MATH 844: HOMEWORK 3, DUE OCT 27.

1. Let E be an elliptic curve over \mathbf{F}_q .

(i) Let d be any positive integer. By representing E[d] as the kernel of an isogeny, show that $|E[d]| \leq d^2$.

(ii) Show that $E(\mathbf{F}_q) \cong \mathbf{Z}/m \times \mathbf{Z}/mn$ for some positive integers m, n with gcd(m,q) = 1. (You may quote previous homeworks.)

(iii) Look up what the Weil pairing is. Assuming its existence, show that $q \equiv 1 \pmod{m}$.

(iv) Either find an elliptic curve E over some prime field \mathbf{F}_p with $E(\mathbf{F}_p) \cong \mathbf{Z}/11 \times \mathbf{Z}/11$ or else show that no such p and E exist.

2. Let *E* be the elliptic curve $y^2 + y = x^3 - x^2$ defined over **Q**. Let $\rho_p : G_{\mathbf{Q}} \to GL_2(\mathbf{F}_p)$ denote the associated Galois action on E[p].

(a) Find an equation for the x-coordinates of the points in E[2]. Find the image of ρ_2 .

(b) Find an equation for the x-coordinates of the points in E[3]. Show that the only subgroup of $GL_2(\mathbf{F}_3)$ that surjects onto $PGL_2(\mathbf{F}_3)$ is $GL_2(\mathbf{F}_3)$. Find the image of ρ_3 . Does E have complex multiplication?

(c) Find a point in $E(\mathbf{Q})$ of order 5. What does this tell us about the image of ρ_5 ?

1

Typeset by $\mathcal{AMS-TEX}$