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Preface

The subject matter of this book lies at the interface of the fields of harmonic
analysis, complex analysis, and linear partial differential equations, and has been
at the center of considerable research effort since at least the late 1960’s. Some
aspects of this work are presented in monographs and texts. Any brief list would
have to include:

e G.B. Folland and J.J. Kohn’s monograph, The Neumann Problem for the
Cauchy-Riemann Complex [FKT2], on the 9-Neumann problem;

e L. Hormander’s books, An Introduction to Complex Analysis in Several
Variables [H66] and Notions of Convexity [H94], on estimates for the
O-problem;

e L. Hormander’s encyclopedic The Analysis of Linear Partial Differential
Operators I - IV [H85] which contains material on hypoellipticity of sums
of squares of vector fields;

e E.M. Stein’s short monograph Boundary Behavior of Holomorphic Func-
tions of Several Complex Variables [Ste72];

e E.M. Stein’s definitive classic Harmonic Analysis: Real-Variables Meth-
ods, Orthogonality, and Oscillatory Integrals [Ste93];

e The article by M. Gromov in the collection Sub-Riemannian Geomerty
[BR96] by A. Bellaiche and J.-J. Risler;

e The recent book by S.-C. Chen and M.-C. Shaw Partial Differential Equa-
tions in Several Complex Variables [CSO01].

Despite this list of references, many of the developments that have occurred
in this subject remain largely unchronicled except in the original papers. Also,
many of these results require general techniques that are not fully discussed in the
earlier texts. This situation makes it difficult for a student to start work in this
area. The most recent papers refer to older papers, which in turn cite earlier work,
and a student often becomes discouraged at the prospect of trying to navigate this
seemingly infinite regress.

Thus this book has two objectives. The first is to provide an accessible reference
for material and techniques from the subject of ‘control’ or Carnot-Carathéodory
metrics. The second is to provide a coherent account of some applications of these
techniques to problems in complex analysis, harmonic analysis, and linear partial
differential equations. These two objectives are inseparable. One needs the general
theory of the geometry of Carnot-Carathéodory metrics in order to deal with certain
kinds of problems in complex and harmonic analysis, but the theory by itself is
essentially indigestible unless leavened with interesting problems and examples.

viii



PREFACE ix

Part T of this book provides an introduction to the geometry associated to
certain families of vector fields, and to analytic results about a related class of
integral of operators. The basic geometric structures go by various names such as
control metrics, Carnot-Carathéodory spaces, or sub-Riemannian manifolds. The
associated analytic objects, in this general context, are often known as non-isotropic
smoothing (NIS) operators. These concepts arose in part through attempts to
present a more unified description of classical results, and from the need for more
flexible tools to deal with new problems and phenomena arising in complex and
harmonic analysis and linear partial differential equations.
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CHAPTER 1

Spaces of Homogeneous Type: Definitions and
Examples

In Part IT of this book we show how it is possible to construct a metric from
families of first order partial differential operators on an open subset of R"™, and
then how this geometry can be used in the analysis of certain second order operators
built from the first order data. This presentation will involve a long and involved
geometric construction, as well as technical analytic arguments. To make this
material palatable, it is important to keep in mind the examples and objectives that
led to the general theory. In this first chapter of Part I we prepare for the later
technical work by first presenting basic results about metrics and the associated
families of balls, and then discussing four classical examples where we can see more
or less directly the connection between the underlying geometry and the analytic
problems. In each case we consider the relationship between a particular partial
differential operator and a corresponding notion of distance on R™. By presenting a
different kind of result in each example, we hope to motivate the later development
of a general theory.

In Section 1, we give the definition of a space of homogeneous type, where it
makes sense to talk about lengths and volumes. We then establish analogues in
this setting of some classical covering lemmas in Euclidean space. Finally, we show
that one can establish an analogue of the Hardy-Littlewood maximal theorem and
the Caldéron-Zygmund decomposition of integrable functions in this context.

In Section 2, we study the Laplace operator

0? 0?
N=—+ - 4+ —.
or? 02
This is of course the sum of the squares of the first order operators %. Here
J
the appropriate geometry is given by the standard Euclidean metric on R™. We
construct a fundamental solution for A given by convolution with the Newtonian
potential, and then show how classical regularity properties of the Laplace operator
follow from arguments using Euclidean geometry.
In Section 3, we consider the heat operator
0
ot
and show that the appropriate geometry is now a non-isotropic metric on R™*!. The

AV

heat operator is a first order operator e minus the sum of squares of the operators
%. In particular, we show that this metric is reflected in the boundary behavior
J

of functions satisfying a classical initial value problem for the heat operator.

2



1. SPACES OF HOMOGENEOUS TYPE 3

In Section 4, we study a model problem arising in complex analysis in several
variables. We see that the space C" x R = R"™ x R™ x R can be identified with the
boundary of a domain in C"*!, and that on this boundary there is, in a natural
way, the structure of a nilpotent Lie group, called the ‘Heisenberg group’. The
appropriate metric in this case is then invariant under this non-commutative group

0 0 0
— +2y;— and Y; = — 2z,
0z, TV N T . T
left invariant on this group, and a natural analogue of the Laplace operator in this
case is the operator

L= ZX2+Y2

j=1

ng2 g2 92 92 9?
:Z[aﬁa?”yﬂa ot gy 8t}+zx +95) 5

structure. The first order operators X; = are

In addition, we consider the orthogonal projection from L?(R"™ x R™ x R) to the
closed subspace consisting of the functions annihilated by the n complex first order
operators Z; = X + j +iY;. We see that this operator, as well as the fundamental
solution of £ can be understood in terms of the given geometry.

Finally, in Section 5, we construct a fundamental solution for the operator

82+ 0
Ox? dy2

on R2. This leads to the study of what is sometimes called the ‘Grushin plane’.

Our discussion is not an exhaustive account of the theory of these well-know
operators. Rather, we focus on certain results which have analogues in the more
general theory developed in later chapters. Our object is to show how symme-
try properties of the operators are reflected in the corresponding distances, and,
conversely, how the underlying geometry plays a role in various analytic results.

1. Spaces of homogeneous type

In this section we present an abstract framework in which we can discuss both
distance and volume. There are many possible approaches to such a discussion,
and we choose a definition of ‘spaces of homogeneous type’ which is a compromise
between the competing needs for simplicity and abstractness. As we shall see, the
key concept is a space equipped with a distance which defines a family of balls,
and a measure which allows us to talk about the volumes of these balls. For our
purposes, the most important requirements are:

(a) an “engufing” property which guarantees that if two balls of comparable size
intersect, then each is contained in a fixed dilate of the other;

(b) a “doubling property” which guarantees that the volume of a ball of radius 2§
is bounded by a multiple of the volume of the ball of radius 9.

After giving the basic definitions in section 1.1, we prove analogues of the Vitali and
Whitney covering theorems in section 1.2. We study the Hardy-Littlewood maximal
operator in section 1.3, and we introduce the Caldéron-Zygmund decomposition of
L' functions in section 1.4.
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1.1. Pseudometrics and doubling measures.

The notion of an abstract space equipped with a distance is often formalized
through the concept of a metric space. However, in anticipation of later examples,
it will be more convenient for us to start with the weaker notion of a pseudo-metric.

DEFINITION 1.1. A pseudo-metric on a set X is a function p: X x X — R
with the following properties.
(1) For allxz,y € X, p(z,y) >0, and p(z,y) = 0 if and only if x = y.
(2) Forallz,y € X, p(x,y) = p(y,x).
(3) There is a constant Ay > 1 so that for all x,y,z € X we have

Ay is called the triangle inequality constant for the pseudo-metric p. If we can take
Ay =1, then p is called a metric.

In our applications it will be possible to use several different metrics or pseudo-
metrics, provided that they are equivalent in an appropriate sense. We make this
precise as follows.

DEFINITION 1.2. Let p1 and ps be pseudo-metrics on a set X.

(1) p1 is globally equivalent to po if there is a constant C > 0 so that for all

x,y € X we have

C™lp2(,y) < pila,y) < Cpa(z,y).
(1) p1 is locally equivalent to po if there are constants C,dy > 0 so that for all

x,y € X with p1(x,y) < dg we have

C™pa(,y) < pi(z,y) < C pa(z,y).

It is easy to check that these are indeed equivalence relations. The notion of global
equivalence is perhaps the more natural of the two, but the concept of local equiv-
alence is useful when we are only interested is small distances.

If p is a pseudo-metric on a set X, then the ball with center z € X and radius
0 > 0 is the set
B,(z;0) = {y eX ’ plx,y) < 5} .
Note that p; and po are globally equivalent pseudo-metrics with comparability
constant C' if and only if for all x € X and § > 0 we have

BP2 (:L’; 6) c BPl (1'; 05)7
B, (x;6) C B,,(x;C0).
The metrics are locally equivalent if and only if we have these inclusions for all

sufficiently small 4.

Many properties of metric spaces cary over to spaces equipped with a pseudo-
metric, but some care must be taken with repeated applications of the triangle
inequality. In the following proposition, we focus on three easy consequences of the
definitions.

PROPOSITION 1.3. Suppose that p is a pseudo-metric on a space X with triangle
inequality constant Ay .
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(1) If {xo,x1,...,xm} are points in X, then p(xg, xm,) < AT Z;nzl plzj_1,2;).
(ii) Let z1,22 € X and 61 > 6. Then
B,(x1;61) N B,(x2;62) # 0 = B,(2;62) C B,(1;34301).

(ili) Suppose that y € B,(yo;00) and x ¢ B,(yo;ndo). Then if n > Ay > 1,

1 77A1
R < < .
2A1 p(x,y) = P(%yo) = (T] — A1> p(xay)

Part (ii) gives the basic engulfing property of balls, and part (iii) show that well
outside a ball, the distance to the center and the distance to an arbitrary point of
the ball are comparable.

PROOF. Part (i) follows easily by induction on m. To establish (ii), suppose
B,(x1;01) N By(x2;02) # 0, and let z € B,(x1;01) N By(xg;02). Let y € By(x2;02).
Then

,0(1'1, y) < A% [p($17 Z) + p(Z, $2) + p(an y)}

< A? [(51 + 2 + 52]

< 3A141,
so B,(wg;02) C B,(z1;3A161) as asserted. To establish part (iii), suppose = ¢
By(yo;ndo) and y € B,(yo;do). If n > 1 then p(yo,y) < do < p(x,90), so the
triangle inequality gives

p(z,y) < Az[p(z,y0) + p(yo. y)] < 2A1p(z, o).
On the other hand, we also have p(y,y0) < 6o < n~!p(x,90) so the triangle in-
equality gives
p(z.y0) < Ar[p(z.y) + p(y, yo)| < A1 p(z,y) + A2~ p(20.y),
and this gives the second inequality if n > A;. O
We next introduce a measure so that we can talk about volumes of balls. As-

sumption (3) below is the basic doubling property.

DEFINITION 1.4. Let X be a locally compact topological space equipped with a
pseudo-metric p and a positive reqular Borel measure p. Then (X, p, 1) is a space
of homogeneous type if the following conditions are satisfied:

(1) For each x € X, the collection of balls {B,(x;6) : 6 > 0} are open and hence
are p-measurable, and they form a basis for the open neighborhoods of x.

(2) Forallz € X and 6 >0, 0 < pu(B,(z;6)) < .
(3) There is a constant As > 0 so that for allxz € X and § >0

,U(Bp(z; 25)) < Ay ,U(Bp(fE; 5))

The constant As is called the doubling constant for the measure p.

The following result shows that the volume of B(x;0) grows at most polyno-
mially in §.
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ProPOSITION 1.5. If (X, p, ) is a space of homogeneous type with doubling
constant As, there is a constant T so that for X\ > 2

p(Bp(z; A8) < A7 p(By(x56)).

PROOF. Let N be the positive integer such that A < 2V < 2\, so that log,()\) <
N <logy(A) + 1. Then using the doubling property N times yields

p(Bp(x378)) < p(By(w; 2" 6)) < AY (B, (38)) < A7 u(By(;9))
where 7 = 2 log,(As). O

1.2. Covering Lemmas.

We now establish a number of results for spaces of homogeneous type which
are analogues of standard results in Euclidean analysis. Many of the arguments
involve only minor modifications of the classical proofs. We primarily follow the
development in [CW77] and [Ste93]. Throughout this section, (X, p, 1) will denote
a space of homogeneous type. We let A; be the the triangle inequality constant for
p and let Ay be the doubling constant for p.

Our first result deals with estimates for the number of uniformly separated
points in a fixed ball. In Euclidean geometry in R™, the volume of a ball of radius
¢ is proportional to ™. Thus if 0 < n < 1 and if By, ..., By, are mutually disjoint
balls of radius 7§ all contained in a ball of radius §, we must have m < n~", so m
is bounded by a constant depending only on 1 and the dimension. For spaces of
homogeneous type, it is not true in general that the volume of a ball is proportional
to a fixed power of the radius. Nevertheless, we have the following result.

