Basic Logic

WIM RUITENBURG wim.ruitenburg@marquette.edu

Here are the sequent axioms and rules for BQC-2022. We have terms and predicates, including equality $x = y$. The logical symbols are \top , \bot , $A \wedge B$, $A \vee B$, $\exists xA$, and \forall **x**($A \rightarrow B$). \vec{D} is a finite set of formulas. Sequent axioms are rules without premise.

A1.
$$
\vec{D}, A \Rightarrow A
$$
 $\vec{D} \Rightarrow B$
\n $\vec{D}, A \Rightarrow B$ $\vec{D}, B \Rightarrow C$
\n $\vec{D}, A \Rightarrow C$
\nA2. $\vec{D}, A, B \Rightarrow C$ $\vec{D}, A \land B \Rightarrow C$
\nA3. $\vec{D} \Rightarrow A \land B$ $\vec{D} \Rightarrow A \land B$
\n $\vec{D} \Rightarrow A$ $\vec{D} \Rightarrow A$ $\vec{D} \Rightarrow A \land B$
\n $\vec{D} \Rightarrow A$ $\vec{D} \Rightarrow B$
\nA4. $\vec{D} \Rightarrow T$
\nA5. $\vec{D}, A \lor B \Rightarrow C$ $\vec{D}, A \lor B \Rightarrow C$
\n $\vec{D}, A \Rightarrow C$ $\vec{D}, B \Rightarrow C$
\n $\vec{D}, A \Rightarrow C$ $\vec{D}, B \Rightarrow C$
\n $\vec{D}, A \Rightarrow C$ $\vec{D}, B \Rightarrow C$
\nA6. $\vec{D}, \bot \Rightarrow B$
\nA7. $\vec{D} \Rightarrow x = x$
\n $\vec{D}, A, x = y \Rightarrow A[x/y] \text{ for atoms } A$
\nA8. $\vec{D[x/t] \Rightarrow B[x/t]}$ no variable of term *t* becomes bound
\nA9. $\vec{D}, A \Rightarrow B$
\n $\vec{D}, A \Rightarrow B$
\n $\vec{D}, A \Rightarrow B$
\n $\vec{D}, \exists x A \Rightarrow B$
\n $\vec{D}, \exists x A \Rightarrow B$

The fragment above with restriction to entailments $\overrightarrow{D} \Rightarrow B$ of formulas built from the atoms using only \wedge , ∨, and ∃, is the well-known finite geometric logic.

We write **x** for finite lists x_1, x_2, \ldots, x_m of variables of length $m \geq 0$. We write **xy** for concatenated lists $x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n$ or xy for x_1, x_2, \ldots, x_m, y . We have a universal implication \forall **x**($A \rightarrow B$), where list **x** is allowed to be empty. Implication $A \rightarrow B$ is short

for $\forall (A \rightarrow B)$. Negation $\neg A$ is defined by $A \rightarrow \bot$, and bi-implication \forall **x**($A \leftrightarrow B$) is defined by \forall **x**($A \rightarrow B$) ∧ \forall **x** $(B \to A)$.

A10.
$$
\frac{\vec{D}, A \Rightarrow B}{\vec{D} \Rightarrow \forall \mathbf{x}(A \to B)}
$$
 variables **x** not free in \vec{D}

- A11. \vec{D} , \forall **x**($A \rightarrow B$) $\Rightarrow \forall$ **x**y($A \rightarrow B$) y not free left of the sequent arrow
- A12. \vec{D} , \forall **x** $y(A \rightarrow B) \Rightarrow \forall$ **x** $(A \rightarrow B)$

A13.
$$
\vec{D}
$$
, \forall **x** $(A \rightarrow B)$, \forall **x** $(B \rightarrow C)$ $\Rightarrow \forall$ **x** $(A \rightarrow C)$

- A14. \vec{D} , \forall **x**($A \rightarrow B$), \forall **x**($A \rightarrow C$) $\Rightarrow \forall$ **x**($A \rightarrow (B \land$ $C)$
- A15. \vec{D} , \forall **x**($B \rightarrow A$), \forall **x**($C \rightarrow A$) $\Rightarrow \forall$ **x**($(B \vee C) \rightarrow$ A)
- A16. \vec{D} , \forall **x** $y(A \rightarrow B) \Rightarrow \forall$ **x** $(\exists yA \rightarrow B)$ y not free in B

This completes the axiomatization of BQC-2022.

