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1. Introduction

The Main Theorem
Consider a continuous irreducible representation
p: G- GL(2,F),

where G is the Galois group Gal(Q/Q) and F is a finite field of characteristic | = 3.
Suppose that p is modular of level N, i.e., that it arises from a weight-2 newform of
level dividing N and trivial “Nebentypus character.” Then p is an odd represen-
tation: the matrix p(c) (where c is a complex conjugation in G) has eigenvalues + 1,
—1.Since +1 and —1 are distinct in F, p is absolutely irreducible and has a model
over every subfield of F containing the set trace(p). We assume that F has been
chosen so that it is generated by this set.

Assume that p is a prime which exactly divides N (we write p || N), and restrict p
to a decomposition group of G for the prime p. View the restriction as a
representation p, of Gal(Q,/ Q,). We say that p is finite at p ([34] or [35], §2.8) if
there is a finite flat F-vector space scheme H over Z, for which the action of
Gal(Q,/Q,) on the F-vector space H(Q,) gives p,. (If | # p, p is finite at p if and
only if p, is unramified.)

It is clear that p is finite at p whenever p is already modular of level N/p. In §1
of [34] (cf. [35]), Serre conjectured the converse, i.., that if p is finite, then p is
modular of level N/p. Soon thereafter, Mazur [20] proved this conjecture in the
case

p# 1 (modl)

(Theorem 6.1 below). Here, combining Mazur’s techniques with a geometric rela-
tion between classical modular curves and Shimura curves (Theorem 4.1), we
prove Serre’s conjecture whenever N is not divisible by I. (Our arguments now
apply to the case where [ divides N but I? does not divide N because of the main
theorem of [21]. See Theorem 5.3 below for a statement of this result.) Our new
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result and Mazur’s earlier result may be stated together as follows (see
Theorem 8.2):

Theorem 1.1 (Main TI;eorem). Assume that p is finite at p (with p||N). Then p, a
priori modular of level N, is modular of level N/p whenever one or both of the
Jollowing conditions hold:

1. p# 1 (mod )
2. N is prime to l.

The following application of the Main Theorem is based on an idea of G. Frey

[10].

Corollary 1.2. Assume that all elliptic curves over Q are modular. Then Fermat’s
Last Theorem is true.

Proof (modeled on [35], §4). Assume that (a, b, c) is a triple of non-zero relatively
prime integers which satisfies the Fermat equation

ad+b+c=0

with | = 5. Permuting (a, b, c), we may suppose that b is even and that we have
a = 3 (mod 4). Following Frey [10], define E to be the elliptic curve over Q with
Weierstrass equation

y? = x(x —a')(x + b").

One sees easily that E is semistable and has bad reduction precisely at those primes
p which divide the product abc ([35], §4.1). Let N be the conductor of E, i.e., the
product of these primes. (Note that N is divisible by 2.) Because of our assumption
about elliptic curves over Q, there is a weight-2 modular form f on I';(N), with
integral g-expansion coefficients, whose Mellin transform is the L-function of E
over Q. In particular, the mod [ representation p of Gal(Q/Q) attached to f is
realized by the vector space

V=E[I]

of I-division points on E. (The action of Gal(Q/Q) on V is irreducible because of
[35], §4.1, Proposition 6.) This representation is finite at every prime p % 2 which
divides N in view of [35], (4.1.9) and (4.1.12).

The Main Theorem now shows that p is modular of level 2. Indeed, suppose
that N is divisible by I. Then p is finite at p = [, and since | # 1 (mod [), p is modular
of level N/I. Taking N, = N/lin this case, and N, = N if N is not divisible by I, we
find in all cases that p is modular of some level N, which divides N and which is
prime to . The Main Theorem applied inductively to p now eliminates all odd
primes from its level. We are left with the final conclusion that p is modular of
level 2, as claimed. Since it is known that there are no non-zero cusp forms of
weight 2 on I)(2), we have a contradiction. O
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Summary

The first sections of the paper contain preliminary material. In §2, we recall
material due to Raynaud [24] concerning Néron models of Jacobians. This work
has already been summarized by Grothendieck [11], Mazur-Rapoport ([18],
Appendix), and other authors. In the next two §§, we recall the work of Deligne-
Rapoport [4] and Cerednik-Drinfeld ([3], [7]) on the bad reduction of classical
modular curves and Shimura curves, respectively. We then combine their results
with the results of §2 to obtain information about the Néron models of the
Jacobians of these curves.

Especially, we derive a geometric result (Theorem 4.1) which mirrors a special
case of the well known correspondence, due to Eichler [9], Shimizu [36], and
Jacquet-Langlands [12], between modular forms on GL(2) and modular forms on
the multiplicative group of a quaternion algebra. More precisely, we take two
distinct prime numbers p and ¢, together with a positive integer M prime to pq, and
deduce a Shimura curve C from an Eichler order of level M in the quaternion
algebra over Q with discriminant pq. The curve C supports Hecke correspondences
T, which are analogues of the standard correspondences 7, on the classical
modular curves. These correspondences induce endomorphisms 7,, on a certain free
abelian group Z: the character group of the connected component of the origin in
the fiber over F, of the Néron model of the Jacobian of C. Our Theorem 4.1
connects up the Z[. .. T, .. .]-module Z with an analogous module derived from
Jo(PgM)E, .

The switch between p and g in our result enriches the analogy between the
Jacobian J = Pic®(C) and the “pg-new quotient” of J,( pgM ) obtained by dividing
Jo(pqM) by its subvariety isogenous to a product of copies of J,(q¢M) and J,(pM).
In fact, J and this quotient are well known to be isogenous over Q (cf. [26]), and
much study of J has been motivated by a desire to find a “natural” isogeny between
the two. Such an isogeny would induce a map between Z and the analogue of Z for
Jo(pqM)g,, rather than for Jo(pgM)g,. Our theorem gives us the luxury of
permuting the two primes p and q in situations where the connection between J
and J,(pgM) is strong enough to allow us to pass from one to the other.

The §5, purely technical, discusses some relations between maximal ideals of
Hecke algebras and representations of Gal(Q/Q). The last sections contain
arguments leading to the Main Theorem. We begin, in §6, with Mazur’s result [20],
which corresponds to the case of the Main Theorem in which the congruence p # 1
(mod !) does not hold. The proof of Mazur’s result is independent of §4; i.e.,
Shimura curves play no role.

Since the congruence p # 1 (mod ) certainly does not hold if p = I, we are now
able to assume that p and [ are distinct. We do this beginning in §7. Furthermore,
we suppose in §7 that p, which arises by definition from a newform of level dividing
Mp (where M = N/p), in fact arises from such a newform whose level is divisible
by p. (If p comes from a newform of level prime to p, then there is nothing to
prove.) We then prove that there are infinitely many primes ¢, ¢ = —1 (mod ),
such that p comes from a newform whose level divides pgM and is divisible by pq.
We show, in fact, that g satisfies this condition if g is prime to IN and the image
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under p of a Frobenius element for g in G has eigenvalues + 1, — 1. The existence of
infinitely many g of this type is then guaranteed by the Cebotarev Density
Theorem, since the image in p(G) of a complex conjugation in G has eigenvalues
+ 1, — 1. Although our result in this § is similar to that of [28], we prove our result
using (4.1) and make no appeal to [28].

In §8, we prove, under the hypotheses of the Main Theorem, that p, now
modular of level Mpq, is modular of level Mq. This is sufficient for our purposes,
because Mazur’s result of §6 then applies to show that p is modular of level M, as
desired. Our argument involves the Jacobian J discussed above. It uses heavily the
results of §4, as well as (6.4).

This article evolved from lectures given at the MSRI, first during a seminar on modular forms
and Galois representations, and then during a workshop on the Galois group of Q. The audience’s
comments significantly clarified some of the arguments in my earliest notes. For example,
Lemma 6.2 was introduced into the text as the result of discussions with J-M. Fontaine and
W. Messing.

A preliminary version of this article was carefully studied by Guy Henniart and Joseph
Oesterlé. Their detailed comments have been extremely useful.

The author wishes to thank Bruce Jordan and Ron Livné for many key discussions concerning
Shimura curves and their Jacobians, and especially for their generosity in sharing the ideas of
[14]. He owes special thanks to Barry Mazur for a series of generous suggestions, made over
several years.

The research described in this article was supported by grants from the National Science
Foundation and the Vaughn Foundation. It was performed, in part, at the Max Planck Institute
in Bonn, the MSRI in Berkeley, and the IHES in Bures-sur-Yvette. The author thanks these
institutions, and their directors, for their hospitality.
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2. The Picard-Lefschetz formula

Let p be a prime. Consider a curve C over a p-adic field K of characteristic 0, with
residue field k of characteristic p. Denote by P the Jacobian Pic®(C) of C. We recall
in a special case some relations between the special fiber of the Néron model of P
and the special fibers of suitable models of C. These relations are based on work of
[24]. They are discussed in [11], §12 and in the appendix to [18].

Suppose first that € is the regular minimal model of C over the integer ring of
K. Suppose that the greatest common divisor of the multiplicities of the irreducible
components of b, is 1. Let P, be the special fiber of the Néron model of P and let
P° = (P,)° be the connected component of 0 in this special fiber.

As explained in [11], §12, the results of [24] imply that there is a canonical
isomorphism

P° ~ Pic®(%,) ,

cf. [11], (12.1.12). Assume, moreover, that all singular points of the curve %, are
ordinary double points (i.e., have local equation xy = 0). Then P° is a semiabelian
scheme over k, i.e., an extension of an abelian variety 4 by a torus. More precisely,
write the normalization of %, as a disjoint union of non-singular curves D;. The
normalization map U D; — %, induces a surjection

Pic®(%,) - [] Pic°(D;) = 4 ,
j

whose kernel T is a torus which may be described explicitly in view of [EGA IV ],
21.8.5.

The description, which is well known, is most compactly expressed in terms of
the “dual graph” ¢ attached to %,. This is the unoriented graph with the following
definition:

e The set of vertices of ¢ is the set I of irreducible components of €.

@ The set of edges of ¢ is the set .# of singular points of €.

e The edge corresponding to a singular point ie.# connects the two vertices

corresponding to the two components of €, which meet at i.
Proposition 2.1 (cf. [11], (12.3.7)). There is a canonical isomorphism
T~HY (%, 2Z)®G,,.
Equivalently, we have
X~H(%1Z),

where X = X(T) is the character group of T.

To calculate H,(%, Z), we first consider the bouquet ¢ of circles obtained by
collapsing to a single point all vertices of 4. The map ¥ — ¢ induces an inclusion

X=H(%Z)-H|(%1).

For each ie #, choose an orientation of the corresponding edge of ¥, ie., an
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ordering {j, (i), j»(i)} of the two components which pass through i. The resulting
orientation of the edges of ¢ determines an isomorphism

H,(%,2)~Z1”".
from which we deduce a non-canonical inclusion
XcZ’. (0

To identify X with a specific subgroup of Z*, we let D be the group of degree-0
formal integral linear combinations of elements of 7, i.e., the kernel of the degree
map
77 > 7.
Proposition 2.2. The group X corresponds to the kernel of the homomorphism
w2’ ->D
defined by
a(i) = ji (i) — jo (i) -
For the proof, see [11], §12.4.
Now let @ be the group of connected components of P,. Let Y be the analogue
of X for the abelian variety dual to P, i.e., the character group arising from the

reduction of the Albanese variety Alb(C). One may express @ in terms of a
standard bilinear pairing

uwXxY-17Z,

the monodromy pairing of [11], (11.5.2b). To do this, view the pairing as a
homomorphism (again denoted u)

Yo X*,

where X* = Hom(X, Z). This map is injective, and there is a canonical iso-
morphism
@ ~ coker(u)

Lloc. cit.].

This isomorphism, valid more generally when P is not necessarily a Jacobian, is
complemented by the Picard-Lefschetz formula ([11], §12) in the case under
consideration. To state this formula, we orient the edges of 4 as above, and use this
orientation to embed X in Z”. Further, we use the @-polarization P ~ Alb(C) to
obtain an isomorphism X = Y. Via this isomorphism, u becomes a bilinear pairing
on X.

Theorem 2.3. The pairing u is the restriction to X of the standard Euclidean pairing
on Z”. The group @ is the cokernel of the map X — Hom(X, Z) obtained from the
inclusion of X in Z” and the Euclidean pairing on Z.”.

Proof. The first statement is Théoréme 12.5 of [11]. The second statement follows
from the first statement, together with the isomorphism ¢ ~ coker(u), which is
discussed above. [J
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Admissible curves

Next, as a variant, we relax the condition that € be regular, assuming instead that
€ is an admissible curve in the sense of Jordan-Livné [13], §3. This assumption
implies that special fiber €, of € has only ordinary double points as singularities;
we define the sets # and J as above. Moreover, there is a collection of positive
integers e(i), i€ #, such that the special fiber of a regular minimal model for C may
be obtained from %, by replacing each singular point i e .# with e(i) > 1 by a chain
of (e(i) — 1) copies of the projective line P!.

This construction produces a “blow-up” of 6, where the sets .# and J are
replaced by analogues # and 7. There is an evident surjective map

S
gotten by contracting the P'’s. The associated map
Ay A

which takes each ie.# to the sum of its antecedents in % is then an injection with
torsion free cokernel. On the other hand, the set  is a subset of 7, so that we have
a natural injection

Z.T N Zf
Its restriction to the subgroup D of Z7 gives an injection
:D-D ,

where D is the analogue of D for the blow-up.

The calculus introduced above computes the groups X and @ for the Néron
model of Pic®(C). The computation starts with the sets # and 7 and an ordering
of two components passing through each singular point of the blow-up. For
example, this ordering defines a map & analogous to the map « seen above, whose
kernel is the group X.

To relate X and & to the sets .# and J, we first order, as above, the two
components of €, which pass through each singular point i. We then find easily a
(unique) analogous ordering for the blow up in such a way that the four maps a, &, 1,
and t form a commutative square. The maps « and & are surjective, since the curve
%, is connected. Letting Y be the kernel of a, we discover a commutative diagram

0 - Y > Z7 - D - 0
g T @
0 » X - 72 5> D - 0 R
where the map « is induced by 7 and 1. Since t and 1 are injective, so is k. Counting
ranks, we see that the cokernel of  is a torsion abelian group. On the other hand, ©
is such that its cokernel is torsion free. Since the Snake Lemma implies that the

cokernel of k injects into the cokernel of , k is in fact an isomorphism. In other
words, there is no difference between the groups X and Y, and we can continue to
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calculate using the recipe discussed above. (This corresponds to the fact that the
dual graph of %, is replaced by a homotopic graph when %, is replaced by its blow-
up.)