LEMMA 1.6. Let 0 < n < 1, let z1,...,2m € B,(z0;0), and suppose that
plxj, k) > nd for all1 < j # k < m. Then m is bounded by a constant that
depends only on Ay, Az and 7).

PROOF. First observe that the balls {B,(z;; %)}7 1 < j < m, are disjoint,
forif y € B, (xj,zA )N B, (37’672,4 ), then

no . mo
p(zj, ) < Arlp(xj,y) + ply, xp)] < Ay [2/11 + QAJ no.
which is a contradiction. Also, each ball B,(x;; 5 —QA )C B (xo,ZAl 5), for if y €

B,(xj; 5% 24T ) then

1)
p(xo,y) < Arlp(zo, ;) + p(xj,y)] < Ai[d + 27771} < 2A446.

Finally, B,(x0;0) C By(x;;2A19), for if y € B,(x¢;6), then

Now let N; and N, be the smallest positive integers such that 24; < 2™ and
(241)? < 22, Then by the doubling property, for any x € X and any 7 > 0 we
have

u(Bp(xo;2A1§)) < Aévl M(Bp(m0;5)>7 and

nd

#(By(:2410)) < A3* u(By(ai 570)-
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Putting all this together, we have

m

< Aévzl ,u(Bp(xo; 2A15))
< A2 (B, (o3 6)).

Thus m < Aév 1N, 2. which completes the proof. [

Our next result is a variant of the Vitali covering lemma. A discussion of
various classical covering lemmas in Euclidean spaces can be found, for example, in
[dG75], Chapter I. We shall say that a set E C X is bounded if there exist y € X
and R > 0 so that E C B,(y; R).

LEMMA 1.7. Let E C X be a set and let A be an index set. Suppose that for

each o € A, there exist xo, € X and 6, > 0 so that E C U B,(za;04). Suppose

acA
also that one of the following conditions is satisfied:

(a) The set E is bounded, and for every a € A, the point x, € E.

(b) There are no restrictions on the set E or the points x., but sup 6, = M < oo.
acA

Then there exists a finite or countable sub-collection of these balls,
{31 = B,(21;01),...,Br = By(xy; 0k), . .. },
so that:
(1) The balls are mutually disjoint: B; N\ B, =0 if j # k;
(2) If B} = B,(x;;3A%4;), then E | B;;
J

(3) u(B) < C Y u(B)).

The constant C depends only on Ay and As.

ProOF. If E is bounded, we may suppose that E C B,(y; R). Suppose that
SUPyeq 0o = +00. Then there exists o € A with 2, € E and §, > 24; R. For any
z € B,(y, R) we have

p(Tayz) < Ailp(za,y) + p(y, 2)] < 241R < ba,

so E C B,(y; R) C By(xa;04). In this case, we can choose the sub-collection to
consist of the single ball By = B,(zq, 05, ).

Thus from now on we shall assume that M; = sup J, < +o0o. We select the
acA
sequence {B,} as follows. Set M; = M and A; = A. Choose By = B,(z1;01) to
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be any ball B(x,;d,) with a € A; for which é; = 0, > %Ml. Once B; has been
picked, let

Ay ={a € A By(wa:02) N By =0}

and let Ma = sup,¢ 4, 0a-

Proceeding by induction, suppose that we have picked balls Bi,..., By, sets
A=A D A D D Ar D Agy1, and real numbers My > My > -+ > My, >
M1 so that

(i) Bj = B,(z;;0;) with 2; = 2, and 6; = ¢, for some a € Aj;

(ii) M; = sup do for 1 <j<k+1;
Oée.Aj

(iii) 6; > £ M; for 1 < j < k;

(iv) Ay = {a €A ’Bp(a:a;éa) NB; = (2)} for 1< j <k

If the set Ag1 is empty, the selection process stops. If Ag41 is not empty, choose
Byy1 to be a ball By(zg+1;0k41) = By(Ta;6a) With 74 € Agy1 and 6o > SMjq.
Once By is chosen, we set

Atz = {Oé € Agt1 ‘ B,(2a;00) N Bry1 = @}
k1

~{aea|B,@ainn (UB) =0}
j=1

This completes the induction step, so with this process we have chosen a finite or
countable set of balls {Bj, ..., Bg,...}.

Let j < k. The center of By, is x; = x, for some a € Ay, by condition (i), and
since Ay C A; it follows from condition (iv) that By N B; = (. This establishes
assertion (1) of the lemma.

Next we show that if the selection process leads to a countable collection of balls
{Bk}, then limyg_, o 0 = 0. Clearly 0;+1 < 0. But if d; > g > 0 for all &, the ball
B,(y; R) would contain the countable collection of disjoint balls {B,(x;;do)}, and
this contradicts the conclusion of Lemma 1.6.

Now let g € E. Then ¢ € B,(xq4;04) for some o € A. If the selection process
results in a finite set of balls, B, (z4;d,) must intersect one of them, for otherwise
the selection process would not have stopped. If the selection process results in a
countable set of balls, the above argument shows that there is an integer k so that
O < %5,1. But then d, > 20, > My, = supge 4, g, and so a ¢ Ay. Thus B, (74, 6)
must intersect one of the balls {By, ..., Br_1}.

Thus in either case, there is a smallest positive integer j so that B,(z o;da) N
Bj # 0. It follows that o € A;, and hence 6, < M; < 20,,. We also have

0 # B,(7a;0a) N Bj C By(za:0a) N Bp(x),20,,).
It follows from Proposition 1.3, part (ii) that
xo € Bp(xa;éa) C Bp(xj,?)A%éI])

and hence
E c | JB,(z;:34%5,,).
J
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This is assertion (2).

Let N be the smallest positive integer such that 342 < 2¥. Then using the
doubling property and assertion (2), we have

p(E) <> pu(By(w;3436,,)) < AY >~ pu(By();6x,)) (©)
J J
which gives assertion (3), and completes the proof. ([

Our next results are related to the classical Whitney covering lemma, which
shows that one can decompose an proper open set U C R™ into a union of cubes
@Q; such that the size of ); is comparable to the distance from @); to the boundary
of U. For a general space of homogeneous type X, let U g X be an open set. For
any z € U, let

d(z) =dy(z) = ylg{fjp(x,y) = sup {5 >0 ‘ B,(x;0) C U}

denote the distance from z to the complement of U. Since U # X, it follows that
d(x) < oo. Since the balls {B,(z;0)} form a basis for the open neighborhoods of
x, it follows that d(z) > 0.

We first show that if U ; X is open and if x € U, then there is a ball centered
at « with radius a small multiple of d(x) so that the distances of all points in this
ball to the complement of U are comparable.

PROPOSITION 1.8. Let U G X, and let 0 < n < ﬁ. For any x € X, if
z € By(z;nd(x)), then
(241)7 1 d(z) < d(z) < (241) d(2).
PROOF. Let z € B,(z,nd(x)). Then if y ¢ U we have
d(z) < p(z,y) < Ailp(z,7) + plz,y)] < Ailnd(z) + p(z,y)].
Taking the infimum over all y # U we get
d(z) < Ay[n+ 1] d(z) < 24, d(z).
On the other hand, we have
d(x) < p(a,y) < Ai[p(x, 2) + p(z,y)]
< Apd(z) + Ay pl(=.9) < 3 da) + Avplz,).
Again taking the infimum over y # U, we get
d(z) <2A;d(2)
which completes the proof. O

COROLLARY 1.9. Let U G X, and let 0 < n < 53— If z,y € U and if
Bp(m;nd(x)) NnB, (y;nd(y)) #(, then
(241) 2 d(y) < d(z) < (241)*d(y).

We can now establish an analogue of the Whitney covering theorem.



1. SPACES OF HOMOGENEOUS TYPE 10

LEMMA 1.10. Let U g X be an open set. Then there is a collection of balls
{B; = By(x;;6;)} with §; = §d(z;) so that if Bj = By(x;;40;) and Bj# =
By, (z;; (1241)716;), then

(1) For each j, B CU, and B; N (X —U) # 0.

(2) The balls {BJ#} are mutually disjoint.
(8) U= U B;.

(4) Zu ) < CuU).

(5) Each point of U belongs to at most M < oo of the balls {B;}, where M
depends only on the constants Ay and As.

PRrROOF. For each x € U, set §(z) = nd(z) with n = (24A4) < (24;)7!. The
balls {B (x d(x )} form an open cover of U. Let {B (xj, (x; )} be a maximal
disjoint sub-collection of these balls. Put

1
Bj = B,(x;,1241(z;)) = B, (fﬂj; id(xj)),

so that B} = B,(z;;2d(z;)) and B]# = B,(x;6(z;)). It follows that B; C U,
BiN(X~U) # 0, and {BJ#} are mutually disjoint. This proves assertions (1) and
(2).

For every z € U, the maximality of {Bp (xj; 5(%))} shows that there exists j
so that

0 # B,(2;6(2)) N B,(zj;6(x;)) C By(2;6(2)) N B,(zj;4A7 6(x;))
By Corollary 1.9, it follows that d(z) < 4A%d(x;) and so 6(z) < 4A436(x;). It
follows from Proposition 1.3, part (ii), that
x € B,(7;6(x)) C B,(x;;12416(z;)) = B;.
Thus U = U B, and so we have verified assertion (3).
J
Now let N be the smallest positive integer such that 1241 < 2V, Then pu(B;) <

AY w(B,(j;0(x;)). Since the balls {B,(z;;6(x;))} are disjoint and are contained
in U, we have 3, pu(B;) < AY p(U). This gives assertion (4).

Now let y € U and suppose y € B;. It follows from Proposition 1.8 that
d(z;) <24, d(y) and d(y) < 2A; d(z;). Thus if z € B, (z;;6(x;)) we have

ply, 2) < Ai[p(y, z5) + p(zj,2)]
< A [12A7 + 1] §(x5)
< 2A7[12A7 + 1] d(y).
Thus
B, (z;6(x;)) C B,(y; 247 [1241 + 1] d(y)).
Since d(y) < 2A1d(z;) = 48A% 6(z;), it follows that
By (; (4847) 71 d(y)) C B, (y; 247 [1241 + 1] d(y)).



1. SPACES OF HOMOGENEOUS TYPE 11

But for j # k
By (x5 (48A47) 1 d(y)) N By (ax; (4847) " d(y)) = 0,
and so by Lemma 1.6, the number of such balls B; with y € B; is bounded by

a constant depending only on A; and As. This establishes (5) and completes the
proof. ([

1.3. The Hardy-Littlewood maximal operator.

We can now use the geometric information from the covering lemma to study
the Hardy-Littlewood maximal operator. We begin by recalling the definition in
this general context.

DEFINITION 1.11. Let (X, p, ) be a space of homogeneous type. Let f be locally
integrable on X. For x € X put
1
MA@ =swp sup o [ g0
>0 z€B,(y;5) ,U(Bp(y’(s)) By (y30)

Observe that if M[f](z) > A there exists a ball B = B,(y;0) containing = such
that the average of |f| over B is greater than A\. But then M[f](z) > X for all
z € B. Since B is open, this shows that {z € X | M[f](z) > A} is open, and hence
M is lower semi-continuous and in particular measurable. Also, since every average
is dominated by the supremum of the function, it is clear that if f € L>°(X), we
have

MU e 0y < I e - (1.1)

The following result is much deeper.

THEOREM 1.12 (Hardy and Littlewood). There is a constant C depending only
on A1 and As so that for 1 < p < 0o, the following statements are true:

(1) If f € LY (X, du), then
({o € X | M) > 2)) < X 10

(2) If1<p<ooandif f € LP(X,du), then
| M <202 (0= D)7 | F]] -

PrOOF. Let A > 0 and let M be a positive integer. Let E 5 denote the set of
points & € X such that there exists y € X and 0 < 6 < M such that = € B,(y;0)

and
1

1(Bp(y;9))
Then E)\,M C E)\7M+1 and

/ £ dut) > A
B, (x;0)

fj B = {x € X | M[f](x) > A}.

M=1
If © € E) a, there exists y € X and 0 < 6, < M so that x € B,(y,d,), and

1
(B, (3 8,)) /Bp(y;&y) £ dpa(t) > A
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or equivalently
1
p(Ba) < 5 [ 15Oldute).
Bp(y§5y)

The balls {B,(y; 0,)} cover the set E as. By using the case of uniformly bounded
radii in Lemma 1.7, we can find a sub-collection {By, ..., By, ...} such that B; N
By = 0if j # k, and p(Exm) < Czju(Bj), where C' depends only on A; and
AQ. Then

N N
1(Ex nr) <CZ“ %Z/ )| dp(t)

<—/|f )] dp(t) ||ff|L1<X

This estimate is independent of M, and we conclude that

u({o e x| M1 > 3}) < T sy

Thus proves assertion (1).