We write $A \Leftrightarrow B$ as short for $A \Rightarrow B$ plus $B \Rightarrow A$. Intuitionistic Predicate Logic IQC-2022 is definable by the addition of schema $\top \rightarrow A \Rightarrow A$, which allows one to derive modus ponens. Classical Predicate Logic CQC-2022 is definable by adding $\neg\neg A \Rightarrow A$.

Proposition 0.1. A list of derivable entailments over axioms A1 through A16.

- B1. $\vec{D} \Rightarrow B + \vec{D}$, $\top \Rightarrow B$ B2. $A \Rightarrow B \vdash \vec{D}, A \Rightarrow B$ B3. $\vdash A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)$
- $B\mathcal{A}$. $\vdash A \wedge \exists x B \Rightarrow \exists x (A \wedge B) x \text{ not free in } A$
- B5. \vdash A[x/s], $s = t \Rightarrow$ A[x/t] no variable of terms s or t becomes bound in A
- $B6. \vdash \forall x y (A \rightarrow B) \Leftrightarrow \forall x (A \rightarrow B) y \text{ not free in}$ A or B
- $B7. \vdash \forall \mathbf{x} y (A \rightarrow B) \Rightarrow (A[y/t] \rightarrow B[y/t])$ no variable of term t becomes bound in A or B
- $B8. \vdash \forall \mathbf{x} y (A \rightarrow B) \Rightarrow \forall \mathbf{x} y (A[y/t] \rightarrow B[y/t])$ no variable of term t becomes bound in A or B

B9.
$$
\vdash \forall x(A \rightarrow B) \Leftrightarrow (\exists x A \rightarrow B) x \text{ not free in } B
$$

0.1 Bound Variables and Formula Substitution over BQC-2022

Proposition 0.2. Let x and y be two lists of variables such that they are equal as sets. Then the axiom system A1 through A16 proves \forall **x**($A \rightarrow B$) $\Leftrightarrow \forall$ **y**($A \rightarrow B$).

Renaming bound variables is a special case of formula substitution. Let $\mathcal L$ be a predicate logic language, and P be a propositional letter not in \mathcal{L} . We write $\mathcal{L}[P]$ for the predicate logic language obtained by extending $\mathcal L$ with P. We write $A[P]$ for formulas over $\mathcal{L}[P]$.

Proposition 0.3 (Formula substitution). Let \mathcal{L} be a language, P be a new propositional letter, $C[P] \in \mathcal{L}[P]$, and $A, B \in \mathcal{L}$. Then the axiom system A1 through A16 proves

$$
\frac{\vec{D}, A \Rightarrow B \quad \vec{D}, B \Rightarrow A}{\vec{D}, C[A] \Rightarrow C[B]}
$$

where no variable that occurs free in both \vec{D} and in A, B becomes bound after substitution of A and B in $C[P]$.

Proof. We prove the claim for all \vec{D} , A, B by induction on the complexity of $C[P]$.

Proposition 0.4. Let C be a formula in which the variables x and y don't occur free, and neither x nor y becomes bound after substitutions $C[z/x]$ or $C[z/y]$. Then the axiom system A1 through A16 proves $D[\exists xC[z/x]] \Leftrightarrow$ $D[\exists yC[z/y]]$, for all contexts $D[P]$.

Proposition 0.5. Let A and B be formulas in which the variables in x and y don't occur free, and where no variable in x or y becomes bound after substitutions $A[\mathbf{z}/\mathbf{x}]$, $B[\mathbf{z}/\mathbf{x}]$, $A[\mathbf{z}/\mathbf{y}]$, or $B[\mathbf{z}/\mathbf{y}]$. Then the axiom system A1 through A16 proves $D[\forall \mathbf{x}(A[\mathbf{z}/\mathbf{x}] \to B[\mathbf{z}/\mathbf{x}])] \Leftrightarrow$ $D[\forall \mathbf{y}(A[\mathbf{z}/\mathbf{y}] \rightarrow B[\mathbf{z}/\mathbf{y}])]$, for all contexts $D[P]$.

