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GENERAL LINEAR GROUPS AND THE
TECHNICAL LEMMA FOR THE J-THEOREMS

We need the following fact.

LEMMA. Let G = GL(2, p), where p is an odd prime, and let P ∈ Sylp(G). Suppose
that L ⊆ G is normalized by P and that p does not divide |L|. If a Sylow 2-subgroup of
L is abelian, then P centralizes L.

Actually, a slightly stronger result is true since the hypothesis on the Sylow 2-subgroup
of L is needed only in the case p = 3. We will not bother to prove this refinement, however.

We begin with a discussion of some basic facts about the General Linear Group
GL(n, q) and related groups. Here, n is a positive integer and q is a power of the prime p.
The group G = GL(n, q) is the full group of invertible n×n matrices over the unique field
F of order q. It is not hard to see that

|G| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) ,

and thus a Sylow p-subgroup of G has order qq2q3 · · · qn−1 = qn(n−1)/2. Now, consider the
set U of n×n matrices over F having all diagonal entries equal to 1 and all below-diagonal
entries equal to 0. These matrices have determinant 1, and so they are invertible, and it
is easy to see that U is a subgroup of G. Each of the n(n − 1)/2 above-diagonal entries
in each matrix in U is an arbitrary member of F and it follows that |U | = qn(n−1)/2. We
conclude that U is a Sylow p-subgroup of G. If n = 2 (which is the smallest interesting
case) we have |G| = q(q − 1)2(q + 1) and |U | = q.

The determinant defines a group homomorphism from G onto the multiplicative group
F× of F (which has order q−1.) The kernel of this determinant map is the normal subgroup
S = SL(n, q), the Special Linear group. It follows that G/S ∼= F×, and in particular
|G : S| = q − 1. In other words, |S| = |G|/(q − 1). Since the matrices in U all have
determinant 1, we see that U ⊆ S, and thus all Sylow p-subgroups of G lie in the normal
subgroup S. Also, since G/S ∼= F× is abelian, we see that G′ ⊆ S. In the case where
n = 2, we have |S| = q(q − 1)(q + 1).

Let Z be the subgroup of S = SL(n, q) consisting of the scalar matrices in S. (These
are the matrices of determinant 1 that have the form α·1, where α ∈ F .) The determinant
condition yields that αn = 1, and thus α must lie in the (unique) subgroup of order
d = (q − 1, n) of F×. Thus |Z| = d, and clearly Z ⊆ Z(G). It is not too hard to show,
in fact, that Z = Z(S). The factor group S/Z is usually denoted PSL(n, q); it is the
Projective Special Linear group. If n = 2 and q is odd, then d = 2 and we have
|PSL(2, q)| = q(q− 1)(q+ 1)/2. If n = 2 and q is a power of 2, then d = 1 and in this case
|Z| = 1 and PSL(2, q) = SL(2, q) has order q(q − 1)(q + 1).

We mention the following important theorem without proof.
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THEOREM. The group PSL(n, q) is simple for n ≥ 2 except in the cases where n = 2
and q ∈ {2, 3}.

Note that |PSL(2, 2)| = 6 and |PSL(2, 3)| = 12, and so these groups certainly are
not simple. We see that |PSL(2, 4)| = 60 = |PSL(2, 5)|, and in fact, each of these groups
is isomorphic to the alternating group A5. Also, |PSL(2, 9)| = 360, and it turns out that
this group is isomorphic to A6. It is also true that PSL(4, 2) ∼= A8, but all of the other
simple groups of the form PSL(n, q) are different from alternating groups.

Let us now focus on S = SL(2, q), where q is odd. If t ∈ S and t2 = 1, then each
of the two eigenvalues of t lies in the set {1,−1} and the product of these eigenvalues is
det(t) = 1. There are just two possibilities therefore: either both eigenvalues are 1 or both
are −1. The characteristic polynomial of the matrix t is thus either (X + 1)2 or (X − 1)2.
But t2 = 1, and so the minimal polynomial of t divides X2 − 1. The minimal polynomial
of an arbitrary square matrix, however, divides the characteristic polynomial, and so in
this case, we see that there are just two possiblities for the minimal polynomial: X + 1
or X − 1. (We are using the fact that 1 6= −1, which is true because the characteristic is
p 6= 2.) It follows that t is either the identity matrix 1 or its negative. In particular, this
shows that −1, the negative of the identity matrix, is the unique involution in SL(2, q)
when q is odd.

Proof of the technical lemma. We assume that P does not centralize L and we work
toward a contradiction. If there is a proper subgroup of L that is normalized but not
centralized by P , we can replace L by that subgroup, and so we can assume that L is
minimal with the property that it is normalized but not centralized by P .

Let C = CL(P ) < L and let q be any prime divisor of |L : C|. Choose a P -invariant
Sylow r-subgroup R of L. (This is possible since p does not divide |L|.) Then R 6⊆ C, and
so P normalizes but does not centralize R. By the minimality of L, we see that R = L,
and so L is an r-group.

Now 1 < [L,P ] = [L,P, P ], and thus [L,P ] is a P -invariant subgroup of L that is not
centralized by P . By the minimality of L, it follows that L = [L,P ] ⊆ G′ ⊆ SL(2, p).

If r = 2, then L is abelian, by hypothesis. But SL(2, p) contains a unique involution,
and thus L is cyclic. This is impossible, however, because a group of order p 6= 2 cannot
act nontrivially on a cyclic 2-group. (This is because the order of the automorphism group
of a cyclic group of order 2e is ϕ(2e) = 2e−1, and this is not divisible by p.) We conclude,
therefore, that r is odd and L has odd order.

Now |L| is an odd prime power dividing |SL(2, p)| = p(p + 1)(p − 1)/2. Since p + 1
and p−1 have no common odd prime divisor and we know that (|L|, p) = 1, it follows that
|L| divides p + 1 or |L| divides p − 1, and thus |L| ≤ p + 1. But P is not normal in PL
(since otherwise P would centralize L), and hence the number n of Sylow p-subgroups of
PL exceeds 1. It follows by Sylow theory that p+ 1 ≤ n ≤ |L|, and since we already know
that |L| ≤ p+ 1, we deduce that |L| = p+ 1. But this implies that |L| is even, which is a
contradiction.
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