Basic Logic

WIM RUITENBURG wim.ruitenburg@marquette.edu

Here are the sequent axioms and rules for BQC-2022. We have terms and predicates, including equality x = y. The logical symbols are \top , \bot , $A \land B$, $A \lor B$, $\exists xA$, and $\forall \mathbf{x}(A \to B)$. \vec{D} is a finite set of formulas. Sequent axioms are rules without premise.

A1.
$$\vec{D}, A \Rightarrow A$$
 $\frac{D \Rightarrow B}{\vec{D}, A \Rightarrow B}$
 $\frac{\vec{D}, A \Rightarrow B \quad \vec{D}, B \Rightarrow C}{\vec{D}, A \Rightarrow C}$
A2. $\frac{\vec{D}, A, B \Rightarrow C}{\vec{D}, A \land B \Rightarrow C}$ $\frac{\vec{D}, A \land B \Rightarrow C}{\vec{D}, A, B \Rightarrow C}$
A3. $\frac{\vec{D} \Rightarrow A \land B}{\vec{D} \Rightarrow A}$ $\frac{\vec{D} \Rightarrow A \land B}{\vec{D} \Rightarrow B}$
 $\frac{\vec{D} \Rightarrow A \land B}{\vec{D} \Rightarrow A \land B}$
A4. $\vec{D} \Rightarrow \top$
A5. $\frac{\vec{D}, A \lor B \Rightarrow C}{\vec{D}, A \Rightarrow C}$ $\frac{\vec{D}, A \lor B \Rightarrow C}{\vec{D}, A \Rightarrow C}$
 $\frac{\vec{D}, A \lor B \Rightarrow C}{\vec{D}, A \Rightarrow C}$ $\frac{\vec{D}, A \lor B \Rightarrow C}{\vec{D}, B \Rightarrow C}$
A6. $\vec{D}, \bot \Rightarrow B$
A7. $\vec{D} \Rightarrow x = x$
 $\vec{D}, A, x = y \Rightarrow A[x/y] \text{ for atoms } A$
A8. $\frac{\vec{D} \Rightarrow B}{\vec{D}, A \Rightarrow B}$ no variable of term t becomes
bound
A9. $\frac{\vec{D}, A \Rightarrow B}{\vec{D}, A \Rightarrow B} x$ not free in B, \vec{D}
 $\frac{\vec{D}, \exists xA \Rightarrow B}{\vec{D}, A \Rightarrow B}$

The fragment above with restriction to entailments $\vec{D} \Rightarrow B$ of formulas built from the atoms using only \land , \lor , and \exists , is the well-known finite geometric logic.

We write **x** for finite lists x_1, x_2, \ldots, x_m of variables of length $m \ge 0$. We write **xy** for concatenated lists $x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n$ or **x**y for x_1, x_2, \ldots, x_m, y . We have a universal implication $\forall \mathbf{x}(A \to B)$, where list **x** is allowed to be empty. Implication $A \to B$ is short for $\forall (A \to B)$. Negation $\neg A$ is defined by $A \to \bot$, and bi-implication $\forall \mathbf{x}(A \leftrightarrow B)$ is defined by $\forall \mathbf{x}(A \to B) \land \forall \mathbf{x}(B \to A)$.

A10.
$$\frac{D, A \Rightarrow B}{\vec{D} \Rightarrow \forall \mathbf{x} (A \to B)}$$
 variables \mathbf{x} not free in \vec{D}

- A11. $\vec{D}, \forall \mathbf{x}(A \to B) \Rightarrow \forall \mathbf{x}y(A \to B) y \text{ not free left}$ of the sequent arrow
- A12. $\vec{D}, \forall \mathbf{x} y (A \to B) \Rightarrow \forall \mathbf{x} (A \to B)$

A13.
$$\vec{D}, \forall \mathbf{x}(A \to B), \forall \mathbf{x}(B \to C) \Rightarrow \forall \mathbf{x}(A \to C)$$

- A14. $\vec{D}, \forall \mathbf{x}(A \to B), \forall \mathbf{x}(A \to C) \Rightarrow \forall \mathbf{x}(A \to (B \land C))$
- A15. $\vec{D}, \forall \mathbf{x}(B \to A), \forall \mathbf{x}(C \to A) \Rightarrow \forall \mathbf{x}((B \lor C) \to A)$
- A16. $\vec{D}, \forall \mathbf{x}y(A \to B) \Rightarrow \forall \mathbf{x}(\exists yA \to B) \ y \text{ not free in}$ B

This completes the axiomatization of BQC-2022.

