Genericity and Depth

Ang Li

University of Wisconsin-Madison

UW–Madison Logic Seminar December 12, 2023

Outline

1 Introduction

2 Every weakly 2-generic set is shallow

3 There exists a 1-generic deep set

Kolmogorov Complexity

Definition

The *prefix-free Kolmogorov complexity* $K_M(x)$ of a binary string x w.r.t. a prefix-free machine M is

$$K_M(x) := \min\{|\sigma| : M(\sigma) = x\},\$$

where $|\sigma|$ is the length of σ .

Definition

A prefix-free machine *R* is an *optimal* prefix-free machine if there is a constant d_M for each prefix-free machine *M* such that

 $\forall x K_R(x) \leq K_M(x) + d_M.$

The constant d_M is called the coding constant of M (w.r.t. R).

Time-bounded Kolmogorov Complexity

We fix one such machine U. For any natural number *s*, $K_s(x) = \min\{|\sigma| : U(\sigma) = x \text{ in at most } s \text{ many steps}\}.$

Definition

For a computable function $t: \mathbb{N} \to \mathbb{N}$ and a prefix-free machine M, the *prefix-free Kolmogorov complexity with time bound t* relative to M is

 $K_M^t(x) := \min\{|\sigma| : M(\sigma) \downarrow = x \text{ in at most } t(|x|) \text{ many steps}\},\$

and we write K^t for $K^t_{\mathbb{U}}$.

Logical Depth

Definition (Bennett 1988)

For $X \in 2^{\mathbb{N}}$, we say that X is deep if for every computable time bound *t* and $c \in \mathbb{N}$,

$$(\forall^{\infty} n)[K^t(X \upharpoonright n) - K(X \upharpoonright n) \ge c].$$

A set that is not *deep* is called *shallow*.

Example

- **1** The halting set \emptyset' is deep.
- **2** A computable or a ML-random set is shallow.

Genericity

Computationally "easy enough" sets cannot be deep.

Theorem (Downey, McInerney, & Ng 2017)

There exists a superlow c.e. deep set.

Definition

For a set *S* of finite binary strings, a set *A* meets *S* if $(\exists n)A \upharpoonright n \in S$, and *A* avoids *S* if $(\exists n)[A \upharpoonright n \preccurlyeq \sigma \rightarrow \sigma \notin S]$.

A set *A* is *n*-generic if it meets or avoids every Σ_n^0 set of strings. A set *A* is *weakly n*-generic if it meets all dense Σ_n^0 sets of strings. Every weakly (n + 1)-generic set is *n*-generic.

Even though generic sets are not necassarily "simple" as they are comeager in the Cantor space, they are computationally weak.

Upper Bound

Definition

A function $f : \mathbb{N} \to \mathbb{N}$ is a *Solovay function* if $K(n) \leq^+ f(n)$ for all n and $K(n) =^+ f(n)$ infinitly often.

Proposition (Bienvenu, Delle Rose, & Merkle)

Every weakly 2-generic set is shallow.

Proof.

We want to build a sequence $\{V_n\}_{n \in \mathbb{N}}$ of dense Δ_2^0 sets of finite binary strings where V_n only contains strings of length at least n and there is an $\tau \in V_n$ extending any σ such that $K^t(\tau) \leq^+ K(|\tau|)$.

For every weakly 2-generic A, $\exists t, cK^t(A \upharpoonright n) \leq K(A \upharpoonright n) + c$ infinitely often since A meets each V_n .

Every weakly 2-generic set is shallow

Proof.

Define a computable Solovay function *h* as the following:

$$h(\langle n, s \rangle) = \begin{cases} K_s(n) & \text{if } K_s(n) \neq K_{s-1}(n) \\ +\infty & \text{otherwise.} \end{cases}$$

Using \emptyset' , we can compute the number of steps s_n such that $K_{s_n}(n) = K(n) \neq K_{s_n-1}(n)$.

Let σ_n be the *n*th string in $\{0,1\}^*$. Let $\tau_n = \sigma_n 0^{\langle n, s_n \rangle - |\sigma_n|}$. We enumerate τ_n into all V_i for any $i \leq |\tau_n|$.