Assertion (2) follows from the Marcinkieicz interpolation theorem, for which
one can consult [Ste93], pages 272-274. However, we give the proof in this special
case. We use the fact that if f € LP(X),

1 Wy = [ 20 u({o e x[17@1> A}y in

For any A > 0, let us write

L @iy [0 ) < v
Ao {o it M T {f(w) it £(@)] > A4

Then f = fy + f*, and so M[f](z) < M[f](z) + M[f*](x). Tt follows that
p({z € x| IMin@) > A})

<ul{ee x| IMBI@I > 5}) +u({z e X [IMAI@I> 5})

(1.2)

Now fy € LOO(X), with || I HLW(X)
M{[f)(z) < L) for almost all z € X. Hence

p({r e x| MBI > 2)) =0 (1.3)

On the other hand, we claim f* € L*(X). In fact, since f € LP(X), we have

(
v ul{z e x| 1@ >2}) < /v|wwwﬂmw

Thus using Hélder’s inequality and (p)~! + (p')~! = 1 we have

|mex=ﬁmi<w«umm@4&eﬂu|>@)

<[ iy A5 = 117y

< 1\ It follows from equation (1.1) that

1
7/
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Thus using part (1) of the theorem on the function f*, we have

n({o e X [IMIPI@)1 > 33) < 290 P 1

(1.4)
SQC)\_l/ |f(z)|dx.
[FI>A
Now using equations (1.2), (1.3), and (1.4), we have
MG p/ N~ p(qr e X[ IM[f](z)] > At ) dA
1Mo =P ({ || f]@) })
SZCp/ /\p_2 / |dx
0 j|>>\
()
zch/ﬁf@n / ,vﬂdﬂdx
0
= 20 / |f(x)|P dz.
which completes the proof. O

COROLLARY 1.13. Let f € L}, .(X,du). Then for u-almost al x € X,

1
§ﬁoM¢r®yéwwﬁﬁMMﬂ=f@L

The passage from the weak-type estimates of Theroem 1.12 to the differentiation
theorem of Corollary 1.13 is standard. See, for example, [Ste70].

1.4. The Caldéron-Zygmund Decomposition.

Another classical tool which can be used in the context of space of homogeneous
type is the Calderén-Zygmund decomposition of functions in L'.

THEOREM 1.14 (Caldéron-Zygmund). Let f € LY (X, du), and let a > 0 satisfy
ap(X) > CH f ||L1 where C' is the constant from the Hardy-Littlewood Mazximal
Theorem 1.12. Then there exists a sequence of balls {B = B,(z;;6; } and a

decomposition
f=g9+> 0
J

with the following properties:
(1) The functions g and {b;} all belong to L'(X).
(2) |g(x)| < A3« for almost all x € X .
(8) The function b; is supported in Bj. Moreover

/X 1bs ()| du(x) < 2 A2ap(B,),  and
/ij(gc) dp(x) = 0.

(4) Z,u <C'oz ! ||f||L1, where C' depends only on Ay and As.
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PrROOF. Let E, = {a: eX ‘ M[fl(z) > a}. Then E, is an open set. Using
the hypothesis on a and Theorem 1.12, we have

p(Ea) < Ca™H [ f] 1 < n(X).
Thus E, G X.

Since E, & X, Lemma 1.10 gives us a collection of balls {B; = B,(x;,d;)} and
{B; = By(x;,46;)} such that

(i) For all j, B; C E, and B; N (X — E,) # 0.

(il) Eo = U B;.

(iii) Z w(B;) < C p(E,), where C depends only on A4; and As.
(iv) Each point of E, belongs to at most M of the balls M;.

Now Theorem 1.12 implies that p(E,) < Ca™! H f HLI. Hence (iii) gives

Z“ <7HfHL1’

which is assertion (4).

Let x; be the characteristic function of B;. Since each point = belongs to at
most M of the balls B, it follows that 1 <>, xx(z) < M for all z € E,. Put

_ -t ~ xj(@) 4 -1
bi(w) = x;(2) [zijw)} f@) - /B 0 [;m} F(t) du(t)
=bj1(z) — bj2(z).

Then b; is supported on B;. Since b; is a function on B; minus its average, it is

clear that
/ by (8) dyu(t) =

Next, let y; € Bf N(X — E,). Then since B; C B}, u(Bj) < A3 u(Bj), and y € B}
we have

. wBj] 1
u(B;) Jp Zka ‘f |du { B])] 1(B;) /Bi‘ ’f(t)’d/i(t)
M f(y;)

IN

A
A

IN
NN NN

It follows that

1
@/ b)) du(t) < A3 forl=1,2.
i) JB;
Hence

M(}%) [ iolau) < 2430

This shows that b; € L*(X, du), and also establishes (3).
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Now set
flx) if v ¢ E,;

g(z) =

% S, x3(0) {Zk(t)} _1f(t) du(t) ifz € E,.

Then f = g+, b; If x ¢ E,, then M[f](z) < a. Tt follows from the differentiation

theorem (Corollary 1.13), that |f(z)| < « for u-almost all zinX — E,, and so the
same is true for |g(x)|. On the other hand, we have already observed that

1 x5 (1) 2
@) du(t) < Az a,
W(B) S, S 1) :
so |g(x)] < A3« on E,. This shows that assertion (2) is true. Since u(E,) <
Ca! H f HLI, it follows that g € L' (X, du), proving (1). This completes the proof
of the theorem if F, # X.

O

COROLLARY 1.15. With the notation of Theorem 1.14, the function g belongs
to L*(X,du), and

9]z < Call £l

where C' is a constant depending only on Ay, As and the constant C1 from the
Hardy-Littlewood Mazximal Theorem.

PrOOF. We have

Il = [ la®P e+ [ laoF duco

a4

< AloPu(Ea) + A2 /X (1) dt

< [A2Co+ A5] o[ F]] e

2. The Laplace operator and Euclidean Analysis

We now turn to our first example, the Laplace operator on R", which is given

by
0% 0%u
-~ Ox? +”.+8x%'
The corresponding inhomogeneous equation, sometimes known as the Poisson equa-
tion, is Afu] = g. This equation plays a fundamental role in mathematical physics,
and is perhaps the simplest model of an second order elliptic partial differential
equation.

In section 2.1, we discuss the symmetries of the opertaor /. In section 2.2 we
show that the operator A has a fundamental solution given by convolution with
the Newtonian potential N. In section 2.3, we discuss the connection between this
fundamental solution and the ordinary Euclidean metric on R™. In particular, we
focus on differential inequalities and cancellation conditions satisfied by N that can
be expressed in terms of this metric. Then in sections 2.4, 2.5, 2.6, and 2.7, we

Alul
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show how some of the basic regularity properties of the Poisson equation follow
from these properties of N.

2.1. Symmetries of the Laplace operator.

We begin by noting that the Laplace operator A has invariance properties with
respect to three families of motions of R”.
PROPOSITION 2.1.
(a) The operator A is invariant under translations. Thus for y € R™ and
¢ € C°(R™) we define T,[¢](x) = p(x —y). Then
A[Tyle)] = T, [Ale]]-

(b) The operator A is invariant under rotations. Let O : R™ — R™ be an
orthogonal linear transformation, and put Ro[p](x) = ¢(Ox). Then

AlRolgl] = Ro[Al]]-
(¢) Define the standard Euclidean dilations by setting Dy[p](z) = p(A71z).
Then
A[DAlel] = A7 DA[Ale]]-
PROOF. Assertion (a) follows since A has constant coefficients. Assertion (c)
is a simple application of the chain rule. We use the Fourier transform to establish

(b). Suppose that ¢ € C§°(R™). Recall that the Fourier transform F[y] was defined
in equation (1.10). Integration by parts shows that

Flalel)©) = / ¢2mET A] () di

n

_ 7-('2 2 672772'61’ ) dz
il [ ()
= —an?l¢]? Flol(6)

Now suppose that O is an orthogonal transformation, so that O~! = O
Oz -y==z-0%y. Then

FRolg)] () = / ¢ 2REO () dy = / e~ 2RO (1) dir = Ro [Flil] (€).

n

* where

n

Thus
F[A[Rol]]](€) = —4n*[€]* Ro [F[]] (€)
= —47n°|O¢[* Fl¢](0€)
= Ro[F[A[]]](©)
= F[Ro[A[L]]](€).
Since the Fourier transform F is one-to-one, it follows that A Ry = Rp A\. O

For comparison with later examples, let us note that the translation invariance
and homogeneity of the Laplace operator can be expressed in the following way.
Define a diffeomorphism from the unit ball in R™ to the Euclidean ball centered
at a point = (z1,...,2,) € R” of radius ¢ by setting ©, s(u) = é(« + u). Then
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we can define the ‘push-forward’ A of the operator A under the mapping O, s by
setting

Alpl = Alpo 0]
for p € C5°(Bg(x,0)). It follows from (a) and (c) of Proposition 2.1 that
Alp] = 672 Ae).

2.2. The Newtonian Potential.

Given the invariance properties of A, it is natural to look for a fundamental
solution N : D(R") — D’(R") for A which enjoys the same three kinds of invari-
ance. If the Schwartz kernel for NV is locally integrable and A is invariant under
translation, we must have

Nlpl(z) = . N(z —y) e(y)dy.
If DN = A2N D,, we must have
N(Az) = A\>"" N(x).

And if NV is invariant under rotations, it would follow that N(z) depends only on
|z|, and so N(z) = ¢,|z|?>~™ for some constant c. At least when n > 2, we see in
Lemma 2.3 that this heuristic argument is correct.

DEFINITION 2.2. The Newtonian potential N is the function given by
wy t log(|z)) when n = 2,
N(z) =
wyl(2—n)"z|>™™ whenn > 2.

Here
n n\ 1
w, = 2737 (§>
is the surface measure of the unit sphere in R™.

The function N is locally in LP(R™) provided that p < -5, and in particluar,
N is always locally integrable.

LEMMA 2.3. Convolution with N is a fundamental solution for /. Precisely,
if o € C§°(R™), define

Nlpl(z) = - N(z —y)o(y)dy = . N(y) p(z —y) dy.

Then Ng] € C*(R™), and
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PROOF. Let ¢ € C3°(R™). Choose R > 0 so large that the support of ¢
is contained in the open Euclidean ball centered at the origin of radius R. Let
B(e,R) = {z € R" | e < |z| < R}. We can use Green’s theorem to obain

N(z) Alpl(z) — (x) A[N](z) dx
Ble.R) (2.1)

_ 9 v — o) Y )] do
= [NO3EO ) 0] o0

where 8—‘1 denotes the outward unit normal derivative on the boundary 0B(e, R).
The function N is infinitely differentiable away from the origin, and a direct calcu-
lation shows that A[N](z) = 0 for z # 0. Thus the left hand side of equation (2.1)
reduces to

N(z) Alpl(z)dz = | N(z) Alp)(x) da.
B(e,R) |z|>e€
The boundary of B(e, R) has two connected components: the set S where
|z] = R and the set S. where |x| = e. The function ¢ is identically zero in a

neighborhood of Sg, so this part of the boundary gives no contribution. Thus,
taking account of orientation, the right hand side of equation (2.1) reduces to

o ON
B /q—e N0 = (0) 5 (0)] dor(©).

For |{| = € we have
5= log(e) ifn=2,
N(¢) = and  ——(() =w, €
wl(2=n)"te2™ ifn>2.
Thus Green’s theorem gives
NG Alpla) e = ¢0) +0,20 " | (00 (0] do0)
w;l log(e) s. g—i(() do(¢) ifn=2

|| =e

wil e [o G2(Q)do(¢)  ifn > 2

We now let € — 0. The Lebesgue dominated convergence theorem shows that

lim N(z) Alp)(x) dx = N(z) Alyp)(z) da.

€70 Jjz|>e R"

Also

wit e [ 9(0) = ¢(0)| do(Q)| < € sup [V(z)] — 0;
Se

reR™

oz tog(e) [ 520 ac] < elog(e) sup [o(w)] - 0

w;l (2 - n)*l 62771/ 8—90(() d¢| <e(2-— n)*l sup |Vg0(x)’ — 0.
Se on rER"
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Thus we have shown that ¢(0) = [ N(y) Ale](y) dy = N [Ale]](0). But now
R"L
we can use the translation invariance of A. If ¢ € C§°(€2), we have

o N(z —y) Alpl(y) dy = - N(y) Alel(y + z) dy

=/ N(y) T-. [A[¢]] (y) dy

&= . N(y) A[T-[#]) (y) dy
= p(z),
so () = N [Alg]] (z).

Finally, since Ng](z) = / N(y) o(x — y)dy, the local integrability of N

R
shows that we can differentiate under the integral sign, and it follows that N[p] is
infinitely differentiable. In particular

AW @) = [ N Alel( - y)dy = o),
which completes the proof. (I

2.3. The role of Euclidean geometry.

An obvious example of a space of homogeneous type is the set R" with the

standard Euclidean metric
n 1

do(a,y) = o=yl = (Y (@ — 1))

j=1
and the measure given by Lebesgue measure. Then at least when n > 3, there is
an explicit connection between the Newtonian potential N and dg. Let

Bg(z,0) = {y eR" |dr(x,y) < (5}

denote the standard Euclidean ball centered at  with radius 6. The volume of this

ball is then .
Wn o n n+ 2\ n

Then for n > 3,

B n dE(xay)Q
N(z,y) = (n_z) [Bi (2, dp(z,y))|

Moreover, we can formulate the essential estimates for derivatives of N rather
simply in terms of the metric dg.

