MATH 587/CSCE 557 - SUMMARY OF CLASS, 3/20/07

Suppose we have a bit stream created by a LFSR, say with n cells and the rule
(computed mod 2):

Titn = Co0T; +C1Ti41 + ... + Cn—1Tign—1 (’L =0,1,2, )

For cryptanalysis (e.g. if we know the start of the plaintext), we find the first few
xg, X1, T2, ... (by subtracting the plaintext from the ciphertext one bit at a time)
and want to solve for cg, cq,...,c,_1. How can we do this?

In fact, knowing the first 2n bits of the stream, xg, z1, ..., 2,1, should be enough
to solve for the rule. The point is that, once we plug in the values of xq, x1, ..., Ton_1,
we have n equations in n variables cg, cq,...,Cp_1:

Ty, = Coxo +C1T1 + ... +Cp_1Tp_1

Tpt+1 = Cox1 +C1T2 + ... + Cp—1Tp

Tnt+2 = CoT2 +C1X3 + ... + Cp—1Tn+1

Toan—1 = C0Tn—1 T C1Tp + ... + Cn—1T2n—2

We then solve these equations for cg,cq,...,c,—1. There is a quicker method, the
Berlekamp-Massey algorithm. So even though we can produce pseudorandom bit
streams with period as large as 2" — 1, it only takes the first 2n bits to crack the
key.

In traditional cryptography, someone who knows the encryption key can easily
find the decryption key. In public-key cryptography this is not the case. I described
the history of the topic and then introduced the RSA system.

Suppose Alice wants to send a message to Bob. Bob picks two large primes, p
and q. He keeps these secret but publicizes N = pqg. He also finds two integers d, e
such that de — 1 is divisible by (p — 1)(¢ — 1). He keeps d private but publicizes e.
If Alice wants to send Bob a message, say an integer x between 0 and N — 1, then
she encrypts it as y = ¢ (mod N). Bob in turn computes y¢ (mod N), which we
claim is equal to x. The point is that given e and N, it is very hard to find d, so
an eavesdropper will be hard-pressed to decrypt the message. One method would
be to factor N but we assume that factorization of N is hard. We will next discuss
issues that implementation and security of RSA raise.

Typeset by ApS-TEX



