y¿ + 2y = ex
- e2x

y– + y = sec x tan x, -

p

2
6 x 6

p

2

y– + 9y = 9x - cos xy– + 2y¿ = x2
- ex

y– + 4y¿ + 5y = x + 2y– - y¿ = x3

y– + 4y = sin xy– - 8y¿ = e8x

y– + y = csc x, 0 6 x 6 p

y– + y = cot x, 0 6 x 6 p
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Applications

In this section we apply second-order differential equations to the study of vibrating
springs and electric circuits.

Vibrations

A spring has its upper end fastened to a rigid support, as shown in Figure 17.2. An object
of mass m is suspended from the spring and stretches it a length s when the spring comes
to rest in an equilibrium position. According to Hooke’s Law (Section 6.5), the tension
force in the spring is , where k is the spring constant. The force due to gravity pulling
down on the spring is , and equilibrium requires that

(1)

Suppose that the object is pulled down an additional amount beyond the equilibrium po-
sition and then released. We want to study the object’s motion, that is, the vertical position
of its center of mass at any future time.

Let y, with positive direction downward, denote the displacement position of the ob-
ject away from the equilibrium position at any time t after the motion has started.
Then the forces acting on the object are (see Figure 17.3)

the propulsion force due to gravity,

the restoring force of the spring’s tension,

a frictional force assumed proportional to velocity.

The frictional force tends to retard the motion of the object. The resultant of these forces is
, and by Newton’s second law , we must then have

.

By Equation (1), , so this last equation becomes

(2)

subject to the initial conditions and . (Here we use the prime notation
to denote differentiation with respect to time t.)

You might expect that the motion predicted by Equation (2) will be oscillatory about
the equilibrium position and eventually damp to zero because of the retarding fric-
tional force. This is indeed the case, and we will show how the constants m, , and k deter-
mine the nature of the damping. You will also see that if there is no friction (so ),
then the object will simply oscillate indefinitely.

Simple Harmonic Motion

Suppose first that there is no retarding frictional force. Then and there is no damp-
ing. If we substitute to simplify our calculations, then the second-order equa-
tion (2) becomes

with and .y¿(0) = 0y(0) = y0y– + v2y = 0,

v = 2k>m d = 0

d = 0
d

y = 0

y¿(0) = 0y(0) = y0

m
d2y

dt2 + d
dy
dt

+ ky = 0,

mg - ks = 0

m
d2y

dt2 = mg - ks - ky - d
dy
dt

F = maF = Fp - Fs - Fr

Fr = d
dy
dt

,

Fs = k(s + y),

Fp = mg,

y = 0

y0

ks = mg.

mg
ks

17.3

y

y � 0

s

mass m
at equilibrium

FIGURE 17.2 Mass m
stretches a spring by
length s to the equilibrium
position at y = 0.

y

y � 0

y

y0

s

Fs Fr

Fp

a position
after release

start
position

FIGURE 17.3 The propulsion
force (weight) pulls the mass
downward, but the spring
restoring force and frictional
force pull the mass upward.
The motion starts at with
the mass vibrating up and down.

y = y0

Fr

Fs

Fp
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The auxiliary equation is

having the imaginary roots . The general solution to the differential equation in
(2) is

(3)

To fit the initial conditions, we compute

and then substitute the conditions. This yields and . The particular solution

(4)

describes the motion of the object. Equation (4) represents simple harmonic motion of
amplitude and period .

The general solution given by Equation (3) can be combined into a single term by
using the trigonometric identity

.

To apply the identity, we take (see Figure 17.4)

and ,

where

and

Then the general solution in Equation (3) can be written in the alternative form

(5)

Here C and may be taken as two new arbitrary constants, replacing the two constants 
and . Equation (5) represents simple harmonic motion of amplitude C and period

. The angle is called the phase angle, and may be interpreted as its
initial value. A graph of the simple harmonic motion represented by Equation (5) is given
in Figure 17.5.

fvt + fT = 2p>vc2

c1f

y = C sin (vt + f).

f = tan-1 
c1
c2

.C = 2c1 2 + c2 2

c2 = C cos fc1 = C sin f

 sin (vt + f) = cos vt sin f + sin vt cos f

T = 2p>vy0

y = y0 cos vt

c2 = 0c1 = y0

y¿ = -c1v sin vt + c2v cos vt

y = c1 cos vt + c2 sin vt.

r = ;vi

r2
+ v2

= 0,
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�

c2

c1

C = �c1
2 + c2

2

FIGURE 17.4 and
.c2 = C cos f

c1 = C sin f

y

t

–C

C

0

C sin �

y = C sin(�t + �)

T = 2�
�

Period

FIGURE 17.5 Simple harmonic motion of amplitude C
and period T with initial phase angle (Equation 5).f
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Damped Motion

Assume now that there is friction in the spring system, so . If we substitute
and , then the differential equation (2) is

(6)

The auxiliary equation is

with roots . Three cases now present themselves, depending upon
the relative sizes of b and .