LEMMA 2.4. Suppose n > 3. Then for all multi-indices o and § with |a|+|5] >
0 there is a constant Cy g > 0 so that for all z,y € R™

dp(x,y)?~lel-18l
o |BE (I, dE(l', y))
The same inequality holds when n = 2 provided that |a| + |G| > 0.

103 05 N(z,v)| < Ca |l 1ol

| = C:x,ﬁ |x_
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ProoF. The function N is homogeneous of degree —n + 2, and hence 93N is
homogeneous of degree —n—a+2. It follows that the function x — |z[*+*~2 92 N (x)
is homogeneous of degree zero. It is also continuous on the unit sphere, and hence
bounded there, and this gives the required estimate. [

A great deal is known about the operator N. In general, the passage from f to
N|f] increases regularity. Roughly speaking the smoothness of N[f] is improved
by two orders when measured in appropriate norms. Moreover, the operator N is a
paradigm for the properties of an appropriate parametrix of any elliptic operator.
There are many good references for a detailed discussion of these matters!, and it is
not our objective to give an exhaustive account of this material. Rather, we want to
indicate that many of these results do not depend on the explicit formula for N, and
are true for any operator whose Schwartz kernel satisfies differential inequalities and
cancellation conditions that can be formulated in terms of the Euclidean metric.

The appropriate size conditions are already suggested by Lemma 2.4. We shall
consider an operator K given by

Kifl() = | K(z,y) f(y) dy, (2.2)
R’ﬂ
and we shall impose the hypothesis that K is smooth away from the diagonal in
R™ x R™ and that there are constants C g so that for x # y we have

0200 K (2, y)| < Cag dp(w,y)™ 111 B(2; dig(w, )] (2.3)

Notice that N(z,y) = N(z — y) satisfies these estimates with m = 2.

Size estimates alone are not sufficient to establish the regularity results we have
in mind. If we want to show that N[f] is two orders smoother than f, it is natural
to look at a second partial derivatives of A[f], and try to show that this has the
same regularity as f. To understand whether or not this is true, it is tempting to
differentiate formally under the integral sign to obtain

el MIFIPe -/ ON_ (o) f(y) dy.

O0x;0xy, rn 00y
S O’N . : : .
However the function 07, N = Y is not locally integrable, so the integral is
’ T;0Tk

not absolutely convergent, even if f € C5°(R™).

Note that 8]2) xV is a kernel satisfying the hypotheses (2.3) with m = 0, and
8]21 RN is a typical example of a singular integral operator. The regularity of such
operators depends also on certain cancellation conditions on the kernel. In the case
of the Newtonian potential, we have the following.

ProposITION 2.5. For any R > 0 and all 1 < 3,k < n we have

/ ON (Y do(¢) =0 = / IN_ () do(0).
I¢ I¢

|=R ij |=R 8%89%

1See, for example, books on elliptic partial differential equations such as [BJS64], [GT83|,
or books on pseudo-differential operators such as [Tre80].
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PrROOF. We calculate

ON _ n
O (@) = 3N (@) = i
g
and
92N —nw, x| if j # k,
(x) = 05 N(2) =
&rjaxk Ik

w2t 4 422 —na?]|z|T"2 i j =k
Thus each function 9;N(z) is odd, and this gives the first equality. If j # k, the

function 8?7 &V is odd in the variables x; and x) separately, which gives the second
equality in this case. Finally, observe that by symmetry

2do(¢) = 2do(C) = ™ R,
[ Gae@= [ qao="5

and this proves the second equality when j = k. (]

This suggests that in addition to the differential inequalities (2.3), we also
require that when m = 0, for all 0 < Ry < Ry we have

/ K(ay)do = | K(z,y)dy =0 (2.4)
Ri<|z—y|<R2 Ri<|z—y|<R2

To illustrate the utility of the estimates (2.3) and cancellation conditions (2.4),
in the next four sections we discuss four kinds of classical regularity results.

(I) The Hardy-Littlewood Sobolev theorem on fractional integration. Since
this deals with operators for which the order of smoothing m > 0, cancel-
lation conditions are not needed.

(IT) Lipschitz estimates for 8?—7 4 [NV1f]]. This involves a singular integral oper-
ator, and we need the cancellation hypothesis.

(IIT) L2-estimates for solutions 82, [N'[f]]. Instead of using the Fourier trans-
form, we shall see that the cancellation condition can be used to give an
‘almost orthogonal’ decomposition of the operator.

(IV) L'-estimates for solutions 97 , [N[f]]. Here we will combine the L? esti-

mates and the Caldéron-Zygmund decomposition of L!-functions estab-
lished in Theorem 1.14.

2.4. Hardy-Littlewood-Sobolev estimates.

The operator A improves the integrability of functions. More precisely, suppose
1 < p,q < oo with
112
¢ p n
(Note that in particular this means that ¢ > p). Then if f € LP(R™) we will show
that N[f] € L9(R™), and there is a constant C) , independent of f so that

[N Loy < Coa 1 £ 1| ooy
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In fact, we shall show the following more general result. Let 0 < m < n, and
let K : R™ x R™ — C be a measurable function such that

dE (.1?, y)m
Be(;d(z,y))]
for some constants Cy and Cy. Define an operator I by setting

Kifi(z) = | K(z,y) f(y)dy

R

K (z,y)| < Co =Cylz—y[

whenever the integral is convergent.

THEOREM 2.6 (Hardy-Littlewood-Sobolev). Let 1 < p < . If f € LP(R")
then the integral defining IC converges for almost every x € R™. Moreover, if p > 1
and if

1 1
S=--Ty,
q P n
there is a constant Cy ,, so that for every f € LP(R™) we have
KU o@ny < Com (11| o geny-

PROOF. Let z € R™ and A > 0. We have

KIA@I <G [ Je=al ™ wldy = [l e = )l dy

e / W~ @ — )] dy + Cy / W~ o — )] dy
ly| <X [y|>A
= I,\((E) + II)\(:L‘)
Let Rj = {y € R" ‘ 2-0U+HDN < |y| < 279)}. Then

I\(z) =C ly| =" | (@ — y)| dy

<Coye iy [ eyl
=0 ly|<2=9 X
— . 1
=2"""Con "t w, A 27]m7./ fly)ldy
’ jz:f‘) |B(a;277))] B(z;z—n)| W)l
2n—mcown m
< [ Y M@

where M(f] is the Hardy-Littlewood maximal operator applied to f and n~'w, is
the volume of the unit Euclidean ball. On the other hand, using Hélder’s inequality,
we have

7

/n |y| PP gy '
[y[>X

.
7

W, ? .
-G ((m—ﬂ)p'-H1> ||fHLP(]Rn)/\ P,

where (p)~! + (p') 7! = 1. We have used the fact that % -2 >0.

II(z) < Cy H f HLP(R")
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Thus we see that there is a constant C' depending only on n, p, and m so that

n

KLA@] < € " MUY + X5 1] £ 1] |

Since M[f](z) < oo for almost all z € R™, it follows that the integral defining
K[f](z) converges absolutely for almost all . Now let

S
A‘( MIf](2) ) |

mp ya
aq

K@) < C || F]] by MA@ = C || £]] ooy MIA@)

and so HlC[f] HLq <C H f HLP, which completes the proof. O

Then it follows that

2.5. Lipschitz Estimates.

Next we show that the operator N increases differentiability by two orders
when measured in an appropriate way. Thus for 0 < a < 1 we let A,(R™) denote
the space of complex-valued continuous functions f on R™ for which

Hf” _ sup |f(m2)7f($1)| < 00
As z1#x2 ERN |962 - l'l‘a

The quantity || . ||A is not a norm, since H f ||A = 0 if f is a constant function.
We say that f € A, satisfies a Lipschitz condition of order a. Next, if m is a non-
negative integer, then A7'(R"™) is the space of m-times continuously differentiable
complex-valued functions f on R™ such that every partial derivative of f of order
m satisfies a Lipschitz condition of order a. We put

1 g = D 1925114,
181=m

Note that || P | | am = 0 for every polynomial p of order less than or equal to m.

The increased smoothness of N[f] can be expressed by the fact that N[f] is
m+ 2-times continuously differentiable, and every derivative of order m + 2 satisfies
a Lipschitz condition of order . In fact, there is a constant C so that if f € A}
and (say) has compact support, then

MU ree < O g

A key point here is that since N is a convolution operator, it commutes with
differentiation. Thus if f € A7 and if |G| = m we have

02 (11| (@) = N O211] (@),

and the function g = 9?[f] satisfies a Lipschitz condition of order a. Thus the crux
of the matter is the following result.



2. THE LAPLACE OPERATOR AND EUCLIDEAN ANALYSIS 24

THEOREM 2.7. Let 0 < a < 1, and let f € A, have compact support. Then
Nf] is twice continuously differentiable, and there is a constant C independent of
f and its support so that

" 92 NS
S || 5eak ], <l

Ji.k=1
Before proving Theorem 2.7, we first establish the following preliminary result.

PROPOSITION 2.8. Let f be continuous with compact support. Then N[f] is
continuously differentiable and

NI (z) = ON

8a:j Rn 83:]-

(y) f(z —y) du.

PROOF. Choose x € C*°(R) so that 0 < x(¢) <1 for all ¢ and

o {0 Hrst
X731 e > 2

For z € R™ and € > 0 put ¢.(z) = x (e |z[). Then ¢, is supported where |z| > ¢,
V. is supported where € < |z| < 2¢, and [V (x)| < Ce™! < 2C |z|~L. Put

Nelfl(x) = | N(x—y)pe(z —y) fy) dy.

R
Then
WIl@) = NlA@] =] [ N =) [1 = ecla =) £(0) ]
< Cuswp [f(@)] [ [y dy
rERP ly|<2e
< C, sup |f(x)| €.
zER"

Thus N¢[f] — N[f] uniformly on R" as ¢ — 0.
On the other hand, the function © — N(x — y) p(x — y) is infinitely differen-
tiable. Thus N.[f] is infinitely differentiable, and

W<x> - [ B e-niw
Put .
R “bg
Then

MA@ - o W@] =] [ GEIN0 = el =) s i

<y sup / (jz — 4]~ + €N (z — y)]) dy
z€R™ J|z—y|<2e

Cr, sup,cpn | f(2)| € ifn>2,
<
Ag sup,epe | f(z)|€[1+log (e71)] if n=2.
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Thus 9;[N[f]] — N;[f] uniformly on R™ as ¢ — 0. Combined with our first
observation, this shows that N[f] is differentiable and 9, N'[f] = N;|f], completing
the proof. O

In attempting to show that A[f] is twice continuously differentiable when f €
A, we have already observed that we cannot simply differentiate under the integral
sign since 8?,1@]\7 is not locally integrable. However if f € A, we do have

PN o) [tw) - £@)| < Cull ]Iy =2l
dxj0xy, - Aa
and so 62 NV (x—y) [ ] is locally integrable as a function of y. To obtain

a correct formula for 6‘2 [N [ f]}(x) we need to make use of cancellation properties
82
Lk

LEMMA 2.9. Let f € A, have compact support. Then N[f] is twice continuously
differentiable, and for any 0 < R < oo we have

PN, L G e
W(I) = fla)+ /HKRaxjaxk (z—y)[f(y) — f(2)] dy .
0’N .
" /lx—yzR W(x —y) f(y)dy,

1 ifj ::kv
0 ifj+k.

where both integrals are absolutely convergent, and 6; ) = {

ProoF. With ¢, defined as in Proposition 2.8, put
ON

Nilfl@) = | o, "W W) dy
Nyelf@) = [ S = nede =) 1) dy
0j k 0’N
Nialfi@) = s+ [ e[ - f@) dy
0?°N
s e

Then since (1 — p.) is supported on the ball centered at the origin of radius 2¢, we
have

G 1)) = Nl f)(@)] = | Rna M —0) (1 - e — ) ) dy
8N
- )| d
<[ la e vliswia
< C, sup |f(z)] ly| ="+ dy
zER™ ly|<2e
< C) sup |f(z)|e.
rER™

Thus N ¢[f] — N;[f] uniformly on R" as € — 0.
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But now Nj ([f] is infinitely differentiable, and

W@):A 0 [gi\;we]( —y) f(y)dy

n aSEk

- el e]e -l - fe)a

r—y|<R axk

+f(l’)/ 0 [gi\;sae}(xy)dy

z—y|<R aixk
0 [ON
+ /Ix—ylzR orr [87@ @e} (x—y) fly)dy

Now ¢c(x —y) =1 when |z — y| > 2e. Thus if R > 2¢ we have

/l 0 [giv ‘pe]( y) f(y) dy_/l ﬂ(x—y) fly) dy.

z—y|>R Oy o—y|>r 0T;0T)

Also, if € < R we have, by the divergence theorem,

/| P E (R /C O (€) 0el€) G do(0)

z—y|<R axk I¢|=R al‘j

- /< ON (&) ¢ do(0)

ic|=r 07;
0 if j#k,
: 1oifj=k
Thus
[N
[Nialf) (o) - Mm‘
’ /w y|<2e a$k 33:] ( 906)} (z—y) [f(y) — f(z)]dy
< Cul[ 1]y,

26

Hence Oy [Njc[f]] — Njx[f] uniformly on R™ as € — 0. This shows that N[f] is

twice continuously differentiable, and is given by equation (2.5).

