CS/ECE/MATH 435: HOMEWORK 8, DUE NOV 9.

Consider the elliptic curve E given by the equation $y^2 = x^3 - x$ defined over the real numbers. Let $E(\mathbf{R})$ denote its set of points.

(a) Draw a picture of $E(\mathbf{R})$. If P is the point (0,0) in $E(\mathbf{R})$, what is P + P (usually denoted 2P)?

(b) For the remainder of this question, consider the elliptic curve $E: y^2 = x^3 - x$ defined over \mathbb{Z}_p , where p is an odd prime. If P is the point (0,0), what is 2P? Find 3P.

(c) Let p = 5. Find all points on the elliptic curve (don't forget its point at infinity). This set of points is denoted $E(\mathbf{Z}_p)$. Give its addition table.

(d) Suppose $p \pmod{4}$ is 3. Assuming that $x^2 = -1 \pmod{p}$ has no solution (this follows since the order of x in \mathbb{Z}_p^* divides the size, p - 1, of \mathbb{Z}_p^* , but you don't need to prove this), show that $E(\mathbb{Z}_p)$ contains exactly p + 1 points [hint: $x^3 - x$ is an odd function of x - consider what happens when you replace x = a by x = -a. Together, how many points in $E(\mathbb{Z}_p)$ have x-coordinate a or -a, for a given a?].

(e) There is a powerful attack (the "MOV attack") that works best when the elliptic curve cryptosystem employs a point P whose order divides $p^k - 1$ for some k much smaller than p (it actually turns ECDLP in $E(\mathbf{Z}_p)$ into DLP in the multiplicative group of the field with p^k elements). Explain why this implies that an elliptic curve cryptosystem that uses $E: y^2 = x^3 - x$ defined over \mathbf{Z}_p with $p \pmod{4} = 3$ is a poor idea.

1

Typeset by \mathcal{AMS} -TEX