MATH 844: HOMEWORK 4, DUE NOV 17.

- 1. Let E be the elliptic curve over \mathbb{Q} with equation $y^2 = x^3 + 16$. Let $L_p(E, s)$ denote the Euler factor at the prime p of the L-series of E.
 - (a) Show that E has good reduction at every prime $p \neq 3$. What is $L_3(E, s)$?

Let ω be a primitive cube root of 1. If p is a rational prime $\neq 3$, then the ideal of $\mathbf{Z}[\omega]$ it generates either factors into a product of two prime, principal ideals (if $p \equiv 1 \pmod{3}$) or is itself a prime ideal (if $p \equiv 2 \pmod{3}$).

(b) Show that for p = 2, 5, 7,

(*)
$$L_p(E, s) = \prod_{\wp} (1 - \alpha_{\wp}^{\deg(\wp)} (N\wp)^{-s})^{-1},$$

where the product is over the (one or two) prime ideals above in the factorization of $p\mathbf{Z}[\omega]$, where $N\wp = |\mathbf{Z}[\omega]/\wp|$, and $\alpha_\wp^{\deg(\wp)}$ is the unique generator of \wp such that $\alpha_\wp^{\deg(\wp)} \equiv 1 \pmod{3}$.

- (c) Prove that if p is an odd prime such that $p \equiv 2 \pmod{3}$, then $|E(\mathbf{F}_p)| = p+1$. Explain how if (*) is true for all primes $p \neq 3$, then we get a formula for $|E(\mathbf{F}_p)|$.
- 2. (a) Show that ab(a-b)(a+b) is a congruent number if a > b are positive integers.
- (b) Find the density of squarefree odd positive integers among all odd positive integers.
- (c) Deduce that there are infinitely many triples of consecutive odd positive integers that are squarefree.
 - (d) Deduce that there are infinitely many squarefree congruent numbers.
- (e) If E is the elliptic curve over \mathbf{Q} given by the equation $y^2 = f(x)$, its quadratic twists are the curves E_d : $dy^2 = f(x)$. Show that E and E_d have the same j-invariant. Find an E of rank 0, which has infinitely many non-isomorphic quadratic twists of rank > 0.