O

To prove Theorem 2.7, it suffices to show that if f € A, has compact support,

and if
Fa) = /| ON (o) [f) — f()] dy + / N

r—y|<1 a$j8$k lz—y|<1 8xj8xk

(x—y) fly)dy

then F' € A, and || F | |A <C || f HA for some constant C independent of f and
its support. In fact, we will show that this holds if the kernel BikN is replaced by

any function having the same size and cancellation conditions.

Let K be smooth away from the diagonal in R™ x R™ and suppose
(1) For all z # y, |K(z,y)| < Colz —y|™".
(2) For all x £y, |V, K (2,y)| + |V, K(z,y)| < Cylz —y[7" L.
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(3) For all 0 < Ry < Ry we have

/ Ko de = [ K(z,y)dy =0,
Ri<|z—y|<R2 Ri<|z—y|<R2

If f € A, has compact support, we can define
K = [ Ko -s@ld+ [ K i) d
la—y|<1 le—y|>1

and both integrals converge absolutely.

THEOREM 2.10. Let 0 < o < 1. There is a constant C, depending only on Cy
and Cy so that for all f € A, with compact support we have

wp Klw2) = Kl

mlixzeR” |SC2 - x1|0¢

< Ca[£]]5e-

PROOF. Let 21 # x2 € R™ and put § = |z2—x1|. Since f has compact support,
there exists R > 30 (depending on f) so that |z; — y| > R implies f(y) = 0.
Using the fact that the function y — K(z,y) has mean value zero on the set
1< |z —y| < R, it follows that

K[ f)() = / K(z;,9) [ (4) - £(z;)] dy.

|mj—y|<R

Let ¢ € C§°(R™) be a radial function such that ¢(z) = 1if |[z| < Rand 0 < ¢(x) <1
and |V (z)| < |z|7! for all x € R™. Then we can write

KlflGe) = [ Kla)vla; =) [16) = 1G] dn
Then
KIf)(e2) — KL7)(o)

— [ (K0 a) (1)~ @) — (6 0)aa,w) (FG) ~ Flan)) dy
= [ Kway) (1) - ) - K@) (F6) — f) dy

B(x2,20)
[ (K ) 0) () = Fa) = (K 0)(or,w) (F0) = Flan)) dy
B(x2,28)°
=1+1I.
Now B(z3,20) C B(x1,30). Thus using the size estimates (1) for K we have
Il < C — || K d
H<allfll, [ sl KE
C —x1|%|K d
caollfll, [ e ml
C n « « «
< =2 1], [20)7 + (36)°] = Cn) || £, 67

To deal with I, we rewrite the integrand as

(f(y) = f21)) [(K ) (@2, y) = (K ¢) (21, y)] + [fz1) = flz2)] (K ¥) (22, ).
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Since 1) is radial, we can use the cancellation condition (3) to conclude that

/ [f(x1) = f(2)] (K ¢)(22,y) dy = 0.
B(z226)°
Thus
< e [ =PI ) = ()l dy

ly—z2|>
If |y — x2| > 26, it follows that
1

[y —ail Sy — 2| + 22 —a1| = |y — 22| + 6 <[y — 22| + S ly — 22],

and so
3
ly — 21| < §|y*131\-

Also, using the mean value theorem, it follows that

(K ) (22,y) — (K9¥)(21,y)| = |r2 — 21| [V (K ¥)(Az2 + (1 = N)21, Y]
< g(co+cl)5|y—x2|*”*1.

Thus
3 1+«
< (3) @renlirllnef  pew
ly—z2|>28
3 14+ W,
:<2> (Cot+ C1) 12 || £, 6 = Clm@) | £ ]I, 5
This completes the proof. (Il

2.6. L2-estimates.

We have seen that the operator which takes a function f to 3?7k [N[f]] can be
written as an operator of the form

Klgl(z) = / K@)~ o] dy + / K(y) plz —y) dy

lyI>=R
where K € C(R™ — {0}) and we assume that

(1) For all z # 0, |K(z)| < Colz|™™.
(2) For all x # 0, |[VK(x)| < Cy|z|~™ L.

(3) For all 0 < Ry < Ry we have / K(x)dz =0.
Ri<|z|<R2

We want to show that the operator K, defined for ¢ € C§°(R™), has a bounded
to L?(R™). Since this operator is given by convolution with a distribution K, it is
natural to use the Fourier transform and the Plancherel theorem to reduce the prob-
lem to showing that the Fourier transform of the distribution is uniformly bounded.
This can certainly be done, but since we will not have the Fourier transform avail-
able in later examples, we prefer to use a method with wider application. This is
based on an ‘almost orthogonality’ argument, and the key result is the following.

THEOREM 2.11 (Cotlar-Stein). Let {T}}, j € Z, be bounded operators on a
Hilbert space H. Assume there are constants C' and € > 0 so that for all j, k € Z
we have
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(1) || L] <.
(2) || T} Ti || < C27<li=H,
3) |77 || < 02,
There is a constant A so that for all N

N
| 3 ml|<a
N

=

This is proved, for example, in [Ste93], pages 279-281, so we do not reproduce
the argument here.
Now let x € C3°(R) satisfy

(1) 0< x(t) <1forallt€R;
(ii) We have

— 87
X(t) =41 if <t <3,
0 if1<t

Put x;(t) = x(277t). Then each ¢ > 0 is in the support of at most 4 of the functions
{x;} Put

1
U(0) = [ xk®)] ()
k
Then ¥, is supported on 2773 <t < 27 and
o0
(i) Y W,(t)=1forallt>0.
Jj=—00
N
(iv) Z VU, is supported on 27N=3 <t <2V and is identically 1 for 2=V <
j=—N
t < 2N-=3,
Now put

Kj(x) = W;(|z]) K ().
Then it is not difficult to check that {Kj}, j = 0,£1,+£2,... is a doubly infinite
sequence of continuously differentiable functions on R™, and there is a constant C'
so that

(1) For all j € Z and all z € R™ we have |K;(z)| < C 27,
(2) For all j € Z and all x € R” we have |VK;(x)| < C 2=+,
(3) For all j € Z, K; is supported in the ball Bg(0;27).

(4) For all j € Z, K;(x)dx =0.
R"L

Moreover
oo

(5) Z K;(z) = K(x) for « # 0.

j=—o00
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N
(6) KW — Z K is supported 27N=3 < |z| < 2V, and is identically equal
j=—N
to K for 27N < |z| < 2V~3. Moreover, the kernel KV satisfies the same
conditions (1), (2), and (3) as K with constants that are independent of
N.

Set
Kjlf)(x) = Kj * p(x) = A K;j(y) f(z —y)dy.
It follows that if ¢ € C§°(R™), we have

Mﬂuw=/KRK@wﬂx—w—wuﬂmH-|>faw¢u—yMy

N
= lim/ Y K(y) ez —y)dy
nj:_N

N—o0

N
= lim Y Kylel(@).

N—o0
j=—N

Thus if we can show that the operators {/;} satisfy the almost orthogonality con-

ditions of Theorem 2.11, it follows from Fatou’s lemma that for ¢ € C5°(R™) we

have

2
’dx

n N—oo

, +N
|Mwmmwélmyz%&mm

+N )
<1i Kilel(@)| d
zrvnjilop/Rn j:Z—N ilel(z)| dz
2
SAQ||<PHL2(R7L)'

It follows from (1) and (3) that
HKj ||L1(Rn) = /| _ |Kj($)’d$ <Cc2™m |BE(O;2j)| <Cntw,
| <27

since n~lw, is the volume of the Euclidean unit ball in R™. Now if f,g € L'(R"),
we always have

=gl = [ Arso@iae< [[ ir@=wllawldyde =] £]], |l s]].

and consequently || K; =Ky || 11 < (Cn~'w,)?. However, the differential inequality
(2) and the cancellation property (4) allow us to get a better estimate when j # k.

ProproSITION 2.12. For all j, k € Z we have

|| K« Ki ||, <2 (Cn~tw,)? 277K,
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PRrROOF. Without loss of generality, assume that j < k. Then

Ky = Ky(a)| = | [ Kie —y) K ) dy
= ‘ /n [Kk(x —y)— Kk(x)] K;(y) dy’ (using assumption (4))

S/ | Kk(z —y) — K ()| | K (y)| dy
B (0;29)

< / ly| sup |VKi(2)||K;(y)| dy (Mean Value Theorem)
Bp(0;2/)  z€R™

< C2j_("+1)kH K; HLl (using estimate (3)).

On the other hand, if K; * Kj(z) # 0 we must have |y| < 2/ and |z — y| < 2*, so
o] < |z —y[+Jy| < 2-2*. Thus

|| K« Ki ||, <C27 R K], [B(0;2-2F) < 2" (Cntwy)? 20 7F,
This completes the proof. ([

LEMMA 2.13. Let {K,} be functions satisfying conditions (1) through (4), and
for each j € Z define an operator T; by setting

Tf)w) = Ky fa) = [ Kyla =) ).

There exists a constant C so that for any integer N we have

ey <€ Mgy

2.7. L'-estimates.

It is not true that the operator K from section 2.6, defined on the space C3°(R"™),
extends to a bounded operator on L!(R"), but we do have the following replace-
ment, which is called a weak type (1,1) estimate. Let us write KN = ;;N_N K;.
We will need the following estimate, which is sometimes called the Caldéron-
Zygmund estimate.

LEMMA 2.14. Let n > A, let B = B,(z0;00), and let B* = B,(x0;nd0).
Suppose x1,x2 € B. Then

/ |K[N](yfx1)fK[N](y—z2)|dy§C’.
niB*

THEOREM 2.15. There is a constant A independent of N so that if f € L'(R"™),
then

{o e B ||KM[f)(@) > o} | < § ([,

PrROOF. We apply the Caldéron-Zygmund decomposition of Theorem 1.14 to
the function f. Let E, = {x eR” ’M[f](ili) > oz}. Then we can write f = g +
>_;bj =g+ b where g and {b;} satisfy
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(1) b; is supported on a ball Bg(z;;d;) C E, and bj(xz)dx = 0 while
Rn
16 | @y = C | Byl
(2) If © ¢ E,, then |z —2;| > 2§j;

Z!BE 25 0;)] < C|Ea| < — HfHLl(Rn);
(4) |g x)| < C « for almost all 2 € R™.
Since [KNI[f](z)] < [KM[g](2)] + KNI [b](2)], we have
Ha: e R™ | |k [f)(2) > a}‘

(07

KW [g)(z) > 5}’ U Hx e R™ | [KN[b] () > %}]

Now KM is a bounded operator on L?(R") with norm A independent of N. Thus
using Corollary 1.15 we have

< HxGR”

2
o er |1k > 3} < [ gl as
2
< Allg]l..
sACallfl]L,
and so AAC
{e e R IKMgl@) > T} < =111 ]
Now suppose we can show that
L k@) e < | £ (26)

Then
‘ {x e R"”

K] () > 5
+|{o e R - Ba | K@) > S}

< \Ea

G 2 [N]
<ol s [ KM@

Cl
<Zis,.

which would complete the proof. Thus the key is to prove the estimate is equation
(2.6).

Suppose x ¢ E,. Since the integral of b; is zero, we have
‘IC[N] |—‘/ KWz —y) dy‘
| [ KM@=y - K= )] b0 b

< [ 1 =)~ K )| )] dy
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and hence

/ |K™b,)(2)] da
R*—E,
Mg — ) — KN (2 — 2 del| 15,
S/n [/}R"—EJK ( y) — K7 J)’d b (y)| dy

<c [ bl
Rﬂ,
S C/ (0% ‘Bj | .
It follows that

N1 ()| dz N[b)(x)] da:
L, ) a <;/RLEQ|’C by)(2)] d
<Ca ) |Bi]

< [ ]lp-

3. The heat operator and a non-isotropic metric on R"*!

We introduce coordinates (t,2) = (t,21,...,2,) on R x R® = R"*1 Then the

heat operator is
2 2
(6t—Aw)[u]:%—a—Z ..... ou
t Oxy 0x2

The inhomogeneous equation d;[u] — A, [u] = ¢ describes heat flow in the presence
of heat sources specified by g. The heat operator is a typical example of a parabolic
partial differential operator.