Case 1: . The double root of the auxiliary equation is real and equals . The
general solution to Equation (6) is

.

This situation of motion is called critical damping and is not oscillatory. Figure 17.6a
shows an example of this kind of damped motion.

Case 2: . The roots of the auxiliary equation are real and unequal, given by

and . The general solution to Equation (6)
is given by

.

Here again the motion is not oscillatory and both and are negative. Thus y approaches
zero as time goes on. This motion is referred to as overdamping (see Figure 17.6b).

Case 3: . The roots to the auxiliary equation are complex and given by
. The general solution to Equation (6) is given by

This situation, called underdamping, represents damped oscillatory motion. It is analo-
gous to simple harmonic motion of period except that the amplitude
is not constant but damped by the factor . Therefore, the motion tends to zero as t
increases, so the vibrations tend to die out as time goes on. Notice that the period

is larger than the period in the friction-free system.
Moreover, the larger the value of in the exponential damping factor, the more
quickly the vibrations tend to become unnoticeable. A curve illustrating underdamped mo-
tion is shown in Figure 17.6c.

b = d>2m
T0 = 2p>vT = 2p>2v2

- b2

e - bt
T = 2p>2v2

- b2

y = e - bt Ac1 cos2v2
- b2 t + c2 sin2v2

- b2 t B .
r = -b ; i2v2

- b2
b<V

r2r1

y = c1e A- b +2b2
-v2Bt

+ c2e A- b -2b2
-v2Bt

r2 = -b - 2b2
- v2r1 = -b + 2b2

- v2

b>V

y = (c1 + c2t)e
-vt

r = vb � V

v

r = -b ; 2b2
- v2

r2
+ 2br + v2

= 0,

y– + 2by¿ + v2y = 0.

2b = d>mv = 2k>m d Z 0
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y

t

y

t

y

t

(a) Critical damping (b) Overdamping (c) Underdamping

y = (1 + t)e–t y = 2e–2t – e–t y = e–t sin (5t + �/4)
0 0 0

FIGURE 17.6 Three examples of damped vibratory motion for a spring system with
friction, so d Z 0.
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An external force can also be added to the spring system modeled by Equation
(2). The forcing function may represent an external disturbance on the system. For in-
stance, if the equation models an automobile suspension system, the forcing function
might represent periodic bumps or potholes in the road affecting the performance of the
suspension system; or it might represent the effects of winds when modeling the vertical
motion of a suspension bridge. Inclusion of a forcing function results in the second-order
nonhomogeneous equation

(7)

We leave the study of such spring systems to a more advanced course.

Electric Circuits

The basic quantity in electricity is the charge q (analogous to the idea of mass). In an elec-
tric field we use the flow of charge, or current , as we might use velocity in a
gravitational field. There are many similarities between motion in a gravitational field and
the flow of electrons (the carriers of charge) in an electric field.

Consider the electric circuit shown in Figure 17.7. It consists of four components:
voltage source, resistor, inductor, and capacitor. Think of electrical flow as being like a
fluid flow, where the voltage source is the pump and the resistor, inductor, and capacitor
tend to block the flow. A battery or generator is an example of a source, producing a volt-
age that causes the current to flow through the circuit when the switch is closed. An elec-
tric light bulb or appliance would provide resistance. The inductance is due to a magnetic
field that opposes any change in the current as it flows through a coil. The capacitance is
normally created by two metal plates that alternate charges and thus reverse the current
flow. The following symbols specify the quantities relevant to the circuit:

q: charge at a cross section of a conductor measured in coulombs (abbreviated c);

I: current or rate of change of charge dq/dt (flow of electrons) at a cross section of a
conductor measured in amperes (abbreviated A);

E: electric (potential) source measured in volts (abbreviated V);

V: difference in potential between two points along the conductor measured in volts (V).

I = dq>dt

m
d2y

dt2 + d
dy
dt

+ ky = F(t).

F(t)
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R, Resistor

C, Capacitor

L, InductorE
Voltage

source

FIGURE 17.7 An electric circuit.