There is a machine *M* that outputs $\sigma_n 0^{\langle n,s \rangle - |\sigma_n|}$ given input δ where $n = \mathbb{U}(\delta)$ and \mathbb{U} 's computation takes exactly *s* steps. Thus,

$$K^{t}(\tau_{n}) \leq^{+} K_{M}(\tau_{n}) \leq h(\langle n, s_{n} \rangle) = K(n) \leq^{+} K(\langle n, s_{n} \rangle) = K(|\tau_{n}|).$$

A Little Bit of Technicality

Remark

For any computable t and prefix-free machine M, there exists a computable function g_M such that there is some constant c and $K^{g_M(t)}(x) \le K^t_M(x) + c$.

Given an effective list of Turing machines, we can acquire an effective list $\{M_e\}_{e\in\mathbb{N}}$ of self-delimiting machines that simulate prefix-free machines in exponential time. We choose \mathbb{U} such that $\mathbb{U}(0^{e-1}1\sigma) = M_e(\sigma)$.

If we restrict ourselves to self-delimiting machines, g_M can be replaced by $ct \log t$ [LV⁺08, Example 7.1.1].

The question of whether g_M can be efficient is still open.

Lower Bound

Theorem

There exists a deep 1-generic set.

Proof.

We shall use a \emptyset'' -construction to build a 1-generic set *A*.

Requirements:

- $D_i: \text{ If } \varphi_i \text{ is an order function,} \\ (\forall c)(\forall^{\infty}m)[K^{\varphi_i}(A \upharpoonright m+1) > K(A \upharpoonright m+1) + c],$
- G_e : *A* meets or avoids S_e , where $\{S_e\}_{e \in \mathbb{N}}$ is an effective listing of c.e. set of strings.

Primitive G_e Strategy

Associate a restraint l_e to each G_e requirement. At stage s, wait until $A_{s-1} \upharpoonright n$ has an extension $(A_{s-1} \upharpoonright n)^{\frown} \sigma$ in $S_e[s]$ for $n > l_e$. Let $A_s = (A_{s-1} \upharpoonright n)^{\frown} \sigma$.

Primitive *D_i* Strategy

Let $\{\varphi_i\}_{i\in\mathbb{N}}$ be a listing of all partial computable functions. We partition \mathbb{N} into consecutive intervals I_0, I_1, \ldots Then, we assign a φ to each I.

{0}	[1, 2]	[3, 6]	[7, 14]	[15, 30]	[31, 62]	
I_0	I_1	I_2	I_3	I_4	I_5	
φ_0		$arphi_0$		$arphi_0$		
	φ_1				φ_1	
			φ_2			

Primitive D_i Strategy

- 1 Set x = 0.
- **2** Wait for $\varphi_{i,s}(x) \downarrow$.
- **③** We "move in" the next φ_i interval I_j : if $\varphi_{i,s}(\max I_{j+2^{i+1}} + 1) \downarrow$, we run U on all inputs of length $< |I_j|$ for $g_M(g_N(\varphi_i(\max I_{j+2^{i+1}} + 1)))$ many steps each. Then, we choose the leftmost string τ of length $|I_j|$ which was not among the outputs, and alter A_{s-1} so that $A_s \upharpoonright \max I_j + 1 = (A_{s-1} \upharpoonright \min I_j)^{\frown} \tau$.

Increase *x* by 1 and go back to step 2.

Tree of Strategies

We order the requirements as follows: $D_0 < G_0 < D_1 < G_1 < \cdots$

Let $\Lambda = \{\infty < \cdots < w_n < \cdots < w_2 < w_1 < w_0 < s < w\}$ be the set of outcomes. *Pree of strategies:*

Primitive Strategy

Problems:

- Extensions made by *G_e*-strategy might destroy moved-in intervals.
- New intervals being moved in might destroy the extension of *G*_e-strategy.

For the second problem, we can delay the extensions so that relevant intervals are all moved in. For the first problem, we need another strategy.

A Second Strategy

For the first problem, we shall let the G_e -strategy take over. When we get the chance to extend the initial segment of A_{s-1} , we also compress the initial segments of A to make sure that $K^{\varphi_i}(A \upharpoonright m + 1) - K(A \upharpoonright m + 1) \ge e + c_\alpha$ for $i \le e$.

Definition

A c.e. set $W \subseteq \mathbb{N} \times 2^{<\omega}$ is a bounded request set if $\sum_{\langle r, y \rangle \in W} 2^{-r} \leq 1$.

