
Group Theory NOTES 2
I. M. Isaacs Fall 2002

REVIEW OF NILPOTENT GROUPS AND p-GROUPS

The basic lemma that we will need here is the following.

LEMMA 1. Let P be a (finite) p-group and let 1 < N / P . Then N ∩ Z(P ) > 1.

In other words, every nonidentity normal subgroup of a p-group contains some non-
identity element of the center Z(P ), and in particular, the center of a nontrivial p-group
is never trivial. We will not give the details of the proof of Lemma 1; it is an immediate
consequence of the FCP in the conjugation action of P on the subset N − {1}.

Given any group, we recursively define normal subgroups Zi of G for all integers
i ≥ 0. First, we set Z0 = 1 and Z1 = Z(G). To define Z2, consider the center Z(G/Z1).
Since this is a subgroup of G/Z1 it follows by the “correspondence” theorem that it must
have the form H/Z1 for some uniquely defined subgroup H of G, and we define Z2 = H.
Observe that Z2 is canonically defined, and so it is characteristic in G, and in particular
it is normal. (The subgroup Z2 is sometimes called the second center of G.) At the
next step we define the subgroup Z3 / G such that Z3/Z2 = Z(G/Z2), and we continue
this process to obtain a series of normal subgroups Z0 ⊆ Z1 ⊆ · · · ⊆ Zi ⊆ · · · such that
Zi+1/Zi = Z(G/Zi) for every subscript i ≥ 0. This series of normal subgroups is called
the upper central series of G.

Now, suppose that G is a finite p-group. If G > 1, we know that Z1 = Z(G) is
nontrivial, and thus Z0 < Z1. Also, if Z1 < G, then G/Z1 is a nontrivial p-group, and
so it has a nontrivial center, and this implies Z1 < Z2. Continuing like this, we see that
whenever Zi < G, we have Zi < Zi+1. It follows that if G is a finite p-group, then Zr = G
for some subscript r. In other words, the upper central series “reaches the top”.

In general, consider a finite series of normal subgroups of a group G of the form
1 = N0 ⊆ N1 ⊆ · · · ⊆ Nr = G. Such a series is said to be a central series for G if
Ni+1/Ni ⊆ Z(G/Ni) for subscripts i with 0 ≤ i < r. (Note the requirement that Nr = G.
Thus the upper central series of G is not a central series for G unless it reaches the top,
as in the case where G is a finite p-group. If the upper central series of G does reach the
top, then, of course, it is a central series for G.)

DEFINITION. A group is nilpotent if it has a central series.

COROLLARY 2. A finite p-group is nilpotent.

THEOREM 3. Let G be a finite group. The following are then equivalent.

(i) G is nilpotent.

(ii) If H < G, then NG(H) > H. (“Normalizers grow.”)

(iii) Every maximal subgroup of G is normal.

(iv) Every Sylow subgroup of G is normal.

We need an easy lemma.
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LEMMA 4. Assume that G is nontrivial and satisfies condition (iv) of Theorem 3. Then
Z(G) > 1.

Proof. Let P be the Sylow p-subgroup of G, where p is a prime divisor of |G|. Then P > 1,
and so Z(P ) > 1, and we show that Z(P ) ⊆ Z(G). Write Z = Z(P ) and C = CG(Z), so
that our goal is to show that C = G. If this is false, we choose a prime divisor q of |G : C|,
and we derive a contradiction. Since Z = Z(P ), we have P ⊆ C, and thus q 6= p. Now
let Q be a Sylow q-subgroup of G, and note that Q ∩ P = 1 since q 6= p. Since P and Q
are both normal in G, it follows that Q centralizes P , and thus Q centralizes Z, and so
Q ⊆ C. This contradicts the fact that q divides |G : C|.

Proof of Theorem 3. First, assume (i) so that G has a central series 1 = N0 ⊆ · · · ⊆
Nr = G. Given H < G, there must be some subscript i such that Ni ⊆ H but Ni+1 6⊆ H.
For notational simplicity, write N = Ni and M = Ni+1. Then M/N ⊆ Z(G/N) ⊆
NG/N (H/N) = NG(H)/N , where the last equality follows from the correspondence the-
orem. It follows that M ⊆ NG(H). Since M 6⊆ H and NG(H) ⊇ H, it follows that
NG(H) > H, proving (ii).

Now assume (ii) and let M be a maximal subgroup of G. Then M < NG(M), and
hence by the maximality of M , we have NG(M) = G, and thus M / G. This proves (iii).

Now assume (iii) and let P be a Sylow subgroup of G. Assuming that P is not normal,
we can choose a maximal subgroup M containing NG(P ). We know by (iii) that M / G,
and thus by the Frattini argument, we have G = MNG(P ). Since NG(P ) ⊆M , however,
this yields G = M . This is a contradiction, and (iv) is proved.

Now assume (iv). We prove that G is nilpotent by showing that the upper central
series of G reaches the top. For this purpose, it suffices to show that if N / G with
N < G, then Z(G/N) is nontrivial. Note that the group G/N inherits from the group G
the property that every Sylow subgroup is normal. (This follows easily from the fact that
a surjective homomorphism of groups carries a Sylow p-subgroup to a Sylow p-subgroup.)
Thus G/N satisfies (iv), and the result follows via Lemma 4.

There is one more useful fact that we should mention.

LEMMA 5. Let Z ⊆ Z(G) and suppose that G/Z is nilpotent. Then G is nilpotent.

Proof. Let 1 = N0/Z ⊆ N1/Z ⊆ · · · ⊆ Nr/Z = G/Z be a central series for G/Z. Then
1 ⊆ Z = N0 ⊆ N1 ⊆ · · · ⊆ Nr = G is easily seen to be a central series for G.

If we assume in Lemma 5 that G is finite, then an alternative proof is available.

Second Proof of Lemma 5. Assuming that G is finite, it suffices by Theorem C to
show that an arbitrary maximal subgroup M of G is normal in G. If Z ⊆M , then M/Z is
maximal in G/Z. In this case, we have M/Z/ G/Z since G/Z is nilpotent, and thus M/ G
as required. In any case, Z ⊆ Z(G) ⊆ NG(M), and so if Z 6⊆M , then NG(M) > M , and
hence NG(M) = G in this case too.

2