Ohm observed that the current I flowing through a resistor, caused by a potential dif-
ference across it, is (approximately) proportional to the potential difference (voltage drop).
He named his constant of proportionality and called R the resistance. So Ohm’s law is

I =
1
R

 V.

1>R
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17.3 Applications 17-21

Linear Second-Order Constant-Coefficient Models

Mechanical System Electrical System

y: displacement q: charge
: velocity : current
: acceleration : change in current

m: mass L: inductance
: damping constant R: resistance

k: spring constant 1 C: where C is the capacitance
F(t): forcing function E(t): voltage source

>d

q–y–

q¿y¿

Lq– + Rq¿ +
1
C

 q = E(t)my– + dy¿ + ky = F(t)

EXERCISES 17.3

1. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. Write an initial value problem that
models the given situation.

>
t = 0

>
2. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-

sides in a medium offering a resistance to the motion that is nu-
merically equal to 1.5 times the instantaneous velocity. If the
weight is released at a position 2 ft above its equilibrium position
with a downward velocity of 3 ft sec, write an initial value prob-
lem modeling the given situation.

>

Similarly, it is known from physics that the voltage drops across an inductor and a ca-
pacitor are

and

where L is the inductance and C is the capacitance (with q the charge on the capacitor).
The German physicist Gustav R. Kirchhoff (1824–1887) formulated the law that the

sum of the voltage drops in a closed circuit is equal to the supplied voltage . Symboli-
cally, this says that

Since , Kirchhoff’s law becomes

(8)

The second-order differential equation (8), which models an electric circuit, has exactly
the same form as Equation (7) modeling vibratory motion. Both models can be solved
using the methods developed in Section 17.2.

Summary

The following chart summarizes our analogies for the physics of motion of an object in a
spring system versus the flow of charged particles in an electrical circuit.

L 
d2q

dt2 + R 
dq
dt

+
1
C

 q = E(t).

I = dq>dt

RI + L 
dI
dt

+

q
C

= E(t).

E(t)

q
C

,L 
dI
dt
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3. A 20-lb weight is hung on an 18-in. spring and stretches it 6 in.
The weight is pulled down 5 in. and 5 lb are added to the weight. If
the weight is now released with a downward velocity of in. sec,
write an initial value problem modeling the vertical displacement.

4. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity y in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
formulate an initial value problem modeling the behavior of the
spring–mass system.

5. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present and a voltage of cos t is applied. In this circuit
the voltage drop across the resistor is 4 times the instantaneous
change in the charge, the voltage drop across the capacitor is 
10 times the charge, and the voltage drop across the inductor is
2 times the instantaneous change in the current. Write an initial
value problem to model the circuit.

6. An inductor of 2 henrys is connected in series with a resistor
of 12 ohms, a capacitor of 1 16 farad, and a 300 volt battery.
Initially, the charge on the capacitor is zero and the current is
zero. Formulate an initial value problem modeling this electrical
circuit.

Mechanical units in the British and metric systems may be helpful
in doing the following problems.

Unit British System MKS System

Distance Feet (ft) Meters (m)
Mass Slugs Kilograms (kg)
Time Seconds (sec) Seconds (sec)
Force Pounds (lb) Newtons (N)
g(earth) 32 ft sec2 9.81 m sec2

7. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. At the end of sec, determine
whether the mass is above or below the equilibrium position and
by what distance.

8. An 8-lb weight stretches a spring 4 ft. The spring–mass system
resides in a medium offering a resistance to the motion equal to
1.5 times the instantaneous velocity. If the weight is released at a
position 2 ft above its equilibrium position with a downward
velocity of 3 ft sec, find its position relative to the equilibrium
position 2 sec later.

9. A 20-lb weight is hung on an 18-in. spring stretching it 6 in. The
weight is pulled down 5 in. and 5 lb are added to the weight. If the
weight is now released with a downward velocity of in. sec,
find the position of mass relative to the equilibrium in terms of 
and valid for any time .t Ú 0

y0

>y0

>

p>
t = 0

>

>>

>

Estd = 20

20>1g

>y0

10. A mass of 1 slug is attached to a spring whose constant is 25 4
lb ft. Initially the mass is released 1 ft above the equilibrium posi-
tion with a downward velocity of 3 ft sec, and the subsequent
motion takes place in a medium that offers a damping force nu-
merically equal to 3 times the instantaneous velocity. An external
force ƒ(t) is driving the system, but assume that initially .
Formulate and solve an initial value problem that models the
given system. Interpret your results.

11. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
find the time required to reach the equilibrium position for the
first time.

