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REVIEW OF GROUP ACTIONS

Let G be a group and Ω a set. (In this context, the members of Ω are often called
“points”.) Suppose that we have a particular rule that determines a unique point in Ω
whenever we are given a point in Ω and an element of G. Specifically, if α ∈ Ω and g ∈ G
are our input data, this rule (denoted by a dot) determines a unique point α·g ∈ Ω. (More
formally, “dot” can be thought of as a function from the Cartesian product Ω×G to the
set Ω.) In this situation, we say that G acts on Ω if the following two conditions hold for
all points α ∈ Ω and all elements g, h ∈ G.

(1) α·1 = α.

(2) (α·g)·h = α·(gh).

The basic example of a group action is the case where G is a subgroup of Sym(Ω),
the symmetric group on Ω, and dot is defined so that α·g is just the result of applying g
to α, so that α·g = (α)g.

In general, if G acts on Ω, we can write θg to denote the function Ω→ Ω induced by
a group element g. In other words, the value of the function θg on the point α is precisely
α·g. In symbols, we write (α)θg = α·g. The following is utterly routine:

LEMMA 1. Let G act on Ω.

(a) θgθh = θgh for g, h ∈ G.

(b) The map g 7→ θg is a group homomorphism from G into Sym(Ω).

(c) The set N = {g ∈ G | θg = identity map} is a normal subgroup of G.

(d) If N is as above, then G/N is isomorphic to a subgroup of Sym(Ω).

We will not bother to write a detailed proof, but we make some remarks. The fact
(asserted in (b)) that θg is a permutation of Ω is an immediate consequence of (a). Also,
the normal subgroup described in (c) is called the kernel of the action. It is equal to the
set of all of those elements g ∈ G that fix all the points of Ω.

An extremely important example of a group action is the action on the right cosets
of a subgroup. If H ⊆ G, let Ω = {Hx | x ∈ G}, the set of right cosets of H in G. If Hx
is any right coset and g ∈ G, we can “translate” Hx by g by multiplying each element of
Hx on the right by g. This gives (Hx)g = Hxg, which is another right coset of H. We
can thus define an action of G on Ω by setting (Hx)·g = (Hx)g, and it is a triviality to
check that this is indeed an action.

Given a subgroup H ⊆ G, we define the core of H in G to be the subgroup obtained
by intersecting all conjugates of H in G. Symbolically, we write coreG(H) =

⋂
Hx, where

x runs over G. We have the following.

THEOREM 2. Let H ⊆ G. Then coreG(H) is the kernel of the natural action of G on
the right cosets of H. Also, coreG(H) is a normal subgroup of G contained in H and it
contains every other such normal subgroup.
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Proof. First, suppose that N / G and N ⊆ H. Then N = Nx ⊆ Hx for all x ∈ G, and
thus N ⊆

⋂
Hx = coreG(H).

If we take M to be the kernel of the action of G, then of course M / G and we claim
that also M ⊆ H. To see this, let m ∈ M and note that m ∈ Hm = (H)·m = H, where
the last equality holds because m fixes the coset H1 = H. We conclude from the first
paragraph that M ⊆ coreG(H)

If g ∈ coreG(H) and x ∈ G, then g ∈ Hx = x−1Hx, and thus xg ∈ Hx. It follows
that Hxg ⊆ HHx = Hx, and thus (Hx)·g = Hx for every element x ∈ G. In other words,
coreG(H) is contained in the kernel M of the action, and this completes the proof.

The above result can be used to prove “nonsimplicity” theorems such as Corollary 4,
below, which is often called the “n!-theorem”.

COROLLARY 3. Suppose H ⊆ G and |G : H| = n < ∞. Let N = coreG(H). Then
G/N is isomorphic to a subgroup of Sym(n), and thus |G : N | divides n!.

Proof. We know that N is the kernel of the action of G on Ω = {Hx | x ∈ G}, which
has n points. Also, by Lemma 1(d), we have that G/N is isomorphic to a subgroup of
Sym(Ω) ∼= Sym(n).