0.2 Functional Well-formed Theories

BQC-2022 is the theory of transitive Kripke models similar to how intuitionistic predicate logic IQC-2022 is the theory of reflexive transitive Kripke models. Theories over transitive Kripke models satisfy the extra properties of being functional and well-formed.

Theories are sets of rules generated by sets BQC -2022 ∪ Γ, where Γ is a set of rule axioms R of form

$$
R := \frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}
$$

A theory Δ is closed under derivation, equivalently $\Delta \vdash$ R exactly when $R \in \Delta$. Intersections of theories are theories. Each set of rules Γ generates a unique theory Th(Γ). A theory Δ_2 is called a *sequent theory extension* of a theory Δ_1 if there is a set of sequent axioms Γ such that Δ_2 is axiomatizable by $\Delta_1 \cup \Gamma$. So IQC-2022 and CQC-2022 axiomatize sequent theories. Let R be the rule displayed above. Then $\Gamma \vdash R$ if and only if

$$
\Gamma \cup \{\vec{D}_1 \Rightarrow B_1, \ldots, \vec{D}_n \Rightarrow B_n\} \vdash \vec{D}_0 \Rightarrow B_0
$$

Let $\mathcal{L} \subseteq \mathcal{M}$ be languages, and Γ be a set of rules over M. Write $\mathcal{L} \cap \Gamma$ for the subset of rules of Γ that exist over L.

Proposition 0.6. Let $\mathcal{L} \subseteq \mathcal{M}$ be languages, and Δ be a theory over M. Then $\mathcal{L} \cap \Delta$ is a theory over \mathcal{L} . Additionally, if $\Delta = \text{Th}_{\mathcal{M}}(\Gamma)$ for some set Γ over \mathcal{L} , then $\mathcal{L} \cap \Delta = \text{Th}_{\mathcal{L}}(\Gamma).$

Let R be rule

$$
\frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}
$$

and A be a formula. Define rule $A \times R$ by

$$
A \times R := \frac{\vec{D}_1, A \Rightarrow B_1 \dots \vec{D}_n, A \Rightarrow B_n}{\vec{D}_0, A \Rightarrow B_0}
$$

Proposition 0.7. Derivable entailments over BQC-2022.

B10. $A \times (B \times R) \dashv \vdash (A \wedge B) \times R$

B11. If variables z are not free in rule R , then $A \times R$ + ∃z $A \times R$

Let $\mathcal L$ be a predicate logic language, and Γ be a set of rules over \mathcal{L} . Set Γ is called *functional* over \mathcal{L} if for all $R \in \Gamma$ and sentences $A \in \mathcal{L}$ we have $\Gamma \vdash A \times R$. All sets Γ of sequents are functional over \mathcal{L} .

Define $\mathcal{L} \times \Gamma = \{ A \times R \mid A \in \mathcal{L} \text{ a sentence, and } R \in \Gamma \}.$ By Proposition 0.7.B10 $\mathcal{L} \times \Gamma$ is functional over \mathcal{L} .

Proposition 0.8. Intersections of theories functional over $\mathcal L$ are again functional over $\mathcal L$.

Let $\Delta = \text{Th}(\Gamma)$ for a set of rules Γ over \mathcal{L} . Then theory Δ is functional over $\mathcal L$ if and only if for all formulas $\vec{D}_0, B_0, \vec{D}_1, B_1, \ldots, \vec{D}_n, B_n \in \mathcal{L}$ and sentences $A \in \mathcal{L}$,

$$
\Gamma \cup \{ \vec{D}_1 \Rightarrow B_1, \dots, \vec{D}_n \Rightarrow B_n \} \vdash \vec{D}_0 \Rightarrow B_0
$$

($\Gamma \vdash R$)

implies

$$
\Gamma \cup \{\vec{D}_1, A \Rightarrow B_1, \ldots, \vec{D}_n, A \Rightarrow B_n\} \vdash \vec{D}_0, A \Rightarrow B_0 \quad (\Gamma \vdash A \times R)
$$

We only need this implication for rules $R \in \Gamma$:

Proposition 0.9. A theory Δ is functional over \mathcal{L} if and only if there is a functional set Γ over $\mathcal L$ such that $\Delta = \text{Th}(\Gamma)$, that is, if and only if Δ has a functional axiomatization over L.