Theorem (Machine Existence)

For each bounded request set W, one can effectively obtain a prefix-free machine M such that

$$\forall r, y [\langle r, y \rangle \in W \leftrightarrow \exists w (|w| = r \land M(w) = y)].$$

A Second Strategy

The weight of the strings at time φ_i is

$$w_{\alpha,i} = \sum_{\theta \in N_{\alpha,i}} 2^{-K^{\varphi_i}(\theta)},$$

where

$$N_{\alpha,i}:=\{\theta:\max I_{j_0}<|\theta|\leq \max I_{j_1}+1\}.$$

We need to enumerate the request $(K^{\varphi_i}(\theta) - e - c_\alpha, \theta)$ for every $\theta \in N_{\alpha,i}$.

We assign weight to each $N_{\alpha,i}$ in advance to make sure the weight of the request set ≤ 1 .

If there are infinitely many *n* through which an initial of *A* requires attention, there must exist a pair of large enough *n* and stage so that $w_{\alpha,i}$ is small enough for all $i \leq e$, and the relevant overlapping intervals have been moved in since $\sum_{\theta} 2^{-K^{\varphi_i}(\theta)} \leq 1$ for any *i*.

Strategy

Define $l_{\varepsilon} = 0$ where ε is the empty string.

D_i-strategy:

- If node α is visited the first time, we initialize α by setting $l_{\alpha} = 1 + \max\{\max\{l_{\sigma} : \sigma \text{ has been initialized}\}, \max\{l'_{\sigma} : \sigma \text{ has outcome stop}\}\}.$
- **2** Set x = 0.
- **3** Wait for $\varphi_{i,s}(x) \downarrow$.
- ④ For the least interval *I_j* assigned to *φ_i* such that *I_j* has not been moved in or was marked fresh, *φ_{i,s}*(max *I_{j+2ⁱ⁺¹}* + 1) ↓, and min *I_j* > *I_α*, we move in *I_j*.

For any moved-in interval *I* with $\min I > \max I_j$, we mark it fresh. Increase *x* by 1 and go back to step 3.

Strategy

*G*_e-strategy:

- If node α is visited the first time, we initialize α by setting l_{α} beyond any interval $I_{j+2^{i+1}}$ such that I_j has been moved in and assigned to some φ_i with D_i having a finite current outcome and $i \leq e$, and larger than any l'_{σ} . Assign a number c_{α} .
- 2 α requires attention through n ≥ l_α at stage s if A_{s-1} ↾ n has an extension in S_e[s] and any interval *I* assigned to some φ_i such that D_i < G_e, the current outcome of the D_i-strategy is infinite, and *I* overlaps the concatenating segment of the extension, has been moved in.
- a looks for an *n* that makes sure we can compress the strings cheaply enough. If such an *n* is found, we act by extending A_{s-1} ↾ *n* and define l'_α = n + |σ|. Otherwise, let A_s = A_{s-1}.

Construction

Let a strategy α of length *t* be eligible to act at a substage *t* (α is visited) of stage $s \ge t$ if and only if α has the correct guess about the current outcomes of all $\beta \prec \alpha$.

We define the current true path f_s at stage s to be the longest strategy eligible to act at stage s.

Let $f = \liminf_{s \in S} f_s$.

Verification

Lemma

The eventual G_e *node* α *on the true path is not injured.*

Verification

Lemma

A is deep.

References I

- Charles H Bennett, *Logical depth and physical complexity*, Citeseer, 1988.
- R.G. Downey and D.R. Hirschfeldt, Algorithmic randomness and complexity, Theory and Applications of Computability, Springer New York, 2010.
- Rod Downey, Michael McInerney, and Keng Meng Ng, Lowness and logical depth, Theoretical Computer Science 702 (2017), 23–33.
- Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle, *Time-bounded Kolmogorov complexity and Solovay functions*, Theory of Computing Systems 52 (2013), no. 1, 80–94.
- David W Juedes and Jack H Lutz, Modeling time-bounded prefix Kolmogorov complexity, Theory of Computing Systems 33 (2000), 111–123.
- Steffen Lempp, *Priority argument in computability theory, model theory, and complexity theory.*

References II

- Ming Li, Paul Vitányi, et al., *An introduction to Kolmogorov complexity and its applications*, vol. 3, Springer, 2008.
- André Nies, *Computability and randomness*, vol. 51, OUP Oxford, 2012.

Thank You!