At the same time, we find that @ is the cokernel of the map y: ¥ - Hom(Y, Z)
gotten from the restriction to Y of the Euclidean pairing on Z“. Equivalently, this
pairing is gotten by restricting to Y the pairing on Z* whose matrix is the diagonal
matrix with entries e(i). (In other words i and i’ are paired to O or to e(i) according
as i and i’ are distinct or equal.) In summary, the calculation of X and @ proceeds
essentially as if € were the ininimal model of C. The sole complication is that the

pairing one uses on Z* must take the positive integers e(i) into account. (See also
[11], 12.10.1.)

Theorem 2.4. There is a natural homomorphism 0: D — & whose cokernel is a
quotient of the group Hom(Z”,Z)/Z* ~ @(Z/e(i)Z), the direct sum being ex-
tended over S.

Proof. Start with the description of @ as the cokernel of y. Write Hom(Y, Z) as the
quotient

Hom(Z”,Z)/ Y+,

where Y is the group of linear forms on Z“# which vanish on Y. We obtain an
isomorphism

@ ~ Hom(Z*,Z)/(Y* @ Y)

in which we identify ¥ with its image in Hom(Z*, Z). It follows that @ contains the
subgroup

O,=2"/(M®Y),

where
M=Y'nZ".

The group ®/d, is a quotient of Hom(Z*, Z)/Z~, which is simply the direct sum
of the groups Z/e(i)Z with ie #. Finally, we note that ¢, may be viewed as a
quotient of Z*/ Y, a group which is isomorphic, via a, to D. We therefore obtain the
desired result by letting 6 be the projection of D onto ¢,. O

Remark 2.5. Theorem 2.4 was motivated by Jordan-Livné [14], who prove a
related result when C is a Shimura curve. It was used in earlier versions of this
article for the purpose of analyzing the prime-to-6 parts of the component groups
which appear below. However, in this write-up, no essential use is made of (2.4).
The result of [14] appears below in a slightly different form as Theorem 4.3.

3. Quaternions and modular curves

In this paragraph, p and g are distinct prime numbers, and M is a positive integer
prime to pq. We consider the mod g reduction of the modular curves X,(gM) and
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Xo(pgM). Let C be the modular curve X,(qgM) over Q,. A model € of the type
discussed in §2 has been studied (over Z,) by Deligne-Rapoport [4] and by Katz-
Mazur [15]. The curve tF, has two components, each a copy of the modular curve
Xo(M)g, ([4], V,§1). More precisely, €, is obtained by attaching the two copies of

Xo(M )F at their supersingular points (those which arise from supersingular elliptic
curves over F 2)» @ supersingular point x on the first copy being identified with its
Frobenius transform x‘® on the second (loc. cit. 1.18). Therefore the set 7 has two
elements. The set .# is the set (M) of F‘q-isomorphism classes of objects
E = (E, B), where E is a supersingular elliptic curve over F, and B is a cyclic
subgroup of E of order M. For each ie.#, the elements j, (i), j,(i) are the two
distinct elements of 7. For convenience, we orient the ie.# so that Jj1(i) and j, (i)
are each independent of i. The graph ¢ in this case has precisely two vertices, and
each edge connects the two distinct vertices. (No edge starts and leaves from the
same vertex.) Therefore, (2.2) specializes to:

Proposition 3.1. The character group X in the case C = X,(Mgq) is the group of
degree-0 divisors on the set (M) of supersingular points of X o(M )17‘,,'

In this article, we refer to pairs E = (E, B) as “enhanced elliptic curves.” We
define in the evident way a homomorphism between two enhanced elliptic curves
and, in particular, the endomorphism ring and automorphism group of an en-
hanced elliptic curve E. For each E, the Q-algebra H = (End E)® ,Q is well
known to be the unique quaternion algebra over Q (up to isomorphism) which is
ramified precisely at q and the archimedian prime of Q. The ring End(E) is a
maximal order in H, while its subring End(E) is an Eichler order of level M in
End(E). More precisely, let 1: E — E/B be the canonical quotient map. There is a
natural inclusion of End(E/B) into H given by

o A" 'ol .

The order End(E) of H is the intersection of the two maximal orders End(E) and
End(E/B). It may be appropriate to describe End(E) as an oriented Eichler order;
it is given explicitly as the intersection of an ordered pair of maximal orders of H.
(An Eichler order R is, by definition, the intersection of two maximal orders, but
these maximal orders need not be specified as an ordered pair. Further, R is, in
general, the intersection of maximal orders in several ways.)

The automorphism group of E is a subgroup of (End E)*, a finite group whose
order divides 24. Since Aut(E) contains the subgroup { +1}, it is of even order.
From ([4], VI, Th. 6.9), we obtain

. _ #(AutE)
e(iy=———.
2
In particular, e(i) is a divisor of 12. Using (2.4), we obtain:

Proposition 3.2. The finite group @ is an extension by the cyclic group 6(D) of a
group of exponent dividing 12.

[More information about @ is given in (3.12)—(3.14).]
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We next recall a description of the set # = Z(M) in terms of the arithmetic of
the quaternion algebra H. This description is due to Deuring [6] in the case of
supersingular elliptic curves with no additional level structure (i.e., when M = 1).
Since all supersingular elliptic curves over F, are isogenous, one can start with a
fixed E, and keep track of the isomorphism classes of enhanced elliptic curves
gotten by isogenies from E,. This problem has been studied in detail in analogous
(but more complicated) problems in the theory of Shimura varieties (see for
example [2, 17, 22]).

For each enhanced E = (E, B) over F o> let T(E) be the “adelic Tate module”
of E:

T(E) = T,(E) x [] T(E),

where T,(E) is the Dieudonné module associated to E. In order to maintain an
analogy between T (E) and the T(E), we take T (E) to be the contravariant
Dieudonné module attached to E(q), where E(q) is the g-divisible group of E. Thus
we have T,(E) = M(E(q))', where M(—)' is the functor considered in [23], §3. (For
its definition, see [23], 3.6.)

We consider T(E) as “enhanced” by the distinguished cyclic subgroup B of
T(E)/MT(E). Fix E, = (E,, B,), and define

R=FEnd(E,, H=R®;Q.

Let R, and H; be the adelizations of these rings, i.c., their tensor products with Z.
Given an enhanced supersingular curve E = (E, B), select a non-zero
AeHom(E, Ey) ® z Q. This homomorphism identifies T(E) with a sublattice of
V(Ey) = T(Ey) ® 2 Q. We may find a unique element

geHt/RY

such that one has the equality of enhanced lattices gT(E) = T(E,). (This means
that gT(E) and T(E,) coincide as lattices of V(E,) and that the induced iso-
morphism

g: T(E)/MT(E) ~ T(E,)/MT(E,)

carries B to B,.) Because of the ambiguity in the choice of 4, g is well defined only
in

H*\H}/R¥ .

Proposition 3.3. This construction provides a bijection ¢g_ from the set Z(M) of
supersingular points of X o(M )F,, to the coset space H*\ H¢/R§.

For a detailed proof of similar results in the context of Shimura varieties, see
[22] or [2], §11.

Variant 3.4. The set X(M) is naturally isomorphic to the set of right ideal classes of
the Eichler order R of level M in H.

Indeed, the indicated set of ideal classes is readily identified with the coset space
above ([41], p. 87).
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Remarks 3.5. a. The reader may prefer to view the set of right ideal classes of R as
the set of isomorphism classes of locally free rank-1 right R-modules. For each E,
the group Hom(E,, E) becomes such a module under composition with endo-
morphisms of E,. The map

E— Hom(E,, E)
then gives a direct association

(isomorphism classes of enhanced elliptic curves) — (ideal classes)

which mimics that of Serre [32].

Working with Hom(E, E,) instead of Hom(E,, E), one gets a 1-1 correspond-
ence between isomorphism classes of locally free rank-1 left R-modules and
isomorphism classes of enhanced supersingular elliptic curves. We see this corres
pondence from the lattice point of view by writing

g~ 'T(E) = T(E,)
instead of gT(E) = T(E,) in the construction giving (3.3).

b. There is a natural involution of (M), the Frobenius automorphism x x(?.
From the viewpoint of (3.3), this map arises from right multiplication on H§ by an
element of H which is 1 locally at all primes different from g and is a uniformizer
at the prime g (cf. [22], Theorem 5). In the language of (3.4), the involution
associates to the class of an R-ideal I the class of the unique ideal I’ = I of index
q*inI.

Proposition 3.6 [cf. [42], Theorem 4.5]. Let B and B’ be maximal orders of a
quaternion algebra of discriminant q such that S = B n B’ is an Eichler order of level
M in B. Then there is an enhanced supersingular elliptic curve E over F, and an
isomorphism

k: (S, B) ~ (End(E), End(E)),

i.e., an isomorphism B ~ End(E) which carries S to End(E). Moreover, let E' be such
an elliptic curve and let k' be an isomorphism (S, B) ~ (End(E’), End(E’)). Then the
pair (E’, k') is isomorphic to either (E, k) or to (E@, k'?).

[We say that (E, k) and (E’, k') are isomorphic if there is an isomorphism E ~ E’
for which the induced isomorphism i: End(E) ~ End(E’) satisfies k'1 = «.]

Proof. Fix an enhanced supersingular elliptic curve E, as before. Let
R =End(E,), A=End(E,) H=RQ®Q.

After choosing and fixing an isomorphism B ® Q ~ H, we may (and do) assume
that B, B’ and S are orders in H.

We first consider all pairs (E, k) consisting of an enhanced elliptic curve E and
an injection x: End(E) ® Q —» H (which need not necessarily map End(E) to S and
End(E) to B). For each non-zero A€ Hom(E, Ey) ® ; Q, we obtain such an
injection k, by mapping ecEnd(E)® Q to Aei™!. By the Skolem-Noether
Theorem, every k is of the form x,; moreover, AeHom(E, E;)®,Q and
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A'eHom(E, E,) ® 7 Q give isomorphic pairs (E, k), (E’, k') if and only if there is
an isomorphism 1 E— E’ such that 1 and A1 differ by an element of Q*.
(Cf. [42], Prop. 3.4.)

The construction

(E, ) T(E) < V(E,)

furnishes a 1-1 correspondence between the set of isomorphism classes of pairs
(E, A) and the set Hf/R¥ of “enhanced” lattices in V(E,). Dividing by Q*, we
obtain a 1-1 correspondence between H¥/(R¥Q*) and the set of isomorphism
classes of pairs (E, k) with E an enhanced elliptic curve and x an injection
End(E)® Q —» H.

Takege H;“ and consider the associated pair (E, k). The image of End(E) (resp.
End(E))in H is the order H N (gR;g ~ ') (resp. H N (gAsg ~')). Thus k maps End(E)
to R and End(E) to A if and only if we have the equalities

gAfg_l = B[, ngg_l = Sr .

Examine these equalities locally at each prime |, i.e., for g now in H}¥. When [ = ¢,
the condition on g is empty. Indeed, the quaternion algebra H, over Q, has a
unique maximal order ([41], Lemme 1.5, p. 34), so that all ge H} take 4, to B, and
R, to §,. Note that there are two classes in H}/(R;QF): the valuation on H}
makes H}/R7 isomorphic to Z, and division by Q¥ corresponds to division of Z
by 2Z.

When [ is prime to gM, there is only one equality to be satisfied, since 4
coincides with R and B with S at the prime /. This equality can be satisfied, since all
maximal orders in M(2, Q,) are conjugate ([41], Th. 2.3, p. 38). Moreover, the g for
which the equality is satisfied form a single class in H}/(R}Q}), since the
normalizer of M(2, Z;) in GL(2, Q,) is GL(2, Z,)Q}.

Finally, suppose that [ divides M, and let n > 0 be the valuation of M at [. The
two Eichler orders R, and S, are each intersections of a unique pair of maximal
orders of H, ~ M(2, Q,) ([41], 2.4, p. 39). The order S, is the intersection of B, and
Bj, while R, is the intersection of 4; and A;, where A’ is the endomorphism ring of
the elliptic curve E’ gotten from E by dividing E by the cyclic subgroup of order M
which enhances it. An element g of Hf thus conjugates 4, to B, and R, to S, if and
only if it conjugates A, to B, and A; to B;.

We may regard A,, B,, A}, and Bj as vertices a, b, a’, b’ of the tree 4 associated
to SL, over Q, ([33], Ch. II). To do this, we note that the vertices of 4 are the
lattices in Q, @ Q,, taken modulo homothety. The map sending the lattice
L = Q,® Q, to the maximal order End(L) of M(2, Q,) sets up a 1-1 correspond-
ence between the vertices of 4 and the maximal orders in M(2, Q,), cf. [41], p. 41.

Since R and S are Eichler orders of level M, the vertices a and b are at distance n
from each other, as are the vertices a’ and b’. By the Elementary Divisor Theorem,
we may choose a basis e,, e, of Q, ® Q, so that a is represented by the lattice
Ze, @ Z,e, and b by the lattice Z,e, @ I"Z,e,. Similarly, there is a basis f;, f, of
Q, @ Q, so that a’ is represented by the lattice Z,f, @ Z, f, and b’ by the lattice
Z,fi®1"L,f,. If ge GL(2, Q,) maps e, to f; and e, to f,, then g conjugates 4, to B,
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and A4; to B;. On the other hand, if h also conjugates 4, to B, and A;to B}, we have
h™'geN(A)nN(B) = (A}QF) N (BFQ}) = (Af n B})QF = RFQF .

Hence the g conjugating 4, to B, and A; to B; again make up a single class in
HY/(RFQ).

From this local information, we deduce that the g in H} which conjugate 4; to
B; and R¢ to S¢ form exactly two classes in H}/(RFQ*). These classes are
interchanged by left multiplication by any idele which is trivial outside the prime g
and has odd valuation at q. It is a standard fact that this multiplication corres-
ponds to the Frobenius map; cf. [22] and Remark 3.5b above. O

Action of Hecke operators on X

Each modular curve Xy(N) is endowed with familiar Hecke correspondences for
n = 1(see, for example, [39], Chapter 7). We write T, for the n'* correspondence. In
the notation of [39], one considers the double cosets I'y(N)al'o(N) arising from
those matrices ae 4’ which satisfy det(a) = n. To each such double coset is
associated a correspondence X g5(o). The Hecke correspondence T, is defined as the
sum of those correspondences X g(a) for which det(a) = n. (See [39], page 183.)

There is an equivalent “modular” definition of the T, which involves mapping
an elliptic curve with I'o(N)-structure to an appropriate formal sum of such objects.
This interpretation is certainly well known; cf. (7.2.4) and Proposition 3.36 of [39].
The “modular” interpretation of the curve X,(N) and its correspondences T,
allows us to define these objects over the rational field Q.