In section 3.1 we review the symmetry properties of this operator, and introduce
a non-isotropic metric on R**! which turns out to be the appropriate analogue of
the standard Euclidean metric for the Laplace operator. In section 3.2 we study
the initial value problem for the heat operator, find an explicit formula for the heat
kernel, and use this to construct a fundamental solution for the heat operator. In
section 3.3, we see how the non-isotropic geometry is reflected in the boundary
behavior of solutions to the initial value problem.

3.1. Symmetry properties.

Since 0y — A, has constant coefficients, it follows that the heat operator, like
the Laplace operator, is invariant under translations. However, the heat operator
is not homogeneous with respect to the standard Euclidean dilations, and this is
perhaps the first sign that the underlying geometry is different.

We can define a family of non-isotropic dilations on R**! by setting

Dya(t,z1,...,2n) = ()\zt, AL, .oy Ay,).
The corresponding action on functions is given by

Dy lel(t, x) = oA, A ).
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Like Euclidean dilations, each mapping Dy s : R"™ — R"T! is an automorphism
of the vector space structure; i.e.

DH,(S [(t,l‘) + (Shyﬂ = DH,ts[(t’ 33)] + DH,6[(3’y)]'

Also .DH’(;1 e} DH,62 = DH’5152.
The reason for introducing these non-isotropic dilations is that we have

[at - Az:l [DH,)\[SD” = )‘72 [at - AI] [90]7 (31)

so that the heat operator is homogeneous with respect to these new dilations. This
is clearly the analogue of part (¢) of Proposition 2.1.

We can also introduce a pseudo-metric dz on R™*! which is compatible with
this family of dilations. (Here the notation dy stands for a ‘heat’ distance). Put

1
dr ((t,2), (s,9)) = [(t = 5)* + o —y|"] .
It is not hard to check that dy is a pseudo-metric. Let us put

By ((2,t),6) = {(s, y) € R™! ’dH((t,x), (5,)) < 5} .

Then the volume of such a ball of radius ¢ is a constant times 6”2,

The balls in this new metric are quite different frOfn the standard Euclidean
balls. Note that if d ((¢,2), (s,y)) = [(t—s5)?+|z—y[*]* <4, then |t—s| < 6% and
|z —y| < 6. Conversely, if |t —s| < 6% and |z —y| < &, then dy (¢, 2), (s,y)) < 2% 4.
Thus By ((t,z); §) is essentially the Cartesian product of a Euclidean ball of radius
J in the z-variables with an interval of length §2 in the t-variable. For small §, the
balls are much smaller in the ¢-direction than in the z-directions, which for § large,
the situation is reversed. Thus the balls are non-isotropic.

In general, if A is a symmetric n X n real matrix, we can define a family of
dilation on R"™ by setting

D s[x] = €8O Az].
Then D, is the identity operator, and Das, © Das, = Da (s,5,)- 1f all the
eigenvalues of A are positive, we have lims o+ D4 s[x] = 0. If A is the identity
matrix, then Dy s is the usual family of Euclidean dilations. If A is the (n + 1) x
(n + 1) diagonal matrix with entries {2,1,...,1}, then Dy s = Dg 5.

We say that the homogeneous dimension of R™ under the family of dilations
{Das} is Tr[A], the trace of the matrix A or equivalently the sum of the eigenvalues
of A. Then the homogeneous dimension of ordinary Euclidean dilations on R™ is
n, while the homogeneous dimension of R"*! under the dilations {Dy s} is n + 2.
Thus both Ny and Hy are homogeneous (on R™ or R"1) of degree 2 minus the
relevant homogeneous dimension.

3.2. The initial value problem and a fundamental solution.

We begin by considering the following initial value problem for the heat op-
erator. Given f € L?(R"), we want to find a function F € C®(R x R") such
that:

OF " O*F
(1) E(t,x) - ; a—x?(t,x) =0fort>0and x € R™

(2) If we put Fy(z) = F(t,x), then }irr(l) F, = f with convergence in L?(R".
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To motivate the solution, we argue informally as follows. Suppose F' were a
solution. Let

FolFI(t,€) = F(t,€) = / e~ 2T Bt 2) da,
be the partial Fourier transform of F' in the z-variables. Then if we could integrate
by parts and there were no boundary terms, the partial differential equation in (1)
would become the ordinary differential equation
dF

E(taf) = _47T2‘§|2F(t7€)

This suggests that F(t,&) = C(€) exp(—4n2|¢[2%t), and if F is to satisfy the initial
condition given in (2), then we should take C'(§) = f(£), or

F(t,6) = f(&) e 1P,

Taking the inverse Fourier transform, we would get

F(t,z) = . Hi(z —y) f(y) dy
where

2
|z

Hi(x) = / 2miw € AT It ge — (4nt)~% e ar,

the inverse partial Fourier transform of e~47*€1’t This informal argument is justi-
fied by the following result. Define

2
|z

(4rt)~% e 10 ift >0,
0 if t <0.

Ho(t,z) = Hy(z) = { (3.2)

THEOREM 3.1. Let 1 <p < o0, and let f € LP(R™). Put

lz—y|?

F(t,x) = Hy # f(z) = / (4rt)"F e =T f(y) dy.

n

Then F € C>((0,00) x R™) and
OF ~ 0°F .
(1) E(t,x)—;a—x?(t,x) =0 fort >0 and x € R";

(2) tlg% ||Ht*f_f||Lp(Rn) =0.

(3) If ¢ € C°(R™) then }LI%HHt *<p7<p||Loo(Rn) = 0.

OH
PROOF. A direct calculation shows that a—to(t, x)— Ay [Ho)(t,z) =0fort >0

and x € R™. For t > 0, the rapid decay of Hy(t,z) as |z| — oo justifies differentiat-
ing under the integral sign, an so E(t, x) — ANg[F](t,x) =0 for t > 0 and z € R™.
Next,

Hy(z)dz =n"% / el gz = 1.

n

Rn
Thus if ¢ € C§°(R™) we have

7

Hexpla) ~ pla) = [ (amt) te oo~ y) - plo)] dy
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It follows from Minkowski’s inequality for integrals that

]

||Ht*<p—<p||Lp(Rn)S/ (A t)"2e™ 5 || T [0l = @[ oy

n

where Tyyp(x) = ¢(x — y) is the translation operator. Translation is continuous in
LP(R™) for 1 < p < oco. Thus if € > 0, there exists > 0 so that |y| < n implies
|| Tyle] — o HLP(Rn) < e. It follows that

||Ht*‘p_‘p||Lp(Rn)

y2 n 2
ge/ (m)—%e—%dy+2|y¢|\Lp(Rn)/ (drt)Fe % dy
lyl<n

ly|>n

< e+ 2 %) . 7-(7%/ 67‘y|2dy.
el @ lyl>n/(2v)

The second term goes to zero as t — 0, and so lim;_,g H Hyxp— <p||LP(Rn) = 0.
Since the space C5°(R™) is dense in LP(R™), this completes the proof.

We now show that a fundamental solution for the heat operator on R x R™ is
given by H((ta Cﬂ), (S,y)) = HO(t — 5T = y)

LEMMA 3.2. Convolution with H is a fundamental solution for the heat operator
on R x R™. Precisely, if ¢ € C3°(R™*1), define

Higl(to) = [[  H =50 — ) ol dsdy.

Then H[p] € C>°(R™ 1) and

@(t7x) = H[(at - AI)[@H (t’x)7
p(t, ) = (0 — Ds) [Hg]] (¢, ).

PROOF. Integrating by parts, and using the fact that 0, H (t,z) = A H(t, )
for t > 0, we have

> 0 < oOH
[ [ e S -sa—yasdy= [ |76 et 50—y dsdy

+ RRH(cyﬁp(t—e,x—y)dy

:/R /OOAyH(s,y)ga(tfs,:rfy)dsdy
+ RnH(ay)@(t*e,w*y)dy

:/ /OOH(s,y)Axcp(t—s,a:—y)dsdy

+ A H(e,y)p(t —e,x —y) dy.
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Thus
// H(s,9) [~ Aufgl] 0~ 5,2 — y) dsdy

= [ H(eyo(t—ex—y)dy
]:R’VL

= H(e,y)p(t,xz —y) dy + o H(e,y)lpo(t — e,z —y) — o(t,z —y)| dy

If we take the limit as € — 0, the first integral on the right converges to ¢(t, ),
and easy estimates show that the second integral tends to zero. It follows that

[ [ 60 15 - 2ol - s - ) dsdy = o(t.),
n Jo

We now ask whether the behavior of the heat kernel H(¢,x) can be described
in terms of a metric on R x R™. Let us write

H((t,z),(s,y)) = H(t — s,z —y).

One cannot express the size of H in terms of the standard Euclidean metric. For
example, if z = y, the Euclidean distance between (¢, ) and (s,y) is |t — s| and for
such points we have

n

H((t, x), (y, s)) ~ dE((t, x), (s, y))_ 2,
On the other hand, if ¢t — s = |z — y|? and if |x — y| is small, we have
dp((t,), (s,9)) = Ve —y? + |t = s> = V]e —y> + o —y[t = |z —y,
and for such points we have
H((t, x), (y, s)) ~ dE((t, x), (s, y))_"

Thus H((t,x), (y,s)) is not comparable to any fixed power of the Euclidean dis-
tance.
Now one can check that

du((t,), (5,9))*

H{(t:2), () < Co G dn(to). g (33)
and more generally
2—|a|—|Bl—2|y|-2é|
02000 H((1,2), (5,1))]| < g 2L () (3.0

Br (2. 1), du((t,2), (s.9))]

It is clear that the introduction of the metric dgy allows us to write estimates
for the fundamental solutions N and H in equations (2.6) and (3.3) which have
exactly the same form. The estimates for derivatives in equations (?7) and (3.4)
are very similar, but there is an important difference. When dealing with the heat
equation, each s or ¢ derivative of the fundamental solution introduces a factor of

dg((t,x), (s, y))72, and thus behaves as though it were two derivatives in x or y.
O
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3.3. Parabolic convergence.

If we were to replace the heat operator by the Laplace operator —g—; AV
we could pose an initial value problem similar to that discussed in the last section.
Now the problem amounts to finding a harmonic function u(t,z) on (0,00) x R™
such that lim;_ou(t, -) is a prescribed function f € LP(R™). This is called the
Dirichlet problem, and if one imitates the proof of Theorem 3.1, one can check that
the solution is given by the Poisson integral

u<t,x>r(”;1> f"T“/R L fy)ay.

n |z —yl? 4+ 12

In addition to convergence in norm, it is also a classical fact that u(¢,y) con-
verges pointwise to f(z) for almost all 2 € R™ when (y,t) lies in a non-tangential
approach region with vertex at x. Thus for each a > 0 consider the conical region

Cu(z) = {(t,y) € (0,00) x R"

|y—x|<at}.

The result is that if f € LP(R™), then except for x belonging to a set of measure
zero, we have
lim  u(t,y) = f(x).
(t,y)—(0,x) (t9) = f(@)
(t,y)€Ca (x)
It is well known? that this results depends on estimating the non-tangential maximal
function in terms of the Hardy-Littlewood maximal function:

sup fu(t,y)| < Aa M[f]().
(t,y)€Ca(x)

We can clearly see the difference between the standard Euclidean setting and
the non-isotropic geometry associated to the heat operator when we study pointwise
convergence as t — 0 of the solution H; x f. For each z € R™ and each a > 0,
consider the parabolic approach region

Ta(w) = {(ty) € (0,00) x R"| |y — | < a vt}
The analogue of the statement about pointwise convergence of the Poisson integral
is then:
Let 1 < p < oo and let f € LP(R™). Then there is a set E C R™ with Lebesgue

measure zero so that for all x ¢ E and all « >0

lim H,; * = f(x).
(t)—(0,2) f) = J(@)
(t,y)€Tla(z)

This result depends on the following estimate for the parabolic maximal function.
LEMMA 3.3. For each o > 0 there is a constant C = C(n,a) > 0 depending

only on the dimension n and on « so that if f € LY(R™) and if F(t,z) = H;* f(x),
then

sup  |F(t,y)| < C(n, a) M[f](x).

(t,y)€la ()

2See for example, [Ste70], page 197.
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PRrROOF. Let
Ry = {z eER"||2| < 204\/%} , and
R, = {z eR" | 2avi < |z < 2f'+1a\/i} for j > 1.

Note that if |z — y| < av/t and if |z| > 27/t for some j > 1, then
i=y—a)| _ |l =le—y

2Vt T 2Vt
Then if (¢,y) € I'y(z) we have

| > 9i-1g

I(y—z)—=|2

Fto) < (nt)d [ o o2
= (4rt)”2 Z/R ~ gt |f(x+ 2)|dz

2 (%)

oo

|B(z, 20/7)| /B N LICITE

S B2 Vi) £(2)] dz
j=1 B(z,2i+1a/t)
< C(n, a) M[f](x),
as asserted. O

4. Operators on the Heisenberg group

Our next example is motivated by problems arising in complex analysis in
several variables.

