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REVIEW OF GROUP ACTIONS

Let G be a group and ) a set. (In this context, the members of € are often called
“points”.) Suppose that we have a particular rule that determines a unique point in €2
whenever we are given a point in {2 and an element of G. Specifically, if « € 2 and g € G
are our input data, this rule (denoted by a dot) determines a unique point a-g € Q. (More
formally, “dot” can be thought of as a function from the Cartesian product €2 x G to the
set €2.) In this situation, we say that G acts on (2 if the following two conditions hold for
all points a € € and all elements g, h € G.

(1) al=a.

(2) (o-g)-h = a-(gh).

The basic example of a group action is the case where G is a subgroup of Sym(2),
the symmetric group on €2, and dot is defined so that a-g is just the result of applying g
to a, so that a-g = («)g.

In general, if G acts on €2, we can write 6, to denote the function 2 — 2 induced by
a group element g. In other words, the value of the function 6, on the point « is precisely
a-g. In symbols, we write ()8, = a-g. The following is utterly routine:

LEMMA 1. Let G act on (.

(a) 040y =04, for g,h € G.

(b) The map g — 6, is a group homomorphism from G into Sym(2).

(c) The set N = {g € G | 8, = identity map} is a normal subgroup of G.
(d) If N is as above, then G/N is isomorphic to a subgroup of Sym({2).

We will not bother to write a detailed proof, but we make some remarks. The fact
(asserted in (b)) that 6, is a permutation of € is an immediate consequence of (a). Also,
the normal subgroup described in (c) is called the kernel of the action. It is equal to the
set of all of those elements g € G that fix all the points of (2.

An extremely important example of a group action is the action on the right cosets
of a subgroup. If H C G, let Q = {Hzx | € G}, the set of right cosets of H in G. If Hx
is any right coset and g € G, we can “translate” Hz by g by multiplying each element of
Hzx on the right by g. This gives (Hz)g = Hzg, which is another right coset of H. We
can thus define an action of G on Q by setting (Hz)-g = (Hx)g, and it is a triviality to
check that this is indeed an action.

Given a subgroup H C (G, we define the core of H in GG to be the subgroup obtained
by intersecting all conjugates of H in G. Symbolically, we write coreq(H) = (| H*, where
x runs over G. We have the following.

THEOREM 2. Let H C G. Then coreg(H) is the kernel of the natural action of G on
the right cosets of H. Also, coreg(H) is a normal subgroup of G contained in H and it
contains every other such normal subgroup.



Proof. First, suppose that N < G and N C H. Then N = N* C H” for all x € GG, and
thus N C (" H® = coreg(H).

If we take M to be the kernel of the action of G, then of course M < G and we claim
that also M C H. To see this, let m € M and note that m € Hm = (H)-m = H, where
the last equality holds because m fixes the coset H1 = H. We conclude from the first
paragraph that M C coreg(H)

If g € coreg(H) and € G, then g € H* = v~ 'Hz, and thus zg € Hz. It follows
that Hrg C HHx = Hx, and thus (Hz)-g = Hz for every element z € G. In other words,
corec(H) is contained in the kernel M of the action, and this completes the proof. ||

The above result can be used to prove “nonsimplicity” theorems such as Corollary 4,
below, which is often called the “n!-theorem”.

COROLLARY 3. Suppose H C G and |G : H| =n < co. Let N = coreg(H). Then
G/N is isomorphic to a subgroup of Sym(n), and thus |G : N| divides n!.

Proof. We know that N is the kernel of the action of G on Q = {Hz | z € G}, which
has n points. Also, by Lemma 1(d), we have that G/N is isomorphic to a subgroup of
Sym(Q) = Sym(n). ||

COROLLARY 4. Suppose H C G with |G : H| = n, where 1 < n < oo. If |G| does not
divide n!, then coreg(H) is a nonidentity proper normal subgroup of G, and thus G is not
simple.

Proof. Write N = coreg(H). Then N < G and N C H < G. so that N is proper. If
N =1, then |G| = |G : N| would divide n!. |]

In addition to proving nonsimplicity theorems, group actions can also be used to count
things. The key to this is the notion of an “orbit” of an action. Suppose G acts on {2 and
let @ € Q be a point. Then the orbit of « in this action, denoted O, is the set of all
points of the form a-z as x runs over G. The following is nearly trivial.

LEMMA 5. Let G act on Q2. If a € €, then O, contains o and it is the only orbit of
this action that contains c.

Proof. Certainly a = a1 € O,. If also a € Og with 8 € 2, we must show that Og = O,.
To see this, note that since o € Og, we can write o = 3-g for some element g € G. Now
if v € O, then for some element x € G we have v = a-x = (§-g)-x = 3-(gx), and thus ~
lies in Og. This shows that if o € Og, then O, C Og.

To prove the reverse containment, we observe that a-g~! = (3-g)-g~! = 3-1 = 3, and
thus 8 € O,. By the result of the previous paragraph, we have Og C O,. Thus Og = O,,
as required. |

As usual, suppose that G acts on (). Since every point of 2 lies in exactly one orbit, it
follows that € is the disjoint union of all the orbits. If the whole set €2 consists of a single
orbit, then we say that the action is transitive. (For example, the action of a group on
the right cosets of any subgroup is transitive.) In general, if O is any orbit, then G acts
transitively on O.