12. A weight stretches a spring 6 in. It is set in motion at a point 2 in. be-
low its equilibrium position with a downward velocity of 2 in. sec.

a. When does the weight return to its starting position?

b. When does it reach its highest point?

c. Show that the maximum velocity is in. sec.

13. A weight of 10 lb stretches a spring 10 in. The weight is drawn
down 2 in. below its equilibrium position and given an initial ve-
locity of 4 in. sec. An identical spring has a different weight at-
tached to it. This second weight is drawn down from its equilib-
rium position a distance equal to the amplitude of the first motion
and then given an initial velocity of 2 ft sec. If the amplitude of
the second motion is twice that of the first, what weight is at-
tached to the second spring?

14. A weight stretches one spring 3 in. and a second weight stretches
another spring 9 in. If both weights are simultaneously pulled
down 1 in. below their respective equilibrium positions and then
released, find the first time after when their velocities are
equal.

15. A weight of 16 lb stretches a spring 4 ft. The weight is pulled
down 5 ft below the equilibrium position and then released. What
initial velocity given to the weight would have the effect of
doubling the amplitude of the vibration?

16. A mass weighing 8 lb stretches a spring 3 in. The spring–mass sys-
tem resides in a medium with a damping constant of 2 lb-sec ft. If
the mass is released from its equilibrium position with a velocity
of 4 in. sec in the downward direction, find the time required for
the mass to return to its equilibrium position for the first time.

17. A weight suspended from a spring executes damped vibrations with
a period of 2 sec. If the damping factor decreases by 90% in 10 sec,
find the acceleration of the weight when it is 3 in. below its equilib-
rium position and is moving upward with a speed of 2 ft sec.

18. A 10-lb weight stretches a spring 2 ft. If the weight is pulled down
6 in. below its equilibrium position and released, find the highest
point reached by the weight. Assume the spring–mass system re-
sides in a medium offering a resistance of lb times the in-
stantaneous velocity in feet per second.

10>1g

>

>
>

y0

t = 0

>

>

>212g + 1

>

40>1g

ƒ(t) K 0

>
>

>
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17.4 Euler Equations 17-23

19. An LRC circuit is set up with an inductance of 1 5 henry, a resist-
ance of 1 ohm, and a capacitance of 5 6 farad. Assuming the initial
charge is 2 coulombs and the initial current is 4 amperes, find the
solution function describing the charge on the capacitor at any time.
What is the charge on the capacitor after a long period of time?

20. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present but no external voltage is being applied. In this circuit the
voltage drops at three points are numerically related as follows:
across the capacitor, 10 times the charge; across the resistor, 4
times the instantaneous change in the charge; and across the in-
ductor, 2 times the instantaneous change in the current. Find the
charge on the capacitor as a function of time.

21. A 16-lb weight stretches a spring 4 ft. This spring–mass system is
in a medium with a damping constant of 4.5 lb-sec ft, and an ex-
ternal force given by (in pounds) is being ap-
plied. What is the solution function describing the position of the
mass at any time if the mass is released from 2 ft below the equi-
librium position with an initial velocity of 4 ft sec downward?

22. A 10-kg mass is attached to a spring having a spring constant of
140 N m. The mass is started in motion from the equilibrium po-
sition with an initial velocity of 1 m sec in the upward direction
and with an applied external force given by sin t (in new-
tons). The mass is in a viscous medium with a coefficient of re-
sistance equal to 90 N-sec m. Formulate an initial value problem
that models the given system; solve the model and interpret the
results.

23. A 2-kg mass is attached to the lower end of a coil spring sus-
pended from the ceiling. The mass comes to rest in its equilibrium

>
ƒ(t) = 5

>
>

>

ƒ(t) = 4 + e - 2t
>

>
> position thereby stretching the spring 1.96 m. The mass is in a

viscous medium that offers a resistance in newtons numerically
equal to 4 times the instantaneous velocity measured in meters
per second. The mass is then pulled down 2 m below its equilib-
rium position and released with a downward velocity of 3 m sec.
At this same instant an external force given by cos t (in
newtons) is applied to the system. At the end of sec determine
if the mass is above or below its equilibrium position and by how
much.

24. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-
sides in a medium offering a resistance to the motion equal to 1.5
times the instantaneous velocity, and an external force given by

(in pounds) is being applied. If the weight is re-
leased at a position 2 ft above its equilibrium position with down-
ward velocity of 3 ft sec, find its position relative to the equilib-
rium after 2 sec have elapsed.

25. Suppose henrys, ohms, farads,
volts, coulombs, and . For-

mulate and solve an initial value problem that models the given
LRC circuit. Interpret your results.