Each correspondence 7, of X,(N) induces an endomorphism of J,(N) in two
ways. This circumstance arises because the association of a curve to its Jacobian is
simultaneously a covariant or a contravariant functor, according as one takes the
“Albanese” or the “Picard” point of view.

To elaborate on this idea in an abstract context, we first consider an irreducible
curve X which is given as a subvariety of U x ¥V, where U and V are curves over a
field k. (More generally, one should consider an integral linear combination of such
subvarieties, as in §7.2 of [39].) Let f: X —» U and g: X — V be the maps obtained
from the inclusion of X in the product and the two canonical projections of U x V
onto its factors. Let Ay, Ay, and A, be the Jacobians of X, U and V, respectively.
Assume that X is a correspondence, i.e., that f and g are non-constant maps.

The maps f and g induce homomorphisms f,: Ay = Ay and g,: Ay - A, by
Albanese functoriality, and homomorphisms f*: A, —» Ay and g*: 4, - Ay by Pic
functoriality of the Jacobian. The compositions g, f * and f, g* are then homomor-
phisms &é: Ay — A, and T: A, — Ay, respectively. These are the elements of
Hom(Ay, Ay) and Hom(A,,, 4y) which are associated to X. (In [39],§7.2, only the
former element is considered.)

In the special case where X is the graph of a map of curves ¢: U — V, it is clear
that & and T are the maps of Jacobians which ¢ induces by Albanese functoriality
and Pic functoriality, respectively. Viewing the notion of “correspondence” as a
generalization of that of “map,” we are led in the general case to refer to £ and T as
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the Albanese and Pic maps induced by X. We consider that ¢ and T have equal
standing as homomorphisms of Jacobians induced by a correspondence. On the
other hand, it follows from the definitions of £ and T that & and T are exchanged if
we permute U and V and replace X by its transpose. In particular, if we choose to
consider only maps induced by Albanese functoriality, we are forced to replace X
by its transpose in order to obtain T.

We remark also that Ay, Ay, and A, are each canonically auto-dual, so that the
dual of a homomorphism Ay — A (for instance) may be regarded as a homomor-
phism Ay — Ay. It is a well known property of Jacobians that f, is the dual of f*
and vice versa; analogously, g, is the dual of g* and vice versa. It follows from this
that &£ and T are each other’s duals. In the special case where U = V, we may
conclude that ¢ and T are permuted by the Rosati involution of End(Ay)
associated with the canonical (theta) polarization of the Jacobian A.

We now specialize to the case where U and V are both equal to the modular
curve X(N)and X is replaced by the correspondence T'(n). The endomorphism of
Jo(N) which T, induces by Albanese functoriality is the endomorphism denoted &,
in [39], Chapter 7. Its dual is the endomorphism of J,(N) which 7, induces by
Picard functoriality. It seems that there is little danger in using the symbol T, to
denote this latter map. According to our general discussion, we then have

T, = :" T:=én, (3)

where the exponent * is the Rosati involution on End(J,(N)).

Furthermore, let w = wy be the standard Atkin-Lehner involution of X,(N),
i.e., the involution denoted Xg(t) in [39], §7.5. Write again w for the correspon-
ding involution of Jy(N). (An involution on a curve induces the same endo-
morphism of its Jacobian under the Pic and Albanese functorialities.) Then one has

whw=2¢,  wew=T,. 4)

These formulas follow from the identities given at the bottom of page 193 for the
transpose of a modular correspondence, together with Prop. 3.54, of [39].

Consider the subalgebras = = =, and T = Ty of End(J,(N)) generated by the
¢, and by the T,, respectively. The Rosati involution of End(J,(N)) (or, altern-
atively, conjugation by w) induces an isomorphism £ ~ T. By viewing J,(N) as the
Albanese variety of X ,(N), we may identify the space of invariant differentials on
Jo(N) with the classical space S,(I'4(N)) of weight-2 cusp forms for the group
I'o(N). Via this identification, each operator &, induces the classical operator 7, on
S,(I'y(N)). (Cf. [39], page 183.) Moreover, the resulting representation of Z is
faithful, since an endomorphism of an abelian variety over C is determined by its
action on the cotangent space to the abelian variety at the origin. Therefore, £ and
T may each be identified with the algebra generated by the classical operators 7, on
the space S,(I'¢(N)). This algebra is a free finitely-generated Z-module whose rank
coincides with the dimension of the abelian variety J,(N), i.e., with the dimension
of S,(I'o(N)), cf. [39], Th. 3.45.

Once the endomorphisms T, of J,(N) have been defined over Q, they act
automatically on the Néron model of J,(N) and in particular on the fiber of this
Néron model at each prime dividing N. Consider now the special situation where
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N = gM, q being prime to M as above. Let T denote the “toric part” (i.., the
largest torus) in the fiber at g of the Néron model. The T, induce endomorphisms of
T and therefore act by functoriality on the character group X of 7. We propose to
describe explicitly this action. To do this, we use the canonical isomorphism

X ~ H,(%,Z)

of (2.1). In view of the inclusion (1) of §2, it is natural to relate the actions of the 7,
on X to the correspondences induced by the T, on the set # = X(M) of iso-
morphism classes of enhanced supersingular elliptic curves over Fq. Note, however,
that the map X —» Z* depends on our having oriented each edge ie.#. Our
discussion must take into account any inversions introduced by the 7,.

We first consider the case where n is prime to g. Then there are no inversions, as
the T, “preserve” each component of X (N )y . Moreover, the T, operate on (M)
in the evident way, i.e., via the same “modular rules” which define the T, over Q.
For the sake of completeness, let us recall the rule for 7, when n is a prime number
r + q; we give the expression for T,(E), where E is an elliptic curve E which is
enhanced by a cyclic subgroup of order M.

We distinguish cases according as r is prime to M or a divisor of M. In the
former case, we have the standard expression

T,(E)=Y E/C,

where the sum is taken over all subgroups C of order r in E and where E/C is the
elliptic curve E/C with the evident subgroup of order M. In the case where r divides

M, the enhancement of E provides E, in particular, with a subgroup D of order r.
We have

T,(Ey= ) E/C.
C+D
We now compare the actions of 7, and the Atkin-Lehner involution w = w, on
Xo(N). Recall that w, is defined in “modular” terms by regarding X (N) as
classifying triples (E, Cyy, C,), where the two latter elements are cyclic subgroups of
the elliptic curve E having orders M and g, respectively. The involution w, maps
such a triple (E, Cy, C,) to the triple

(E/Cq’ (CM @ Cq)/cq, E[q]/cq) .

We again denote by w, the involutions induced by w, on J,(N), the Néron model of
Jo(N), the fiber of this model in characteristic g, etc. Especially, w, acts on the torus
T and on its character group X. The following result is a variant of a formula found
by Atkin-Lehner (cf. [1], Th. 3); the identity we give exploits the fact that T
pertains to cusp forms of level N = gM which are “q-new,” cf. (3.10).

Proposition 3.7. The identity w, = — T, holds on the torus T.

Proof. Consider the two “degeneracy” maps o, f: Xo(N)— Xo(M) (cf. [19]),
defined over Q from a modular point of view by

a: (E, Cy, C))—(E, Cy), B:(E, Cyy, C)—(E/Cp, (Cyy @ C)/C,) -
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A calculation gives the identity w, + T, = a*f, of endomorphisms of J,(N), where
* and , refer to Pic and Albanese functoriality, respectively. In particular, w, + T,
factors through the map f,: Jo(N) — Jo(M). Considering fibers at q of Néron
models, we find that the restriction to T of w, + T, factors through a map
T - Jo(M)g . All such maps are 0, since T is a torus and J,(M) is an abelian
variety. [J )

Proposition 3.8. (i) The involution w, permutes the two components of Xo(N)g,. It
acts on the set . of singular points of X o(N)g as the Frobenius morphism x — x'9,
(ii) The action of T, on the character group X' is the restriction to X of the map on
Z.2M™ induced by the Frobenius automorphism of X(M). This restriction is the
Frobenius automorphism of X.

Proof. For (i), see [4], Chapter V, §1. The first statement of (ii) follows from (3.7)
and (i), as w, combines the Frobenius automorphism of Z(M) with an inversion
of the two vertices of the graph 4. The second statement of (ii) then results
from the fact that the two components of X,(gM)y are rational. (Cf.[18],
Appendix, §3.) O )

Old and new

Let T = T),, be the subring of End(J,(Mgq)) generated by all Hecke operators 7,
for n = 1. The action of T on the cotangent space S of the dual of J,(Mg)c identifies
T with a ring of endomorphisms of S. Since the dual of J,(Mgq) is simply the
Albanese variety of X,(Mgq), S is the classical space S,(I"q(Mq)) of weight-2 cusp
forms on I'y(Mgq). Since the action of T, on S obtained in this manner coincides
with the classical action, T is the usual subring of End(S) generated by the Hecke
operators. In particular, the ring T is a free Z-module whose rank is the dimension
of S, i.e., the dimension of the abelian variety J,(Mq) ([39], Th. 3.45).
The g-old subspace of S (cf. [1]) is defined to be the direct sum

So = a*(S,(I'4(M))) @ p*(S2(I0(M)))

of two copies of S,(I'y(M)) which occurs naturally in § = S,(I',(Mq)). The corres-
ponding new space is the orthogonal complement S; to S, in S, relative to the
Petersson inner product on S. Both S, and S, are T-stable subspaces of S; let T,
and T, be the images of T in the endomorphism rings of these spaces. We say that
T, and T, are the g-old and g-new quotients of T. The product map

ToTy x T,

identifies T with a subring of finite index of T, x T,.

Consider now the fiber in characteristic g of the Néron model of J,(Mg). This
F ,-group is an extension of a finite group ¢ by its connected component J. As is
well known (cf. [18], Appendix), the results of Raynaud [24] and Deligne-Rapo-
port [4] combine to produce an exact sequence

15T J% > Jo(M) x Jo(M) -0, &)
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where T = Hom(X, G,,) is the torus whose character group is studied above. All
endomorphisms of J,(Mgq) which are defined over Q extend to the Néron model of
Jo(Mq) and operate via (5) on T and on Jo(M) x Jo(M). The action of T on T
corresponds to the action of T on X which is discussed above. The action of T
on Jo(M) x Jo(M) is completely transparent, except for the endomorphism of
Jo(M) x Jo(M) arising from T,. This endomorphism is not (necessarily) the
same as that gotten by making the endomorphism T, e T), act diagonally on the
product. It is given by a 2-by-2 matrix of endomorphisms of J,(M) which could be
made explicit without difficulty. It is to be noted, in this connection, that the map w:
J® = Jo(M) x Jo(M) which appears above is deduced by Pic functoriality from a
pair of maps X o(M) 3 X,(Mq) which exist naturally only in characteristic q. The
map w is to be distinguished from the map J® — J,(M) x J,(M) gotten by
Albanese functoriality from the two degeneracy maps X ,(Mq) 3 X (M) in charac-
teristic 0.

Remark 3.9. The degeneracy maps o and f§ introduced above combine to produce
(by Pic functoriality) a map

p:Jo(M) x Jo(M) - Jo(Mg) ,

which is easily seen to have finite kernel. (The kernel was determined in [28].) It
follows from the finiteness of the kernel that there is a unique endomorphism ¢
of Jo(M) x Jo(M) (considered as an abelian variety up to isogeny) such that
p¢ = T,p. This endomorphism is explicitly given as

(x5 y)H(Tx + qy, —X) )

where 7 is the g™ Hecke operator of Jy(M). (Cf. (3.19) below.)

Theorem 3.10. The action of T on the torus T cuts out the g-new quotient T, of T.
Le., an element t of T is 0 on T if and only if it is O on the g-new subspace S, of S.

Proof. Let A be the image of the map p of (3.9), and let Q be the cokernel of p. (We
refer to A and Q as the g-old subvariety and the g-new quotient of J,(Mgq), cf. [19].)
Dualizing the exact sequence of abelian varieties

0->4-Jy(Mg)—Q—0

and applying the cotangent functor over C, we obtain the exact sequence of C-
vector spaces

0-S,-85-85,-0.

(We identify the orthogonal complement S, to S, with the indicated quotient of S.)
An element ¢t of T thus maps to 0 in T, if and only if it acts as 0 on Q.

It is clear that the abelian variety Q has purely toric reduction in characteristic
g, as A has good reduction at q and the dimensions of T"and Q coincide. Let U be
the connected component of 0 in the fiber at g of the Néron model of Q, so that U is
a torus of the same dimension as 7. By a well known property of abelian varieties
with purely toric reduction, the action of Endg(Q) on U is faithful. Therefore, te T
maps to 0 in T, if and only if it acts as 0 on U.
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The structural map 7: J,(Mq) — Q induces a homomorphism J° — U. Com-
bining this map with the inclusion of 7 in J° we get a T-equivariant map
n,: T — U. Choose a map n: Q — J,(Mq) for which ny is an isogeny from @ to Q.
We obtain in characteristic g a map n,.: U — T for which =, is an isogeny. Since
T and U have the same dimensions, 7, is an isogeny. Hence t € T maps to 0 in T if
and only if it acts as 0 on 7. [

Theorem 3.11. View Jo(M) x Jo(M) as a T-module via (5). Let t be an element of T.
Then t acts as 0 on Jo(M) x Jo(M) if and only if t is 0 in T,.

Proof. This is similar to (3.10). With A4 as above, te T acts as 0 on 4 if and only if it
acts as 0 on S,. The inclusion of A4 in J,(Mg) induces in characteristic ¢ a map
A — J°. The composition of this map with the map J°® — Jo(M) x Jo(M) of (5) is
an isogeny. Hence ¢ acts as 0 on S, if and only if it acts as 0 on J,(M) x Jo(M). O

Action of Hecke operators on @

We now study the action of the Hecke operators 7, € End(J,(¢M)) on the compon-
ent group @ associated with the reduction of X,(gM) over F . Our aim is to prove
that @ is “Eisenstein” in the sense that 7, operates on @ by multiplication by 1 + r,
for almost all primes r. We do this by reducing the question to one involving
supersingular elliptic curves over F‘q. (See [30] and [8] for more information about
component groups attached to Jacobians of modular curves.)

