Group Theory			N. Boston
	Fall 2003	HOMEWORK 6	

21. A finite *p*-group *G* is called generalized extra-special if Z(G) is cyclic and *G'* has order *p*. Show that if *G* is a finite nonabelian *p*-group such that every proper quotient of *G* is abelian (i.e. "minimally nonabelian"), then *G* is generalized extra-special.

22. Show that the automorphism group of Q_8 is isomorphic to Sym(4). Deduce that there is no finite group whose Frattini subgroup is isomorphic to Q_8 .

HINT: Let $C = C_G(\Phi(G))$ and look at the image of $\Phi(G)$ in G/C.

23. A critical subgroup of a finite group G is a characteristic subgroup H of G such that $\Phi(H) \leq Z(H) \geq [G, H]$ and $C_G(H) = Z(H)$. Show that every finite p-group has a critical subgroup.

HINT: Consider the set of all characteristic subgroups H satisfying $\Phi(H) \leq Z(H) \geq [G, H]$.

24. If *R* is a commutative ring with 1, let U(n, R) denote the group of $n \times n$ upper unitriangular matrices over *R* (i.e. 1 on the diagonal, 0 below it). Show that $U(n, \mathbf{F}_{\mathbf{p}})$ is a Sylow *p*-subgroup of GL(n, p) and deduce that every finite *p*-group is isomorphic to a subgroup of some $U(n, \mathbf{F}_{\mathbf{p}})$.