26. A series circuit consisting of an inductor, a resistor, and a capaci-
tor is open. There is an initial charge of 2 coulombs on the capac-
itor, and 3 amperes of current is present in the circuit at the instant
the circuit is closed. A voltage given by is ap-
plied. In this circuit the voltage drops are numerically equal to the
following: across the resistor to 4 times the instantaneous change
in the charge, across the capacitor to 10 times the charge, and
across the inductor to 2 times the instantaneous change in the cur-
rent. Find the charge on the capacitor as a function of time. Deter-
mine the charge on the capacitor and the current at time .t = 10

E(t) = 20 cos t

q¿(0) = i(0) = 0q(0) = 10E = 100
C = 1>500R = 10L = 10

>
ƒ(t) = 6 + e - t

p

ƒ(t) = 20
>

Euler Equations

In Section 17.1 we introduced the second-order linear homogeneous differential equation

and showed how to solve this equation when the coefficients P, Q, and R are constants. If
the coefficients are not constant, we cannot generally solve this differential equation in
terms of elementary functions we have studied in calculus. In this section you will learn
how to solve the equation when the coefficients have the special forms

and ,

where a, b, and c are constants. These special types of equations are called Euler equa-
tions, in honor of Leonhard Euler who studied them and showed how to solve them. Such
equations arise in the study of mechanical vibrations.

The General Solution of Euler Equations

Consider the Euler equation

, (1)x 7 0.ax2y– + bxy¿ + cy = 0

R(x) = cQ(x) = bx,P(x) = ax2,

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = 0

17.4
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To solve Equation (1), we first make the change of variables

and .

We next use the chain rule to find the derivatives and :

and

Substituting these two derivatives into the left-hand side of Equation (1), we find

Therefore, the substitutions give us the second-order linear differential equation with con-
stant coefficients

(2)

We can solve Equation (2) using the method of Section 17.1. That is, we find the roots to
the associated auxiliary equation

(3)

to find the general solution for After finding we can determine from the
substitution 

EXAMPLE 1 Find the general solution of the equation .

Solution This is an Euler equation with , , and . The auxiliary equa-
tion (3) for is

,

with roots and . The solution for is given by

.

Substituting gives the general solution for :

.

EXAMPLE 2 Solve the Euler equation .

Solution Since , , and , the auxiliary equation (3) for is

.

The auxiliary equation has the double root giving

.

Substituting into this expression gives the general solution

.y(x) = c1e
3 ln x

+ c2 ln x e3 ln x
= c1 x3

+ c2 x3 ln x

z = ln x

Y(z) = c1e
3z

+ c2 ze3z

r = 3

r2
+ (-5 - 1)r + 9 = (r - 3)2

= 0

Y(z)c = 9b = -5a = 1

x2y– - 5xy¿ + 9y = 0

y(x) = c1e
-2 ln x

+ c2e
ln x

= c1 x-2
+ c2 x

y(x)z = ln x

Y(z) = c1e
- 2z

+ c2e
z

Y(z)r = 1r = -2

r2
+ (2 - 1)r - 2 = (r - 1)(r + 2) = 0

Y(z)
c = -2b = 2a = 1

x2y– + 2xy¿ - 2y = 0

z = ln x.
y(x)Y(z),Y(z).

ar2
+ (b - a)r + c = 0

aY –(z) + (b - a)Y ¿(z) + cY(z) = 0.

 = aY –(z) + (b - a)Y ¿(z) + cY(z).

ax2y– + bxy¿ + cy = ax2 a-
1
x2 Y ¿(z) +

1
x2 Y –(z)b + bx a1x Y ¿(z)b + cY(z)

y–(x) =

d
dx

y¿(x) =

d
dx

Y ¿(z)
1
x = -

1
x2 Y ¿(z) +

1
x Y –(z)

dz
dx

= -
1
x2 Y ¿(z) +

1
x2 Y –(z).

y¿(x) =

d
dx

Y(z) =

d
dz

Y(z)
dz
dx

= Y ¿(z)
1
x

y–(x)y¿(x)

y(x) = Y(z)z = ln x
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EXAMPLE 3 Find the particular solution to that satisfies the
initial conditions and .

Solution Here , , and substituted into the auxiliary equation (3)
gives

.

The roots are and giving the solution

.

Substituting into this expression gives

.

From the initial condition , we see that and

.

To fit the second initial condition, we need the derivative

.

Since , we immediately obtain . Therefore, the particular solution satis-
fying both initial conditions is

.

Since , the solution satisfies

.

A graph of the solution is shown in Figure 17.8.