We first specialize to X ,(gM) the description of @ given in §2. Let A be the free
abelian group on the set .# of supersingular points of X o(M)g, and let X < A be the
subgroup of A consisting of elements of degree 0. Thus X is the character group of
the torus 7T associated with X,(q¢M)f,. Note that # is the set of isomorphism
classes of pairs E = (E, B), where E is a supersingular elliptic curve over F, and B is
a cyclic subgroup of E of order M. (Thus E is an “enhanced elliptic curve” in the
jargon introduced above.) For each i€ #, we define e(i) as above; the e(i) furnish a
diagonal pairing on 4. We let

KiA—->A*
be the embedding of A into A* = Hom(A, Z) defined by this pairing, and we define
similarly

LX->X*

by restricting the pairing to X.
The results of §2 (especially 2.3) provide us with an isomorphism

& ~ coker(i) .

In this model for @, the action of 7, on the target X * = Hom(X, Z) of 1 is the action
Hom(T,, identity) induced by the standard action of 7, on X which we considered
above. The action of 7, on the source X of 1, however, is that induced by the
transpose &, = wyy T, W,y acting on X. This circumstance arises because the source
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of 1 is naturally the character group occurring in the reduction of the Albanese
variety to Xy(qM); the ©-polarization translates the action of T, on the Albanese
to the action of &, on Jy(gM).

These subtleties do not really intervene in our analysis, since we are interested
only in the action on @ of the T, for r prime and prime to gM. As is well known, we

have T, = £, under this hypothesis on r. For such r, we define a correspondence 7,
on Xy(qgM) by the formula

n=T—-(0+r).
We consider the action of #, by functoriality on .
Theorem 3.12. The group @ is annihilated by n, for all primes r with (r, qM) = 1.
(For the statement of a slightly more precise result, see Theorem 3.22.)

Proof. Fix such a prime r. An action of T, on A is obtained by linearity from the
map

E—Y E/H,
"

where the sum runs over the (r + 1) subgroups of E having order r. (The quotient
E/H is simply the quotient E/H with the evident enhancement.) This action induces
the functorial actions of 7, on the subgroup X of A and on the duals X * and A* of
X and A. It is well known (and not hard to verify) that : and xk commute with these
actions. (This fact corresponds to the relation 7, = &,.) The actions of #, on these
groups are realized by subtracting the endomorphisms 7, and “multiplication by
r + 17 of these groups.

We have @ = X */X, where 1 is used to embed X into X *. Theorem (3.12) thus
asserts that we have

nX*)cX.
In fact we shall prove the analogous inclusion
n(A*) =4, (6)

in which « is used to embed A (and its subgroup X) into A*.
Before doing this, we note that (6) implies the apparently stronger inclusion

n(4*) < X, (7

from which Theorem (3.12) visibly follows. Indeed, take { € A*. Fore = (A*: A1), we
have el e A. We then get n,(e{)e X because of the obvious inclusion 7,(4) < X.
Assuming (6), we find that 5,({) is an element of A for which e-n,({)e X. Since A/X
is the torsion-free group Z, we have 7,({)e X.

To prove (6), we first express this inclusion as a concrete divisibility. Let {i*} be
the basis of 4* which is dual to the basis # = {i} of A. For each i*, we must exhibit
a A€ A such that 5,(i*)(j) = 4-j for each je #. By the definition of the action of #,
on A*, 5,(i*)(j) represents the coefficient of i in #,(j), a number we may write

1

N L
—Cﬁl nr(])"e(l)] nr(l)’
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where we have used the n,-equivariance of k to equate the two displayed quantities.
We may thus take A = n,(i)/e(i) if n,(i) € e(i) A, i.e., if the coefficient of each j in #,(i) is
divisible by e(i). Since the sum of the coefficients of #,(i) is 0, it suffices to prove this
divisibility only for j % i. For these j, the coefficient of j in #,(i) coincides with the
coefficient of j in T;(i).

Fix, then, i and j with i % j, and let E = (E, B) and F = (F, C) be enhanced
elliptic curves which represent these isomorphism classes. Let e = e(i) = card(A),
where A is the finite group

Aut(E)/{ +} .

We must show that the number of subgroups H of E, having order r, for which
E/H =~ F, is divisible by e.

There is an evident operation of A on the set of such H, and it suffices to show
that this action is free. To do this, we suppose that we have E/H ~ F and a(H) = H
with « € Aut(E). We must show that we have a € { + 1}. Assuming the contrary, we
observe that o has order 3, 4, or 6, since « may be regarded as a unit in some
imaginary quadratic field. (Changing the sign of « if necessary, we may assume that
it has order 4 or 6.)

Let R be the subring of End(E) generated by a, so that R is isomorphic to either
the ring of Gaussian integers, or else the integer ring of Q(,/ — 3). We note that H
is an R-submodule of the free rank-1 R/rR-module E[r]. Such submodules are in 1-1
correspondence with the ideals g of R which contain (r). Since R is a principal ideal
domain, we have g = (n) for some n dividing r in R, and then H is the kernel
of n' =r/n on E. The endomorphism 7’ of E then induces an isomorphism
E/H ~ E, contrary to our assumption that E and F are non-isomorphic.

Remark 3.13. The coefficients of T,(i) form the “i'® column” of a classical Brandt
matrix. These coefficients have been frequently studied, and the divisibility just
established is presumably well known.

The following result may be regarded as a structural explanation of (3.12). For
another, see Theorem 3.22 below.

Proposition 3.14. For each prime number r prime to qM, the map n,: A* > X
deduced from (7) induces an injection
®-X/nX.
Proof. Write
D=X*X=A%)(XDX),

where X is the subgroup of A* consisting of linear forms on A which vanish on X.
The map 7, preserves X and hence also X*. Thus, 7, maps X* to X*nX =0. It
follows that #, induces a map o: & — X /5, X as indicated.

From Weil’s Riemann Hypothesis, we may deduce that the endomorphism #, of
Jo(gM) is an isogeny. Hence #, acts injectively on X (so that X/n, X is a finite
group). We conclude next that the kernel of

n.A* > X
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is X+, since the quotient A* /X * is torsion free. Hence if ,({) = 5,(x) with xe X and
{eA*, we get that { — xe X *. This gives the injectivity of 6. [

Comparison with X ,(pqM)

Let X again be the group of degree-0 divisors on the set of supersingular points of
Xo(M)f,. Let L be the analogue of X with M replaced by pM, i.e., the character
group associated with X,(pgM )F,- (We recall that p is a prime number which is
prime to gM.) The analogue of proposition (3.1) for X,(pgM) describes L in terms
of supersingular elliptic curves which are enhanced by cyclic subgroups of order
pM. We prefer to regard such objects as p-isogenies

El_)EZ’

where E, and E, are enhanced by subgroups of order M as before. (We will
continue to understand that “enhanced elliptic curves” are elliptic curves which are
enhanced by cyclic subgroups of order M.)

There are two natural degeneracy maps

a, B: Xo(pgM) 3 X, (gM) ,

defined as in the discussion before (3.7), but with p replacing g. These induce two
maps a,, f,: L 3 X, which are realized explicitly by the maps sending [E, —» E, ]
to E, or E,. They combine to make a single degeneracy map

L (XDX).
Theorem 3.15. The map J is surjective.

We give a proof based on two lemmas, derived from results of Eichler
concerning the arithmetic of Eichler orders in quaternion algebras.

Lemma 3.16. Let E be an enhanced supersingular elliptic curve over F,. There is a
non-zero endomorphism of E whose degree (as an endomorphism of E) is an odd power

of p.

Proof. For xe R = End(E), the degree of x as an endomorphism coincides with the
reduced norm of x as an element of H. To prove (3.16) is to verify that p is the
reduced norm of some element of the order R[p~'] of H. This follows from [41],
Cor. 5.9, page 90, since all positive rational numbers are reduced norms of elements
of H ([41], Th. 4.1, page 80). U

Lemma 3.17. Let E, and E, be enhanced elliptic curves. There is an isogeny E; — E,
whose degree is a power of p.

Proof. Let R = End(E,), and consider the locally free rank-1 right R-module
T=Hom(E,E,).

For xel, x # 0, the square of the degree of x as a homomorphism is the index
[T: xR]. Thus the content of the lemma is that T becomes a free R-module once the
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prime p is inverted (i.e., after tensoring with Z[p~']). This statement follows from
[41], Th. 5.7, page 89. O

We now prove (3.15). Let E and E’ be enhanced elliptic curves. It will be enough
to show that the image of 6 contains the two elements (E — E’, 0) and (0, E — E’) of
X @ X. By (3.16) and (3.17), there exists an isogeny E — E’ whose degree is an even
power of p, say p*. Set E = E,, E' = E,;, and factor E —» E’ into a product of
isogenies of degree p:my: Eg > E,n: E, > E,, ..., 7,1 Ey;_; > E,;. Let 6; be
the isogeny which is dual to n;, for each j. Form the element

l=7t0——01+7t2—93+...+1t2i_2—92,-_1

of L. One checks immediately that 6(1) = (E — E’, 0). By replacing all 7’s and 6’s by
their duals, we obtain an analogous element A’ for which 6(4') = (0,E — E’). O

Remark 3.18. Another proof of (3.15), based on connectivity properties of graphs,
has been suggested by Ron Livné and by Bas Edixhoven (independently).

For all n = 1, we now consider the Hecke correspondence 7, on X ,(Mpq). As
above, the T, induce operators on J,(Mpq) and L. We compare these operators
with the operators 7, on X arising from the Hecke correspondences on X ,(Mgq).
The degeneracy map 6 is visibly equivariant with respect to the actions of 7, on L
and on X @ X, provided that (n, p) = 1. On the other hand, the Hecke operator T,
of L induces on X @ X an operator which must be distinguished from the operator
coming from the p'" Hecke operator of X,(gM). Let t denote this latter operator
(and the operator it induces on X), and reserve the symbol T, for operators coming
from the p™ Hecke operator of X o(pgM). Let w, be the Atkin-Lehner operator of
X o(pgM) relative to the divisor p of pgM. Finally, let Y be the kernel of d, so that
we have the exact sequence

0-Y->L->-X®PX-0.

Theorem 3.19. The operator T, of L preserves Y. We have the formula T, = — w, on
Y. The endomorphism of X @ X given by T, is the map
(x9 Y)'—’(T(x) i pX) .

Proof. We first observe the elementary identities
aw, = B, pw, =«

involving degeneracy maps. These imply that w, preserves Y and induces the map
(x, y)=(», x) on X ® X. Next, consider the operator T, + w,. As in the proof of
(3.7), we see that T, + w), is obtained by composing a,: L — X with the map f*:
X — L obtained from B: X,(pgM) — X ,(gM) via Albanese functoriality of Jaco-
bians. Therefore, T, + w, vanishes on Y, a subgroup of the kernel of «,.

We have, on the other hand, the identities

p+1=a,0*=p,p*
T =B 0% =a,p*

on X. These imply that 7, + w, = B*a, induces (x, y)— (tx,(p + 1)x) on X @ X.
Subtracting w,, we obtain the desired formula for 7, on X ® X. O
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Consider now the subring T = T),,, of End(J,(Mpq)) generated by all 7, with
n Z 1. In our discussion of X y(Mq), we defined the g-old and g-new quotients of
Ty, We define analogously the p-old, p-new, g-old, and g-new quotients of T. In
addition, we define the pg-new quotient T of T as follows. The space

S = §,(I'o(Mpq))
contains two subspaces isomorphic respectively to
S:(I'o(Mq)) @ S5(I'0(Mq)),  S,(I'o(Mp)) ® S,(I'o(Mp)) -

Let S ;.10 be the sum of these two subspaces (the sum is not necessarily direct), and
let S,.new be the orthogonal complement to S,,..4 in S, with respect to the
Petersson inner product. The spaces S,,.,,g and S,,.,.. are T-stable. We let T be the

quotient of T cut out by S, .ew, i.€., the image of T in End(S,,-pew)-

Theorem 3.20. The T-module Y cuts out the pg-new quotient T of T: an element t
of Tis 0in T if and only if it acts on Y as 0.

Proof. Fix teT. As in the proof of (3.10), t is 0 in T if and only if t acts as 0 on the
“pg-new” quotient R of J,(Mpq) which is obtained by dividing J,(Mpq) by the
image of the natural degeneracy map

Jo(Mq) x Jo(Mq) x Jo(Mp) x Jo(Mp) — Jo(Mpq) .

This quotient has purely toric reduction in characteristic g, since it is a quotient of
the g-new quotient Q of Jo(Mpq), which already has purely toric reduction (cf. (3.10)
and its proof). Let V be the torus (qu)", i.e., the connected component of the fiber
at g of the Néron model of R. The analogous torus for J,(Mpq) is (by definition)
Hom(L, G,,), while the analogous torus for J,(Mg) is Hom(X, G,,).

The quotient map 7: Jo(Mpq) — R induces a map Hom(L, G,,) - V; this latter
map is trivial on Hom(X, G,,) x Hom(X, G,,) because = is trivial on (the image in
Jo(Mpq) of) Jo(Mq) x J,(Mg). Hence = induces a map A: Hom(Y, G,,) - V. Itisan
easy task to check that the source and target of 1 are tori of the same dimension.
Indeed, we have

dim(L) = dim Jo(Mpq) — 2dim J,(Mp)
= dim(S) — 2dim S,(I,(Mp)) ,

dim(X) = dim S,(I',(Mq)) — 2dim S,(I',(M)),
so that
dim(Y) = dim(S) — 2dim S,(Iy(Mp))

— 2dim S,(I'y(Mq)) + 4dim S,(I'4(M)) .

Also, dim(V) = dim(R) = dim(S y.new), and the latter number agrees with the
dimension of Y because the intersection of S,(Io(Mp))® S,(Io(Mp)) and
S,(Iy(Mq)) ® S,(I'y(Mgq)) in S is the direct sum of four copies of S,(I'H(M)). By
using the same idea as in the proof of (3.10), we find a map n: V- Hom(Y, G,,)
such that Az is an isogeny V — V. It follows that A is an isogeny of tori. Hence ¢ acts
as 0 on Yifand only if t acts as 0 on V; since R has purely toric reduction, the latter
condition means that ¢ acts as 0 on R, and the theorem is proved. O
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In yet another variant, we define the g-new/p-old quotient of T to be that
quotient T, ncw/p-o1a Cut OUt by the intersection S cup-o1a i S = S5(I'o(Mpg)) of
Sq-new and Sp-old‘

Theorem 3.21. The Hecke algebra T acts on X @ X through its quotient T .,co/p-o1as
which acts faithfully on X @ X.