Corollary 0.10. Theory $\text{Th}(\mathcal{L} \times \Gamma)$ is the least theory containing Γ which is functional over \mathcal{L} . BQC-2022 is functional over \mathcal{L} . If Δ is a functional theory over \mathcal{L} , then so are its sequent theory extensions.

A theory Δ over $\mathcal L$ is called *locally functional* over $\mathcal L$ if for all formulas $\vec{D} \cdot B \in \mathcal{L}$ and sentences $A \in \mathcal{L}$ we have $\Delta \cup \{\Rightarrow A\} \vdash \vec{D} \Rightarrow B \text{ implies } \Delta \vdash \vec{D}, A \Rightarrow B.$

Proposition 0.11. A theory Δ is functional over \mathcal{L} if and only if all sequent theory extensions of Δ are locally functional over L.

Proposition 0.12. Let Γ be a functional set over \mathcal{L} , and C be a set of new constant symbols. Let $c \in C$ be of the same length as list of variables x .

If $\vec{D} \Rightarrow B$ is a sequent over \mathcal{L} , then $\Gamma \vdash \vec{D} \Rightarrow$ B over $\mathcal L$ implies $\Gamma \vdash \vec D[\mathbf x/\mathbf c] \Rightarrow B[\mathbf x/\mathbf c]$ over $\mathcal{L}(C)$. If R is a rule over L, then $\mathcal{L}(C) \times \Gamma$ \vdash R[**x**/**c**] over $\mathcal{L}(C)$ implies $\Gamma \vdash R$ over \mathcal{L} .

A set Γ of rules over $\mathcal L$ is called well-formed over $\mathcal L$ if for all rules

$$
\frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0} \in \Gamma
$$

with all free variables among **x**, and all formulas $A \in \mathcal{L}$ with no free variables among x , we have¹

$$
\Gamma \vdash \forall \mathbf{x} (A \land \bigwedge \vec{D}_1 \to B_1) \land \dots \land \forall \mathbf{x} (A \land \bigwedge \vec{D}_n \to B_n) \Rightarrow \forall \mathbf{x} (A \land \bigwedge \vec{D}_0 \to B_0)
$$

Following footnote 1, we may write $\Gamma \vdash \int_{\mathbf{x}} (A \times R)$ for this entailment. Obviously all sets of sequents Γ are wellformed over \mathcal{L} . With Proposition 0.6 we easily verify that if $\mathcal{L} \subseteq \mathcal{M}$ are languages and Δ is a well-formed theory over M, then $\mathcal{L} \cap \Delta$ is a well-formed theory over \mathcal{L} .

Proposition 0.13. Intersections of theories well-formed over $\mathcal L$ are again well-formed over $\mathcal L$. If Γ is well-formed over \mathcal{L} , then so is $\mathcal{L} \times \Gamma$. Let $\mathcal{M} \supseteq \mathcal{L}$ be an extension by new function symbols (constant symbols are nullary function symbols). If Γ is well-formed over \mathcal{L} , then Γ is well-formed over M.

Proposition 0.14. Let R be a rule and y be a list of variables. Then $\int_{\mathbf{x}} R \vdash \int_{\mathbf{xy}} R$. If none of the y are free in the (numerator) suppositions of R, then $\int_{\mathbf{x}\mathbf{y}} R \vdash \int_{\mathbf{x}} R$.

¹ The sequent translation of rule R could be called $\int_{\mathbf{x}} R$, which in the definition of well-formed becomes $\int_{\mathbf{x}} (A \times R)$. A reverse derivate $(\vec{D} \Rightarrow A)'$ of 'differentiable' sequents $\vec{D} \Rightarrow A$ exists satisfying $(\int_{\mathbf{x}} R)' = R$.