4.1. The Siegal upper half space and its boundary.

In the complex plane C, the upper half plane U = {z =z 41y | y > 0} is
biholomorphically equivalent to the open unit disk D = {w € (C‘ |w| < 1} via the

mapping .
z—1

z+1
In C**!, the domain analogous to U is the Siegel upper half-space

n
Upnt1 = {(zl, ey Zny Zng1) € CMTE ‘ Sm|zp41] > Z \Zj|2}a

Ud>z— w= ebh

which is biholomorphic to the open unit ball
n+1

IBn-l—l == {(w17"'awnawn+1) E Cn+1 ’ Z |w]‘2 < 1}
j=1

via the mapping U, +1 3 2z — w € B, 11 given by

( ) 22’1 QZn Zn+1 —1
w = (Wo,W1y...,WN) = T e " " .
N Zng1+1 T Zpqpr 1 2y +
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We can identify the boundary of U, 11 with C" x R via the mapping given by

n
OUp11 > (zl,...,zmt—i—i2|zj|2) — (21, ,2n,t) €C" x R.
j=1

The boundary of the upper half plane U C C is the set of real numbers R. We
can identify this boundary with a subgroup of the group of biholomorphic mappings
of C to itself given by translations. Thus for each a € C, let T,(z) = a + z. Then
Sm[T,(z)] = Smla] + Sm|z], so T, carries horizontal lines to horizontal lines. If
a € R, then T, carries each horizontal line to itself, and carries U to U. The set
of translations {Ta}a cr 18 a group under composition, which is isomorphic to the
additive group structure of R.

To find the analogue in several variables, we proceed as follows. We write
elements z € C"*! as 2 = (2/,2,41) where 2/ € C" and 2,,; € C. For each
a=(a',a,41) € C"! consider the affine mapping

Toa(2) =Tiaran1) (2, 2041) = (0 4+ 2/, ang1 + 2p41 + 20 < 2/ a" >)

where < 2/,a’ >= Z?Zl zja; is the Hermitian inner produce on C". Note that

Ty is the identity map, and that the collection of mappings {{TZ}Z cont1 18 closed
under composition and taking inverses. In fact
T(a’7an+1) ° T(b’7bn+1) = T(a'-i-b',an+1+bn+1+2i<b',a'>)
(T(a’,an+1))_1 = T(—a’,—an+1+2i<a’,a’>)~
It follows that if we set
(a' an=1) - (',bp=1) = (' + b ani1 +bpy1 +2i <V,ad >), (4.1)

then C"*! becomes a group with this product, and

T(a',an+1)(zlv Zn-{—l) = (a/v a7l+1) ’ (Z/a Zn+1)'
The analogue of the height function Sm|z] in one variable is the function
n
p(2) = p(&', 1) = Smlznia] = 3 12
j=1

A simple calculation shows that

p((a/, an+1) - (V) bn+1)) = p(a’, ant1) + p(b', bt1)- (4.2)

Thus T, maps each level surface M; = {p(z) = t} into the level surface My ().
Now Mj is the boundary of U,, 1, and if a € My, then T, maps each level surface
M, into itself, and maps U, 11 into itself.

It follows from equation (4.2) that the collection of mappings {TZ}Z cnp 18 @

, and if we use the coordinates (z,t) €

“o»

subgroup of C™*! with multiplication
C™ x R, this multiplication is given by

(z,t) - (w,s) = (z+w,t + s+ 23m[< w,z >]). (4.3)
C™ x R with this multiplication is called the n-dimensional Heisenberg group H,,.
The point (0,0) is the identity, and (—z,—t) is the inverse of (z,t). It is easy to
check that (z,%) - (w,s) = (w,s) - (z,t) if and only if Sm[< z,w >] = 0, so the
group is not commutative. It is sometimes convenient to use real coordinates on
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H, = C" xR = R"xR"xR. Thus we write z; = z;+1iy;, and write (z,t) = (x,y, t).
Then the Heisenberg multiplication is given by

(x,y,t) - (u,v,8) = (x +u,y+v,t+s+2[<y,u>—<z,v>])

where now < y,u > and < x,v > stand for the standard Euclidean inner product
on R”.

4.2. Dilations and translations on H,,.
We introduce a family of dilations on C* x R =R™ x R™ x R by setting
DH,5(£7 Y, t) = (6'/Ea 5y7 52t)

Then Dy 5[(z,y,t) - (u,v, )] = Dus[(x,y,t)] - Du,s[(u,v, s)], so that these dilations
are group automorphisms. Thus in the Heisenberg group, the ¢ variable has order
2, much as the time variable ¢ has order 2 when studying the heat equation. The
homogeneous dimension of R™ x R™ x R under this family of dilations is 2n + 2.

We can define translation operators for the Heisenberg group in analogy with
Fuclidean translation, but since the group is not commutative, it is important to
define the multiplication correctly. Thus define the operator of left translation by
setting

L(u,v7s)[f}($7yvt) = f((u7v75)71 ! (JE,y,t))
=flz—uy—vt—s—2(<z,0>—<yu>)).

If P is an operator acting on functions on H", P is left-invariant if P L, , s =
L(yp,s) P for all (u,v,s) € Hy,.
Define (2n+1) special first order partial differential operators on H" as follows:

_ 0 el
for 1 <j <n, and T=—.
_ 0 el
Yj =5, — 22 5

Then

L(u,v,s)Xj[f](xay,t) :Xj[f](x*U,yfvat7872(< T,v > — <yvu>))
o

_%(x—u,y—v,t—s—2(<x,v>—<y,u>))

+ 2(y; —vj)%(x—u,y—v,t—s—2(< T,0 > — <Y, u >))

On the other hand, since Ly, o [f](2,y,t) = f(ac —u,y—v,t—s—2(<z,v>—<
Y, U >)), it follows that
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X; L(u,v,s)[ﬁ(x» y,t)

z—f'(x—u,y—v,t—s—2(<x,v>—<y,u>))
2w (r—uy—v,t—s—2<z,v>— <yu>))
—|—2yj—f(x—u,y—v,t—s—2(< 0> — <y,u>))

z—f'(x—u,y—v,t—s—2(<m,v>—<y,u>))

0
+2(y; *Uj)%(zfu’yfv,t7572(< T, v > — < Y,u >))
= L(U:UvS) Xj[f](xvyvt)

Thus Xj is a left-invariant operator. A similar calculation shows that Y; and 7" are
also left-invariant.?

4.3. The sub-Laplacian and its geometry.

In the Euclidean situation, the first order partial derivatives X; = % are all
J

(Euclidean) translation invariant, and the Laplace operator is obtained by taking
the sum of the squares of all n of these operators. In analogy, we now consider a
family of second order operators L, on the Heisenberg group given by:

Lo=

N

> (X7 +Y7) +iaT
j=1

12 O o2 o2 . g P
=z 2T Loy Y 2 L2 | 4o —.
4;[ax§+ay§ Vi 5,0t xﬂayjaﬁ(xﬁyf)at?} T

When a = 0, this is sometimes called the sub-Laplacian. These operators arise in
studying the d,-complex* on the boundary of U, 1.

Except when o« = £n, +(n+1), ..., the operator £, has a fundamental solution
K,. The operator L, is a combination of the left-invariant operators {X;,Y;, T},
and one may hope that the operator I, which inverts £, also has this property. If
S0, this would mean that if

Kalfl(z 1) :/ Ko((28), (w,5)) f(w, ) dwds,

Cn xR

3If we define right translation by
R(u,v,s)[f](xzyvt) = f((xzyvt) : (urvzs)il) = f(I —u,y— v, t—s+ 2(< z,v > —<y,u >))
and right-translation invariance in the natural way, then X; and Yj are not right-invariant. In-
stead, the corresponding right-invariant operators are
=~ o 0 e}
X

- ) )
= — —2y;—, Y; = 2z —, d T=_.
1T, Mg T gy THime MM ot

4See [Ste93] for definitions and an extensive discussion of these matters. We will consider
the 0p-complex on more general domains in Chapter 7?7 below.
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then we would have

Kalfl(z:t) = Lz, Ka[£1(0,0)
=Ka L(z,t)*l [.f}(()? O)

:t/' Ko ((0,0), (w, 8)) Lo o1 [f] (w, ) duw ds

Cr xR

= / Ko ((0,0), (w, ) f((2,t) - (w,s)) dwds
CrnxR

= / Ko ((0,0), ()" (w,8)) f(w,s) dwds
Cr xR

= f(w, s) ko ((w, s)~t- (z,t)) dsds

H™

= Jf(w,s) Ly s[kal(2,t) dw ds
H’IL

where ko (2,t) = Ko ((0,0), (2,£)7"). But this is just the convolution of f with the
function k, on the Heisenberg group H"™.

THEOREM 4.1 (Folland and Stein [FS74]). Suppose that o # £n,t(n+1),....
Put

ka(z,t) = f:lj r <” ; a) r <" 3 O‘) (1212 — it) " (a2 wit) "
Then Kolf] = f * ko is a fundamental solution for L. Explicitly, if ¢ € C§°(H"),
we have
)=K
=L

8
o
A
—
®
~
=

o(

2,1
o(z,t

)
e
2 2
5,
—
£
-
=

We shall not prove this result, but we now show that there a distance dy on
R3 so that we can characterize the size of the fundamental solution K and its
derivatives in terms of dy and the volumes of the corresponding balls as we did
for the Laplace operator and the heat operator in equations (2.6) - (3.4). Define a
norm on R? by setting

1) || = (@ +927 +2),
and let
By (0;9) = {(a:,y,t) € ]H[| H (z,y,t) H < 5}
be the corresponding family of balls at the origin (0,0,0). We have
|| Dsl(sy, O] ]z = 0[] (9, [[ -
and consequently
B (0;6)] = 6*|B(0;1)].

Since Ko(z,y,t) is homogeneous of degree —2 with respect to the dilations {Dy s}
and is continuous and non-vanishing away from (0,0, 0), it follows that

Ko(a,y,0) = || (2, 9,8) | |2~ ~ || (@, 9, 8) | |57 B (0; || (2, 9,8) | ) |



4. OPERATORS ON THE HEISENBERG GROUP 44

where the symbol ~ means that the ratio of the two sides is bounded and bounded
away from 0 by constants which are independent of (z,y,t). Thus if we take the
distance from the point (0,0,0) to the point (z,y,t) to be

dia ((2,9,1),(0,0,0)) = || (2,3, 8) |, = (2% + 92)2 + )%,

we have
K((x, y,1),(0,0, 0)) = Ko(z,y,t)
~ du (2,9, 1), (0,0,0))” Bi (0; dia (2, 9, 1), (0,0,0)))| ",

Moreover, K((x, y,t), (u,v, s)) = KO((u, v,8)7 1 (z,y, t)) This suggests we should
put

dH((:Ca y7t)7 (’LL, v, 5)) = dH((ua v, 5)71 : (1'7 Y, t)7 (07 07 0))

- ((((E —u)? + (y — 0)2)2 + (t—s—2(zv— yu))2> ,
and the corresponding balls
BH((m,y,t);(F) = {(u,v,s) eR? ‘ dH((x,y,t), (u,v,s)) < (5} .
One can now show that the function dy has the following properties:

(1) du((z,y,1), (u,v,8)) > 0 and du((z,y,t), (u,v,s)) = 0 if and only if
(z,y,t) = (u,v,5).

(2) du((z,y.t), (u,v,5)) = du((uv,v,5), (z,9,1)).