COROLLARY 4. Suppose H ⊆ G with |G : H| = n, where 1 < n <∞. If |G| does not
divide n!, then coreG(H) is a nonidentity proper normal subgroup of G, and thus G is not
simple.

Proof. Write N = coreG(H). Then N / G and N ⊆ H < G. so that N is proper. If
N = 1, then |G| = |G : N | would divide n!.

In addition to proving nonsimplicity theorems, group actions can also be used to count
things. The key to this is the notion of an “orbit” of an action. Suppose G acts on Ω and
let α ∈ Ω be a point. Then the orbit of α in this action, denoted Oα, is the set of all
points of the form α·x as x runs over G. The following is nearly trivial.

LEMMA 5. Let G act on Ω. If α ∈ Ω, then Oα contains α and it is the only orbit of
this action that contains α.

Proof. Certainly α = α·1 ∈ Oα. If also α ∈ Oβ with β ∈ Ω, we must show that Oβ = Oα.
To see this, note that since α ∈ Oβ , we can write α = β·g for some element g ∈ G. Now
if γ ∈ Oα, then for some element x ∈ G we have γ = α·x = (β·g)·x = β·(gx), and thus γ
lies in Oβ . This shows that if α ∈ Oβ , then Oα ⊆ Oβ .

To prove the reverse containment, we observe that α·g−1 = (β·g)·g−1 = β·1 = β, and
thus β ∈ Oα. By the result of the previous paragraph, we have Oβ ⊆ Oα. Thus Oβ = Oα,
as required.

As usual, suppose that G acts on Ω. Since every point of Ω lies in exactly one orbit, it
follows that Ω is the disjoint union of all the orbits. If the whole set Ω consists of a single
orbit, then we say that the action is transitive. (For example, the action of a group on
the right cosets of any subgroup is transitive.) In general, if O is any orbit, then G acts
transitively on O.

If α ∈ Ω, we write Gα = {x ∈ G | α·x = α}. It is easy to see that Gα is a subgroup of
G. It is called the stabilizer of α in G. For example, it is easy to check that in the action
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of G on the right cosets of a subgroup H, the stabilizer in G of the coset Hx is exactly the
conjugate Hx.

THEOREM 6. Let G act on Ω and let O be any orbit. Choose α ∈ O and let H = Gα
be the stabilizer of α in G. Then there is a bijection from the set of right cosets of H in
G onto O.

Proof. First, note that O = Oα, so that the members of O are exactly the points of the
form α·x for x ∈ G. Let C = {Hx | x ∈ G} be the set of right cosets of H in G. We wish to
define a function ϕ : C → O by setting ϕ(Hx) = α·x, but we must check that this is well
defined. If Hx = Hy, therefore, we must establish that α·x = α·y. But y ∈ Hy = Hx,
and so we can write y = hx for some element h ∈ H. Then α·y = α·(hx) = (α·h)·x = α·x,
where the last equality follows because h ∈ H = Gα, so that α·h = α. We can now define
ϕ as above, and our task is to show that it is both surjective and injective.

For surjectivity, assume that β ∈ O. We must find Hx ∈ C such that ϕ(Hx) = β.
We know, however, that β = α·x, for some element x ∈ G, and we have Hx ∈ C. Then
ϕ(Hx) = α·x = β, as required.

To prove that ϕ is injective, we suppose that ϕ(Hx) = ϕ(Hy) and we show that
Hx = Hy. We have α·x = α·y, and thus α = (α·x)·x−1 = (α·y)·x−1 = α·(yx−1). In
other words, yx−1 ∈ Gα = H. This yields H = Hyx−1, and from this, we deduce that
Hx = Hy, as required.

COROLLARY 7. (The Fundamental Counting Principle.) Let G act on Ω and
suppose that O is a finite orbit. Then |O| = |G : H|, where H is the stabilizer of any point
in Ω. In particular, if G is finite, then |O| = |G|/|H| and this is a divisor of |G|.

