GENERAL LINEAR GROUPS AND THE TECHNICAL LEMMA FOR THE ${f J}$ -THEOREMS

We need the following fact.

LEMMA. Let G = GL(2, p), where p is an odd prime, and let $P \in \operatorname{Syl}_p(G)$. Suppose that $L \subseteq G$ is normalized by P and that p does not divide |L|. If a Sylow 2-subgroup of L is abelian, then P centralizes L.

Actually, a slightly stronger result is true since the hypothesis on the Sylow 2-subgroup of L is needed only in the case p=3. We will not bother to prove this refinement, however.

We begin with a discussion of some basic facts about the **General Linear Group** GL(n,q) and related groups. Here, n is a positive integer and q is a power of the prime p. The group G = GL(n,q) is the full group of invertible $n \times n$ matrices over the unique field F of order q. It is not hard to see that

$$|G| = (q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1}),$$

and thus a Sylow p-subgroup of G has order $qq^2q^3\cdots q^{n-1}=q^{n(n-1)/2}$. Now, consider the set U of $n\times n$ matrices over F having all diagonal entries equal to 1 and all below-diagonal entries equal to 0. These matrices have determinant 1, and so they are invertible, and it is easy to see that U is a subgroup of G. Each of the n(n-1)/2 above-diagonal entries in each matrix in U is an arbitrary member of F and it follows that $|U|=q^{n(n-1)/2}$. We conclude that U is a Sylow p-subgroup of G. If n=2 (which is the smallest interesting case) we have $|G|=q(q-1)^2(q+1)$ and |U|=q.

The determinant defines a group homomorphism from G onto the multiplicative group F^{\times} of F (which has order q-1.) The kernel of this determinant map is the normal subgroup S = SL(n,q), the **Special Linear** group. It follows that $G/S \cong F^{\times}$, and in particular |G:S|=q-1. In other words, |S|=|G|/(q-1). Since the matrices in U all have determinant 1, we see that $U\subseteq S$, and thus all Sylow p-subgroups of G lie in the normal subgroup S. Also, since $G/S \cong F^{\times}$ is abelian, we see that $G'\subseteq S$. In the case where n=2, we have |S|=q(q-1)(q+1).

Let Z be the subgroup of S = SL(n,q) consisting of the scalar matrices in S. (These are the matrices of determinant 1 that have the form $\alpha \cdot 1$, where $\alpha \in F$.) The determinant condition yields that $\alpha^n = 1$, and thus α must lie in the (unique) subgroup of order d = (q-1,n) of F^{\times} . Thus |Z| = d, and clearly $Z \subseteq \mathbf{Z}(G)$. It is not too hard to show, in fact, that $Z = \mathbf{Z}(S)$. The factor group S/Z is usually denoted PSL(n,q); it is the **Projective Special Linear** group. If n = 2 and q is odd, then d = 2 and we have |PSL(2,q)| = q(q-1)(q+1)/2. If n = 2 and q is a power of 2, then d = 1 and in this case |Z| = 1 and PSL(2,q) = SL(2,q) has order q(q-1)(q+1).

We mention the following important theorem without proof.

THEOREM. The group PSL(n,q) is simple for $n \ge 2$ except in the cases where n = 2 and $q \in \{2,3\}$.

Note that |PSL(2,2)| = 6 and |PSL(2,3)| = 12, and so these groups certainly are not simple. We see that |PSL(2,4)| = 60 = |PSL(2,5)|, and in fact, each of these groups is isomorphic to the alternating group A_5 . Also, |PSL(2,9)| = 360, and it turns out that this group is isomorphic to A_6 . It is also true that $PSL(4,2) \cong A_8$, but all of the other simple groups of the form PSL(n,q) are different from alternating groups.

Let us now focus on S = SL(2,q), where q is odd. If $t \in S$ and $t^2 = 1$, then each of the two eigenvalues of t lies in the set $\{1,-1\}$ and the product of these eigenvalues is $\det(t) = 1$. There are just two possibilities therefore: either both eigenvalues are 1 or both are -1. The characteristic polynomial of the matrix t is thus either $(X+1)^2$ or $(X-1)^2$. But $t^2 = 1$, and so the minimal polynomial of t divides $t^2 = 1$. The minimal polynomial of an arbitrary square matrix, however, divides the characteristic polynomial, and so in this case, we see that there are just two possibilities for the minimal polynomial: $t^2 = 1$ or $t^2 = 1$. (We are using the fact that $t^2 = 1$, which is true because the characteristic is $t^2 = 1$.) It follows that $t^2 = 1$ is either the identity matrix 1 or its negative. In particular, this shows that $t^2 = 1$, the negative of the identity matrix, is the unique involution in $t^2 = 1$, when $t^2 = 1$ and $t^2 = 1$, when $t^2 = 1$ is odd.

Proof of the technical lemma. We assume that P does not centralize L and we work toward a contradiction. If there is a proper subgroup of L that is normalized but not centralized by P, we can replace L by that subgroup, and so we can assume that L is minimal with the property that it is normalized but not centralized by P.

Let $C = \mathbf{C}_L(P) < L$ and let q be any prime divisor of |L:C|. Choose a P-invariant Sylow r-subgroup R of L. (This is possible since p does not divide |L|.) Then $R \not\subseteq C$, and so P normalizes but does not centralize R. By the minimality of L, we see that R = L, and so L is an r-group.

Now 1 < [L, P] = [L, P, P], and thus [L, P] is a P-invariant subgroup of L that is not centralized by P. By the minimality of L, it follows that $L = [L, P] \subseteq G' \subseteq SL(2, p)$.

If r=2, then L is abelian, by hypothesis. But SL(2,p) contains a unique involution, and thus L is cyclic. This is impossible, however, because a group of order $p \neq 2$ cannot act nontrivially on a cyclic 2-group. (This is because the order of the automorphism group of a cyclic group of order 2^e is $\varphi(2^e) = 2^{e-1}$, and this is not divisible by p.) We conclude, therefore, that r is odd and L has odd order.

Now |L| is an odd prime power dividing |SL(2,p)| = p(p+1)(p-1)/2. Since p+1 and p-1 have no common odd prime divisor and we know that (|L|,p)=1, it follows that |L| divides p+1 or |L| divides p-1, and thus $|L| \leq p+1$. But P is not normal in PL (since otherwise P would centralize L), and hence the number n of Sylow p-subgroups of PL exceeds 1. It follows by Sylow theory that $p+1 \leq n \leq |L|$, and since we already know that $|L| \leq p+1$, we deduce that |L| = p+1. But this implies that |L| is even, which is a contradiction.