
MATH 587/CSCE 557 - SUMMARY OF CLASS, 3/20/07

Suppose we have a bit stream created by a LFSR, say with n cells and the rule
(computed mod 2):

xi+n = c0xi + c1xi+1 + ... + cn−1xi+n−1 (i = 0, 1, 2, ...)

For cryptanalysis (e.g. if we know the start of the plaintext), we find the first few
x0, x1, x2, ... (by subtracting the plaintext from the ciphertext one bit at a time)
and want to solve for c0, c1, ..., cn−1. How can we do this?

In fact, knowing the first 2n bits of the stream, x0, x1, ..., x2n−1, should be enough
to solve for the rule. The point is that, once we plug in the values of x0, x1, ..., x2n−1,
we have n equations in n variables c0, c1, ..., cn−1:

xn = c0x0 + c1x1 + ... + cn−1xn−1

xn+1 = c0x1 + c1x2 + ... + cn−1xn

xn+2 = c0x2 + c1x3 + ... + cn−1xn+1

...

x2n−1 = c0xn−1 + c1xn + ... + cn−1x2n−2

We then solve these equations for c0, c1, ..., cn−1. There is a quicker method, the
Berlekamp-Massey algorithm. So even though we can produce pseudorandom bit
streams with period as large as 2n − 1, it only takes the first 2n bits to crack the
key.

In traditional cryptography, someone who knows the encryption key can easily
find the decryption key. In public-key cryptography this is not the case. I described
the history of the topic and then introduced the RSA system.

Suppose Alice wants to send a message to Bob. Bob picks two large primes, p
and q. He keeps these secret but publicizes N = pq. He also finds two integers d, e
such that de− 1 is divisible by (p− 1)(q − 1). He keeps d private but publicizes e.
If Alice wants to send Bob a message, say an integer x between 0 and N − 1, then
she encrypts it as y = xe (mod N). Bob in turn computes yd (mod N), which we
claim is equal to x. The point is that given e and N , it is very hard to find d, so
an eavesdropper will be hard-pressed to decrypt the message. One method would
be to factor N but we assume that factorization of N is hard. We will next discuss
issues that implementation and security of RSA raise.

Typeset by AMS-TEX

1


