Omer Mermelstein

I am currently a Van Vleck assistant professor at University of Wisconsin - Madison.

I used to be a PhD student in the Department of Mathematics at
Ben Gurion University of the Negev.

My thesis advisers were Dr. Assaf Hasson and Prof. Menachem Kojman.

### Contact Details

E-mail: omer AT math.wisc.edu

Postal Address:

UW-Madison Department of Mathematics

Van Vleck Hall

480 Lincoln Drive

Madison, WI 53706

### Curriculum Vitae

My CV is available here.

### Teaching

Summer 2021 - Math 211: Calculus (website on Canvas)

Spring 2021 - Math 234: Calculus - Functions of Several Variables (website on Canvas)

Fall 2020 - Math 234: Calculus - Functions of Several Variables (website on Canvas)

Spring 2020 - Math 776: Model Theory (website)

Fall 2019 - Math 211: Calculus (website on Canvas)

Spring 2019 - Math 776: Model Theory (website)

Spring 2019 - Math 341: Linear Algebra (website)

Fall 2018 - Math 873: Advanced Topics in Foundations - Topics on relational Hrushovski constructions (website)
### Research Interests

My main interest is in Model Theory and in particular ab initio Hrushovski constructions, their reducts and their associated combinatorial geometries.

My PhD dissertation is titled "Infinite and finite combinatorics around Hrushovski constructions" and you can find it here.

My M.Sc thesis is titled "Geometry preserving reducts of Hrushovski's non-collapsed construction" and is available upon request.
### Papers and Preprints

Uri Andrews and **Omer Mermelstein**. Recursive spectra of flat strongly minimal theories - to appear in Proceedings of the American Mathematical Society - arXiv

**Omer Mermelstein**. The generic flat pregeometry - submitted - arXiv

Uri Andrews and **Omer Mermelstein**. [0,n]∪{ω} is a spectrum of a non-disintegrated flat strongly minimal model complete theory in a language with finite signature - to appear in The Journal of Symbolic Logic - DOI arXiv

**Omer Mermelstein**. The closed ordinal Ramsey number R^{cl}(ω^{2},3) = ω^{6} - Proceedings of the American Mathematical Society 148 (2020), 413--419 - DOI arXiv

**Omer Mermelstein**. An ab initio construction of a geometry - arXiv

Assaf Hasson and **Omer Mermelstein**. Reducts of Hrushovski's constructions of a higher geometrical arity - Fundamenta Mathematicae 247 (2019), no. 2, 151--164 - DOI arXiv

**Omer Mermelstein**. Calculating the closed ordinal Ramsey number R^{cl}(ω⋅2,3) - Israel Journal of Mathematics 230 (2019), 387--407 - DOI arXiv

**Omer Mermelstein**. Indifference to symmetry in Hrushovski's ab initio construction - Annals of Pure and Applied Logic 173 (2022) no. 1 DOI - arXiv

Assaf Hasson and **Omer Mermelstein**. On reducts of Hrushovski's construction - the non-collapsed case - arXiv - Please talk to me before attempting to read this — it is very technical.