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Abstract. We describe the computation which resulted in the title of
this paper. Furthermore, we give an analysis of the data collected during
this computation. From these data, we derive the important observation
that in the final stages, the progress of the double large prime variation
of the quadratic sieve integer factoring algorithm can more effectively
be approximated by a quartic function of the time spent, than by the
more familiar quadratic function. We also present, as an update to [15],
some of our experiences with the management of a large computation
distributed over the Internet. Based on this experience, we give some
realistic estimates of the current readily available computational power
of the Internet. We conclude that commonly-used 512-bit RSA moduli
are vulnerable to any organization prepared to spend a few million dollars
and to wait a few months.

1 Introduction

One of the earliest descriptions of the RSA public key cryptosystem appeared in
Martin Gardner’s column ‘Mathematical Games’ in the August 1977 issue of Sci-
entific American. There, the inventors of RSA presented the following challenge.
Let

T = 11438 1625 7578 8886 7669 2357 7997 6146 6120 1021 8296 7212 4236 2562 5618 4293

5706 9352 4573 3897 8305 9712 3563 9587 0505 8989 0751 4759 9290 0268 7954 3541

be the public modulus and let e = 9007 be the public exponent; find the plaintext
English message which corresponds to the encrypted message

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951 2093

0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451 5781 5154,



where the original plaintext English message had been transformed into a dec-
imal number using the transformation A = 01, B = 02, ..., Z = 26, with 00
indicating a space between words. It is readily verified that application of this
transformation to the title of this paper, followed by an eth powering modulo r,
results in the encrypted message. Here we describe how we reversed this pro-
cess and found the title of this paper, thereby solving the ‘RSA-challenge’ and
winning the US$100 prize. The prize has been donated to the Free Software
Foundation.

The modulus r has 129 decimal digits and is, according to [6], the product of a
64-digit prime p and a 65-digit prime ¢ such that both p—1 and g—1 are relatively
prime to e. The primes p and ¢ were kept secret. It is well known that the
encrypted message can be decrypted by computing (encrypted message)? mod r
where d satisfies d-e = 1 mod (p—1)(¢—1). Because of the condition on p and ¢,
finding d is straightforward if (p—1)(¢— 1) is known. But knowing (p—1)(¢—1)
is equivalent to knowing the secret primes p and ¢ (cf. [21]).° It follows that the
encrypted message can be decrypted by factoring r.

In the full paper, we will describe in detail how we managed to factor r.
This extended abstract consists of a discussion of some historical remarks on the
supposed difficulty of factoring r (Section 2), an outline of the method that we
used to factor r (Section 3), an overview of the analysis that will appear in the
full paper (Section 4), a view behind the scenes of this world-wide computing
effort (Section 5), and some concluding remarks (Section 6).

2 Predicting the difficulty of factoring r

Back in 1976, Richard Guy wrote ‘I shall be surprised if anyone regularly factors
numbers of size 1039 without special form during the present century’ [8]. In
1977, Rivest estimated in [20] that factoring a 125-digit number which is the
product of two 63-digit prime numbers would require at least 40 quadrillion
years using the best factoring algorithm known, assuming that a * b (modc)
could be computed in 1 nanosecond, for 125-digit numbers a, b, and ¢.® Thus,
it is not surprising that the inventors of RSA felt confident that ‘with such a
huge modulus the message will never be recovered’ [23] and offered a $100 prize
to the first successful decoder of the encrypted message. Interestingly, until the
message was decoded, none of the parties involved remembered the expiration
date of April 1, 1982, given in [20] but not in [6].

With 10° modular multiplications per second, about 1.3 x 1033 can be carried
out in 40 quadrillion years. It is not clear why, back in 1977, it was believed that
1.3 x 10%® modular multiplications were required to factor a 125 or 126-digit
number. Unfortunately, Rivest does not recall how he obtained his estimate.
At that time, Pollard’s ‘rho method’” was probably the fastest available factoring
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% This does not imply that in order to decrypt the encrypted message it is necessary to
find p and ¢ but no faster way to decrypt an RSA-encryption has yet been published.
6 A similar estimate can be found in [6].



method for which a run-time analysis had been published. To find a prime factor
p it needs, on average, about 2,/p iterations, where each iteration costs two
modular multiplications. For a 63-digit prime factor this amounts to at most
1.3 x 1032 modular multiplications. This suggests that Rivest might have used
the rho method but miscounted the number of zeros. In that case, the correct
estimate should have been 4 quadrillion years, which still sounds sufficiently
impressive to convince people of the infeasibility of breaking 125-digit RSA keys.

