Group Theory		
	Fall 2003	HOMEWORK 9

N. Boston

33. Let $G = \langle x, y | x^3 = y^3 = (xy)^3 = 1 \rangle$. Show that G is the semidirect product of A by $\langle t \rangle$, where $A = \langle a \rangle \times \langle b \rangle$ is the direct product of two infinite cyclic groups, t has order 3, and the action of t is given by $a^t = b, b^t = a^{-1}b^{-1}$.

HINT: Show that $\langle xyx, x^2y \rangle$ is a normal abelian subgroup.

34. Let G be a nonabelian simple group and \tilde{G} its universal covering group. Show that $\operatorname{Aut}(G) \cong \operatorname{Aut}(\tilde{G})$.

35. Let $(G_i : i \in I)$ be perfect groups and \tilde{G}_i the universal covering group of G_i . Show that the universal covering group of the direct product G of the groups G_i is the direct product of the covering groups \tilde{G}_i and hence that the Schur multiplier of G is the direct product of the Schur multipliers of the groups G_i .

36. Show that a cyclic group has no nontrivial central extensions. Find all central extensions of the Klein 4-group $C_2 \times C_2$.