Proof. The group X @ X is naturally isogenous to the character group of the
torus arising from the mod g reduction of the g-new quotient of J,(Mq) x J,(Mgq),
cf. (3.10) and its proof. On the other hand, J,(Mq) x J,(Mg) is isogenous to the p-
old subvariety of J,(Mpq). Therefore, the g-new quotient of J,(Mgq) x Jo(Mgq) is
isogenous to the g-new quotient of the p-old subvariety of Jo(Mpq). The tangent
space to the dual of this subquotient is isomorphic to S . cw/p-o1a: 0

In our discussions of Jo(Mq)g, we considered the component group @ attached
to this reduction. Let ® denote the analogous group for Jo(M pq)F'. The degener-
acy map

Jo(Mgq) x Jo(Mq) — Jo(Mpq)
induces a map of finite groups
0:dx DO .
Let K and C be the kernel and cokernel of 8, so that we have an exact sequence
0o K->dxPd-60->C-0. 8)

Theorem 3.22. The group K contains the image of ® in @ x ® under the antidiagonal
embedding f+— (f, —f).

The proof of (3.22) is a variant of our demonstration of (3.12). It is presented in
[30]. We wish to point out here that (3.22) may be viewed as a refinement of
Theorem 3.12. Namely, the endomorphism u of & x & gotten by composing the
map @ x ¢ — O of (8) with the map ® — & x & coming from Albanese functorial-
ity of Jacobians is given by the formula

g )= ((p+ Dx+ 1y, tx+(p+ 1) y),

where 1 is the p'® Hecke operator of J,(Mq). Therefore, (3.22) implies that @ is
annihilated by T — (p + 1), i.., by the operator 5, in the statement of (3.12). Since p
is an arbitrary prime which is prime to qgM, we get (3.12).

Recall now that we have @ = X*/X, @ = L*/L, where X* and L* are the
linear duals of X and L, and where X and L are embedded in these duals via the
pairing 1 discussed above (e.g., in the proof of (3.12)) and its analogue for L. The
map 0:® x ¢ — O is induced by the dual of the degeneracy map 6:L —» (X @ X)
and the map

o (X®X)»L

which arises from the two degeneracy maps X ,(pgM) = X o(qM) and Albanese
functoriality of the Jacobian. It follows from the definition of the p™ Hecke
correspondence © on X y(¢M) that the composite do is the endomorphism of



On modular representations of Gal(Q/Q) arising from modular forms 455

1
Pt ' ) Let Y* be the linear dual
T p+1

of Y. Restrict to Y the pairing on L to obtain an embedding ¥ — Y*.

X @ X given by the 2 x 2 matrix u = (

Proposition 3.23. There is a natural exact sequence
0-K->(X®X)/uX®X)>Y*/Y-C-0,
Proof. Consider the commutative diagram of exact sequences

0- L/Y » L*/Y - 6 -0

a1 o1 )
0 XPX->X*PX*5Pdxdo0.

The cokernel of the middle vertical map is Y*/Y, since L*/(X* @ X *)is Y*. This
group is finite, since the pairing on Y satisfies y-y > 0 for y + 0. Since L*/Y and
X* @ X * have the same rank, §* is injective. Also, the cokernel of the first vertical
map o becomes (X @ X)/u(X @ X), after § is used to identify L/ Y with X @ X, so
that o is identified with u. An application of the snake lemma to the commutative
diagram now gives the desired 4-term exact sequence. [J

Remark 3.24. The exact sequence of (3.23) is “Hecke compatible” provided that
one takes the appropriate action of each Hecke operator T, on the groups above.
Care must be taken with two points. The first, already discussed on several
occasions, is that the p™ Hecke operator used on J,(gM)? is not induced by the
usual p'™™ Hecke operator 1 of J,(gM), cf. (3.19). The second point is that both the
Picard and Albanese actions of 7, on L and X intervene in the actions of 7}, on the
component groups @ and @. Namely, in the case of J,(pq M), say, the correspond-
ence T, of X,(pgM) induces endomorphisms 7, and &, of J,(pq M), by Picard and
Albanese functoriality, respectively. These induce endomorphisms of L, the charac-
ter group of the maximal torus in the mod q reduction of J,(pg M). For simplicity,
call'these endomorphisms 7, and ¢,. They lead to two T-module structures on L. In
the usual (Picard) structure, T, e T operates on L as T, End(L). In the Albanese
structure, 7, operates on L as &, € End(L). These two T-module structures on L in
fact give isomorphic T-modules, since the Atkin-Lehner involution w = w,,, of
Jo(pg M) induces an automorphism of the abelian group L which is an intertwining
operator for the two structures.

As discussed above, the endomorphism of @ = L*/L induced by T, is obtained
by combining the endomorphism (7,)* = Hom( 7, id). on L* = Hom(L, Z) with
the endomorphism ¢, of L. Similar remarks apply for &. It follows that the exact
sequence of (3.23), as constructed by the snake lemma, is an exact sequence of T-
modules, provided that T acts in the evident (Picard) manner on all groups other
than (X @ X)/u(X @ X), and in the Albanese fashion on (X @ X)/u(X @ X).

On the other hand, the Picard and Albanese T-module structures on
(X ® X)/u(X @ X) lead to isomorphic T-modules; the intertwining operator is
again that involution of (X ® X)/u(X @ X) which corresponds to w,, ». This
involution is induced by the composition of the Atkin-Lehner operator
W, € Aut(X) (acting diagonally on X @ X) and the map (x, y)—(y, x) of X ® X.
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The composition commutes with p, since w,, commutes with the p™ Hecke
operator 7 on X. Therefore, (3.23) is correct as stated, even when
(X ®X)/u(X @ X) is given its (more usual) Picard T-module structure. In what
follows, the Picard structure will be systematically chosen.

Proposition 3.25. Let y = (T,)> — 1€T. Then u(X @ X) = y(X ® X).
Proof. Consider the automorphism 4 of X @ X given by
(X, }’)'—’( — X, TX — J’) .

A computation shows that we have y = uid. O

4. Bad reduction of Shimura curves

This § exploits a result of Cerednik-Drinfeld ([3] and [7], §4) concerning the mod p
reduction of certain Shimura curves. Their result is a well known tool in the
arithmetical study of these curves (see, e.g., [13, 14, 16]). We deduce from it some
geometrical relations between Shimura curves and the curves X ,(Mgq) and
X o(Mpq) which were studied in §3. These relations may be viewed as geometrical
realizations of the Jacquet-Langlands correspondence between quaternion alge-
bras and GL,. In the presentation given here, our relations are deduced from
bijections that are not entirely canonical. Indeed, they arise from fixed iso-
morphisms between orders in quaternion algebras which “happen to be iso-
morphic.” They are not uniquely isomorphic because these orders have non-trivial
normalizers. A detailed exploration of the questions posed by the non-uniqueness,
from a more modular point of view, is given in [29].

A forthcoming work of Jordan and Livné will deal with generalizations of the
method presented here.

Let p and g again be distinct primes, and let M be an integer prime to pq. Let B
be an indefinite quaternion division algebra over Q of discriminant pg. (Up to
isomorphism, B is unique.) Let @ be an Eichler order of level M (i.e., reduced
discriminant Mpq) in B. Let I', be the group of elements of @ with (reduced) norm
1. After fixing an embedding B - M(2, R), we obtain in particular an embedding
I, - SL(2, R) and therefore an action of I',, on the Poincaré upper half-plane H.
Let C be the standard canonical model, over Q, of the compact Riemann surface
I'.\H, and let J be the Jacobian Pic®(C). The curve C is furnished with Hecke
correspondences T, for n = 1. In analogy with the situation in §2, we write again 7,
for the endomorphism of J induced by 7, via Pic functoriality and write &, for the
endomorphism of J induced by 7, using Albanese functoriality.

For simplicity, write simply C for the curve C, and J for Jo . A model ¢ for C
over Z, of the type we considered in §2 was constructed by Ceredmk in [3];in [7],
Drmfeld gave a moduli-theoretic interpretation of Cerednik’s construction. It
follows, in particular, from their work that J has purely toric reduction at p. Let Z
be the character group of the torus (JF,)° and let ¥ = Z*/Z be the group of
components of (Rp,). (There is a natural bilinear pairing on Z, as discussed in §2,
which embeds Z in Z*))
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Let T be the formal polynomial ring Z[. .. T, . ..] generated by commuting
indeterminates T,,. There are two actions of T on J: the “standard action,” in which
T,eT acts as T, on J, and the Albanese action, in which T, acts as £,. We shall
encounter both actions of T on Z, but only the standard action of T on ¥. (In the
relation ¥ = Z*/Z, the standard action of T on ¥ arises from the standard action
of T on Z* = Hom(Z, Z), together with the Albanese action of T on the sub-
module Z of Z*))

The object of this § is to relate Z and ¥ to the T-modules L, X ® X, Y, ®,. . . of
§3. (Since the Hecke operators 7, on Jo(Mpq) make T a quotient of T, every
T-module is naturally a T-module.) Here is the main result:

Theorem 4.1. There is a T-isomorphism Z ~ Y under which the bilinear pairing on Z
corresponds to the restriction to Y of the natural pairing on L.

In the statement of this theorem, we understand the actions of Ton Z andon Y
to be the standard (Pic) actions. As a corollary, we may deduce that Z and Y, with
the Albanese actions of T, are again isomorphic. This follows from the fact that 7},
and £, are adjoint operators on L (resp. Z) under the pairing L x L — Z of §3 (resp.
the natural pairing Z x Z - Z).

Recall that T is the quotient of T cut out by the space S pgnew Of forms on
I'y(pg M) which are new relative to p and to q. It is also the quotient of T cut out by
Y (3.20). (For the purpose of orientation, we recall that the module Y was
introduced just before the statement of (3.19).) Also, since J has purely toric
reduction, Endg(J ) operates faithfully on Z. Therefore, (4.1) implies:

Corollary 4.2. There is a unique injection T — End(J) mapping the n™ Hecke
operator in T to the n™ Hecke operator on J.

One can certainly recover classical trace identities from (4.2) by interpreting in
two different ways the numbers tracey, (7).

Take again y = (7,)*> — 1€T. The following variant of the main theorem of
[14] results immediately from (3.23), (3.25) and (4.1).

Theorem 4.3 There is an exact sequence of T-modules
0-K->(X®X)/y X®X)»¥P->C-0,
in which K and C are the groups appearing in (8).

[ The description of ¥ as a T-module is legitimate because (4.2) guarantees that
T operates on Y through its quotient T (which is a quotient of T).]

As a first step toward proving (4.1), we summarize the theorem of Cerednik-
Drinfeld [7], §4 (cf. [13]). This result furnishes as model for C over Z, the scheme ¥
for which the associated formal scheme over Z, is the quotient

GL(2, Q)\(9"™ x X).

Here "™ is a generalized “p-adic upper half plane” ([13], §4) and X is the p-adic
space K\ H{/ H*, where H is a quaternion algebra of discriminant g over Q and K
is the product of the multiplicative groups of the completions away from p of a
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certain Eichler order R = H of level M (i.e., discriminant Mq). Thus K is the group
of “prime-to-p ideles” of H arising from R.

(Apologies are owed to the reader for certain symbols which are used for two
purposes. There optimally will be no confusion between the p-adic space X just
introduced and the character group X which has frequently appeared above.
Similarly, the adelic group K introduced here bears no relation to the finite group
K in (8). Finally, the finite group C in (8) is to be distinguished from the Shimura
curve C whose mod p reduction we are in the process of studying.)

In the Cerednik-Drinfeld theorem, the ring R is analogous to the Eichler orders
End(E) of §3. It is obtained by fixing, over Fp, a 2-dimensional abelian variety A4
together with an embedding L = End(A4), where L is a maximal order in the
quaternion algebra B. The abelian variety A is “enhanced” by an L-stable subgroup
D of A[ M] which is of order M ? and is cyclic over L. It is further embellished by an
L ® Z,-isomorphism 1 between the formal group of 4 and a certain “standard”
formal module @. The ring R is the commutant of L in End(A), where A = (A4, D),
i.e., we have

R =End,(A).

The ring R is an Eichler order of level M in H = R ® Q, given explicitly as the
intersection of the two maximal orders End,;(A4) and End, (A/D) of H.
The isomorphism 1 furnishes R with an isomorphism

R®Z,~M2,Z,),

so that we have an induced isomorphism H ® Q, ~ M(2, Q,).

The space X is the space of isomorphism classes of abelian varieties 4" over F,
which are given with the following data: an action of L, an “enhancement”
D’ = A'[ M], and an isomorphism between ¢ and the formal group of A". Given A4,
we choose an isogeny A’ — 4 which is compatible with the actions of L, and use it
to regard the adelic Tate module T(A’) as a submodule of V(4) = T(4) ® Q. We
have

T(4') =g 'T(A)

for some g e (Hy)*, whose image in X classifies A’ with its accompanying data.
Let GL(2,Q,)" be the kernel of the map

v:GL(2,Q,) » Z)2Z
defined by the formula
v(y) = ord,(dety) (mod?2).

By the method of [13], §4 (see especially Theorem 4.4), we may write the dual graph
% attached to the special fiber of € as the quotient

GL(2,Q,)"\(4 x X),

where 4 is the well-known tree attached to SL(2) ([33], Ch II, §1). This graph has
been described explicitly by Kurihara [16] when M = 1. We now study the general
case, which is not qualitatively different.-
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Let S = R be the Eicher order of level Mp in H gotten by intersecting R with the
evident Eichler order in M(2, Z,)

a b .
{(c d)eM(2,Z)‘pd1v1desc}.

Let ¥~ be the set of isomorphism classes of locally free rank-1 left R-modules, and
let & be the set of isomorphism classes of locally free rank-1 left S-modules. We
have canonically

¥ =R{\H{/H* &=Sf\H{/H* .
The inclusion of § into R defines a degeneracy map
wE -V .
A second degeneracy map
B:6->v

is obtained by considering the Eichler order T of H which has level M, contains S,
agrees with R locally at all places except for p, and is distinct from R. The order T'is
given adelically as mRm™*, where m is trivial except at p, where it is the diagonal
matrix diag(1, p). The analogue of o for T'is a map from & to the double coset space

(mRim~ ")\ H¥H* .

We get B by identifying this space with ¥~ via multiplication by m~' on (H,)*.
Hence f maps the class of x in the double-coset space defining ¥~ to the class of
m~!x in the double-coset space defining ¥".

Proposition 4.4. The set of edges of 4 is canonically the set &. The set of vertices of 4
is the disjoint union ¥~ x {1,2} of two copies of ¥ . A given edge e€ & connects the
vertex (a(e), 1) with the vertex (f(e), 2).

