Genericity and Depth

Ang Li

University of Wisconsin–Madison

UW–Madison Logic Seminar December 12, 2023

Outline

1 [Introduction](#page-1-0)

2 [Every weakly 2-generic set is shallow](#page-6-0)

³ [There exists a 1-generic deep set](#page-9-0)

Kolmogorov Complexity

Definition

The *prefix-free Kolmogorov complexity KM*(*x*) of a binary string *x* w.r.t. a prefix-free machine *M* is

$$
K_M(x):=\min\{|\sigma|: M(\sigma)=x\},\
$$

where $|\sigma|$ is the length of σ .

Definition

A prefix-free machine *R* is an *optimal* prefix-free machine if there is a constant *d^M* for each prefix-free machine *M* such that

 $\forall x K_R(x) \leq K_M(x) + d_M.$

The constant d_M is called the coding constant of *M* (w.r.t. *R*).

Time-bounded Kolmogorov Complexity

We fix one such machine U. For any natural number *s*, $K_s(x) = \min\{|\sigma| : \mathbb{U}(\sigma) = x \text{ in at most } s \text{ many steps}\}.$

Definition

For a computable function $t: \mathbb{N} \to \mathbb{N}$ and a prefix-free machine *M*, the *prefix-free Kolmogorov complexity with time bound t* relative to *M* is

 $K_M^t(x) := \min\{|\sigma| : M(\sigma) \downarrow = x \text{ in at most } t(|x|) \text{ many steps}\},$

and we write K^t for $K^t_{\mathbb{U}}$.

Logical Depth

Definition (Bennett 1988)

For $X \in 2^{\mathbb{N}}$, we say that *X* is deep if for every computable time bound *t* and $c \in \mathbb{N}$,

$$
(\forall^\infty n)[K^t(X\restriction n)-K(X\restriction n)\geq c].
$$

A set that is not *deep* is called *shallow*.

Example

- **1** The halting set \emptyset' is deep.
- A computable or a ML-random set is shallow.

Genericity

Computationally "easy enough" sets cannot be deep.

Theorem (Downey, McInerney, & Ng 2017)

There exists a superlow c.e. deep set.

Definition

For a set *S* of finite binary strings, a set *A meets S* if $(\exists n)A \restriction n \in S$, and *A* avoids *S* if $(\exists n)[A \upharpoonright n \preccurlyeq \sigma \rightarrow \sigma \not\in S]$.

A set *A* is *n-generic* if it meets or avoids every Σ^0_{n} set of strings. A set *A* is *weakly n-generic* if it meets all dense Σ_n^0 sets of strings. Every weakly $(n + 1)$ -generic set is *n*-generic.

Even though generic sets are not necassarily "simple" as they are comeager in the Cantor space, they are computationally weak.

Upper Bound

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is a *Solovay function* if $K(n) \leq^+ f(n)$ for all *n* and $K(n) = f(n)$ infinitly often.

Proposition (Bienvenu, Delle Rose, & Merkle)

Every weakly 2-generic set is shallow.

Proof.

We want to build a sequence $\{V_n\}_{n\in\mathbb{N}}$ of dense Δ^0_2 sets of finite binary strings where V_n only contains strings of length at least n and there is an $\tau \in V_n$ extending any σ such that $K^t(\tau) \leq K(|\tau|)$.

For every weakly 2-generic *A*, $\exists t, cK^t(A \restriction n) \leq K(A \restriction n) + c$ infinitely often since *A* meets each *Vn*.

Every weakly 2-generic set is shallow

Proof.

Define a computable Solovay function *h* as the following:

$$
h(\langle n, s \rangle) = \begin{cases} K_s(n) & \text{if } K_s(n) \neq K_{s-1}(n) \\ +\infty & \text{otherwise.} \end{cases}
$$

Using \emptyset' , we can compute the number of steps *s_n* such that $K_{s_n}(n) = K(n) \neq K_{s_n-1}(n).$

Let σ_n be the *n*th string in $\{0,1\}^*$. Let $\tau_n = \sigma_n 0^{\langle n, s_n \rangle - |\sigma_n|}$. We enumerate τ_n into all V_i for any $i \leq |\tau_n|$.