-

x2

8
… y(x) …

x2

8

-1 … sin (8 ln x) … 1

y(x) =
1
8

 x2 sin (8 ln x)

c2 = 1>8y¿(1) = 1

y¿(x) = c2 A8x cos (8 ln x) + 2x sin (8 ln x) B

y(x) = c2 x
2 sin (8 ln x)

c1 = 0y(1) = 0

y(x) = e2 ln x Ac1 cos (8 ln x) + c2 sin (8 ln x) B
z = ln x

Y(z) = e2z(c1 cos 8z + c2 sin 8z)

r = 2 - 8ir = 2 + 8i

r2
- 4r + 68 = 0

c = 68b = -3a = 1

y¿(1) = 1y(1) = 0
x2y– - 3xy¿ + 68y = 0

17.4 Euler Equations 17-25

20 4 6 8 10

–5

–10

5

10

y

x

y =  sin (8 lnx)x2

8

FIGURE 17.8 Graph of the solution to
Example 3.

EXERCISES 17.4

In Exercises 1–24, find the general solution to the given Euler
equation. Assume throughout.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. 4x2y– + y = 0x2y– + xy¿ = 0

x2y– - 3xy¿ + 9y = 0x2y– + 3xy¿ + y = 0

4x2y– - 4xy¿ + 5y = 04x2y– + 8xy¿ + 5y = 0

x2y– - 5xy¿ + 10y = 0x2y– + 3xy¿ + 10y = 0

x2y– + 7xy¿ + 13y = 0x2y– - xy¿ + 5y = 0

x2y– - xy¿ + 2y = 0x2y– - xy¿ + y = 0

x2y– + 6xy¿ + 4y = 03x2y– + 4xy¿ = 0

2x2y– + 7xy¿ + 2y = 0x2y– - 5xy¿ + 8y = 0

x2y– + xy¿ - y = 0x2y– - 6y = 0

x2y– + xy¿ - 4y = 0x2y– + 2xy¿ - 2y = 0

x 7 0
21.

22.

23.

24.

In Exercises 25–30, solve the given initial value problem.

25.

26.

27.

28.

29.

30. x2y– + 3xy¿ + 5y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + 2y = 0,  y(1) = -1, y¿(1) = 1

x2y– + 7xy¿ + 9y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + y = 0,  y(1) = 1, y¿(1) = 1

6x2y– + 7xy¿ - 2y = 0,  y(1) = 0, y¿(1) = 1

x2y– + 3xy¿ - 3y = 0,  y(1) = 1, y¿(1) = -1

4x2y– - 16xy¿ + 25y = 0

16x2y– + 56xy¿ + 25y = 0

16x2y– - 8xy¿ + 9y = 0

9x2y– + 15xy¿ + y = 0
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Power-Series Solutions

In this section we extend our study of second-order linear homogeneous equations with
variable coefficients. With the Euler equations in Section 17.4, the power of the variable x
in the nonconstant coefficient had to match the order of the derivative with which it was
paired: with , with , and with . Here we drop that requirement so we
can solve more general equations.

Method of Solution

The power-series method for solving a second-order homogeneous differential equation
consists of finding the coefficients of a power series

(1)

which solves the equation. To apply the method we substitute the series and its derivatives
into the differential equation to determine the coefficients The technique for
finding the coefficients is similar to that used in the method of undetermined coefficients
presented in Section 17.2.

In our first example we demonstrate the method in the setting of a simple equation
whose general solution we already know. This is to help you become more comfortable
with solutions expressed in series form.

EXAMPLE 1 Solve the equation by the power-series method.

Solution We assume the series solution takes the form of

and calculate the derivatives

and

Substitution of these forms into the second-order equation gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

or cn = -
1

n(n - 1)
 cn - 2= 0n(n - 1)cn + cn - 2xn - 2

ooo

c6 = -
1

6 # 5
 c4= 06(5)c6 + c4x4

c5 = -
1

5 # 4
 c3= 05(4)c5 + c3x3

c4 = -
1

4 # 3
 c2= 04(3)c4 + c2x2

c3 = -
1

3 # 2
 c1= 03(2)c3 + c1x1

c2 = -
1
2

 c0= 02(1)c2 + c0x0

a
q

n = 2
 n(n - 1)cn xn - 2

+ a
q

n = 0
 cn xn

= 0.

y– = a
q

n = 2
 n(n - 1)cnxn - 2.y¿ = a

q

n = 1
 ncn xn - 1

y = a
q

n = 0
 cnxn

y– + y = 0

c0, c1, c2, Á .

y(x) = a
q

n = 0
 cn xn

= c0 + c1x + c2x2
+

Á

yx0 (=1)y¿x1y–x2

17.5
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From the table we notice that the coefficients with even indices ( )
are related to each other and the coefficients with odd indices ( ) are also inter-
related. We treat each group in turn.