Since 1977 many new factoring algorithms have been invented and the avail-
ability and speed of computing resources has changed dramatically. Rivest’s
imaginary ‘1 nanosecond per modular multiplication’ machine, however, still
stretches the imagination. With pipelining and special purpose hardware with
gate delays of about 10 picoseconds, it might just be feasible, even for 129-digit
numbers. If we were to build such a machine, then we estimate that it has a
fair chance to find the 64-digit factor of r after 5 x 10*® modular multiplications
using the elliptic curve method (ECM). This would require two months: 240
quadrillion times faster than Rivest’s estimate — progress that is due solely to
improved factoring methods.

Today, finding 64-digit prime factors using ECM is believed to be infeasible.
On a Sparc 10 workstation the 5 x 10'® modular multiplications on 129-digit
numbers that would probably be needed for ECM would take well in excess of
15000 years. ECM uses mostly computations on local data which can be kept
in the cache, and hardly any access to main memory. Consequently, the method
runs z times faster on a machine whose ‘mips rating’ is  times better. Therefore,
a statement of the kind ‘finding a 64-digit prime factor of a 129-digit number
using ECM would probably take more than half a million mips years’ might
make some sense. Here, we rate a Sparc 10 workstation at 35 mips; notice that
this would imply a mips rating of about 3 million for Rivest’s imaginary machine
if it used ordinary 32-bit arithmetic.

For the quadratic sieve factoring algorithm (QS), the method that we used
to factor r, run-times expressed in mips years are much harder to justify. Siev-
ing algorithms spend most of their time accessing more or less random locations
in memory. On most workstations, processor speed is poorly correlated with
memory speed and, therefore, the mips rating of the processor is not a reliable
measure of the expected performance of a sieving algorithm. To give some exam-
ples: on a Sparc 10 workstation QS would have taken about 120 years to factor r,
which leads to an estimate of about 4000 mips years. On a Dec 5000/240, rated
at 25 mips, we would have spent 237 years, which translates into almost 6000
mips years. On a Sun 3/50, however, rated at 1.5 mips, we would have spent
about 1100 years but only 1700 mips years. Averaging over the machines that
were used, and keeping in mind that we are indulging in energetic handwaving,
we give a very approximate estimate of 4000 to 6000 mips years for the time
spent on the factorization of r. If the ratio between memory and processor speed
of Rivest’s machine is not much worse than on current workstations, it could
factor r in less than a day. Even though expressing run-times in mips years is
far from ideal for memory-bound processes, it is common practice in factoring



literature. It provides a convenient way to compare and predict run-times of
factoring problems, and to check the accuracy of theoretical predictions.
Heuristically it can be argued that the expected run-time of QS behaves as

L(n) = exp((1 + o(1))/lognloglogn)

for n — oo, where n is the number to be factored. Often, one simply ignores
the o(1), and interprets the resulting L(n) as the number of operations needed
to factor n. Since the o(1) is neither 0 nor constant, this practice hardly makes
sense.

This naive approach was first used in [21: Section IX.A], where L(n), without
the o(1), was given as the run-time of Schroeppel’s linear sieve factoring algo-
rithm (cf. [22]). This is a big improvement compared with Rivest’s slightly earlier
estimate in [6]. The run-time from [21] did not include the matrix elimination
step, because this step was considered to be trivial compared to the sieving step
(cf. [22]). Including it would have increased the run-time to

exp((u/2 + o(1))+/lognloglogn)

(cf. [18: Theorem 6.1]), where a linear dependency in an (s + 1) x s bit-matrix
can be found in time s*. At the time of the publication of [21], the best one
could do was u = 2.795. Although for small n the matrix step is in practice
negligible compared to the sieving step, this is not the case for the larger n
in [21: Table 1], thus making these values strictly speaking (and disregarding
the o(1)-issue) incorrect, for 1978. It was later shown that the sparseness of the
matrix can be exploited and that u = 2 + o(1) can indeed be used.