We write $A \Leftrightarrow B$ as short for $A \Rightarrow B$ plus $B \Rightarrow A$. Intuitionistic Predicate Logic IQC-2022 is definable by the addition of schema $\top \rightarrow A \Rightarrow A$, which allows one to derive modus ponens. Classical Predicate Logic CQC-2022 is definable by adding $\neg \neg A \Rightarrow A$.

Proposition 0.1. A list of derivable entailments over axioms A1 through A16.

- $B1. \ \vec{D} \Rightarrow B \ +\!\!\!+ \ \vec{D}, \top \Rightarrow B$ $B2. \ A \Rightarrow B \ + \ \vec{D}, A \Rightarrow B$
- $B3. \vdash A \land (B \lor C) \implies (A \land B) \lor (A \land C)$
- B_4 . $\vdash A \land \exists x B \Rightarrow \exists x (A \land B) \ x \ not free \ in \ A$
- $B5. \vdash A[x/s], s = t \Rightarrow A[x/t] \text{ no variable of terms}$ s or t becomes bound in A
- $B7. \vdash \forall \mathbf{x}y(A \to B) \Rightarrow (A[y/t] \to B[y/t]) \text{ no variable of term } t \text{ becomes bound in } A \text{ or } B$
- $B8. \vdash \forall \mathbf{x}y(A \to B) \Rightarrow \forall \mathbf{x}y(A[y/t] \to B[y/t]) \text{ no variable of term } t \text{ becomes bound in } A \text{ or } B$

$$B9. \vdash \forall x(A \to B) \Leftrightarrow (\exists xA \to B) \ x \ not free \ in \ B$$

0.1 Bound Variables and Formula Substitution over BQC-2022

Proposition 0.2. Let \mathbf{x} and \mathbf{y} be two lists of variables such that they are equal as sets. Then the axiom system A1 through A16 proves $\forall \mathbf{x}(A \rightarrow B) \Leftrightarrow \forall \mathbf{y}(A \rightarrow B)$.

Renaming bound variables is a special case of formula substitution. Let \mathcal{L} be a predicate logic language, and Pbe a propositional letter not in \mathcal{L} . We write $\mathcal{L}[P]$ for the predicate logic language obtained by extending \mathcal{L} with P. We write A[P] for formulas over $\mathcal{L}[P]$.

Proposition 0.3 (Formula substitution). Let \mathcal{L} be a language, P be a new propositional letter, $C[P] \in \mathcal{L}[P]$, and $A, B \in \mathcal{L}$. Then the axiom system A1 through A16 proves

$$\frac{\vec{D}, A \Rightarrow B \quad \vec{D}, B \Rightarrow A}{\vec{D}, C[A] \Rightarrow C[B]}$$

where no variable that occurs free in both \vec{D} and in A, B becomes bound after substitution of A and B in C[P].

Proof. We prove the claim for all \vec{D}, A, B by induction on the complexity of C[P].

Proposition 0.4. Let C be a formula in which the variables x and y don't occur free, and neither x nor y becomes bound after substitutions C[z/x] or C[z/y]. Then the axiom system A1 through A16 proves $D[\exists xC[z/x]] \Leftrightarrow D[\exists yC[z/y]]$, for all contexts D[P].

Proposition 0.5. Let A and B be formulas in which the variables in \mathbf{x} and \mathbf{y} don't occur free, and where no variable in \mathbf{x} or \mathbf{y} becomes bound after substitutions $A[\mathbf{z}/\mathbf{x}], B[\mathbf{z}/\mathbf{x}], A[\mathbf{z}/\mathbf{y}], \text{ or } B[\mathbf{z}/\mathbf{y}]$. Then the axiom system A1 through A16 proves $D[\forall \mathbf{x}(A[\mathbf{z}/\mathbf{x}] \rightarrow B[\mathbf{z}/\mathbf{x}])] \Leftrightarrow$ $D[\forall \mathbf{y}(A[\mathbf{z}/\mathbf{y}] \rightarrow B[\mathbf{z}/\mathbf{y}])], \text{ for all contexts } D[P].$

0.2 Functional Well-formed Theories

BQC-2022 is the theory of transitive Kripke models similar to how intuitionistic predicate logic IQC-2022 is the theory of reflexive transitive Kripke models. Theories over transitive Kripke models satisfy the extra properties of being functional and well-formed.