Even indices: Here , so the power is . From the last line of the table, we have

or

From this recursive relation we find

Odd indices: Here , so the power is . Substituting this into the last
line of the table yields

or

Thus,

Writing the power series by grouping its even and odd powers together and substitut-
ing for the coefficients yields

.

From Table 9.1 in Section 9.10, we see that the first series on the right-hand side of the last
equation represents the cosine function and the second series represents the sine. Thus, the
general solution to is

.y = c0 cos x + c1 sin x

y– + y = 0

 = c0a
q

k = 0
 
(-1)k

(2k)!
x2k

+ c1a
q

k = 0
 

(-1)k

(2k + 1)!
x2k + 1

 = a
q

k = 0
 c2kx2k

+ a
q

k = 0
 c2k + 1x2k + 1

y = a
q

n = 0
 cnxn

 =

(-1)k

(2k + 1)!
 c1.

c2k + 1 = c- 1
(2k + 1)(2k)

d c- 1
(2k - 1)(2k - 2)

d Á c- 1
5(4)
d c- 1

3(2)
dc1

c2k + 1 = -
1

(2k + 1)(2k)
 c2k - 1.

(2k + 1)(2k)c2k + 1 + c2k - 1 = 0

x2k - 1n = 2k + 1

 =

(-1)k

(2k)!
 c0.

c2k = c- 1
2k(2k - 1)

d c- 1
(2k - 2)(2k - 3)

d Á c- 1
4(3)
d c- 1

2
dc0

c2k = -
1

2k(2k - 1)
 c2k - 2.

2k(2k - 1)c2k + c2k - 2 = 0

x2k - 2n = 2k

n = 2k + 1
n = 2k, k = 1, 2, 3, Á
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 Copyright © 2010 Pearson Education, Inc.  All rights reserved 



EXAMPLE 2 Find the general solution to .

Solution We assume the series solution form

and calculate the derivatives

and .

Substitution of these forms into the second-order equation yields

.

We equate the coefficients of each power of x to zero as summarized in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or

From the table notice that the coefficients with even indices are interrelated and the coeffi-
cients with odd indices are also interrelated.

Even indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

Odd indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

 =

(-1)k

(3)(5) Á (2k + 1)
 c1.

 c2k + 1 = a-
1

2k + 1
b a-

1
2k - 1

b Á a-
1
5
b a-

1
3
bc1

c2k + 1 = -
1

2k + 1
 c2k - 1.

x2k - 1.n = 2k - 1,

 =

(-1)k

(2)(4)(6) Á (2k)
 c0.

 c2k = a-
1
2k
b a-

1
2k - 2

b Á a-
1
6
b a-

1
4
b a-

1
2
bc0

c2k = -
1
2k

 c2k - 2.

x2k - 2.n = 2k - 2,

cn + 2 = -
1

n + 2
 cn(n + 2)(n + 1)cn + 2 + (n + 1)cn = 0xn

ooo

c6 = -
1
6 c46(5)c6 + 4c4 + c4 = 0x4

c5 = -
1
5 c35(4)c5 + 3c3 + c3 = 0x3

c4 = -
1
4 c24(3)c4 + 2c2 + c2 = 0x2

c3 = -
1
3 c13(2)c3 + c1 + c1 = 0x1

c2 = -
1
2 c02(1)c2 + c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

+ a
q

n = 1
 ncn xn

+ a
q

n = 0
 cnxn

= 0

y– = a
q

 n = 2
n(n - 1)cnxn - 2y¿ = a

q

n = 1
 ncn xn - 1

y = a
q

n = 0
 cn xn

y– + xy¿ + y = 0
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Writing the power series by grouping its even and odd powers and substituting for the
coefficients yields

EXAMPLE 3 Find the general solution to

Solution Notice that the leading coefficient is zero when Thus, we assume the
solution interval Substitution of the series form

and its derivatives gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

Again we notice that the coefficients with even indices are interrelated and those with odd
indices are interrelated.

Even indices: Here so the power is From the right-hand column and
last line of the table, we get

 = (k + 1)c0.