If € Q, we write G, = {z € G | avx = a}. It is easy to see that G, is a subgroup of
G. Tt is called the stabilizer of o in G. For example, it is easy to check that in the action

2



of G on the right cosets of a subgroup H, the stabilizer in G of the coset Hx is exactly the
conjugate H”.

THEOREM 6. Let G act on 2 and let O be any orbit. Choose o € O and let H = G,
be the stabilizer of o in GG. Then there is a bijection from the set of right cosets of H in
G onto O.

Proof. First, note that O = O, so that the members of O are exactly the points of the
form oz for x € G. Let C = {Hz | x € G} be the set of right cosets of H in G. We wish to
define a function ¢ : C — O by setting p(Hz) = a-x, but we must check that this is well
defined. If Hx = Hy, therefore, we must establish that a-x = a-y. But y € Hy = Hz,
and so we can write y = hx for some element h € H. Then oy = a-(hx) = (a-h)-x = a-x,
where the last equality follows because h € H = GG, so that a-h = a. We can now define
¢ as above, and our task is to show that it is both surjective and injective.

For surjectivity, assume that € O. We must find Hx € C such that p(Hz) = .
We know, however, that § = a-x, for some element x € GG, and we have Hx € C. Then
p(Hzx) = a-x = f3, as required.

To prove that ¢ is injective, we suppose that p(Hz) = ¢(Hy) and we show that
Hx = Hy. We have a-x = a-y, and thus a = (a-x)-27! = (ay)z™! = a-(yz~!). In
other words, yx~! € G, = H. This yields H = Hyx~!, and from this, we deduce that
Hz = Hy, as required. |

COROLLARY 7. (The Fundamental Counting Principle.) Let G act on Q and
suppose that O is a finite orbit. Then |O| = |G : H|, where H is the stabilizer of any point
in Q. In particular, if G is finite, then |O| = |G|/|H| and this is a divisor of |G|. |}

There are a number of important immediate consequences of the FCP.

COROLLARY 8. Let z € G, where G is finite. Then the size of the conjugacy class of
x in G is equal to |G : Cg(x)|.

Proof. The group G acts on itself by conjugation and the conjugacy class of x is exactly
the orbit of x in this action. The stabilizer of x is Cg(z) and the result follows by the
FCP. |

COROLLARY 9. Let X be any subset of G, where G is finite. Then the number of
distinct conjugates of X in G is equal to |G : Ng(X)|.

Proof. The group acts by conjugation on the set of all of its subsets. The orbit of X is
the set of distinct conjugates of X and the stabilizer of X is N (X). |

COROLLARY 10. Let H,K C G be finite subgroups. Then |HK|= |H||K|/|H N K|.

Proof. Let K act on the set of right cosets of H in GG by right multiplication. Then
HK = |JHk as k runs over K, and thus HK is the union of all right cosets of H in the
orbit containing H under this action of K. These cosets are disjoint and each has size
equal to |H|, and so we see that |HK| = n|H|, where n is the size of the orbit. By the
FCP, we know that n = |K : D|, where D is the stabilizer in K of H.
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An element k € K lies in D precisely when Hk = H, and this happens precisely when
k € H. This shows that D = HN K, and thus n = |K : D| = |K|/|H N K|. The result
now follows. |

The FCP also provides a tool for counting the number of orbits in an action. To
explain this, we define the integer-valued function x on G corresponding to its action on
a finite set 2. This function, the permutation character associated with the action,
is defined by the formula x(g) = [{a € Q| a-g = a}|. In other words, the value of the
character at g € G is the number of fixed points of g in (2. The following result, often
incorrectly attributed to W. Burnside, says that the number of orbits of a finite group
acting on a finite set is the average value of the associated permutation character.

THEOREM 11. Let G act on ), where both G and () are finite, and suppose there are
exactly n orbits in this action. Then

nzﬁZx(g),

geqG

where x is the associated permutation character.

Proof. Let P be the set of ordered pairs (g,a) with ¢ € G and a € § and such that
a-g = a. Then for each element g € GG, there are precisely x(g) members of P having g
as first entry and we see that |P| = ) x(g). Similarly, for a € Q, exactly |G| pairs in P
have second entry «, and this yields |P| = >_ |G|, where this sum runs over o € Q. We

now have . P Gl .
s 2 Xg) =5 = = ,
G2 X9 =G~ 2 e~ 26

a€eQ

where the last equality is a consequence of the FCP.

We compute the part of the final sum above contributed by the points lying in some
particular orbit O. For each point « in O, we see that O, = O, and thus the contribution
to the sum coming from « is 1/|O|. The total contribution from all points in O is thus |O|
times 1/|O|. In other words, each orbit contributes a total of 1 to the sum on the right,
which is therefore equal to n, as required. |

We close with the following Corollary.

COROLLARY 12 Let H < GG, where G is a finite group. Then there exists an element
g € G that lies in no conjugate of H.

Proof. Let G act on the set 2 of right cosets of H in G. Since the stabilizer of the coset
(point) Hz is H®, our problem is to find some element of G that fixes no point of Q2. We
seek g € G, in other words, with x(g) = 0.

Our action is transitive, and so the average value of the permutation character y is
1. But x(1) = |92 = |G : H| > 1 and x has an above-average value at the identity 1. It
follows that x must have a below-average value at some element g € G. Thus x(g) < 1,
but since x(g) is a non-negative integer, we deduce that x(g) = 0, as required. |}

We mention that the conclusion of Corollary 12 can fail if G is an infinite group.
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