MATH 587/CSCE 557 - SUMMARY OF CLASS, 3/22/07

I reviewed the RSA cryptosystem, gave an example, and then justified why
encryption followed by decryption gets you back to where you started.

For the example, we needed to compute ¢ (mod N). (Recall that a (mod N)
means the remainder on dividing a by N.) By writing e in binary, i.e. as a sum
of powers of 2, it’s enough to find 22 (mod N),z* (mod N),z® (mod N),... These
can be computed by repeatedly squaring and reducing (mod N) as we go along.
So, for example, having computed that 72 (mod 11) = 5 (since 5 is the remainder
on dividing 49 by 11), we can compute 74 (mod 11) =52 (mod 11) = 3.

The point is that to work out ab (mod N), we just need to multiply a (mod N)
and b (mod N) and take the answer (mod V).

Writing e as a sum of powers of 2 means that we can quickly compute x°
(mod N), in fact in about 2log,(e) steps. This is good - we want the system
to take little time for implementation (but a lot of time to be cracked).

Now encrypting followed by decrypting takes = to D(E(x)) = x% (mod N),
where N = pg and de = 1 + k(p — 1)(¢ — 1) for some integer k. So let’s look at
D(E(x)) = x'T*=1@=1) (mod N).

I claim that D(E(z)) is « plus a multiple of p. There are two cases: If z is divisible
by p, this is immediate since powers of x are also multiples of p. If x is not divisible
by p, then Fermat’s Little Theorem says that P~! is 1 plus a multiple of p, say
2P~ = 1 4 ¢p for some integer ¢. Then z!T*P==1) (mod N) = (1 4 ¢p)Fa—1
(mod N) = z(1 + k(g — 1)cp + other multiples of p) (mod N), which is x plus a
multiple of p, as claimed.

Likewise, making the same argument with ¢ in place of p, D(FE(x)) equals x plus
a multiple of q. So D(E(x)) — z is a multiple of p and of ¢, whence it’s a multiple
of N =pq. Since 0 <x < N —1, D(F(x)) (mod N) = .