This does not imply that there are any significant digits in [21: Table 1].
The table illustrates, however, the approximate growth rate of L(n), which can
be used in an attempt to predict run-times: if factoring n, takes time ¢ for
some QS-implementation and |log(nz/n1)| is reasonably small, then factoring
ne using the same implementation can be expected to take time approximately
t- L(ny)/L(ny), where both o(1)’s are simply omitted.

Using this method it was estimated in [2] that factoring a 120-digit number
using QS would take about 950 mips years, based on the observation from [16]
that factoring a 116-digit number took about 400 mips years. The actual 120-
digit factorization took about 825 mips years, slightly less than the prediction,
due to several improvements in the program and intentional suboptimality of
the parameter choices for the 116-digit factorization. Similar extrapolation of
the 120-digit result to r would lead to about 4200 mips years, which is on the
low side of the 4000 to 6000 mips years that we spent. This may be due to a
combination of two factors. In the first place, the effect of the unknown behavior
of the o(1) in the 9 digit jump from 120 to 129 digits is significantly bigger
than in the jump from 116 to 120 digits. Apparently, neglecting the o(1) leads
to an overly optimistic estimate. Secondly, the effects of small (and relatively
slow) memories should be even worse for r than for the 120-digit factorization
from [2].



The reason why these deliberations are considered to be useful is that they
might help us to assess the security of widely-used 512-bit RSA moduli. Since
L(2512)/L(10'%%) =~ 92 (without the two o(1)’s), we find that factoring a 512-bit
RSA modulus using our current QS-implementation can probably not be done
in less than 500000 mips years. An upper bound is harder to give, but a million
mips years is probably the right order of magnitude.

We should stress that this estimate might not be a good indication of the
difficulty to break a 512-bit RSA modulus. It tells us how hard it would probably
be for a fairly well understood, reliable and by now rather ancient algorithm. The
newer number field sieve factoring algorithm (NFS) (cf. [13]) is asymptotically
superior to QS. Recent experiments have suggested that the crossover point
between QS and NFS lies well below 116 digits (cf. [5; 7]), but it remains to
be seen how well the memory requirements of NFS for 512-bit numbers can be
handled. In any case, we suspect that with the factorization of r we have seen
the last big QS-factorization. Furthermore, given how hard it was, 17 years ago,
to make a decent prediction about the difficulty of factoring r, it is probably
better to avoid making any firm prediction about 512-bit numbers.

3 Factoring r

We used the double large prime multiple polynomial variation of the quadratic
sieve factoring method (QS) to factor r. The goal of QS is to find pairs of integers
z, y such that z2 = y? mod r. Because r divides 22 —y? = (z —y)(z +y), we find
that r = ged(r, z—y) ged(r, z+y). If the pairs are generated in a random fashion,
then there is a probability of 1/2 that this factorization is non-trivial (because
r has only two distinct prime factors) [3]. In QS, pairs z, y are constructed in
two steps, the sieving step and the matrix step [12: 4.16; 16; 18; 24]. We give an
outline of these steps as applied to r. In the full paper we will give more details.

3.1 The sieving step

First, we select a multiplier, a small positive integer m such that mr is a quadratic
residue modulo many small primes (cf. [9: 4.5.4]). Next, we compute the factor
base P, consisting of —1 and the primes p < B; for which mr is a quadratic
residue modulo p, for some bound Bj. In the sieving step we collect a set of
relations: integer tuples (v, q1, g2, (€p)pep) such that

(3.2) v=q g H p°? mod r,
pEP

where each ¢; is either 1 or a large prime € (Bi,B:], for some large prime
bound Bs. If g1 = g2 = 1 the relation is called full, if only one of the ¢; equals 1
it is a partial, and a double partial otherwise. If the large primes match, the
(double) partial relations can be combined into cycles [16]. The sieving step is
complete as soon as #fulls+#cycles > #P.



