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Here are the sequent axioms and rules for BQC-2022.
We have terms and predicates, including equality x = y.
The logical symbols are >, ⊥, A ∧ B, A ∨ B, ∃xA, and
∀x(A→ B). ~D is a finite set of formulas. Sequent axioms
are rules without premise.

A1. ~D,A ⇒ A
~D ⇒ B

~D,A ⇒ B
~D,A ⇒ B ~D,B ⇒ C

~D,A ⇒ C

A2.
~D,A,B ⇒ C

~D, A ∧B ⇒ C

~D, A ∧B ⇒ C

~D,A,B ⇒ C

A3.
~D ⇒ A ∧B

~D ⇒ A

~D ⇒ A ∧B

~D ⇒ B
~D ⇒ A ~D ⇒ B

~D ⇒ A ∧B

A4. ~D ⇒ >

A5.
~D, A ∨B ⇒ C

~D,A ⇒ C

~D, A ∨B ⇒ C

~D,B ⇒ C
~D,A ⇒ C ~D,B ⇒ C

~D, A ∨B ⇒ C

A6. ~D,⊥ ⇒ B

A7. ~D ⇒ x = x
~D,A, x = y ⇒ A[x/y] for atoms A

A8.
~D ⇒ B

~D[x/t] ⇒ B[x/t]
no variable of term t becomes

bound

A9.
~D,A ⇒ B

~D, ∃xA ⇒ B
x not free in B, ~D

~D, ∃xA ⇒ B

~D,A ⇒ B

The fragment above with restriction to entailments
~D ⇒ B of formulas built from the atoms using only ∧,
∨, and ∃, is the well-known finite geometric logic.

We write x for finite lists x1, x2, . . . , xm of variables
of length m ≥ 0. We write xy for concatenated lists
x1, x2, . . . , xm, y1, y2, . . . , yn or xy for x1, x2, . . . , xm, y.
We have a universal implication ∀x(A → B), where list
x is allowed to be empty. Implication A → B is short
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for ∀(A → B). Negation ¬A is defined by A → ⊥, and
bi-implication ∀x(A ↔ B) is defined by ∀x(A → B) ∧
∀x(B → A).

A10.
~D,A ⇒ B

~D ⇒ ∀x(A→ B)
variables x not free in ~D

A11. ~D, ∀x(A → B) ⇒ ∀xy(A → B) y not free left
of the sequent arrow

A12. ~D, ∀xy(A→ B) ⇒ ∀x(A→ B)

A13. ~D, ∀x(A→ B), ∀x(B → C) ⇒ ∀x(A→ C)

A14. ~D, ∀x(A → B), ∀x(A → C) ⇒ ∀x(A → (B ∧
C))

A15. ~D, ∀x(B → A), ∀x(C → A) ⇒ ∀x((B ∨ C) →
A)

A16. ~D, ∀xy(A→ B) ⇒ ∀x(∃yA→ B) y not free in
B

This completes the axiomatization of BQC-2022.

We write A ⇔ B as short for A ⇒ B plus B ⇒ A.
Intuitionistic Predicate Logic IQC-2022 is definable by
the addition of schema > → A ⇒ A, which allows
one to derive modus ponens. Classical Predicate Logic
CQC-2022 is definable by adding ¬¬A ⇒ A.

Proposition 0.1. A list of derivable entailments over
axioms A1 through A16.

B1. ~D ⇒ B a` ~D,> ⇒ B

B2. A⇒ B ` ~D,A⇒ B

B3. ` A ∧ (B ∨ C) ⇒ (A ∧B) ∨ (A ∧ C)

B4. ` A ∧ ∃xB ⇒ ∃x(A ∧B) x not free in A

B5. ` A[x/s], s = t ⇒ A[x/t] no variable of terms
s or t becomes bound in A

B6. ` ∀xy(A → B) ⇔ ∀x(A → B) y not free in
A or B

B7. ` ∀xy(A → B) ⇒ (A[y/t] → B[y/t]) no
variable of term t becomes bound in A or B

B8. ` ∀xy(A → B) ⇒ ∀xy(A[y/t] → B[y/t]) no
variable of term t becomes bound in A or B

B9. ` ∀x(A→ B) ⇔ (∃xA→ B) x not free in B
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0.1 Bound Variables and Formula Sub-
stitution over BQC-2022

Proposition 0.2. Let x and y be two lists of variables
such that they are equal as sets. Then the axiom system
A1 through A16 proves ∀x(A→ B) ⇔ ∀y(A→ B).