 = a2k + 2
2k

b a 2k
2k - 2

b a2k - 2
2k - 4

b Á
6
4
a4

2
bc0

 c2k =

2k + 2
2k

c2k - 2

x2k.n = 2k - 2,

cn + 2 =

n + 4
n + 2

cn(n + 2)(n + 1)cn + 2 - (n + 4)(n + 1)cn = 0

(n + 2)(n + 1)cn + 2 - [n(n - 1) + 6n + 4]cn = 0xn

ooo

c5 =
7
5 c35(4)c5 - 3(2)c3 - 6(3)c3 - 4c3 = 0x3

c4 =
6
4 c24(3)c4 - 2(1)c2 - 6(2)c2 - 4c2 = 0x2

c3 =
5
3 c13(2)c3 - 6(1)c1 - 4c1 = 0x1

c2 =
4
2 c02(1)c2 - 4c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

- a
q

n = 2
 n(n - 1)cn xn

- 6a
q

n = 1
 ncn xn

- 4a
q

n = 0
 cn xn

= 0.

(1 - x2)a
q

n = 2
 n(n - 1)cn xn - 2

- 6a
q

n = 1
 ncn xn

- 4a
q

n = 0
 cn xn

= 0,

y = a
q

n = 0
 cn xn

I: -1 6 x 6 1.
x = ;1.

|x| 6 1.(1 - x2)y– - 6xy¿ - 4y = 0,

 = c0a
q

k = 0
  

(-1)k

(2)(4) Á (2k)
x2k

+ c1a
q

k = 0
  

(-1)k

(3)(5) Á (2k + 1)
x2k + 1.

 y = a
q

k = 0
 c2k x2k

+ a
q

k = 0
 c2k + 1x2k + 1
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Odd indices: Here so the power is The right-hand column and last
line of the table gives us

The general solution is

EXAMPLE 4 Find the general solution to 

Solution Assuming that

substitution into the differential equation gives us

We next determine the coefficients, listing them in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or cn + 2 =

2n - 1
(n + 2)(n + 1)

 cn(n + 2)(n + 1)cn + 2 - (2n - 1)cn = 0xn

ooo

c6 =

7
6 # 5

 c46(5)c6 - 8c4 + c4 = 0x4

c5 =

5
5 # 4

 c35(4)c5 - 6c3 + c3 = 0x3

c4 =

3
4 # 3

 c24(3)c4 - 4c2 + c2 = 0x2

c3 =
1

3 # 2
 c13(2)c3 - 2c1 + c1 = 0x1

c2 = -
1
2

 c02(1)c2 + c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

- 2a
q

n = 1
 ncn xn

+ a
q

n = 0
 cn xn

= 0.

y = a
q

n = 0
 cn xn,

y– - 2xy¿ + y = 0.

 = c0a
q

k = 0
 (k + 1)x2k

+ c1a
q

k = 0
 
2k + 3

3
x2k + 1.

 = a
q

k = 0
 c2k x2k

+ a
q

k = 0
 c2k + 1x2k + 1

 y = a
q

n = 0
 cn xn

 =

2k + 3
3

 c1.

 = a2k + 3
2k + 1

b a2k + 1
2k - 1

b a2k - 1
2k - 3

b Á
7
5 a53 bc1

c2k + 1 =

2k + 3
2k + 1

c2k - 1

x2k + 1.n = 2k - 1,
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From the recursive relation

we write out the first few terms of each series for the general solution:

 + c1 ax +
1
3!

 x3
+

5
5!

 x5
+

45
7!

 x7
+

Á b .

 y = c0 a1 -
1
2

x2
-

3
4!

x4
-

21
6!

x6
-

Á b

cn + 2 =

2n - 1
(n + 2)(n + 1)

 cn,
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EXERCISES 17.5

In Exercises 1–18, use power series to find the general solution of the
differential equation.

1.

2.

3.

4.

5.

6.

7.

8. (1 - x2)y– - 4xy¿ + 6y = 0

(1 + x)y– - y = 0

y– - xy¿ + y = 0

x2y– - 2xy¿ + 2y = 0

y– - 3y¿ + 2y = 0

y– + 4y = 0

y– + 2y¿ + y = 0

y– + 2y¿ = 0

9.

10.

11.

12.

13.

14.

15.

16.

17.

18. x2y– - 4xy¿ + 6y = 0

y– - xy¿ + 3y = 0

(1 - x2)y– - xy¿ + 4y = 0

y– - 2xy¿ + 3y = 0

y– - 2xy¿ + 4y = 0

(x2
- 1)y– + 4xy¿ + 2y = 0

xy– - (x + 2)y¿ + 2y = 0

(x2
- 1)y– - 6y = 0

y– + y¿ - x2y = 0

(x2
- 1)y– + 2xy¿ - 2y = 0
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