Theories are sets of rules generated by sets BQC -2022 \cup Γ , where Γ is a set of rule axioms R of form

$$R := \frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}$$

A theory Δ is closed under derivation, equivalently $\Delta \vdash R$ exactly when $R \in \Delta$. Intersections of theories are theories. Each set of rules Γ generates a unique theory Th(Γ). A theory Δ_2 is called a *sequent theory extension*

of a theory Δ_1 if there is a set of sequent axioms Γ such that Δ_2 is axiomatizable by $\Delta_1 \cup \Gamma$. So IQC-2022 and CQC-2022 axiomatize sequent theories. Let R be the rule displayed above. Then $\Gamma \vdash R$ if and only if

$$\Gamma \cup \{\vec{D}_1 \Rightarrow B_1, \ldots, \vec{D}_n \Rightarrow B_n\} \vdash \vec{D}_0 \Rightarrow B_0$$

Let $\mathcal{L} \subseteq \mathcal{M}$ be languages, and Γ be a set of rules over \mathcal{M} . Write $\mathcal{L} \cap \Gamma$ for the subset of rules of Γ that exist over \mathcal{L} .

Proposition 0.6. Let $\mathcal{L} \subseteq \mathcal{M}$ be languages, and Δ be a theory over \mathcal{M} . Then $\mathcal{L} \cap \Delta$ is a theory over \mathcal{L} . Additionally, if $\Delta = \operatorname{Th}_{\mathcal{M}}(\Gamma)$ for some set Γ over \mathcal{L} , then $\mathcal{L} \cap \Delta = \operatorname{Th}_{\mathcal{L}}(\Gamma)$.

Let R be rule

$$\frac{\vec{D}_1 \Rightarrow B_1 \ \dots \ \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}$$

and A be a formula. Define rule $A \times R$ by

$$A \times R := \frac{\vec{D}_1, A \Rightarrow B_1 \dots \vec{D}_n, A \Rightarrow B_n}{\vec{D}_0, A \Rightarrow B_0}$$

Proposition 0.7. Derivable entailments over BQC-2022.

B10. $A \times (B \times R) \dashv (A \wedge B) \times R$

B11. If variables \mathbf{z} are not free in rule R, then $A \times R \dashv \exists \mathbf{z} A \times R$

Let \mathcal{L} be a predicate logic language, and Γ be a set of rules over \mathcal{L} . Set Γ is called *functional* over \mathcal{L} if for all $R \in \Gamma$ and sentences $A \in \mathcal{L}$ we have $\Gamma \vdash A \times R$. All sets Γ of sequents are functional over \mathcal{L} .

Define $\mathcal{L} \times \Gamma = \{A \times R \mid A \in \mathcal{L} \text{ a sentence, and } R \in \Gamma\}$. By Proposition 0.7.B10 $\mathcal{L} \times \Gamma$ is functional over \mathcal{L} .

Proposition 0.8. Intersections of theories functional over \mathcal{L} are again functional over \mathcal{L} .

Let $\Delta = \text{Th}(\Gamma)$ for a set of rules Γ over \mathcal{L} . Then theory Δ is functional over \mathcal{L} if and only if for all formulas $\vec{D}_0, B_0, \vec{D}_1, B_1, \dots, \vec{D}_n, B_n \in \mathcal{L}$ and sentences $A \in \mathcal{L}$,

$$\begin{array}{l} \Gamma \cup \{\vec{D}_1 \Rightarrow B_1, \dots, \vec{D}_n \Rightarrow B_n\} \vdash \vec{D}_0 \Rightarrow B_0 \\ (\Gamma \vdash R) \end{array}$$

implies

$$\Gamma \cup \{ \vec{D}_1, A \Rightarrow B_1, \dots, \vec{D}_n, A \Rightarrow B_n \} \vdash \vec{D}_0, A \Rightarrow B_0 \quad (\Gamma \vdash A \times R)$$

