
MATH 587/CSCE 557 - SUMMARY OF CLASS, 3/22/07

I reviewed the RSA cryptosystem, gave an example, and then justified why
encryption followed by decryption gets you back to where you started.

For the example, we needed to compute xe (mod N). (Recall that a (mod N)
means the remainder on dividing a by N .) By writing e in binary, i.e. as a sum
of powers of 2, it’s enough to find x2 (mod N), x4 (mod N), x8 (mod N), ... These
can be computed by repeatedly squaring and reducing (mod N) as we go along.
So, for example, having computed that 72 (mod 11) = 5 (since 5 is the remainder
on dividing 49 by 11), we can compute 74 (mod 11) = 52 (mod 11) = 3.

The point is that to work out ab (mod N), we just need to multiply a (mod N)
and b (mod N) and take the answer (mod N).

Writing e as a sum of powers of 2 means that we can quickly compute xe

(mod N), in fact in about 2 log2(e) steps. This is good - we want the system
to take little time for implementation (but a lot of time to be cracked).

Now encrypting followed by decrypting takes x to D(E(x)) = xde (mod N),
where N = pq and de = 1 + k(p − 1)(q − 1) for some integer k. So let’s look at
D(E(x)) = x1+k(p−1)(q−1) (mod N).

I claim that D(E(x)) is x plus a multiple of p. There are two cases: If x is divisible
by p, this is immediate since powers of x are also multiples of p. If x is not divisible
by p, then Fermat’s Little Theorem says that xp−1 is 1 plus a multiple of p, say
xp−1 = 1 + cp for some integer c. Then x1+k(p−1)(q−1) (mod N) = x(1 + cp)k(q−1)

(mod N) = x(1 + k(q − 1)cp + other multiples of p) (mod N), which is x plus a
multiple of p, as claimed.

Likewise, making the same argument with q in place of p, D(E(x)) equals x plus
a multiple of q. So D(E(x))− x is a multiple of p and of q, whence it’s a multiple
of N = pq. Since 0 ≤ x ≤ N − 1, D(E(x)) (mod N) = x.
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