MATH 844: HOMEWORK 2, DUE OCT 13.

- 1. (i) For the elliptic curve $E: y^2 = 4x^3 g_2x g_3$, let $g_2, g_3 \to 0$. Show that the same geometric procedure for finding $P_1 + P_2$ on E makes the smooth points of the curve $y^2 = 4x^3$ into an abelian group isomorphic to the additive group of \mathbb{C} . Interpret this in terms of what happens to the lattice and a fundamental parallelogram.
- (ii) For the same elliptic curve E, let $g_2 \to 4/3$ and $g_3 \to 8/27$. Show that this yields a curve with a nodal singularity. Show that the same geometric procedure for finding P_1+P_2 on E makes the smooth points of the curve $y^2=4x^3-(4/3)x-(8/27)$ into an abelian group isomorphic to the multiplicative group \mathbb{C}^* . Show that this is also isomorphic to the infinite cylinder \mathbb{C}/\mathbb{Z} and interpret this in terms of what happens to the lattice and a fundamental parallelogram.
- 2. (i) Let K be a field of characteristic two. Let E be the curve $y^2 + xy = x^3 + ax^2 + b$, where $a, b \in K, b \neq 0$. Show that E is an elliptic curve. If P is the point (u, v) on E, find a formula for 2P.
- (ii) For K and E as in (i), find E[2], K(E[2]), E[4], and K(E[4]). What is [K(E[4]):K] and is it always a separable extension?