Let $\Delta = \text{Th}(\Gamma)$ for a set of rules Γ over \mathcal{L} . Then Δ is well-formed over $\mathcal L$ if and only if for all formulas $\vec{D}_0, B_0, \vec{D}_1, B_1, \ldots, \vec{D}_n, B_n \in \mathcal{L}$ with all free variables among **x**, and all formulas $A \in \mathcal{L}$ with no free variables among x,

$$
\Gamma \cup \{ \vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n \} \vdash \vec{D}_0 \Rightarrow
$$

$$
B_0 \quad (\Gamma \vdash R)
$$

implies

$$
\Gamma \vdash \forall \mathbf{x} (A \land \mathbf{\Lambda} \vec{D}_1 \rightarrow B_1) \land \dots \land \forall \mathbf{x} (A \land \mathbf{\Lambda} \vec{D}_n \rightarrow B_n) \Rightarrow \forall \mathbf{x} (A \land \mathbf{\Lambda} \vec{D}_0 \rightarrow B_0) (\Gamma \vdash \int_{\mathbf{x}} (A \times R))
$$

We only need this implication for rules $R \in \Gamma$:

Proposition 0.15. A theory Δ is well-formed over \mathcal{L} if and only if there is a well-formed set Γ over $\mathcal L$ such that $\Delta = \text{Th}(\Gamma)$, that is, if and only if Δ has a well-formed axiomatization over L.

Corollary 0.16. BQC-2022 is well-formed over \mathcal{L} . If Δ is a well-formed theory over \mathcal{L} , then so are its sequent theory extensions.

Proposition 0.17. Let Γ be a well-formed set over \mathcal{L} , and $M \supseteq \mathcal{L}$ be an extension by new function symbols (constant symbols are nullary function symbols). Then Th($\mathcal{M} \times \Gamma$) is a functional well-formed theory over M.

1 Transitive Kripke Models for BQC-2022

A Kripke model $\mathfrak A$ for BQC-2022 over $\mathcal L$ consists of the following components. First, a structure (W, \sqsubset) of a nonempty set of worlds or nodes W with transitive relation \sqsubset . We write \sqsubseteq for the reflexive closure of \sqsubset . So (W, \sqsubseteq) is a small category with at most one arrow between nodes. Second, a functor $k \mapsto \mathfrak{A}_k$ from (W, \sqsubseteq) to the category of classical models over $\mathcal L$ with algebraic morphisms (preserving atoms). So for each $k \in W$ there is a classical model \mathfrak{A}_k over \mathcal{L} , and for all pairs $k \subseteq m$ there is an algebraic morphism (preserving atoms) $\vert \cdot \vert_m : \mathfrak{A}_k \to \mathfrak{A}_m$ such that $\big|_{k}^{k}$ is the identity for all k, and $\big|_{n}^{m}\big|_{n}^{k} = \big|_{n}^{k}$ for all $k \sqsubseteq m \sqsubseteq n$.

Given a Kripke model $\mathfrak A$ over $\mathcal L$ with node $k \in W$, classical model \mathfrak{A}_k has domain A_k . We identify A_k in the usual way with a set of new constant symbols of a language $\mathcal{L}(A_k)$. We define classical truth interpretation $\mathfrak{A}_k \models B$ for sentences $B \in \mathcal{L}(A_k)$ as usual. Given $k \sqsubset m$, there is a function $\bigcap_{m}^{k}: A_{k} \to A_{m}$, and a corresponding formula translation $B \mapsto B_m^k$ from $\mathcal{L}(A_k)$ to $\mathcal{L}(A_m)$. The formula translation is further extended to rules $R \mapsto R_m^k$ by applying the formula translation to all formulas in R

simultaneously. If $B \in \mathcal{L}(A_k)$ is an existential positive sentence, then $\mathfrak{A}_k \models B$ implies $\mathfrak{A}_m \models B_m^k$.