We only need this implication for rules $R \in \Gamma$:

Proposition 0.9. A theory Δ is functional over \mathcal{L} if and only if there is a functional set Γ over \mathcal{L} such that $\Delta = \text{Th}(\Gamma)$, that is, if and only if Δ has a functional axiomatization over \mathcal{L} . **Corollary 0.10.** Theory $\operatorname{Th}(\mathcal{L} \times \Gamma)$ is the least theory containing Γ which is functional over \mathcal{L} . BQC-2022 is functional over \mathcal{L} . If Δ is a functional theory over \mathcal{L} , then so are its sequent theory extensions.

A theory Δ over \mathcal{L} is called *locally functional* over \mathcal{L} if for all formulas $\vec{D}.B \in \mathcal{L}$ and sentences $A \in \mathcal{L}$ we have $\Delta \cup \{ \Rightarrow A \} \vdash \vec{D} \Rightarrow B$ implies $\Delta \vdash \vec{D}, A \Rightarrow B$.

Proposition 0.11. A theory Δ is functional over \mathcal{L} if and only if all sequent theory extensions of Δ are locally functional over \mathcal{L} .

Proposition 0.12. Let Γ be a functional set over \mathcal{L} , and C be a set of new constant symbols. Let $\mathbf{c} \in C$ be of the same length as list of variables \mathbf{x} .

 $\begin{array}{l} If \ \vec{D} \Rightarrow B \ is \ a \ sequent \ over \ \mathcal{L}, \ then \ \Gamma \ \vdash \ \vec{D} \Rightarrow \\ B \ over \ \mathcal{L} \ implies \ \Gamma \ \vdash \ \vec{D}[\mathbf{x}/\mathbf{c}] \Rightarrow B[\mathbf{x}/\mathbf{c}] \\ over \ \mathcal{L}(C). \end{array}$ $\begin{array}{l} If \ R \ is \ a \ rule \ over \ \mathcal{L}, \ then \ \mathcal{L}(C) \times \Gamma \ \vdash \ R[\mathbf{x}/\mathbf{c}] \\ over \ \mathcal{L}(C) \ implies \ \Gamma \ \vdash \ R \ over \ \mathcal{L}. \end{array}$

A set Γ of rules over \mathcal{L} is called *well-formed* over \mathcal{L} if for all rules

$$\frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0} \in \Gamma$$

with all free variables among \mathbf{x} , and all formulas $A \in \mathcal{L}$ with no free variables among \mathbf{x} , we have¹

$$\Gamma \vdash \forall \mathbf{x}(A \land \bigwedge \vec{D}_1 \to B_1) \land \dots \land \forall \mathbf{x}(A \land \bigwedge \vec{D}_n \to B_n) \Rightarrow \forall \mathbf{x}(A \land \bigwedge \vec{D}_0 \to B_0)$$

Following footnote 1, we may write $\Gamma \vdash \int_{\mathbf{x}} (A \times R)$ for this entailment. Obviously all sets of sequents Γ are wellformed over \mathcal{L} . With Proposition 0.6 we easily verify that if $\mathcal{L} \subseteq \mathcal{M}$ are languages and Δ is a well-formed theory over \mathcal{M} , then $\mathcal{L} \cap \Delta$ is a well-formed theory over \mathcal{L} .

Proposition 0.13. Intersections of theories well-formed over \mathcal{L} are again well-formed over \mathcal{L} . If Γ is well-formed over \mathcal{L} , then so is $\mathcal{L} \times \Gamma$. Let $\mathcal{M} \supseteq \mathcal{L}$ be an extension by new function symbols (constant symbols are nullary function symbols). If Γ is well-formed over \mathcal{L} , then Γ is well-formed over \mathcal{M} .

Proposition 0.14. Let R be a rule and \mathbf{y} be a list of variables. Then $\int_{\mathbf{x}} R \vdash \int_{\mathbf{xy}} R$. If none of the \mathbf{y} are free in the (numerator) suppositions of R, then $\int_{\mathbf{xy}} R \vdash \int_{\mathbf{x}} R$.