Proof. The quotient GL(2,Q,)"\ X is trivial because of strong approximation
((3.16) and its proof). It follows that the set of vertices of ¢ is the quotient
GL(2,Q,)" \(7; x X), where ¥ is the set of vertices of 4. We have

v, =PGL(2,Q,)/PGL(2,Z,) = H} /Ry Q* .
There are two orbits of ¥} under the action of GL(2, Q,)*. Consider first
¥4+ =PGL(2,Q,)" /PGL(2,Z,) .

The set GL(2, Q,)" \(¥5+ x X) is then a quotient of X; moreover (1, x) and (1, y)
have the same image in GL(2, Q,)*\(#;+ x X) if and only if x and y have the
same image in

GL2,Z)\X=7".
Secondly, let ¥,_ be the complement of ¥}, in ¥, and consider
GL(2, Q)" \(¥4+ x X).
Fix a matrix me GL(2, Q,) which is not in GL(2, Q,)", for instance the diagonal
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matrix diag(1, p) considered above. The map x> (m, mx) induces a bijection
¥ =GL(2,Z,)\X - GL(22,Q,)"\(¥;- x X).

Hence the set of vertices of ¢ is naturally a disjoint union of two copies of ¥".

For the edges of %, we consider the quotient GL(2, Q,)*\ (€4 x X), where & , is
the set of edges of 4. The set & 4 is the quotient GL(2, Q,)* /(S} Q*); the group S} is
the multiplicative group of the Eichler order in M(2, Z,) which was defined above.
The map X — &, x X sending x to (1, x) identifies GL(2, Q,)* \ (&, x X) with the
quotient S¥\ X, which is the double coset space defining &.

Now take xe GL(2, Q,)*. The element of & , defined by x is the edge of 4 which
joins the vertices in ¥} represented by the matrices x and xm in GL(2, Q,). The
edge of ¥ so defined by x may be written as the class of (1, x™') in GL(2, Q,)*\
(€4 x X). Accordingly, it maps to the class of x ~! in the double-coset space which
defines &. The two vertices (x, 1) and (xm, 1) joined by this edge may be rewritten
(1, x" ') and (m, x '), respectively. The first arises from the class of x ! in the first
copy of ¥". The second arises from the class of m~!x~?! in the second copy of ¥".
These two elements of ¥~ are indeed obtained from the class of x ™! in & via the two
degeneracy maps & - ¥". U

It follows from (4.4) that the character group Z, a priori the group H, (¥, Z), is
the kernel of the map w:Zf 57" x Z” induced by (0, B8): &> x ¥. An
element of ker(w) visibly has degree 0 as a formal linear combination of elements of
&. Writing (Z¢), and (Z”’f)0 for the group of degree-0 divisors on & and 7", we get:

Corollary 4.5. The character group Z is the kernel of the degeneracy map
(Z%)o (@Yo x (27 )o
induced by (o, B).

The bilinear pairing on Z coming from the geometry of the Cerednik-Drinfeld
model € is the restriction to Z of the diagonal pairing on Z¢ whose value o(e) on an
edge eeGL(2,Q,)"\(€, x X) is computed as follows (cf. [13], §4). Take a
representative & of e in &, x X, and let I' =« GL(2,Q,)* be the stabilizer in
GL(2,Q,)* of & Then o(e) is the order of the image of I' in PGL(2, Q,).

Let W be a locally free rank-1 left S-module whose class in
& =S{\H{/H*
is the edge e.
Proposition 4.6. We have o(e) = 1 card(Autg( W)).

Proof. Choose x = (x,)e Hfso that the class of x in & is e. Take W to be the S-
submodule of H whose completions at the finite places v of Q are the modules
S, x,. Then Autg( W) is the stabilizer in H* of the class of x in S{\H{. If ae H*
stabilizes x in S§\ H{, then we have sx = xa for some s € Sf. Since s and a determine
each other in this equation, Autg(W) is the stabilizer in Sf of x in Hf/ H*.

On the other hand, the stabilizer I of & = (1, x) in GL(2, Q,) " is the stabilizer of
x€X under the action of S; on X. Also, projection onto the component at p
identifies the stabilizer in Sf of x in Hf/H* with the stabilizer in S}¥ of x in
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X = K\H¥/H*. Indeed, take s, S} and examine the equation
5,X = KkXxa

with ke K and ae H*. We see that a is determined by s, and x (through its
component at p), and that k is determined by s,, x and a. Hence this equation holds
for at most one x (and at most one a), given s, and x.

Therefore, I' is the group Autg(W). To prove the proposition, it remains to
verify that I' 7 Qj is the group { + 1}. For this, suppose that we have 5,x = kxa
with s,€Z3. Then a is a rational number which agrees with s, at p. Also, the prime-
to-p part of a coincides with x ~ 1. Therefore a is a unit locally at each finite place of
Q,sothata= + 1. Hences,= +1. O

We now begin our comparison of the groups Z and Y. The latter group is
defined to be the kernel of a natural degeneracy map 6: L —» X @ X, where Land X
are the groups of degree-0 divisors on the sets X(Mp) and Z(M) of supersingular
points of X o(Mp) and X ,(M) in characteristic q. The former has an analogous
description (4.5) with X(Mp) replaced by & and (M) by ¥". Taking first M = Mp
and then M = M in Proposition (3.3), we find that X(Mp) and (M) are double-
coset spaces of the type defining & and ¥, but with the orders S and R replaced by
orders of the form End(E,, C,) and End(E,). Here, E, is (as usual) a supersingular
elliptic curve E, in characteristic ¢ which has been enhanced by a cyclic subgroup
of order M, while C,, is a cyclic subgroup of E, having order p. To compare the
pairs (&, ¥") and (2(Mp), Z(M)), we will find E,, C, such that End(E,, C,) = §
and End(E,) = R.

The existence of the pair (Ey, C,) is given by the following proposition, which is
based on (3.6) and its proof. Before stating it, we introduce the symbol .# to denote
the maximal order End;(A4) of H. Thus R and S are Eichler orders of .#, of levels M
and pM, respectively.

Proposition 4.7. There is an enhanced supersingular elliptic curve Eq = (Eq, Cy), a
cyclic subgroup C, of E, and an isomorphism x:End(E,) — # such that R corres-
ponds to End(E,) and S to End(E,, C,) under k.

Proof. LetE, = (E,, C,,) and k be the “output” of (3.6), applied with B taken to be
# and B’ taken to be End, (A4/D), so that the intersection B n B, denoted S in (3.6),
is R in our context. To construct C,, we examine S and R locally at p, using « to
identify S ®Z, and R ® Z, with subrings of

End(E,) ® Q, = End(V,),

where V, is the Q,-adic Tate module of E,. Since R and .# agree locally at p,
R ® Z,, is identified with End(T,), where T, is the Z -adic Tate module of E,. The
ring S ® Z,, is then an Eichler order of level p*! (or “level 1,” in this local context)
in the maximal order End(7,) of End(V,). We have S ® Z, = End(T,) n End(U)
for some lattice U in V,, which is unique up to homothety. Scale U so that it is
contained in T}, but not in pT,,. The group T,/ U is then of order p, as is the image
C,of U in E[p] = T,/pT,. An endomorphism of T, preserves C, in 7,/pT, if and
only if it preserves U. Hence C, has the property that

S®Z,=End(E, C,)®Z, .
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It follows that S = End(E,, C,), since these orders agree respectively with R and
with End(E,), and therefore with each other, outside p.
We next construct bijections

1:2(Mp) > 8, AZM)-> v,

using the enhanced elliptic curve E, and its subgroup C, which are given by (4.7).
We consider that S = End(E,, C,) and R = End(E,), as in the latter part of the
above proof; i.e., we suppress the isomorphism k. To define 1, we suppose given a
supersingular elliptic curve E over F,, together with a cyclic subgroup of order Mp
in E. We consider, as in §3, the adelic Tate module T(E) of E, and note that the
cyclic subgroup of E defines a sublattice 7"(E) of T(E) which contains pM - T(E)
and is such that T'(E)/pM - T(E) is cyclic of order pM. We have an analogous
sublattice T'(E,) of T(E,), coming from the enhancement of E, and from the group
C,. After fixing a non-zero homomorphism E — E,, we may regard these four
lattices as contained in V(E;) = T(E,)® Q. As in the discussion of §3, we may
choose an element g of Hf such that we have simultaneously

T(E)=g 'T(E)), T(E)=g 'T'(E).

The class of g in & = S§\ H{/ H* depends only on E and its given cyclic subgroup.
We define this class to be the value of 1 on these data. We analogously define 4 by
considering cyclic subgroups of order M instead of cyclic subgroups of order Mp.
That these two maps are bijections follows from (3.3) and its proof. (The completed
Eichler order and the quaternion algebra have switched places in the double-coset
representation because we used g~ ! in defining 1 and A, whereas g*! is used in
§3) O

We compare the degeneracy maps a, :8 =3 ¥~ defined in this § with their
namesakes a, f: 2 (Mp) 3 (M) defined in §3.

Proposition 4.8. We have lo = a1 and Af = pu.

Proof. Assume that we are given T(E) and T'(E) as above, with the quotient
T(E)/T'(E) cyclic of order pM. If we apply f:X(Mp) — Z(M) in this situation, we
replace T(E) by the unique lattice T(F) between T'(E) and T(E) for which
T(F)/T'(E) is cyclic of order M. (The notation is explained by the fact that T'(F)
may be identified with the adelic Tate module of the elliptic curve gotten by
dividing E by its given subgroup of order p.)

Let me H{ again be the idele which is 1 locally except at p and the diagonal
matrix diag(l, p) at p. Also, let T'(E,) be, as above, the sublattice of T(E,)
associated with the cyclic subgroup of order pM in E,. It is plain from the
definition of S in terms of R and M(2, Z,) that m~ ! T"(E,) is the sublattice of T(E,)
attached to the cyclic subgroup of order M in E,, whereas mT(E,) is the sublattice
of T(E,) associated with the cyclic subgroup of order p in E,. Applying A to the
couple T(F), T'(E) means finding xe Hf such that T(F)= x"'T(E,), T'(E)
=x"'m™!T'(E,). From the information at hand, we find that we may take x
= m~'g. Given that §:& — ¥  is induced by multiplication by m ™! on H¢, we have
verified the compatibility concerning B. That involving o is of no difficulty
whatsoever. [J
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In view of (4.8), the bijection 1:Z(Mp) —» & induces an isomorphism Y ~ Z,
which we shall also denote 1. To prove (4.3), we must establish that 1: Y — Z is
compatible with the natural pairings and the action of Hecke operators on these
two modules.

We begin with the pairings. The module Y inherits from Z*™P the diagonal
pairing whose value on a pair E = (E, C), where C < E is cyclic of order Mp, is the
integer § card(Aut(E)). (The symbol E will be used for pM-enhancement; we have
been employing E to represent an elliptic curve which is enhanced by a subgroup of
order M.) Write E,, for the pair (E,, C,) appearing above, so that S = End(E,), for
example. As in §3, consider the locally free rank-1 left S-module W = Hom(E, E,),
whose class in & is just the edge e = 1(E). It is known that End(E) is the commutant
of W, i.e., equal to the ring Endg( W); this may be viewed as a consequence of Tate’s
theorem on endomorphisms of abelian varieties over finite fields [40]. In particu-
lar, we have Aut(E) = Autg(W). Hence, by (4.5) the integer {card(Aut(E)) is the
number o(e), which coincides with the value given to e by the natural diagonal
pairing on Z%.

We conclude with an examination of the action of Hecke operators, beginning
with the involution 7, on Z and Y. We have quoted the theorem of [3] identifying
the quotient GL(2, Q,)\(#""™ x X) as a model for C over Z,. The scheme p"™
represents a functor involving formal groups. This functor is furnished with a
natural action of the group GL(2,Q,) x D*, where D is the unique quaternion
division algebra (up to isomorphism) over Q,. The resulting action of GL(2, Q,)

x D* on """ is explicited in [7], §2. From this point of view, the involution T, of
GL(2, Q,)\ ("™ x X)is induced by the element 1 x 7 of GL(2, Q,) x D*, where
n is a uniformizer in D. This element acts on "™ as Fr~!, where Fr is the
Frobenius automorphism of g"*. Thus 7, induces the Frobenius automorphism
(an involution) of (ng. By [13], Theorem 4.4, this automorphism induces the

involution of ¥ = GL(2,Q,)" \(4 x X) which is denoted w, in [13] and t(p) in
[16]. This involution is obtained by choosing an element m of GL(2, Q,) which
does not belong to GL(2, Q,)"; the resulting automorphism of 4 x X induces an
involution of ¥ which is independent of the choice of m.

In the following discussion, we denote this involution by 7. We first examine the
action of T on &, the set of edges of ¥, using the notation introduced in the proof of
(4.4). Take xeX, and consider the image e of (I,x)eé, x X in GL(2,Q,)*\
(€4 x X) = &. The edge e is represented by (m- 1, mx). Choose ue GL(2, Q,)* so
that um-1 = 1in &,. Then te s the class of umx in &, thought of as S¥\ X. It follows
that © may be viewed as the involution of S}\X which is induced by left
multiplication by n = um on X; n is easily seen to be an element of the normalizer of
Sy in GL(2, Q,) which does not belong to S}, and this description of n character-

0

Atkin-Lehner involution w, of X(Mp). Indeed, it is not hard to verify that
1:2(Mp) — & carries T to w,. The action of 7 on the character group Z < z°,

however, is the negative of the automorphlsm of Z¢ induced by this involution of é”
Indeed, the map t on % changes the orientation of each edge ee &, as it evidently

(0 .
izes T completely. We may take n to be the matrix ( ), which recalls the
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maps vertices in the first copy of ¥~ to vertices in the second copy, and vice versa.

On the other hand, the Atkin-Lehner involution w, of Xy(M pq)F induces a
map of the associated character group L = Z*MP) Wthh is simply the restriction to
L of the involution of Z*™? induced by w, on Z(Mp). This is true because w,
preserves each of the two components of X o(M pq)F Hence the action of w, on
Y < L corresponds to the negative of the action of 7 on Z, under the 1som0rph1sm
Y ~ Z induced by 1. Equivalently, the action of T, on Z corresponds to the map
—w, on Y. By (3.19), the map T, on Z is carried to the map 7, on Y by the
isomorphism 1. This completes our discussion of T,.

The Hecke operators 7, with r prime, r + p, operate on the graph ¢ through a
transparent operation on X. This action is already visible on K\ Hf, a space of
marked L-stable lattices T(A’) in V(A). To avoid confusion between Tate modules
and Hecke operators, we temporarily refer to the r'® Hecke operator as {,. The
operator {, acts on a lattice T(4') = I1 T,(4’) by “modifying” the r'* component
T,(A’) of the product, leaving the other factors untouched. Since {, is a correspond-
ence, the “modification” in fact involves replacing 7,(A’) by a sum of several lattices
in V,(A). The sum contains r + 1 terms for r prime to Mg, and r terms otherwise.