We used m = 5 as multiplier. Asymptotically, the factor base size in QS ap-
plied to n behaves as \/L(n), for n — co. A factor base size of 245 810 elements
was close to optimal for the 120-digit number RSA-120 factored in [2], with mul-
tiplier 7. Therefore a factor base of 245810+/L(mr)/L(7 - RSA-120) =~ 554933
(omitting both o(1)’s) elements should be reasonable but on the small side (be-
cause the o(1) grows with n). After experiments with other values, we settled for
#P = 524339 = 51 + 2% (and B; = 16333609). Our choice is certainly within
20% of optimal, and probably slightly suboptimal. We felt that this was less un-
desirable than the memory-related problems caused by an even larger choice.”
We used By = 230,

Based on our experience with many other factorizations, we expected that
we would need about 110 000 fulls before we had enough cycles to complete the
sieving step. Experiments indicated that this would take less than 6000 mips
years. More than 8 million relations would have to be collected (since only 1 out
of every =~ 75 is full), using a program which would need approximately 10.5
MBytes to run. We opted for the idle-cycle collection method from [15]. This
sounds easier than it was, even though we could re-use the software, because
our effort would need an order of magnitude more time, memory, and disk space
to run the sieving program and to store the relations. We give more details of
the resource management in Section 5. We estimate that we had approximately
600 contributors using more than 1600 machines and producing about 80% of
the relations. The other 20% was contributed by several MasPars running the
program from [4].

On March 21 1994 we had about 8.25 million relations, with more than
108 000 fulls and 417000 cycles. Because 108 000 + 417 000 > 524 339 = #P, the
‘cease and desist’ message was mailed out on March 22. The final counts, on
March 26, were: 112011 fulls, 1431 337 partials, and 6881 138 double partials,
for a total of 8 424 486 relations after less than 220 days of sieving. The (double)
partials that could occur in cycles were written to tape by the first author and
sent to the third (by regular overnight mail). They resulted in 457455 cycles,
constructed using the method from [16]. With the fulls, which were ftp-ed from
hot-spare.mit.edu to flash.bellcore.com via tbird.cc.iastate.edu, this
led to 569 466 sparse 524 339-dimensional vectors (e,)pep as in (3.2).

3.3 The matrix step

Here we find linear dependencies modulo 2 among the > #P bit-vectors
(ep mod 2),ep. Each dependency corresponds to a set W = {(w, (ep)pepr) :
w® = [[,epp® mod r} for which Y (e,)pep = (2wp)pep for integers wy,. Con-
sequently, =[], w mod r and y = HpEPpwp mod r satisfy z? = y2 mod r.

" Because #P = 51 mod 2'* we could use the QS-implementation from [4] on a 16K
MasPar massively parallel computer. The choice is on the high side for this imple-
mentation, which performed noticeably worse than expected based on the experience
from [2].



To find dependencies among the rows of the 569466 x 524 339 bit-matrix
with, on average, ~ 47 bits per row, we intended to use the same approach
as in previous large scale factorizations. The largest matrix processed so far,
however, had less than half the number of rows and columns (252222 x 245810
with the same density, cf. [2]), making the present effort an order of magnitude
more difficult. Using structured Gaussian elimination (cf. [10; 14; 19]) the matrix
was reduced to a dense 188614 x 188160 bit-matrix. This took less than 12
CPU-hours on a Sparc 10 workstation, 97% of which was spent building the
4436 201 280 byte dense matrix, in 268 separate files of about 16 MBytes each.

To find a dependency among the rows of the dense matrix, we used the
incremental version from [1] of the MasPar dense matrix eliminator from [11].
The dense matrix was processed in 5 blocks. With a core size of 1GByte, 41595
rows could be processed per block. Each new block was first eliminated with the
pivots found in the previous blocks, then with the new pivots in the block itself,
after which the result was written to disk. Each of the first four blocks resulted
in a file of ~ 980 MBytes. Notice that one wrong bit, either in the dense matrix
or in the intermediate files, can render the entire computation worthless. For
this reason, the dense matrix intentionally contained 268 spurious dependencies
which were supposed to be found at regular intervals during the elimination
process to signal possible errors.