There are a number of important immediate consequences of the FCP.

COROLLARY 8. Let x ∈ G, where G is finite. Then the size of the conjugacy class of
x in G is equal to |G : CG(x)|.

Proof. The group G acts on itself by conjugation and the conjugacy class of x is exactly
the orbit of x in this action. The stabilizer of x is CG(x) and the result follows by the
FCP.

COROLLARY 9. Let X be any subset of G, where G is finite. Then the number of
distinct conjugates of X in G is equal to |G : NG(X)|.

Proof. The group acts by conjugation on the set of all of its subsets. The orbit of X is
the set of distinct conjugates of X and the stabilizer of X is NG(X).

COROLLARY 10. Let H,K ⊆ G be finite subgroups. Then |HK| = |H||K|/|H ∩K|.

Proof. Let K act on the set of right cosets of H in G by right multiplication. Then
HK =

⋃
Hk as k runs over K, and thus HK is the union of all right cosets of H in the

orbit containing H under this action of K. These cosets are disjoint and each has size
equal to |H|, and so we see that |HK| = n|H|, where n is the size of the orbit. By the
FCP, we know that n = |K : D|, where D is the stabilizer in K of H.
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An element k ∈ K lies in D precisely when Hk = H, and this happens precisely when
k ∈ H. This shows that D = H ∩K, and thus n = |K : D| = |K|/|H ∩K|. The result
now follows.

The FCP also provides a tool for counting the number of orbits in an action. To
explain this, we define the integer-valued function χ on G corresponding to its action on
a finite set Ω. This function, the permutation character associated with the action,
is defined by the formula χ(g) = |{α ∈ Ω | α·g = α}|. In other words, the value of the
character at g ∈ G is the number of fixed points of g in Ω. The following result, often
incorrectly attributed to W. Burnside, says that the number of orbits of a finite group
acting on a finite set is the average value of the associated permutation character.

THEOREM 11. Let G act on Ω, where both G and Ω are finite, and suppose there are
exactly n orbits in this action. Then

n =
1
|G|

∑
g∈G

χ(g) ,

where χ is the associated permutation character.

Proof. Let P be the set of ordered pairs (g, α) with g ∈ G and α ∈ Ω and such that
α·g = α. Then for each element g ∈ G, there are precisely χ(g) members of P having g
as first entry and we see that |P| =

∑
χ(g). Similarly, for α ∈ Ω, exactly |Gα| pairs in P

have second entry α, and this yields |P| =
∑
|Gα|, where this sum runs over α ∈ Ω. We

now have
1
|G|

∑
g∈G

χ(g) =
|P|
|G|

=
∑
α∈Ω

|Gα|
|G|

=
∑
α∈Ω

1
|Oα|

,

where the last equality is a consequence of the FCP.
We compute the part of the final sum above contributed by the points lying in some

particular orbit O. For each point α in O, we see that Oα = O, and thus the contribution
to the sum coming from α is 1/|O|. The total contribution from all points in O is thus |O|
times 1/|O|. In other words, each orbit contributes a total of 1 to the sum on the right,
which is therefore equal to n, as required.

We close with the following Corollary.

COROLLARY 12 Let H < G, where G is a finite group. Then there exists an element
g ∈ G that lies in no conjugate of H.

Proof. Let G act on the set Ω of right cosets of H in G. Since the stabilizer of the coset
(point) Hx is Hx, our problem is to find some element of G that fixes no point of Ω. We
seek g ∈ G, in other words, with χ(g) = 0.

Our action is transitive, and so the average value of the permutation character χ is
1. But χ(1) = |Ω| = |G : H| > 1 and χ has an above-average value at the identity 1. It
follows that χ must have a below-average value at some element g ∈ G. Thus χ(g) < 1,
but since χ(g) is a non-negative integer, we deduce that χ(g) = 0, as required.

We mention that the conclusion of Corollary 12 can fail if G is an infinite group.
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