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Kolmogorov Complexity

Definition
The prefix-free Kolmogorov complexity KM(x) of a binary string x w.r.t. a
prefix-free machine M is

KM(x) := min{|σ| : M(σ) = x},

where |σ| is the length of σ.

Definition
A prefix-free machine R is an optimal prefix-free machine if there is a
constant dM for each prefix-free machine M such that

∀xKR(x) ≤ KM(x) + dM.

The constant dM is called the coding constant of M (w.r.t. R).
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Time-bounded Kolmogorov Complexity

We fix one such machine U. For any natural number s,
Ks(x) = min{|σ| : U(σ) = x in at most s many steps}.

Definition
For a computable function t : N → N and a prefix-free machine M, the
prefix-free Kolmogorov complexity with time bound t relative to M is

Kt
M(x) := min{|σ| : M(σ) ↓= x in at most t(|x|) many steps},

and we write Kt for Kt
U.
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Logical Depth

Definition (Bennett 1988)
For X ∈ 2N, we say that X is deep if for every computable time bound
t and c ∈ N,

(∀∞n)[Kt(X ↾ n)− K(X ↾ n) ≥ c].

A set that is not deep is called shallow.

Example
1 The halting set ∅′ is deep.
2 A computable or a ML-random set is shallow.
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Genericity

Computationally “easy enough” sets cannot be deep.

Theorem (Downey, McInerney, & Ng 2017)
There exists a superlow c.e. deep set.

Definition
For a set S of finite binary strings, a set A meets S if (∃n)A ↾ n ∈ S, and
A avoids S if (∃n)[A ↾ n ≼ σ → σ ̸∈ S].

A set A is n-generic if it meets or avoids every Σ0
n set of strings.

A set A is weakly n-generic if it meets all dense Σ0
n sets of strings.

Every weakly (n + 1)-generic set is n-generic.

Even though generic sets are not necassarily “simple” as they are
comeager in the Cantor space, they are computationally weak.
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Upper Bound

Definition
A function f : N → N is a Solovay function if K(n) ≤+ f (n) for all n and
K(n) =+ f (n) infinitly often.

Proposition (Bienvenu, Delle Rose, & Merkle)
Every weakly 2-generic set is shallow.

Proof.
We want to build a sequence {Vn}n∈N of dense ∆0

2 sets of finite binary
strings where Vn only contains strings of length at least n and there is
an τ ∈ Vn extending any σ such that Kt(τ) ≤+ K(|τ |).

For every weakly 2-generic A, ∃t, cKt(A ↾ n) ≤ K(A ↾ n) + c infinitely
often since A meets each Vn.
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Every weakly 2-generic set is shallow

Proof.
Define a computable Solovay function h as the following:

h(⟨n, s⟩) =

{
Ks(n) if Ks(n) ̸= Ks−1(n)
+∞ otherwise.

Using ∅′, we can compute the number of steps sn such that
Ksn(n) = K(n) ̸= Ksn−1(n).

Let σn be the nth string in {0, 1}∗. Let τn = σn0⟨n,sn⟩−|σn|. We
enumerate τn into all Vi for any i ≤ |τn|.

There is a machine M that outputs σn0⟨n,s⟩−|σn| given input δ where
n = U(δ) and U’s computation takes exactly s steps. Thus,

Kt(τn) ≤+ KM(τn) ≤ h(⟨n, sn⟩) = K(n) ≤+ K(⟨n, sn⟩) = K(|τn|).
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A Little Bit of Technicality

Remark
For any computable t and prefix-free machine M, there exists a computable
function gM such that there is some constant c and KgM(t)(x) ≤ Kt

M(x) + c.

Given an effective list of Turing machines, we can acquire an effective
list {Me}e∈N of self-delimiting machines that simulate prefix-free
machines in exponential time. We choose U such that
U(0e−11σ) = Me(σ).

If we restrict ourselves to self-delimiting machines, gM can be
replaced by ct log t [LV+08, Example 7.1.1].

The question of whether gM can be efficient is still open.
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Lower Bound

Theorem
There exists a deep 1-generic set.

Proof.
We shall use a ∅′′-construction to build a 1-generic set A.

Requirements:
Di : If φi is an order function,

(∀c)(∀∞m)[Kφi(A ↾ m + 1) > K(A ↾ m + 1) + c],
Ge : A meets or avoids Se, where {Se}e∈N is an effective listing of c.e.

set of strings.
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Primitive Ge Strategy

Associate a restraint le to each Ge requirement. At stage s, wait until
As−1 ↾ n has an extension (As−1 ↾ n)⌢σ in Se[s] for n > le. Let
As = (As−1 ↾ n)⌢σ.

Ang Li Genericity and Depth Dec 12, 2023 11 / 25



Primitive Di Strategy

Let {φi}i∈N be a listing of all partial computable functions.
We partition N into consecutive intervals I0, I1, . . .
Then, we assign a φ to each I.