There is a machine M that outputs $\sigma_n 0^{\langle n,s\rangle-|\sigma_n|}$ given input δ where $n = U(\delta)$ and U's computation takes exactly *s* steps. Thus,

$$
K^t(\tau_n) \leq^+ K_M(\tau_n) \leq h(\langle n, s_n \rangle) = K(n) \leq^+ K(\langle n, s_n \rangle) = K(|\tau_n|).
$$

A Little Bit of Technicality

Remark

For any computable t and prefix-free machine M, there exists a computable function g_M *such that there is some constant c and* $K^{g_M(t)}(x) \le K^t_M(x) + c$ *.*

Given an effective list of Turing machines, we can acquire an effective list ${M_e}_{e \in \mathbb{N}}$ of self-delimiting machines that simulate prefix-free machines in exponential time. We choose U such that $\mathbb{U}(0^{e-1}1\sigma) = \mathring{M}_e(\sigma).$

If we restrict ourselves to self-delimiting machines, *g^M* can be replaced by *ct* log *t* [\[LV](#page-23-0)⁺08, Example 7.1.1].

The question of whether g_M can be efficient is still open.

Lower Bound

Theorem

There exists a deep 1-generic set.

Proof.

We shall use a ∅ ′′-construction to build a 1-generic set *A*.

Requirements:

- D_i : If φ_i is an order function, $(\forall c)(\forall^{\infty}m)[K^{\varphi_i}(A \upharpoonright m+1) > K(A \upharpoonright m+1) + c],$
- G_e : *A* meets or avoids S_e , where $\{S_e\}_{e \in \mathbb{N}}$ is an effective listing of c.e. set of strings.

Primitive *G^e* Strategy

Associate a restraint *l^e* to each *G^e* requirement. At stage *s*, wait until *A*_{*s*−1} \restriction *n* has an extension $(A_{s-1} \restriction n)^\frown \sigma$ in $S_e[s]$ for $n > l_e$. Let $A_s = (A_{s-1} \restriction n)^\frown \sigma.$

Primitive *Dⁱ* Strategy

Let $\{\varphi_i\}_{i\in\mathbb{N}}$ be a listing of all partial computable functions. We partition $\mathbb N$ into consecutive intervals I_0, I_1, \ldots Then, we assign a φ to each *I*.

Primitive *Dⁱ* Strategy

- \bullet Set $x = 0$.
- 2 Wait for $\varphi_{i,s}(x) \downarrow$.
- 3 We "move in" the next φ_i interval I_j : if $\varphi_{i,s}(\max I_{j+2^{i+1}}+1) \downarrow$, we run $\mathbb U$ on all inputs of length $<|I_j|$ for $g_M(g_N(\varphi_i(\max I_{j+2^{i+1}}+1)))$ many steps each. Then, we choose the leftmost string τ of length |*Ij* | which was not among the outputs, and alter *As*−¹ so that $A_s \restriction \max I_j + 1 = (A_{s-1} \restriction \min I_j)^\frown \tau.$

Increase *x* by 1 and go back to step 2.

Tree of Strategies

We order the requirements as follows: $D_0 < G_0 < D_1 < G_1 < \cdots$

Let $\Lambda = \{ \infty < \cdots < w_n < \cdots < w_2 < w_1 < w_0 < s < w \}$ be the set of outcomes. *Tree of strategies:*

Primitive Strategy

Problems:

- Extensions made by *Ge*-strategy might destroy moved-in intervals.
- New intervals being moved in might destroy the extension of *Ge*-strategy.

For the second problem, we can delay the extensions so that relevant intervals are all moved in. For the first problem, we need another strategy.

A Second Strategy

For the first problem, we shall let the *Ge*-strategy take over. When we get the chance to extend the initial segment of *As*−1, we also compress the initial segments of *A* to make sure that $K^{\varphi_i}(A \restriction m+1) - K(A \restriction m+1) \geq e + c_\alpha$ for $i \leq e$.