¹ The sequent translation of rule R could be called $\int_{\mathbf{x}} R$, which in the definition of well-formed becomes $\int_{\mathbf{x}} (A \times R)$. A reverse derivate $(\vec{D} \Rightarrow A)'$ of 'differentiable' sequents $\vec{D} \Rightarrow A$ exists satisfying $(\int_{\mathbf{x}} R)' = R$.

Let $\Delta = \text{Th}(\Gamma)$ for a set of rules Γ over \mathcal{L} . Then Δ is well-formed over \mathcal{L} if and only if for all formulas $\vec{D}_0, B_0, \vec{D}_1, B_1, \ldots, \vec{D}_n, B_n \in \mathcal{L}$ with all free variables among \mathbf{x} , and all formulas $A \in \mathcal{L}$ with no free variables among \mathbf{x} ,

$$\begin{array}{cccc} \Gamma \cup \{ \vec{D}_1 \ \Rightarrow \ B_1 \ \dots \ \vec{D}_n \ \Rightarrow \ B_n \} \ \vdash \ \vec{D}_0 \ \Rightarrow \\ B_0 \quad (\Gamma \vdash R) \end{array}$$

implies

$$\Gamma \vdash \forall \mathbf{x} (A \land \bigwedge \vec{D}_1 \to B_1) \land \dots \land \forall \mathbf{x} (A \land \bigwedge \vec{D}_n \to B_n) \Rightarrow \forall \mathbf{x} (A \land \bigwedge \vec{D}_0 \to B_0)$$
$$(\Gamma \vdash \int_{\mathbf{x}} (A \land R))$$

We only need this implication for rules $R \in \Gamma$:

Proposition 0.15. A theory Δ is well-formed over \mathcal{L} if and only if there is a well-formed set Γ over \mathcal{L} such that $\Delta = \text{Th}(\Gamma)$, that is, if and only if Δ has a well-formed axiomatization over \mathcal{L} .

Corollary 0.16. BQC-2022 is well-formed over \mathcal{L} . If Δ is a well-formed theory over \mathcal{L} , then so are its sequent theory extensions.

Proposition 0.17. Let Γ be a well-formed set over \mathcal{L} , and $\mathcal{M} \supseteq \mathcal{L}$ be an extension by new function symbols (constant symbols are nullary function symbols). Then $\operatorname{Th}(\mathcal{M} \times \Gamma)$ is a functional well-formed theory over \mathcal{M} .

1 Transitive Kripke Models for BQC-2022

A Kripke model \mathfrak{A} for BQC-2022 over \mathcal{L} consists of the following components. First, a structure (W, \Box) of a nonempty set of worlds or nodes W with transitive relation \Box . We write \Box for the reflexive closure of \Box . So (W, \Box) is a small category with at most one arrow between nodes. Second, a functor $k \mapsto \mathfrak{A}_k$ from (W, \Box) to the category of classical models over \mathcal{L} with algebraic morphisms (preserving atoms). So for each $k \in W$ there is a classical model \mathfrak{A}_k over \mathcal{L} , and for all pairs $k \sqsubseteq m$ there is an algebraic morphism (preserving atoms) $|_m^k: \mathfrak{A}_k \to \mathfrak{A}_m$ such that $|_k^k$ is the identity for all k, and $|_m^m|_m^k = |_n^k$ for all $k \sqsubseteq m \sqsubseteq n$.

Given a Kripke model \mathfrak{A} over \mathcal{L} with node $k \in W$, classical model \mathfrak{A}_k has domain A_k . We identify A_k in the usual way with a set of new constant symbols of a language $\mathcal{L}(A_k)$. We define classical truth interpretation $\mathfrak{A}_k \models B$ for sentences $B \in \mathcal{L}(A_k)$ as usual. Given $k \sqsubset m$, there is a function $|_m^k: A_k \to A_m$, and a corresponding formula translation $B \mapsto B_m^k$ from $\mathcal{L}(A_k)$ to $\mathcal{L}(A_m)$. The formula translation is further extended to rules $R \mapsto R_m^k$ by applying the formula translation to all formulas in R simultaneously. If $B \in \mathcal{L}(A_k)$ is an existential positive sentence, then $\mathfrak{A}_k \models B$ implies $\mathfrak{A}_m \models B_m^k$.