{0} [1, 2] [3, 6] [7, 14] [15, 30] [31, 62] . . .
I0 I1 I2 I3 I4 I5 . . .
φ0 φ0 φ0 . . .

φ1 φ1 . . .
φ2 . . .
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Primitive Di Strategy

1 Set x = 0.
2 Wait for φi,s(x) ↓.
3 We “move in” the next φi interval Ij: if φi,s(max Ij+2i+1 + 1) ↓, we

run U on all inputs of length < |Ij| for gM(gN(φi(max Ij+2i+1 + 1)))
many steps each. Then, we choose the leftmost string τ of length
|Ij| which was not among the outputs, and alter As−1 so that
As ↾ max Ij + 1 = (As−1 ↾ min Ij)

⌢τ .
Increase x by 1 and go back to step 2.
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Tree of Strategies
We order the requirements as follows: D0 < G0 < D1 < G1 < · · ·

Let Λ = {∞ < · · · < wn < · · · < w2 < w1 < w0 < s < w} be the set of
outcomes.
Tree of strategies:

D0

G0

D1

G1

ε

∞

∞s

∞s∞

∞s∞s

. . .

∞s∞w

. . .

. . . ∞sw1 ∞sw0

∞w

. . . w1 w0

w0s w0w
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Primitive Strategy

Problems:
• Extensions made by Ge-strategy might destroy moved-in

intervals.
• New intervals being moved in might destroy the extension of

Ge-strategy.

For the second problem, we can delay the extensions so that relevant
intervals are all moved in. For the first problem, we need another
strategy.
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A Second Strategy

For the first problem, we shall let the Ge-strategy take over. When we
get the chance to extend the initial segment of As−1, we also compress
the initial segments of A to make sure that
Kφi(A ↾ m + 1)− K(A ↾ m + 1) ≥ e + cα for i ≤ e.

Definition
A c.e. set W ⊆ N× 2<ω is a bounded request set if

∑
⟨r,y⟩∈W

2−r ≤ 1.

Theorem (Machine Existence)
For each bounded request set W, one can effectively obtain a prefix-free
machine M such that

∀r, y[⟨r, y⟩ ∈ W ↔ ∃w(|w| = r ∧ M(w) = y)].
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A Second Strategy

The weight of the strings at time φi is

wα,i =
∑

θ∈Nα,i

2−Kφi (θ),

where
Nα,i := {θ : max Ij0 < |θ| ≤ max Ij1 + 1}.

We need to enumerate the request (Kφi(θ)− e − cα, θ) for every
θ ∈ Nα,i.

We assign weight to each Nα,i in advance to make sure the weight of
the request set ≤ 1.

If there are infinitely many n through which an initial of A requires
attention, there must exist a pair of large enough n and stage so that
wα,i is small enough for all i ≤ e, and the relevant overlapping
intervals have been moved in since

∑
θ 2−Kφi (θ) ≤ 1 for any i.
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Strategy

Define lε = 0 where ε is the empty string.

Di-strategy:
1 If node α is visited the first time, we initialize α by setting

lα = 1 +max{max{lσ : σ has been initialized}, max{l′σ : σ has
outcome stop}}.

2 Set x = 0.
3 Wait for φi,s(x) ↓.
4 For the least interval Ij assigned to φi such that Ij has not been

moved in or was marked fresh, φi,s(max Ij+2i+1 + 1) ↓, and
min Ij > lα, we move in Ij.
For any moved-in interval I with min I > max Ij, we mark it fresh.
Increase x by 1 and go back to step 3.
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Strategy

Ge-strategy:
1 If node α is visited the first time, we initialize α by setting lα

beyond any interval Ij+2i+1 such that Ij has been moved in and
assigned to some φi with Di having a finite current outcome and
i ≤ e, and larger than any l′σ . Assign a number cα.

2 α requires attention through n ≥ lα at stage s if As−1 ↾ n has an
extension in Se[s] and any interval I assigned to some φi such that
Di < Ge, the current outcome of the Di-strategy is infinite, and I
overlaps the concatenating segment of the extension, has been
moved in.

3 α looks for an n that makes sure we can compress the strings
cheaply enough. If such an n is found, we act by extending
As−1 ↾ n and define l′α = n + |σ|. Otherwise, let As = As−1.
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Construction

Let a strategy α of length t be eligible to act at a substage t (α is
visited) of stage s ≥ t if and only if α has the correct guess about the
current outcomes of all β ≺ α.

We define the current true path fs at stage s to be the longest strategy
eligible to act at stage s.

Let f = lim infs fs.
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Verification
Lemma
The eventual Ge node α on the true path is not injured.

Di

Ge

ε

. . .

. . .

σ1

. . .

σ0∞

. . .

αs

. . .

σ2

αw

. . . σ0wn . . .

. . .

. . .

σ3
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Verification
Lemma
A is deep.

Ge

Di

ε

. . .

τ

τs or τ∞

. . .

. . .

γ

τw or τwn

. . .

α

. . .

. . .

η
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Thank You!
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