Renaming bound variables is a special case of formula
substitution. Let L be a predicate logic language, and P
be a propositional letter not in L. We write L[P ] for the
predicate logic language obtained by extending L with
P . We write A[P ] for formulas over L[P ].

Proposition 0.3 (Formula substitution). Let L be a lan-
guage, P be a new propositional letter, C[P ] ∈ L[P ], and
A,B ∈ L. Then the axiom system A1 through A16 proves

~D,A⇒ B ~D,B ⇒ A

~D, C[A] ⇒ C[B]

where no variable that occurs free in both ~D and in A,B
becomes bound after substitution of A and B in C[P ].

Proof. We prove the claim for all ~D,A,B by induction
on the complexity of C[P ].

Proposition 0.4. Let C be a formula in which the vari-
ables x and y don’t occur free, and neither x nor y be-
comes bound after substitutions C[z/x] or C[z/y]. Then
the axiom system A1 through A16 proves D[∃xC[z/x]]⇔
D[∃yC[z/y]], for all contexts D[P ].

Proposition 0.5. Let A and B be formulas in which
the variables in x and y don’t occur free, and where
no variable in x or y becomes bound after substitutions
A[z/x], B[z/x], A[z/y], or B[z/y]. Then the axiom sys-
tem A1 through A16 proves D[∀x(A[z/x]→ B[z/x])]⇔
D[∀y(A[z/y]→ B[z/y])], for all contexts D[P ].

0.2 Functional Well-formed Theories

BQC-2022 is the theory of transitive Kripke models sim-
ilar to how intuitionistic predicate logic IQC-2022 is the
theory of reflexive transitive Kripke models. Theories
over transitive Kripke models satisfy the extra proper-
ties of being functional and well-formed.

Theories are sets of rules generated by sets BQC -2022∪
Γ, where Γ is a set of rule axioms R of form

R :=
~D1 ⇒ B1 . . . ~Dn ⇒ Bn

~D0 ⇒ B0

A theory ∆ is closed under derivation, equivalently ∆ `
R exactly when R ∈ ∆. Intersections of theories are
theories. Each set of rules Γ generates a unique theory
Th(Γ). A theory ∆2 is called a sequent theory extension
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of a theory ∆1 if there is a set of sequent axioms Γ such
that ∆2 is axiomatizable by ∆1 ∪ Γ. So IQC-2022 and
CQC-2022 axiomatize sequent theories. Let R be the
rule displayed above. Then Γ ` R if and only if

Γ ∪ { ~D1 ⇒ B1, . . . , ~Dn ⇒ Bn} ` ~D0 ⇒ B0

Let L ⊆M be languages, and Γ be a set of rules over
M. Write L ∩ Γ for the subset of rules of Γ that exist
over L.

Proposition 0.6. Let L ⊆ M be languages, and ∆ be
a theory over M. Then L ∩ ∆ is a theory over L. Ad-
ditionally, if ∆ = ThM(Γ) for some set Γ over L, then
L ∩∆ = ThL(Γ).

Let R be rule

~D1 ⇒ B1 . . . ~Dn ⇒ Bn

~D0 ⇒ B0

and A be a formula. Define rule A×R by

A×R :=
~D1, A⇒ B1 . . . ~Dn, A⇒ Bn

~D0, A⇒ B0

Proposition 0.7. Derivable entailments over BQC-2022.

B10. A× (B ×R) a` (A ∧B)×R

B11. If variables z are not free in rule R, then
A×R a` ∃zA×R

Let L be a predicate logic language, and Γ be a set
of rules over L. Set Γ is called functional over L if for
all R ∈ Γ and sentences A ∈ L we have Γ ` A×R. All
sets Γ of sequents are functional over L.

Define L×Γ = {A×R | A ∈ L a sentence, and R ∈ Γ}.
By Proposition 0.7.B10 L × Γ is functional over L.

Proposition 0.8. Intersections of theories functional
over L are again functional over L.