Since the operators {, act in particular on the set of vertices of ¢ through their
action on X, the {, preserve the decomposition of this set as a disjoint union of two
copies of 7. It follows that the action of each {, on the lattice Z is the restriction to
Z of its action on Z¢.

The operator {, replaces an L ® Z-stable lattice T = V,(A) by a single lattice,
the unique L® Zlattice 72T for which ¢?>=(T":T). Suppose that
T = g~ ' T,(A), with geH* where

H, = End, g o, (Vi(4)) .

Then T" = g~ '~ ! T, if n is any uniformizer of the ring of integers of H,. Hence the
actionof {, on & = S \H{/H* is induced by the map x> nx on H{, where © now
denotes an idele which is 1 away from ¢ and a uniformizer at ¢. Identifying & with
Z(Mp), we recognize this map as the Frobenius automorphism of X(Mp), cf.
Remark (3.5b). According to (3.8), applied with pM replacing M, this auto-
morphism induces the Hecke operator T, on Y. Hence our identification Z ~ Y is
compatible with the action of the gq"* Hecke operator on the two sides.

We next consider the operator {, with r a prime number prime to pgM. A lattice
T < V,(A) is replaced by the formal sum of those lattices 7’ = T with the property
that 7" is stable by L ® Z, and (T':T) = r?. We construct these lattices (as usual)
by considering the set & of elements of H}* which have reduced norm (ie.,
determinant) r. We may write

r+1

‘9= ]__[ R:'kai ’
i=1
with ;e H*. If T = g~ T,(A) with g~ ' e H*, then
r+1
{(T) = .Zlg'la,.“T,(A).

Thus {, operates on & = S{\H{/H* by sending ge Hf to X a;g. (Here the a; are
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considered as ideles through the natural inclusion of H* in H{ Note also that R,
and S, coincide, since the Eichler orders R and S are equal except at p.) Identifying

& with X(Mp) as above, we again recognize a standard description of 7, in the
elliptic modular case.

The final case is that where r divides M. One gets a sum of r terms, rather than a
sum of r + 1 terms, in interpreting {, on &. We omit the details.

5. Modular representations

Let N be a positive integer. Let T = Ty be the ring generated by the Hecke
operators 7T,(n = 1) on the space of weight-2 cusp forms on I'y(N). Let m be a
maximal ideal of T. The following result is a variant of [5], Th. 6.7.

Proposition 5.1. There is a unique semisimple representation
Pm:G->GL(2,T/m),
where G = Gal(Q/Q), satisfying
trace( pm(Frob,)) = T, (mod m), det( pm(Frob,)) = r (mod m)

for almost all primes r. The representation p,, is unramified at all primes r prime to
mN, and the displayed relations hold for all such primes. (We say that p,, is the
representation of G attached to m.)

For the convenience of the reader, we explain the relation of Proposition 5.1 to
Théoréme 6.7 of [5], which attaches a mod [ representation of Gal(Q/Q) to mod !
modular forms which are eigenvectors for the Hecke operators 7,. Let & be the
space of weight-2 cusp forms on I',(N) whose g-expansions at the standard cusp
oo lie in Z[[q]]. Then % and T are each free Z-modules of the same rank, this
rank being equal to the dimension d of the complex vector space S,(I'o(N)) of all
weight-2 cusp forms on I'y(N). Let k be the residue field T/m. The g-expansion
map

£ - Z[[4q]] ©)

induces an analogous map
L ®zk—k[[q]].

This latter map is injective because the cokernel of (9) is torsion free.
Consider the bilinear pairing

(£ ®zk) x (T®zk) =k

which takes ( f, T) to the coefficient of ¢ in the g-expansion of f| T. This pairing may
be viewed as a homomorphism

g@zk—’Homz(T, k) (10)

between k-vector spaces of dimension d. An argument borrowed from Chapter 3 of
[39] shows that this homomorphism is an isomorphism. (See also [27], Th. 2.2,
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Indeed, it suffices to show that (10) is injective. An element f of the kernel has zero g-
expansion, since its n'® g-expansion coefficient is the coefficient of ¢ in f|7T,. The
injectivity of the g-expansion map shows that f'is 0.

Considering now the canonical map 7+ (Tmod m) in Homy(T, k), we find a
form fe ¥ ®, k whose g-expansion coeflicients are the elements

t, = (T, mod m)

of k. It is clear that fis an eigenform for the Hecke operators T, with eigenvalues ¢,,.

To apply Théoréme 6.7 of [5] to the form f, we should assure ourselves that fis a
“cusp form mod /” in the sense that Xt,q" is the reduction (modA) of the g-
expansion of a cusp form whose coefficients lie in a number field K = C and which
are integral at a prime 4|l of K. For this, choose a number field K and a prime 4|l in
K such that the residue field F of 1 contains a subfield isomorphic to k. Fix an
embedding k s F, and view f inside % ®F. Lift f to an element [ of ¥ ®z0,
where O is the valuation ring of K at 4. The image of fin S,(I',(N)) is then a cusp
form with coefficients in ¢ whose g-expansion mod A is that of f. [J

Now let m be a maximal ideal of T, and let p,, be the representation of G
attached to m. The condition on det(p,,), plus the Cebotarev Density Theorem,
implies that the determinant of p, is the mod [/ cyclotomic character of G, where [ is
the residue characteristic of m. In particular, p, is self Cartier-dual.

We consider along with p,, the (T/m)[G]-module

W = Jo(N)[m] .

This “kernel of m on J,(N)” is defined to be the group of elements of J,(N)(Q)
which are annihilated by all elements of m. Thus, if / is the residue characteristic of
T/m, then W is a G-submodule of J,(N)[1].

Theorem 5.2. Let m be an ideal of T such that py, is irreducible.

(a) The (T/m)[G]-module W is non-zero. Its semisimplification is isomorphic to a
product VX V x -+ x V, where V is the unique (T/m)[G]-module, up to
isomorphism, which gives the representation pp,.

(b) Assume that | is prime to 2N. Then we have W =~ V. That is, the product given in
(a) has only one factor.

(c) Let S be a finite set of prime numbers. Let I be the ideal of T generated by the
elements n, =1 + r — T,, with r prime and r¢S. Then the ideals m and I are
relaively prime.

Proof. All three statements are elaborations of results of [18], with (a) and (b)
coming from [18], Chapter II, Proposition 14.2. We therefore give only a brief
indication of the proofs:

To prove (a), we first note that W is non-zero because the action of T on J,(N)
is faithful. Form the direct sum D of W and its Cartier dual Hom (W, ;). For all
primes r prime to NI, the characteristic polynomial of Frob, acting on D, relative to
the field T/m, is then (x? — T,x + r)", where n is the T/m-dimension of W. By the
Cebotarev Density and Brauer-Nesbitt theorems, it follows that the semisimpli-
fication of W is V™. This gives (a).
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To prove (b), we pick a minimal (non-zero) (T/m)[G]-submodule of W. By (a),
this submodule is isomorphic to V. Hence we have an inclusion ¥ = W, and we
must prove that V' = W. The hypothesis that N and I are relatively prime facilitates

the consideration of X o(N) over F,. Let X denote the curve X ,(N) over F,. The
injective g-expansion map

H°(X, Q") > F[[q]]

and the arguments of ([18], Ch. II, §9) show that H°(X, Q')[m] is of T/m-
dimension < 1.

Since J = J,(N) is the Picard variety of X o(N), we find (computing over F))
that

H'(J,0)/mH(J, 0)

is of T/m-dimension < 1. We will deduce (5.2b) from this fact, together with
arguments which parallel those given on pp. 116—117 of [18].

Let 7 be the Néron model model of J over Q,, so that . is an abelian scheme
over Z,. Consider the Zariski closures ¥" and # of V and W in . These are
contained in the kernel J [1] of multiplication by / on J, a group which is finite
and flat over Z,, since J is an abelian scheme. Hence ¥~ and # are finite and flat.
The hypothesis that [ is prime to 2N gives in particular that e < (I — 1), where
e( = 1) is the absolute ramification index of Q,. The results of [25], §3 therefore
apply to show that ¥~ and #" are T/m-vector space schemes ([25], 3.3.2) and that
" is a subgroup of #" ([25], 3.3.6). Moreover, the quotient #"/¥" is finite and flat
([25], 3.3.6). Therefore, the following conditions are all equivalent:

L. V=W,
2V =W,
3.V, =W,.

Here ¥", and #/ are the special fibers of ¥" and #7; they are T/m-vector space
schemes over F;.

In particular, the assertion (5.2b) means that the inclusion ¥, c #7 is an
equality, i.e., that the quotient #7/¥ is 0. We note that # /¥ is certainly a
successive extension of copies of 77, and also that ¥/ is auto Cartier-dual. Indeed,
these statements follow from (5.2a) and the auto-duality of V, by arguments using
[25] which are analogous to those just given.

Let 2 be the contravariant Dieudonné-module functor of Oda [23], denoted M
in [23] and on pp. 116—117 of [18]. We shall apply 2 to finite flat group schemes of
type (I, . .., I) over k = F,, thereby obtaining finite-dimensional k-vector spaces
which come equipped with a Frobenius map ¢ and a Verschiebung v. These are
commuting k-linear maps of the vector space; the composites ¢v and v¢ are 0. Since
we now consider only group schemes in characteristic /, we will write simply ¥ and
W for ¥, and #/,, J for the reduction of Jo(N) mod I, and so forth. Finally, we will
write Frob and Ver for the Frobenius and Verschiebung endomorphisms of a group
scheme over F,.
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By general properties of 9, we have a canonical isomorphism
2(J[1]) =~ Hpp(J/k) .

Moreover, the quotient 2(J[Ver]) of 2(J[1]) corresponds to the quotient
H'(J, 0) of Higz(J/k). By functoriality, we get that

2(W[Ver])=H'(J,0)/mH'(J, 0),

so that 2(W[Ver]) is of dimension < 1 over T/m. On the other hand, the auto-
duality of V induces an auto-duality of 2 (V). Under this auto-duality, the maps ¢
and v of 2(V) are interchanged. It follows that these maps have the same rank as
endomorphisms of the 2-dimensional T/m-vector space 2(V). Since their com-
posite is 0, the common rank is either O or 1.

Now 2(V[Ver]) is the cokernel of v on 2(V), so that 2(V[Ver]) has
dimension 1 or 2 over T/m. Since 2( V[Ver]) is a quotient of 2( W[Ver]), which
has rank at most 1, we conclude that 2( V[Ver]) and 2( W[Ver]) both have rank
1, and that the groups V' [Ver] and W{[Ver] are equal.

Let Q = W/V. We claim that Q[Ver] =0, i.e., that v is an automorphism of
2(Q). This follows from an easy snake-lemma argument, which is axiomatized as
Lemma (14.6) in [18]. Our claim follows from that lemma on taking M, = 2(Q),
M, = 2(W), and M; = 2(V).

From this claim, we are now able to conclude, as desired, that Q = 0. Indeed,
were Q non-zero, we could find an inclusion V < Q, since Q is a successive
extension of copies of V, as remarked above. This gives a contradiction, since
V[Ver] is non-zero, whereas Q[Ver] is 0.

To prove (c), we assume that m and I are not relatively prime. We have then

T,=(1+r) (modm)

for almost all r. The representation p,, then has the same characteristic polynomials
as the direct sum of the 1-dimensional trivial representation and the 1-dimensional
cyclotomic representation. In view of the Cebotarev Density and Brauer-Nesbitt
theorems, we conclude that p,,, has the same semisimplification as this direct sum.
This contradicts the hypothesis that p, is irreducible. (0

Definition. Suppose that
p:G—- GL(Q,F)

is a continuous homomorphism, where F is a finite field. Let [ be the characteristic
of F. We say that the representation p is modular of level N if the determinant of p is
the mod [ cyclotomic character and if there is a homomorphism

w:T—F

such that
trace(p(Frob,)) = w(T,)

for almost all prime numbers r.
Given p as in the definition, set m = ker(w) and observe that w embeds T/m
into F. The semisimplifications of p and p,, are then both defined over subfields of
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the field F. Since their traces and determinants coincide, their semisimplifications
are isomorphic over F.

The following complement to Theorem 5.2b is the principal result of [21].

Theorem 5.3. Let m be an ideal of T for which py, is irreducible. Suppose that the
residue characteristic | of m is an odd prime which divides N. Assume further that 1?
does not divide N and that the representation py, is not modular of level N /1. Then the

group Jo(N)[m] is of T/m-dimension 2. In other words, we have V ~ W in the
notation of Theorem 5.2.

6. A theorem of Mazur

Fix a positive integer M and a prime p not dividing M. Let T = Ty, where N = pM,
be the Hecke ring of level N. Let m be a maximal ideal of T and set k = T/m. Let V
be a k[G]-module which gives the representation pn,. Consider the following
hypotheses:

(i) The representation p, is irreducible.

(ii) The residue characteristic [ of m is odd.
(ili) The representation py, is finite at p.

The last hypothesis means that there is a finite flat k-vector space scheme ¥

over Z, for which the resulting representation of Gal(Qp/Q,,) coincides with the
restrlctlon to Gal(Qp/Q,, ) of pm.

Theorem 6.1. (Mazur [20]) Assume that the above hypothesis (i), (i), and (iii) are
satisfied. Suppose further that we have

p#1l (modl).
Then the representation p., is modular of level M = N/p.

Proof. According to (5.2a), we may find an inclusion of T/m[G]-modules
V < J[m], where J = Jo(N). Fix such an inclusion, and view it as a map 1: V' — J.
Since pm, is finite, V extends to a finite flat T/m-vector space scheme ¥~ over Z,.

Lemma 6.2. The map 1 prolongs to a map v — 7, where I is the Néron model of

']Qp

Proof. This is evident when p = [, by the Néronian property of 9. Suppose now
that p = [. Then p > 2, by (iii); hence the absolute ramification index e of Q, (which
is 1) satisfies the condmon e <p—1of [25], Cor. 3.3.6. Also, JQ has semistable
reduction, since p? does not divide N.