Definition

A c.e. set $W \subseteq N \times 2^{<\omega}$ is a *bounded request set* if $\sum 2^{-r} \leq 1$. ⟨*r*,*y*⟩∈*W*

Theorem (Machine Existence)

For each bounded request set W, one can effectively obtain a prefix-free machine M such that

$$
\forall r, y[\langle r, y \rangle \in W \leftrightarrow \exists w(|w| = r \land M(w) = y)].
$$

A Second Strategy

The weight of the strings at time φ_i is

$$
w_{\alpha,i} = \sum_{\theta \in N_{\alpha,i}} 2^{-K^{\varphi_i}(\theta)},
$$

where

$$
N_{\alpha,i}:=\{\theta:\max I_{j_0}<|\theta|\leq \max I_{j_1}+1\}.
$$

We need to enumerate the request $(K^{\varphi_i}(\theta) - e - c_\alpha, \theta)$ for every $\theta \in N_{\alpha,i}$.

We assign weight to each $N_{\alpha,i}$ in advance to make sure the weight of the request set ≤ 1 .

If there are infinitely many *n* through which an initial of *A* requires attention, there must exist a pair of large enough *n* and stage so that $w_{\alpha,i}$ is small enough for all $i \leq e$, and the relevant overlapping intervals have been moved in since $\sum_{\theta} 2^{-K^{\varphi_i}(\theta)} \leq 1$ for any *i*.

Strategy

Define $l_{\varepsilon} = 0$ where ε is the empty string.

Di-strategy:

- **1** If node α is visited the first time, we initialize α by setting $l_{\alpha} = 1 + \max\{\max\{l_{\sigma} : \sigma \text{ has been initialized}\}, \max\{l'_{\sigma} : \sigma \text{ has}\}$ outcome stop}}.
- 2 Set $x = 0$.
- **3** Wait for $\varphi_{i,s}(x) \downarrow$.
- **4** For the least interval I_i assigned to φ_i such that I_i has not been moved in or was marked fresh, $\varphi_{i,s}(\max I_{j+2^{i+1}}+1) \downarrow$, and $\min I_j > l_\alpha$, we move in I_j .

For any moved-in interval *I* with $\min I > \max I_j$, we mark it fresh. Increase *x* by 1 and go back to step 3.

Strategy

Ge-strategy:

- **1** If node α is visited the first time, we initialize α by setting l_{α} beyond any interval *Ij*+² *ⁱ*+¹ such that *I^j* has been moved in and assigned to some φ_i with D_i having a finite current outcome and $i \leq e$, and larger than any l'_σ . Assign a number c_α .
- 2 α requires attention through $n \geq l_{\alpha}$ at stage *s* if $A_{s-1} \restriction n$ has an extension in $S_e[\text{s}]$ and any interval *I* assigned to some φ_i such that $D_i < G_e$, the current outcome of the D_i -strategy is infinite, and *I* overlaps the concatenating segment of the extension, has been moved in.
- \bullet α looks for an *n* that makes sure we can compress the strings cheaply enough. If such an *n* is found, we act by extending A_{s-1} \restriction *n* and define $l'_{\alpha} = n + |\sigma|$. Otherwise, let $A_s = A_{s-1}$.

Construction

Let a strategy α of length *t* be eligible to act at a substage *t* (α is visited) of stage $s > t$ if and only if α has the correct guess about the current outcomes of all $\beta \prec \alpha$.

We define the current true path *f^s* at stage *s* to be the longest strategy eligible to act at stage *s*.

Let $f = \liminf_{s} f_s$.

Verification

Lemma

The eventual G^e node α *on the true path is not injured.*

Verification

Lemma

A is deep.

References I

- F. Charles H Bennett, *Logical depth and physical complexity*, Citeseer, 1988.
- 歸 R.G. Downey and D.R. Hirschfeldt, *Algorithmic randomness and complexity*, Theory and Applications of Computability, Springer New York, 2010.
- Rod Downey, Michael McInerney, and Keng Meng Ng, *Lowness and logical depth*, Theoretical Computer Science **702** (2017), 23–33.
- F Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle, *Time-bounded Kolmogorov complexity and Solovay functions*, Theory of Computing Systems **52** (2013), no. 1, 80–94.
- David W Juedes and Jack H Lutz, *Modeling time-bounded prefix Kolmogorov complexity*, Theory of Computing Systems **33** (2000), 111–123.
- Steffen Lempp, *Priority argument in computability theory, model theory, and complexity theory.*

References II

- i. Ming Li, Paul Vitányi, et al., An introduction to Kolmogorov *complexity and its applications*, vol. 3, Springer, 2008.
- F André Nies, Computability and randomness, vol. 51, OUP Oxford, 2012.

Thank You!