Let ∆ = Th(Γ) for a set of rules Γ over L. Then
theory ∆ is functional over L if and only if for all formulas
~D0, B0, ~D1, B1, . . . , ~Dn, Bn ∈ L and sentences A ∈ L,

Γ ∪ { ~D1 ⇒ B1, . . . , ~Dn ⇒ Bn} ` ~D0 ⇒ B0

(Γ ` R)

implies

Γ ∪ { ~D1, A ⇒ B1, . . . , ~Dn, A ⇒ Bn} `
~D0, A ⇒ B0 (Γ ` A×R)

We only need this implication for rules R ∈ Γ:

Proposition 0.9. A theory ∆ is functional over L if
and only if there is a functional set Γ over L such that
∆ = Th(Γ), that is, if and only if ∆ has a functional
axiomatization over L.
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Corollary 0.10. Theory Th(L × Γ) is the least theory
containing Γ which is functional over L. BQC-2022 is
functional over L. If ∆ is a functional theory over L,
then so are its sequent theory extensions.

A theory ∆ over L is called locally functional over L
if for all formulas ~D.B ∈ L and sentences A ∈ L we have
∆ ∪ {⇒ A} ` ~D ⇒ B implies ∆ ` ~D,A⇒ B.

Proposition 0.11. A theory ∆ is functional over L if
and only if all sequent theory extensions of ∆ are locally
functional over L.

Proposition 0.12. Let Γ be a functional set over L, and
C be a set of new constant symbols. Let c ∈ C be of the
same length as list of variables x.

If ~D ⇒ B is a sequent over L, then Γ ` ~D ⇒
B over L implies Γ ` ~D[x/c] ⇒ B[x/c]
over L(C).

If R is a rule over L, then L(C)×Γ ` R[x/c]
over L(C) implies Γ ` R over L.

A set Γ of rules over L is called well-formed over L if
for all rules

~D1 ⇒ B1 . . . ~Dn ⇒ Bn

~D0 ⇒ B0

∈ Γ

with all free variables among x, and all formulas A ∈ L
with no free variables among x, we have1

Γ ` ∀x(A ∧
∧ ~D1 → B1) ∧ . . . ∧ ∀x(A ∧∧ ~Dn → Bn)⇒ ∀x(A ∧

∧ ~D0 → B0)

Following footnote 1, we may write Γ `
∫
x
(A × R) for

this entailment. Obviously all sets of sequents Γ are well-
formed over L. With Proposition 0.6 we easily verify that
if L ⊆ M are languages and ∆ is a well-formed theory
over M, then L ∩∆ is a well-formed theory over L.

Proposition 0.13. Intersections of theories well-formed
over L are again well-formed over L. If Γ is well-formed
over L, then so is L × Γ. Let M ⊇ L be an extension
by new function symbols (constant symbols are nullary
function symbols). If Γ is well-formed over L, then Γ is
well-formed overM.

Proposition 0.14. Let R be a rule and y be a list of
variables. Then

∫
x
R `

∫
xy

R. If none of the y are free

in the (numerator) suppositions of R, then
∫
xy

R `
∫
x
R.

1 The sequent translation of rule R could be called
∫
x R, which

in the definition of well-formed becomes
∫
x(A × R). A reverse

derivate ( ~D ⇒ A)′ of ‘differentiable’ sequents ~D ⇒ A exists satis-
fying (

∫
x R)′ = R.

5



Let ∆ = Th(Γ) for a set of rules Γ over L. Then
∆ is well-formed over L if and only if for all formulas
~D0, B0, ~D1, B1, . . . , ~Dn, Bn ∈ L with all free variables
among x, and all formulas A ∈ L with no free variables
among x,

Γ ∪ { ~D1 ⇒ B1 . . . ~Dn ⇒ Bn} ` ~D0 ⇒
B0 (Γ ` R)

implies

Γ ` ∀x(A ∧
∧ ~D1 → B1) ∧ . . . ∧ ∀x(A ∧∧ ~Dn → Bn) ⇒ ∀x(A ∧

∧ ~D0 → B0)
(Γ `

∫
x
(A×R))

We only need this implication for rules R ∈ Γ:

Proposition 0.15. A theory ∆ is well-formed over L if
and only if there is a well-formed set Γ over L such that
∆ = Th(Γ), that is, if and only if ∆ has a well-formed
axiomatization over L.

Corollary 0.16. BQC-2022 is well-formed over L. If
∆ is a well-formed theory over L, then so are its sequent
theory extensions.

