Group Theory			N.
	Fall 2003	HOMEWORK 4	

13. Show that if *H* has order p^2 (*p* prime), then Aut(*H*) has order divisible by *p* but not by p^2 . Deduce that if *G* has order p^n with $n \ge 4$, then *G* has an abelian normal subgroup of order p^3 .

Boston

14. Show that if G is a finite group, then its Frattini subgroup $\Phi(G)$ is nilpotent.

HINT: Let $P \in Syl_p(\Phi(G))$ and use the Frattini argument.

15. Show that if $G = H \times K$, then $\Phi(G) = \Phi(H) \times \Phi(K)$. Show that if H and K are isomorphic nonabelian simple groups, then G has a maximal subgroup isomorphic to H.

16. Find an infinite family of groups G with subgroups H such that H char G, |H| > 2, and such that the restriction map $Aut(G) \to Aut(H)$ has trivial image.