The entire process took 45 hours on a 16K MasPar MP-1: 75 minutes to read
the dense matrix, 100 minutes to write the first four blocks, and 42 hours for
the eliminations. This is better than we had expected,® because, unlike previous
eliminations, most pivot rows had to be read from disk before eliminating with
them and they could not be stored in registers during the elimination. All 268
spurious dependencies were found at the right moment during the computation,
and 205 ‘true’ dependencies were found at the end. It took a few minutes to
convert the 205 dependencies modulo 2 in the dense matrix to dependencies in
the sparse one. Computing the pairs z, y with 2 = y2 mod r took a few minutes
per dependency. The first three dependencies led to » = 1-r. At 18:15 UT on
April 2 1994 the fourth one led to the factorization r = p - ¢, with p the 64-digit
prime

3490 5295 1084 7650 9491 4784 9619 9038 9813 3417 7646 3849 3387 8439 9082 0577
and ¢ the 65-digit prime

3 2769 1329 9326 6709 5499 6198 8190 8344 6141 3177 6429 6799 2042 5397 9828 8533.
Five of the first ten dependencies were ‘unlucky’. It might be interesting to note
that p—1 = 25.32.p for a 62-digit prime p = 1 +2-72-p and a 60-digit prime p;
and that ¢ — 1 = 22 - 41 - g for a 63-digit prime § = 1 4+ 22 - 53 - ¢ and another

60-digit prime . We suspect that p — 1 and ¢ — 1 were consciously chosen to
have large prime factors, so that r would withstand a Pollard p — 1 factoring

8 The 4 hours for the 245 810 column matrix from [2] extrapolate to 4-(524 339/245 810)3
~ 39 hours.



attack. The large prime factors of p— 1 and § — 1 might have been based on the
widespread belief that they would be necessary to prevent a decryption attempt
using iterated encryption [17]. The resistance of r against a Pollard p+ 1 attack,
which had not yet been published by 1977, was probably a coincidence: p+ 1 =
21376164939 307949996 650933 - p40, and g +1 =2-3%.11-79-197-227 - p55,
with pj denoting a j-digit prime.

4 Analysis of the data collected

Let @ = {q: q prime, By < g < By, (%) = 1} be the set of 26 679473 large
primes which can possibly occur in the (double) partial relations. Let p(q) be the
probability that ¢ € @ occurs in a partial relation. In [16] it is shown that ¢ partial
relations can be expected to generate c-t? cycles, where ¢ = (X4e0 p(q)?)/2. To
be able to predict the number of cycles among partials it is therefore useful to
get more insight in the behavior of p(q). It has been suggested in [16] that p(q) is
proportional to 1/¢%, for some positive @ < 1. In the full paper we will analyse
which a best fits our data, and discuss how well the theoretically estimated
number of cycles among the partials agrees with our findings. Furthermore, we
will present the a; and s corresponding to p;(¢) and p2(q), where p;(q) is the
probability that ¢ € @ occurs as smallest large prime in a double partial and
p2(q) is the probability that it appears as largest large prime in a double partial
relation.

Different factorizations with similar «’s usually have similar cycle-yields,
which makes the a’s good indicators of the cycle-yield. Because the behavior
of the a’s can be derived long before the factorization is complete, this might
be helpful to predict the cycle-yield in other factorizations. The behavior of the
cycle-yield is of particular interest for future NFS factorizations where relations
can have more than 2 large primes (cf. [7]). Understanding their cycle-yield is
crucial to be able to predict the run-times (cf. [5]).

The estimates that were sent to the contributors (cf. Section 5) were based
on extrapolations of the cycle-curve. Initially a quadratic curve gave a good fit,
and was therefore used to extrapolate. We lost our confidence in quadratic ex-
trapolation in late December 1993, when the extrapolation predicted that we
would need more than 13 million relations. Fortunately, we noticed in January
that a quadratic no longer gave a close fit, and that the cycle-curve was show-
ing stronger than quadratic growth. Experiments indicated, quite unexpectedly,
that a quartic function gave a very good approximation. However the residuals,
although small, were quite well serially correlated, which probably implies that
the cycle-curve does not behave as a quartic. Since the error terms were rela-
tively small, and because the first few extrapolations turned out to be unusually
accurate, we kept using the quartic anyway. We predicted in early February that
8.15 million relations would suffice. The quartic extrapolation proved to be very
slightly optimistic — it turned out that we actually needed 8.2 million relations.
In the full paper we will provide more details and graphs of the actual yields
and of the quadratic and quartic extrapolations.