Proposition 0.17. Let Γ be a well-formed set over L,
and M ⊇ L be an extension by new function symbols
(constant symbols are nullary function symbols). Then
Th(M× Γ) is a functional well-formed theory overM.

1 Transitive Kripke Models for BQC-
2022

A Kripke model A for BQC-2022 over L consists of the
following components. First, a structure (W,<) of a non-
empty set of worlds or nodes W with transitive relation
<. We write v for the reflexive closure of <. So (W,v) is
a small category with at most one arrow between nodes.
Second, a functor k 7→ Ak from (W,v) to the category of
classical models over L with algebraic morphisms (pre-
serving atoms). So for each k ∈ W there is a classical
model Ak over L, and for all pairs k v m there is an
algebraic morphism (preserving atoms) �km: Ak → Am

such that �kk is the identity for all k, and �mn �km=�kn for all
k v m v n.

Given a Kripke model A over L with node k ∈ W ,
classical model Ak has domain Ak. We identify Ak in
the usual way with a set of new constant symbols of a
language L(Ak). We define classical truth interpretation
Ak |= B for sentences B ∈ L(Ak) as usual. Given k < m,
there is a function �km: Ak → Am, and a corresponding
formula translation B 7→ Bk

m from L(Ak) to L(Am). The
formula translation is further extended to rules R 7→ Rk

m

by applying the formula translation to all formulas in R
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simultaneously. If B ∈ L(Ak) is an existential positive
sentence, then Ak |= B implies Am |= Bk

m.

The inductive definition (A, k) 
 B of forcing, for
sentences B ∈ L(Ak) inductively definable by:

(A, k) 
 B if and only if Ak |= B, for all
atomic sentences B ∈ L(Ak)

(A, k) 
 B ∧ C if and only if (A, k) 
 B and
(A, k) 
 C

(A, k) 
 B ∨ C if and only if (A, k) 
 B or
(A, k) 
 C

(A, k) 
 ∃xC if and only if there is c ∈ Ak

such that (A, k) 
 C[x/c]
(A, k) 
 ∀x(B → C) if and only if for all m =

k and c ∈ Am we have (A,m) 
 Bk
m[x/c]

implies (A,m) 
 Ck
m[x/c]

So (A, k) 
 > and (A, k) 1 ⊥, for atomic sentences >
and ⊥, and (A, k) 
 B if and only if Ak |= B, for all
existential positive sentences B ∈ L(Ak).

We may write k 
 B for (A, k) 
 B if the choice of
Kripke model A is clear from the context.

We extend forcing to formulas B ∈ L(Ak) with all
free variables among x by

k 
 B if and only if for all m w k and c ∈ Am

we have m 
 Bk
m[x/c]

For lists of formulas ~D with all free variables among x
we write k 
 ~D exactly when k 
 B for all B ∈ ~D. We
extend forcing to all sequents by

k 
 ( ~D ⇒ B) if and only if for all m w k and

c ∈ Am we have m 
 ~Dk
m[x/c] implies

m 
 Bk
m[x/c]

So k 
 B if and only if k 
 (⇒ B).
Let R be rule

~D1 ⇒ B1 . . . ~Dn ⇒ Bn

~D0 ⇒ B0

Define

k 
 R if and only if for all m w k we have
m 
 ( ~Di ⇒ Bi)

k
m for all i ≤ n implies

m 
 ( ~D0 ⇒ B0)km

Finally, for sets of rules Γ we define k 
 Γ if and only if
k 
 R for all R ∈ Γ.

For sets of rules Γ ∪ {R} we write Γ 
 R if and only
if for all transitive Kripke models A and nodes k we have
(A, k) 
 Γ implies (A, k) 
 R.

Proposition 1.1. Let k v m be nodes of a transitive
Kripke model A, and R be a rule over L(Ak). Then
(A, k) 
 R implies (A,m) 
 Rk

m.
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Proposition 1.2. Let Γ ∪ {R} be a set of rules. Then
Γ ` R implies Γ 
 R.

For each node k of a transitive Kripke model A we
define set of rules Th(A, k) over L(Ak) by

Th(A, k) := {R | k 
 R}

Proposition 1.3. Let k be a node of transitive Kripke
model A. Then Th(A, k) is a functional well-formed the-
ory over L(Ak).
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