The inductive definition $(\mathfrak{A}, k) \Vdash B$ of forcing, for sentences $B \in \mathcal{L}(A_k)$ inductively definable by:

- $(\mathfrak{A}, k) \Vdash B$ if and only if $\mathfrak{A}_k \models B$, for all atomic sentences $B \in \mathcal{L}(A_k)$
- $(\mathfrak{A}, k) \Vdash B \land C$ if and only if $(\mathfrak{A}, k) \Vdash B$ and $(\mathfrak{A}, k) \Vdash C$
- $(\mathfrak{A}, k) \Vdash B \lor C$ if and only if $(\mathfrak{A}, k) \Vdash B$ or $(\mathfrak{A}, k) \Vdash C$
- $(\mathfrak{A}, k) \Vdash \exists x C$ if and only if there is $c \in A_k$ such that $(\mathfrak{A}, k) \Vdash C[x/c]$
- $(\mathfrak{A}, k) \Vdash \forall \mathbf{x} (B \to C)$ if and only if for all $m \supseteq k$ and $\mathbf{c} \in A_m$ we have $(\mathfrak{A}, m) \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$ implies $(\mathfrak{A}, m) \Vdash C_m^k[\mathbf{x}/\mathbf{c}]$

So $(\mathfrak{A}, k) \Vdash \top$ and $(\mathfrak{A}, k) \nvDash \bot$, for atomic sentences \top and \bot , and $(\mathfrak{A}, k) \Vdash B$ if and only if $\mathfrak{A}_k \models B$, for all existential positive sentences $B \in \mathcal{L}(A_k)$.

We may write $k \Vdash B$ for $(\mathfrak{A}, k) \Vdash B$ if the choice of Kripke model \mathfrak{A} is clear from the context.

We extend forcing to formulas $B \in \mathcal{L}(A_k)$ with all free variables among **x** by

> $k \Vdash B$ if and only if for all $m \sqsupseteq k$ and $\mathbf{c} \in A_m$ we have $m \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$

For lists of formulas \vec{D} with all free variables among **x** we write $k \Vdash \vec{D}$ exactly when $k \Vdash B$ for all $B \in \vec{D}$. We extend forcing to all sequents by

 $k \Vdash (\vec{D} \Rightarrow B)$ if and only if for all $m \supseteq k$ and $\mathbf{c} \in A_m$ we have $m \Vdash \vec{D}_m^k[\mathbf{x}/\mathbf{c}]$ implies $m \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$

So $k \Vdash B$ if and only if $k \Vdash (\Rightarrow B)$. Let R be rule

$$\frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}$$

Define

 $k \Vdash R$ if and only if for all $m \supseteq k$ we have $m \Vdash (\vec{D}_i \Rightarrow B_i)_m^k$ for all $i \le n$ implies $m \Vdash (\vec{D}_0 \Rightarrow B_0)_m^k$

Finally, for sets of rules Γ we define $k \Vdash \Gamma$ if and only if $k \Vdash R$ for all $R \in \Gamma$.

For sets of rules $\Gamma \cup \{R\}$ we write $\Gamma \Vdash R$ if and only if for all transitive Kripke models \mathfrak{A} and nodes k we have $(\mathfrak{A}, k) \Vdash \Gamma$ implies $(\mathfrak{A}, k) \Vdash R$.

Proposition 1.1. Let $k \sqsubseteq m$ be nodes of a transitive Kripke model \mathfrak{A} , and R be a rule over $\mathcal{L}(A_k)$. Then $(\mathfrak{A}, k) \Vdash R$ implies $(\mathfrak{A}, m) \Vdash R_m^k$.

Proposition 1.2. Let $\Gamma \cup \{R\}$ be a set of rules. Then $\Gamma \vdash R$ implies $\Gamma \Vdash R$.

For each node k of a transitive Kripke model \mathfrak{A} we define set of rules $\operatorname{Th}(\mathfrak{A}, k)$ over $\mathcal{L}(A_k)$ by

 $Th(\mathfrak{A}, k) := \{R \mid k \Vdash R\}$

Proposition 1.3. Let k be a node of transitive Kripke model \mathfrak{A} . Then $\operatorname{Th}(\mathfrak{A}, k)$ is a functional well-formed theory over $\mathcal{L}(A_k)$.