Because of the semistable reduction, the kernel 7 I}p] of pon J is a flat quasi-
finite group scheme over Z, ([11], 2.2. 1) Let 7 [p] be the “fixed part” of this
group scheme ([11], 2.2.2). Then 7 [p]'is finite and flat, and the quotient

Q=7[p)7[p]

is étale and quasi-finite, and has trivial special fiber (cf. [19]). Moreover, the
Gal(Q,/Q,)-module Q(Q,) is unramified. To see this, we apply the results of [11],
§11.6, replacing Q, by its maximal unramified extension K and Z, by the ring of
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integers of this field. The group Q becomes a quotient of the group scheme ,¥
appearingin [11],11.6.6. In [11], 11.6.7, the generic fiber of ,¥ is identified with the
group M /pM, where M is a certain constant group scheme. Hence Qy is constant,
which means that the inertia group Gal(Q,/K) of Gal(Q,/Q,) acts trivially on
2(Q,).

fopress ¥ in the usual way as an extension of an étale group scheme ¥ by a
connected group scheme ¥°°, and write ¥ and V° for the generic fibers of these
finite flat group schemes over Z,. Considered as a Gal(Q,,/ Q,)-module, V*is the
largest unramified quotient of V because of [25], loc. cit.

It follows that the image of ¥° under 1 lands in the generic fiber J[p]' of 7 [p]',
since Q is unramified. By [25], Cor. 3.3.6, the map V°—J [p]f induced by 1
prolongs uniquely to a map u: ¥ ® - 7 [p]'. We obtain the desired prolongation
of 1 from [11], lemme (5.9.2), applied with G=7", A=7, v, =1, G" =7"*,
G’ = v"° and u = u. This completes the proof of (6.2). OJ

We now (re-) introduce some notation which is essentially that of §3, except that
p will now play the role of the prime g of §3. Write J; for the special fiber of the
Néron model J, and J° for the connected component of 0 in J,. Then J is an
extension of the product Jo(M) x J,(M) by a torus T. Let X be the character
group of T. Let @ be the group of components of J;. Using the map ¥~ — J of (6.2),
together with the results of Raynaud [25], identify ¥~ with a subgroup of the largest
finite flat subgroup H of J [I]. Write ¥, for the special fiber of 7".

Lift T to the torus

T =Hom(X, G,))

over Z,. According to [11], §5.1, T embeds into the formal completion of 7 along
its special fiber. This implies that T[] is naturally a finite, flat subgroup of H.

Lemma 6.3. If p, is not modular of level N/p, then the group ¥ is a subgroup of
T[]

Proof. The group ¥ is contained in J° because of (3.12) and (5.2¢). Further, if ¥,
maps non-trivially to J,(M) x Jo(M), then the maximal ideal m of T arises from a
maximal ideal of the p-old quotient T, of T in view of (3.11). This implies that the
representation p,, is modular of level M = N/p. Thus our assumption that p, is
not modular of level N/p implies that ¥~ is contained in T.

To prove that ¥" is a subgroup of T[1], we consider the composite v of the two
maps

v - H, H-H/T[I].

The map v has a finite, flat kernel, since we are in a limited-ramification situation in
case | = p. (Since | = 3, we have p = 3 in case p = l) However, the kernel of v
contains ¥ in view of what we have already proved. It follows that the kernel
of v coincides with ¥, proving (6.3). O

We now prove (6.1). Let D = Gal(Q,,/Qp), thought of as a decomposition
group in G = Gal(Q/Q). Assuming that p, is not modular of level N/p, we obtain
from (6.3) the inclusion of T/m[D]-modules

V< Ilm1(Q,) = Hom(X/mX, ) .
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The action of D on X/mX is unramified; it is given by the Frobenius auto-
morphism of X (coming from the fact that T is defined over F,). The Frobenius
automorphism of X coincides with the Hecke operator T,(3.8). ThlS operator is an
involution, the negative of the Atkin-Lehner involution w,. Therefore its action on
X /mX is given by either + 1 or — 1, since T/m is a field. It follows that the action
of D on Hom(X/mX, u,) is given by the F,-valued character ¢y, where ¢ is an
unramified quadratic character. This implies that D acts on V by ey, since V is a
submodule of Hom(X/mX, y,).

In particular, the character giving the action of D on dety, (V) is e2y? = ¥%.On
the other hand, the determinant of V is the cyclotomic character x- Comparing the
two expressions for the determinant, we get that y is trivial, which is equivalent to
the congruence p =1 (mod 1). O

A variant

Theorem 6.4. Assume that m is a maximal ideal of T which satisfies conditions
(i) and (ii) above. Assume further that the residue characteristic | of m is prime to
pM(p — 1). Then the T/m-vector space X /mX is of dimension < 1.

Proof. Since [ is prime to N = pM, (5.2b) implies that V' = J,(N)[m] is a two-
dimensional T/m-vector space which gives the representation pn,. Since
Hom(X/mX, u,)is a subspace of ¥ (considered as a T/m[D]-module), X /m X is of
dimension < 2. If X/mX is of dimension 2, then we get the equality

V=Hom(X/mX,y,) .

Arguing as above, we get the congruence p = 1 (mod I). This is contrary to our
assumption about [. [J

7. Raising the level

Consider again two distinct primes p and g and a positive integer M prime to pq.
The ring T,,, of Hecke operators of level pM is a ring of endomorphisms of the
space S,(I'y(pM)) of cusp forms of level pM (and weight 2). It operates diagonally
on the sum S, (Iy(pM)) @ S,(I'y(pM)) of two copies of S,(Io(pM)), which we may
regard as the g-old subspace of the space S,(Io(pgM)) of cusp forms of level pgM.
The ring T,,,, operates faithfully on S,(I',(pgM)), and this operation preserves the
subspace S,(I'o(pM))® S,(Io(pM)). The image of T,,, in the ring of endo-
morphisms of §,(I'y(pM)) @ S,(I'o(pM)) is the g-old quotient Tpgpr,g-01a O Tpgpr-

The two subrings T,y and Tp., go1a Of End(S,(I,(pM))?) share a common
subring: the ring R generated by the 7, with n prime to q. We have

TM=R[I] quM g-old — R[T]

where t and T, are the ¢ Hecke operators in level pM and pgM, respectively.
These two Hecke operators commute with each other (and with the elements of R).
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Moreover, they are connected by the quadratic equation
T} - T,1+49=0,

Given maximal ideals A of T,y and m of T 4, ;.014, WE say that they are compatible
if there is a maximal ideal of the ring # = R[t, T,] which contains them both. At
the same time, we identify the set of maximal ideals of T, 4.01a With a subset of the
set of maximal ideals of T ,,),; we say that a maximal ideal of T, is g-old if it arises
from a maximal ideal of the quotient T 5, 4.014-

By the going-up theorem of Cohen-Seidenberg, every A is compatible with at
least one m. At the same time, it is evident that the representations p, and p, are
isomorphic if 4 and m are compatible. Hence every representation which is
modular of level pM is modular of level pgM.

Finally, suppose that 4 is p-new, i.e., that 4 arises from the quotient T, ,_new Of
T, which is associated with the Petersson-orthogonal complement of
S,(Io(M)) @ S,(I'o(M)) in S,(I'y(pM)). Then there are maximal ideals m of T, ,
which are p-new and which are compatible with A. (Such m are then p-new and g-
old.) One sees this by working in the p-new subspace of S,(I'y(pqM)) rather than in
S,(Io(pgM)) itself.

Lemma 7.1. Let p and M be given, and let 1 be a maximal ideal of T,y Then there
exist infinitely many prime numbers q, prime to pM, for which p,(Frob,) has trace O
and determinant — 1.

Proof. Let c be a complex conjugation in the Galois group G. The matrix p,(c) has
trace 0 and determinant — 1. By the Cebotarev Density Theorem, there are
infinitely many q for which p,(Frob,) is conjugate to p,(c). Such q satisfy the given
condition. OJ

Remark 7.2. The determinant of p,(Frob,) is ¢ modulo 4, i.., gmod [, if [ is the
residue characteristic of A. Hence p,(Frob,) has determinant — 1 if and only if we
have g = — 1 (mod I).

Theorem 7.3. Let p and M be given, and let 1 be a maximal ideal of T,y which is p-
new. Assume that p, is irreducible. Let q be a prime number satisfying the condition of
(7.1), and let m be a p-new maximal ideal of T,,p, which is compatible with A. Then m

is pg-new; i.e., m arises from a maximal ideal of the pg-new quotient T,;p of T,op

Remarks 7.4. a. The conclusion of (7.3) may seem paradoxical, since m is visibly
g-old. However, it is possible for an ideal of T, to be both g-new and g-old. This
reflects the fact that newforms and oldforms may be congruent modulo /. In a
terminology introduced by Mazur, m is an ideal of fusion between the g-old and the
g-new subspaces of S,(I", (pgM)).

b. Essentially the same information as that given by (7.3) may be obtained by the
techniques of [28]. This possibility is explored in [31].

Theorem 7.5. Let q and M be given, and let A be a maximal ideal of T, which is
g-new. Assume that p, is irreducible. Let p be a prime number prime to gM A for which
pi(Frob,) has trace 0 and determinant — 1. Let m be a q-new maximal ideal of T,
which is compatible with A. Then m is pg-new; i.e., m arises from a maximal ideal of the
pqg-new quotient T .0 of Tpop.
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Theorems (7.3) and (7.5) are obviously equivalent: one passes between them by
reversing the roles of p and g. Theorem (7.3) is needed in our application, whereas
Theorem (7.5) is more convenient to prove with the notation introduced in §4. This
explains why they are both stated here. To establish (7.5), we first prove:

Lemma 7.6. In the situation of (1.5), one has (T,)* — 1em.

Proof. Consider the (commutative) subring # of End(S,(I'o(qgM)) @ S,(I'y(gM))
which is generated by T,y and by T, ,.oie- (Thus Z is the ring denoted by this
symbol above, but with the roles of p and q appropriately reversed.) By the

definition of “compatible,” there is a maximal ideal I of # which contains m and 4.
We have

T2 —1=1T,—(p+1).

Since 7 and p + 1 are elements of 4, T? — 1€l. Since I NT,,y,. p-old = M, wWe get
(7.6). O

To prove (7.5), we consider the character group X associated with the toric part
of the reduction of J,(Mgq) at the prime g. The group X @ X is then a T, ,,-module,
and T, acts on X @ X through its p-old/g-new quotient, which acts faithfully on
X @ X, cf. (3.21). Since m is g-new and p-old, it follows that m belongs to the
support of the T,,,,-module X @ X. From (7.6), we find then that m belongs to the
support of the T, ,,-module (X @ X)/(T? — 1)(X @ X). By (4.3), (3.12) and (5.2¢),
m belongs to the support of the T, ,),-module denoted ¥ in (4.3). (In invoking (5.2c),
we use the hypothesis that p; is irreducible.) However, T, ) acts on ¥ through its
pg-new quotient T,,,,. In particular, the ideal m of T, ), does not generate the unit
ideal of T, This is what is needed to prove (7.5).

8. Lowering the level

In this § we again consider two distinct primes p and ¢, together with a positive
integer M prime to pq. We let T = T,,,, and let T be its pg-new quotient. We let m
be a maximal ideal of T, and let I be the residue characteristic of m. We assume that
l'is odd and that p, is irreducible.

Theorem 8.1. Suppose that | is prime to gM and that py, is finite at p. Assume that the
prime number q does not satisfy q = 1 (mod ). Then py, is modular of level gM.

Proof. By (6.1), we may assume that p = 1 (mod /). In particular, we may (and do)
assume that | is prime to pgM. Let C be the Shimura curve studied in §4: the curve
associated with the group of norm-1 units in an Eichler order of level M in “the”
quaternion algebra over Q of discriminant pq. Let J = Pic®(C) be the Jacobian of
C. (We take the field of definition of C to be Q, as in §4.) Consider the T/m[G]-
module

w=JQ)[m],

cf. §5. Because of the Eichler-Shimura relations for J ([37], 11.17 or [38], 2.23), the
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proof of (5.2a) shows that W is a successive extension of copies of the T/m[G]-
module ¥ which corresponds to the representation py,. Since m is an ideal of T, W
is non-zero. Hence there is an embedding of T/m[G]-modules V c W.

Fixing such an embedding and using the hypothesis that V is finite at p (since [
and p are distinct, this hypothesis means that ¥ is unramified at p), we identify V'
with a subgroup of J(F,). This identification respects the natural actions of T and
Frob,e Gal(F,/F,) on ¥V and J(F,). Let ¥ be the group of components and let Z be
the character group of the torus attached to the reduction of J at p. If the image of
Vin ¥ is non-zero, then m belongs to the support of ¥. By (4.3), (3.12) and (5.2c), m
belongs to the support of the T-module X @ X, where X is again the character
group arising from the bad reduction of J,(gM) at q. This implies that m comes
from the g-new/p-old quotient of T (3.21). It follows easily from this that p, is
isomorphic to p; for some maximal ideal 4 of T,,,. Hence pm is modular of level
qM.

It remains to treat the case where the image of V in ¥ is zero, i.e.,, where V is
contained in the group Hom(Z/mZ, y,;). We have then

dimy,(Z/mZ)2 2.

By (4.1), we have dim /m( Y/mY) = 2, where Y is the T-module defined in §3 as the
kernel of the surjection L —» (X @ X)), L being the character group of the torus
arising from the reduction of J,(pgM) at . We may assume that m does not belong
to the support of X @ X, since we have already established that the conclusion of
the theorem holds if it does belong to the support of X @ X.

Under this assumption, we have an isomorphism

Y/mY=~L/mL,

giving finally the statement dim m(L/mL) 2 2. We get a contradiction by apply-
ing (6.4) to the group L. (We apply the theorem with p replaced by g and M
replaced by pM). O

Theorem 8.2. (Main Theorem) Let p:Gal(Q/Q)— GL(2,F) be an irreducible
mod ! modular representation of level Mp, where p is a prime not dividing M. Assume
that p is finite at p. Then p is modular of level M provided that at least one of the
following two conditions holds:

(i) The prime | is a not a divisor of M,

(i) We do not have p = 1 (mod 1).

Proof. We have p ~ p, for some maximal ideal A of T,,,. By (6.1), we know that p is
modular of level M if (ii) holds. Hence we may assume that p = 1 (mod I), and in
particular that p and / are distinct.

Also, if  arises from the p-old quotient of Ty,,, then there is nothing to prove.
Hence we may assume that 4 does not arise from the p-old quotient of Ty,,, which
implies in particular that it does arise from the p-new quotient of Ty,

Assuming that A arises from this quotient, we choose a prime number g as in
(7.1) and pick a p-new maximal ideal m of T = T,,,, which is compatible with 4. By
(7.3), m is a pg-new maximal ideal of T. If (i) holds, then (8.1) applies to show that p
is modular of level gM. (Note that we have g = — 1 (mod 1); since [ is odd, we do
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not have g = + 1(mod I).) Applying (6.1), with p replaced by g, we deduce that pis
modular of level M. O
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