5 Resource management

To factor r we assembled the largest collaboration yet seen in computational
number theory and, possibly, performed the largest single computation ever com-
pleted. In several important respects, the resources we had available were barely
adequate for the task. Consequently, ingenuity and diplomacy were required for
the successful completion of the project. Full details of the resource manage-
ment aspects of the computation will be given in the full paper; here we give a
summary of the salient points.

Based on experience with earlier factorizations, especially those in [15]
and [2], we could make reasonably precise estimates of the disk space, amount of
computation and memory usage which would be required. Before we started, we
estimated that we would need about 8 million relations, each of which would take
about 350 bytes to store. We knew that a few mips-millenia would be required.
We also estimated that the factor base would need to have about 400000 to
600 000 elements, implying that the sieving programs would take over 8 MBytes
of active memory. We did not know, before we started, how many machines and
of what power would be available to us but we did have some encouraging offers
of support. It was clear, however, that an unusually large number of people and
machines would be involved with the project.

The first action was to settle the size of the factor base. As explained in 3.1,
a figure of about half a million primes was close to optimal. A somewhat larger
number would have reduced the theoretical amount of computation required, but
we were already using 10.5 MBytes of active virtual memory. Given that most
of the machines on the Internet have less than 16 MBytes of physical memory,
and many have 8 or less, even 10.5 MBytes is uncomfortably large and would
seriously restrict the number of people capable of helping us.

Before going public, the first and fourth authors ported the software to as
many different kinds of workstations and PCs as were available to us. The first
author persuaded MIT to lend us a file server for the duration. This machine was
a DEC 5000/240 with 32 MBytes RAM and two (later three) 975 MBytes disks.
MIT systems staff also agreed to perform regular backups of the information on
disk. For these reasons MIT was chosen as collection site.

Also before the computations started, the second and fourth authors wrote
documents explaining what we were proposing to do, how we were going to do it,
and how to get further information should the reader wish to join in. The second
author set up several mailing lists and email aliases for communications to and
from our workers and the four coordinators; he also took on the role of front-line
contact person, dealing with virtually all the 600 contributors and many others
who expressed an interest but did not join in for whatever reason.

The postings to potential contributors went out on August 19 1993 to the
‘number theory net’, on August 23 to the ‘cypherpunks’ and the ‘PGP devel-
opment group’, and on August 24 to the following newsgroups: alt.hackers,
alt.security, alt.security.pgp, alt.security.ripem, comp.arch, comp.security.misc,
sci.crypt, and sci.math. The initial response to our postings and the number



of incoming relations was sufficiently encouraging to conclude that the project
would be feasible.

Once contributors started offering their services, we had to port our software
to their platforms, if we had not already done so. Although one Unix box is very
much like another, there are sufficient differences that we often had to ask our
contributors to perform the port for us and to send back the modifications so
that we could pass them on to others with the same platform. Our code was run
successfully on machines as disparate as 16MHz 80386sx PCs and Cray C90s.
An attempted port to a Thinking Machines CM-5 failed, but one US corporation
managed to get the sieving code running on a couple of fax machines!

The relatively severe memory requirements and the commonness of 8 MBytes
machines gave us a strong incentive to produce memory-frugal variants of the
siever. By reducing the sieve batch size and by reading the roots of mr mod the
p’s from a file, we were able to reduce the space required from the default 10.5
MBytes to 6.5 MBytes, albeit at a cost of running over twice as slowly. However,
half a computer is better than none and by allowing more people to take part,
we shortened the overall time taken for the sieving phase. Even so, 6.5 MBytes
does not leave much room for an operating system and most of our contributors
with 8 MBytes machines were only able to run our code overnight.

Once we were up to speed we received on average about 40 thousand relations
per day, with peaks of over 50 thousand during the holiday seasons. Daily, all
newly received relations that satisfied (3.2) were sorted and merged with older
data; faulty or duplicate relations were thrown out. This took at most a few
hours per day, even when the accumulated data had reached a couple of GBytes.
About one relation in ten thousand received was unacceptable in some way. Of
these, many had suffered in transit through mail gateways but we also received a
number of relations intended for another factoring-by-email computation being
run at the same time — these relations were sent on to the correct destination,
together with a polite note to suggest that their contributors be informed of
their error.