The inductive definition $(\mathfrak{A}, k) \Vdash B$ of forcing, for sentences $B \in \mathcal{L}(A_k)$ inductively definable by:

- $(\mathfrak{A}, k) \Vdash B$ if and only if $\mathfrak{A}_k \models B$, for all atomic sentences $B \in \mathcal{L}(A_k)$
- $(\mathfrak{A}, k) \Vdash B \wedge C$ if and only if $(\mathfrak{A}, k) \Vdash B$ and $(2l, k) \Vdash C$
- $(\mathfrak{A}, k) \Vdash B \vee C$ if and only if $(\mathfrak{A}, k) \Vdash B$ or $(\mathfrak{A}, k) \Vdash C$
- $(\mathfrak{A}, k) \Vdash \exists x C$ if and only if there is $c \in A_k$ such that $(\mathfrak{A}, k) \Vdash C[x/c]$
- $(\mathfrak{A}, k) \Vdash \forall \mathbf{x}(B \to C)$ if and only if for all $m \sqsupset$ k and $\mathbf{c} \in A_m$ we have $(\mathfrak{A}, m) \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$ implies $(\mathfrak{A}, m) \Vdash C_m^k[\mathbf{x}/\mathbf{c}]$

So $(\mathfrak{A}, k) \Vdash \top$ and $(\mathfrak{A}, k) \nvDash \bot$, for atomic sentences \top and \perp , and $(\mathfrak{A}, k) \Vdash B$ if and only if $\mathfrak{A}_k \models B$, for all existential positive sentences $B \in \mathcal{L}(A_k)$.

We may write $k \Vdash B$ for $(\mathfrak{A}, k) \Vdash B$ if the choice of Kripke model $\mathfrak A$ is clear from the context.

We extend forcing to formulas $B \in \mathcal{L}(A_k)$ with all free variables among x by

> $k \Vdash B$ if and only if for all $m \sqsupseteq k$ and $\mathbf{c} \in A_m$ we have $m \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$

For lists of formulas \vec{D} with all free variables among ${\bf x}$ we write $k \Vdash \vec{D}$ exactly when $k \Vdash B$ for all $B \in \vec{D}$. We extend forcing to all sequents by

$$
k \Vdash (\vec{D} \Rightarrow B) \text{ if and only if for all } m \supseteq k \text{ and } \mathbf{c} \in A_m \text{ we have } m \Vdash \vec{D}_m^k[\mathbf{x}/\mathbf{c}] \text{ implies } \newline m \Vdash B_m^k[\mathbf{x}/\mathbf{c}]
$$

So $k \Vdash B$ if and only if $k \Vdash (\Rightarrow B)$. Let R be rule

$$
\frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}
$$

Define

 $k \Vdash R$ if and only if for all $m \sqsupseteq k$ we have $m \Vdash (\vec{D}_i \Rightarrow B_i)^k_m$ for all $i \leq n$ implies $m \Vdash (\vec{D}_0 \Rightarrow B_0)^k_m$

Finally, for sets of rules Γ we define $k \Vdash \Gamma$ if and only if $k \Vdash R$ for all $R \in \Gamma$.

For sets of rules $\Gamma \cup \{R\}$ we write $\Gamma \vdash R$ if and only if for all transitive Kripke models $\mathfrak A$ and nodes k we have $(\mathfrak{A}, k) \Vdash \Gamma$ implies $(\mathfrak{A}, k) \Vdash R$.

Proposition 1.1. Let $k \subseteq m$ be nodes of a transitive Kripke model \mathfrak{A} , and R be a rule over $\mathcal{L}(A_k)$. Then $(\mathfrak{A}, k) \Vdash R$ implies $(\mathfrak{A}, m) \Vdash R_m^k$.

Proposition 1.2. Let $\Gamma \cup \{R\}$ be a set of rules. Then $Γ ⊢ R$ implies Γ $⊩ R$.

For each node k of a transitive Kripke model $\mathfrak A$ we define set of rules Th (\mathfrak{A}, k) over $\mathcal{L}(A_k)$ by

 $\text{Th}(\mathfrak{A}, k) := \{ R \mid k \Vdash R \}$

Proposition 1.3. Let k be a node of transitive Kripke model \mathfrak{A} . Then Th (\mathfrak{A}, k) is a functional well-formed theory over $\mathcal{L}(A_k)$.