About half-way through the computation, it became clear that we would run
out of disk space if we continued to store the relations in plain text. Accordingly,
the fourth author wrote a simple but efficient compressor, and the bulk of the
data was kept in a more compact format. Each day’s data was left as ASCII for
convenience (fewer processing programs had to be re-written) and a combined
uncompress-sort-merge-compress of the total data set performed every few weeks
as the disk began to get uncomfortably full. Unfortunately, we did not notice
the disk overflowing in early January 1994. About three weeks’ data had been
corrupted; fortunately, the outputs from the daily runs of the email processor
were still on disk so we were able to recover relatively easily.

To monitor the progress, the fourth author adapted the cycle-counting soft-
ware from [16] to the relatively small workstation we had at MIT. Towards the
end of the project this became a challenging task, with several GBytes of com-
pressed data; a graph containing several million nodes, edges and components
and a few hundred thousand cycles; no disk space to decompress or to write



intermediate files; and only a 25 mips processor with 32 MBytes of physical
memory. Details will be given in the full paper.

We have already described in Section 4 how the quadratic extrapolation
began to indicate that we would need many more relations than we had pre-
dicted at the start of the project. We became seriously concerned at this point
that we would have difficulty in maintaining the interest of our contributors for
several months longer than anticipated. Further, although we had enough disk
space (just!) to process 9 million relations, an extra 50% would have caused us
significant problems. Luckily, our discovery of the much more accurate quartic
prediction was made before we told our contributors, saving us from worrying
them with a false alarm.

The resulting counts were mailed to the contributors each month, along with
an estimate of how much more would be needed. These reports were also posted
to Usenet, as it was found that they were very effective at attracting new con-
tributors. The estimates were based on extrapolation of the cycle-curve (cf. Sec-
tion 4).

Some substantial effort had to be devoted to problem solving. As our program
had not previously run on certain platforms, its portability had not been proven.
Two examples will suffice. One unfortunate contributor discovered that his disk
had filled with over 300 MBytes of error messages overnight after our program
had run wild. We discovered rather bizarre behavior of a particular compiler for
the Intel 80x86 — unless the value of a certain variable was printed out, the
program would crash unpredictably.

6 Conclusion

Our Internet contributors were exclusively volunteers, donating spare computer
time from overnight and weekend running. Although 600 people and 1600 ma-
chines constitute the largest ad hoc multiprocessor so far assembled, it is only
a tiny fraction of the size and power of the entire Internet. It is difficult to get
even a rough estimate of the potential power available. At the time of writing
(October 1994) it is thought that there are between 3 and 4 million machines on
the Internet; it is currently growing at about 10-20% per month. If we assume,
conservatively, that there are 3 million machines, each of which can average
5 mips (i.e., a typical 10 mips workstation with 50% availability) the potential
power available is around 1.5 x 107 mips — about five times the power of Rivest’s
hypothetical machine. In principle, the Internet could have factored r in three
hours! The implementation details are left as an exercise for the reader.

Let us attempt to give a more plausible estimate. We believe that we could
acquire 100 thousand machines without superhuman or unethical efforts. That
is, we would not set free an Internet worm or virus to find resources for us. Many
organizations have several thousand machines each on the net. Making use of
their facilities would require skilful diplomacy, but should not be impossible.
Assuming the 5 mips average power, and a one year elapsed time, it is not too
unreasonable to embark on a project which would require half a million mips



years. We conclude that 512-bit RSA keys are on the brink of vulnerability to
a venerable but robust algorithm. However, we believe that solving the RSA-
challenge is probably the last gasp of an elderly workhorse. A credible attack on
a 512-bit key would almost certainly use an NFS implementation.

However, even using NFS to factor a 512-bit number would be a non-trivial
undertaking. Without falling into the trap of making over-precise estimates of
run-times, we can say that the resources required will be well in excess of what
we used to factor a 426-bit key. If the open Internet were to be used, the resource
management would be tricky. If an organization were to purchase the hardware
necessary to give an average power of 500000 mips, — 5000 processors, each
rated at 100 mips — an outlay of several million dollars would be needed. As-
suming that NFS can be implemented on those machines and assuming that the
matrix step can be performed, 512-bit keys would take a few months to factor.
Nonetheless, organizations exist with annual budgets in excess of ten million
dollars and which might regard it to be cost-effective to break 512-bit RSA keys
protecting information of particular interest.
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