(3) There is a constant C' > 1 so that if (z;,y;,t;) € R? for 1 < j < 3 then

NG

du((z1,y1, 1), (23,93, t3))
< C[da((z1,y1.t1), (22, Y2, t2)) + du((22, Y2, t2), (3, Y3, 13)) |-

Note that the ball By (0;0) is comparable to the set
{(u,us) ||u| <0, || <d, s|< 52}7

and thus has the same non-isotropic nature as the ball By (0; ) we used for the heat
equation. However, the ball ]BH((x, Y, t); 5) is the Heisenberg translate of the ball
at the origin, not the Euclidean translate, to the point (x,y,t). Thus in addition
to being non-isotropic, the ball IBSH((x,y,t);é) has a ‘twist’ as well. The ball is
comparable to the set

{(u,v,9) [[u—a| <8, |Jv—y|<d, [s—t+2(av—yu)| <5},

and thus has size § in the u and v directions, and size 62 along the plane s =
t — 2(ve — uy).
We also have estimates for the fundamental solution K in terms of this geom-
etry. Let us write p = (z,y,t) and ¢ = (u,v,s). Then
K(p,q) ~ du(p, a)* |Bu (p; ds(p, 0))| ", (4.4)
which is the analogue of equations (2.6) and (3.3). We formulate estimates for
derivatives of K not in terms of derivatives with respect to x, y, and ¢, but rather
with respect to the operators X, Y, and T. Note that the operators X and Y do
not commute, so the order in which the operators are applied makes a difference.
Nevertheless, we have the following statement, which is the analogue of equations
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(??) and (3.4). Let P*(X,Y) be a non-commuting polynomial of order « in the
operators X and Y, which we allow to act either on the p = (z,y,t) or ¢ = (u, v, s)
variables. Then there is a constant C,, so that

‘PQ(Xa Y)K(p7 Q)| < Ca dH(pa q)27o¢ |BH (P, dH(pa Q)) |71' (45)

We have not explicitly indicated the effect of differentiation with respect to T.
However, a key point is that T' can be written in terms of X and Y. We have

XY —YX = —4T, (4.6)

and so the action of T is the difference of two second order monomials in X and 7.
Thus we can formulate a more general statement about differentiation that follows
from (4.5) and (4.6). Let P*#(X,Y,T) be a noncommuting polynomial of order «
in X and Y, and of order 3 in T. These operators can act either on the p = (z,y,t)
or ¢ = (u, v, s) variables. Then there is a constant C, g so that

‘PQHB(X7 )/7 T)K(pa Q)| < Ca,ﬁ dH(p7 q)2*0472ﬂ ’BH (p7 dH(pa Q)) (47)

Thus dy is very much like a metric, but satisfies the weaker form of the triangle
inequality given in (3). This suffices for most purposes, and we will eventually see
that there is a true metric such that the metric balls are equivalent to the balls
defined by dy.

|—1

4.4. The space H?(H") and the Szegd Projection.

We now define the analogue of the classical Hardy space H?(D) in the unit
disk. Consider the n complex first order partial differential operators on H™ given
by

1 1[0 0 0 0 0
Zi=—[X;4+iVi] = = | — +i— | —i(z; +iy;) — = — —iz; —
1=K 2[6:@-4—18%} i) 5 = B, g
for 1 < j <n, where we now write z; = z; + iy;, z; = x; — iy;, and

0 1[8 ,8}7

9z 2loz; oy,
i_l[iﬂ-i}
82]-_2 8:cj 8yj ’

If f € L2(H"), we say Z;[f] = 0 if this equations holds in the distributional sense;
i.e. for all p € C°(H™) we have

e f(z,t)mdz gt — 0.

We set
H2(H") = {feL?(H") Z1f1=0, 1gjgn}. (4.8)

It follows from this definition that H?(H") is a closed subspace of L?(H"). Also
one can check that if we set

falz,t) = (14|22 +it) " = (1 + 3 Iz —|—z't)7 ,
j=1

then f, € H?(H") for all @« > n + 1. Thus the space H?(H") is non-zero, and
in fact is infinite dimensional. The Szegé projection S : L*(H") — HZ?(H") is the
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orthogonal projection of L?(H") onto H?(H"). Our object in this section is to
describe S as a singular integral operator.

For p € S(C™ x R), define the partial Fourier transform F in the t-variable by
setting

Flol(z.7) = 3(z,7) = /R 2T (1) dt.

Then the inversion formula gives
p(et) = F U 0) = [ (e, )
R

The partial Fourier transform maps the Schwartz space S(C™ x R) to itself, and

is one-to-one and onto. It follows from the Plancherel formula that it extends to

an isometry of L?(C"™ x R). Using this partial Fourier transform, we show that the

space H?(C" x R) can be identified with weighted spaces of holomorphic functions.
Let us put A(z,7) = €27 =1 dz dr, and define the operator

M[g)(zm) = e ().
Then M F : L?(C" x R) — L?(C™ x R;d)) is an isometry. Let us set
B? = MF[H*(C" x R™)].
PROPOSITION 4.2. A measurable function g on C™ x R belongs to B? if and
only if

(1) l9(z, 7)™ dzdr = || g || < +o0.
Cn xR

(2) For almost every T € R, the function z — g(z,T) is an entire holomorphic
function on C™.

Proor. If p € S(C" x R), we have

_ . 2 0 2
) _ +2mit T 7|2| —7|z|" ~
Zilel(z,t) /Re e —azj [e go} (z,7)drT.

It follows that

- 0
Zj=F M| M,
3zj
so the operator Zj is conjugate to the operator % acting on the space L?(C" x
J
R; d\). The proposition follows. |

4.5. Weighted spaces of entire functions.

For each 7 € R, let L2(C") = L2 denote the space of (equivalence classes of)
measurable functions g : C™ — C such that

lll; = /(C l9(2)Pe 27 dm(2) < +o0.

L? is a Hilbert space, and we consider the subspace

B(C") = B2 = {ge L2(C")

gis holomorphic} .
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Using the mean value property of holomorphic functions, it follows that for any
z € C" and any g € B? we have

9()] < - o)l dmw) < [ [ e am)] g,

Wan J|z—w|<1 Wan
It follows that B2 is a closed subspace of L2.

PROPOSITION 4.3. If 7 < 0, the space B2 = (0). If 7 > 0,

(1) Each monomial z* € B2, || 2* Hi =a"a! (27)71%"" and (2,2°)_ =0
if a# B If
2 = (1" a! (27')_‘0‘"")_1,
QDQ(Z) =cq 2%,

then {@a} is an orthonormal sequence in B2.

(2) If g € B2, then for every z € C"

9(2) = {9, %a) ¢alz)

where the series converges uniformly on compact subsets of C* and the
series Z <g, gaa> o converges to g in the Hilbert space B2.

[e3%

PROOF. Suppose 7 < 0 and g € B2. For 29 € C", let B(zg, R) be the Euclidean
ball centered at zy of radius R. Holomorphic functions are harmonic, and satisfy
the mean value property on any ball. Using this and the Schwarz inequality we
have

9(z0) = |B(z0. R)| " /B ] dm

(o[ e amcal ol
< |B(z0. R)| *||g]l,-

Letting R — oo, this shows that g(z9) = 0. Thus B2 = (0).
Now suppose that 7 > 0. Using polar coordinates we compute

n [e%s)
IES H2 = (2m)" H p205tle=2mr% g — 7 ) (27)~lel=n,
" 0
j=1

Also, if we compute the inner product of two monomials z* and 2°, then if aj # B
for some j, the integral in the 6;-variable will vanish. Thus <zo‘, zB>T =0if a # 5.
If we put 2 = (7™ a! (27)71417") =1 and ¢, (2) = cq 2%, it now follows that {¢,} is
an orthonormal sequence in B2.

Next, if g € B2, then g is an entire function, and hence the Taylor series for
g converges absolutely and uniformly to g on any compact subset of C™. Write
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9(z) =3 gap 28, Then

Ca <97<Pa>.r: lim cq /||<RQ(Z)900((Z)6272|2 dm(z)

R—o0
= Rlim Z o / 0a(2) palz) dm(z)
—© ) |z|<R

= lim aa/ |gpa(z)|26727‘z‘2 dm(z)
|z|<R

R—o0
= Gq-
Thus for any z € C™ we have

9(2) =Y {9, ¢a) a(2).

(03
Finally,

gl

I
g

l9(2)2e~21* dm(2)

= lim Zaa@/ 278 =27l dm(z)
|z|<R

/l o |Zo¢|2€—2'r|z|2 dm(z)
EIRS

Il
=
gE

=[]
BN
L

= Z ‘<ga@a>|2'

«

Thus Z <g, <pa> ¢o converges to g in B2. (I

[e3

LEMMA 4.4. Let P, : L2 — B2 be the orthogonal projection. For h € L2,

P = (2) o [ htwyrese e ),

™

PROOF. Since {¢,} is a complete orthonormal sequence in B2, it follows that
if h € L2 we have Pr[h] = 3 (h,¢a) @s with convergence in B2. Also, for any
z,w € C™ we have

%:@a(Z) Pa(w) = (27:)” za: 5 (27)* 20" = (2;)” 2 <z w>

with uniform convergence on compact subsets of C" x C™. Thus for any z € C" we
have

PHE) = 3 (o) a2

= - h(w) ©u(2) Pa(w)e 21 dm(w)

2\" 9 a7 lwl2
— () 7n h(w)e Tz, w>—27|w| dm(w),
C"L

™

as asserted. O
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Then he space B2 = (0) for all 7 > 0. If 7 < 0, then 2® € B2, and we have
=TT [ hspos o s, = ot ot

j=1"C
It follows that the orthogonal projection P, : L2(C™, €272 dz) — B2 is given by
Pl = T [ gtwyem sz gy,

Now
S[f)(zt) = F ' M~' P M F[f](z,1)

= / e N P M Ff](2,7) dT
R

= / et2mitTo7lzl” P M F[f](z,7)dr
R

et Tl p[(M Ff),](2) dr

Il
~
3

Win / / e+271-it‘r€r|z|2 6—2T<z,w>+27\w\2Mf[f](w’7_) dw " dr
_ 1 0 +2mitr 7|2 | —2r<z,w>+27|w|? 7T\w|2f d n 4
_7?"/,00/@16 e e e [f1(w, ) dw ™ dr
1 0 +2omitT | —2misT _7|z|? =21 <z,w>+7|w|?
—/ /e e e ’ flw,s)dsdwt™ ,dr
R

-/ /C L Hw.9) S((1). (w,5)) dwds

where
1 /0 ,
S((z,t), (w,8)) = — / 2mili=s)7rll2l® —2<zw>Hwl® on g
ﬂ- — 00
_ (_];L)n /OO 6727rr[\z7w|2+i[t7572$m<z,w>]] 7 dr
m 0
_1)n o
= ( n) [z = wf +ilt — s — 29m < z,w >]] nt
T
= S((w,s)_1 . (z,t))
where

S(z,t) = (=" [\z|2+z't]‘"‘1,

71—1’7,

5. The Grushin plane

As a final example, we study the geometry associated to the second order partial
differential operator on R? given by

= —. 5.1

Ox? ot? (5-1)
This is an example of a class of non-elliptic, hypoelliptic operators studied by V.V.
Grushin [Gru71].
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5.1. The geometry. For (z,t) € R? and 6 > 0, consider the set

]B%G((x,t);é):{(y,s)e}RQ z —y| < 6, \t—s|<62+\x|5}. (5.2)

Note that for |x| < 6, this ball is essentially the non-isotropic (4, %) rectangle
{(y,s)€R2’|xfy|<§, |t—s|<52} (5.3)
while for |z| > 0, this is essentially
{ws) eR?|lz—yl <o, |t—s| <o|s} (5.4)

which is the translation to (x,t) of the standard Euclidean dilation by ¢ of the box
{ly| < 1,|s|] < |z|}. If we set

do (@), (9, )) = max {|o =yl min {|¢t = s/}, 2| e s} },  (5.5)
then
Ba((z,1):0) ~ { (v.5) € R | d((@,0), (v, ) < 0} . (5.6)

5.2. Fundamental solution for L.

We begin by conjugating the operator £ with the partial Fourier transform in
the t-variable. Thus let us define

FUfle.r) = [ 2 oty de = Fla,m), (5.7
R
so that
fat)= [ @ flaryar = 71 7, (5.8)
R
F is an isometry on L?(R?) and we have £ = F~LL F where
3 829 2.2 2
Llg)(z,7) = @(x,r) —drtrextg(x, 7). (5.9)
If K is an inverse for /3, then K = F~1K F is an inverse for £. Put
gT(x) = g(xv T) (510)
L.lg)= @(az) — Ar%720%g(x) (5.11)
T g - al‘Z g I .
so that
'C[g] (LC, 7_) = 'C'r [g'r](w) (512)

If K, is an inverse for £, on £L2(R, dz), then K[g] = K,[g,] is the desired inverse for
L. Thus we are reduced to finding an inverse for the ordinary differential operator
~ o 2.2

where we have set 27T = 7.



5. THE GRUSHIN PLANE 51

5.3. Hermite functions.

The Hermite functions can be defined by

H,(z) = (2"nly/7) "

The collection of functions {H,} is a complete orthonormal basis for L?(R), and

Nl

(—1)" e32” C;% (e*“’z) . (5.14)

of particular significance for us, they are eigenfunctions of the operator 21 with
eigenvalue —(2n + 1):
d’H,,
dx?
We shall need the following two additional facts. The first is that H,, is essentially
its own Fourier transform:

/ 2R (V3 da = (—i)" Hy (V3RE). (5.16)

(z) — 2% H,(z) = —(2n + 1)H, (). (5.15)

The second is Mehler’s formula: for |z| < 1 we have

dryz — (22 +y?)(1 + 22)}

;Z”Hn(x) H,(y) = (r(1—2%)) * exp [ 20— 2 (5.17)

‘We can produce eigenfunctions for the opertor En with a simple change of variables.
Put

HY(2) =07 Hy(n*). (5.18)

Then {H/} is a complete orthonormal basis for L?(R), and we have

~

L,[H| = —n(2n+1) H,. (5.19)

If g € L?(R) we can write g = > o~ (g, H7) H!! where the sum converges in
norm and

lgll7. = I(g, HDI". (5.20)
n=0
Thus if we put
Kylg) = —n~' Y (2n+1)""(g, H]) H}, (5.21)
n=0

then K, is a bounded operator on L2(R) which is a right inverse for £, on L*(R)
and a left inverse on its natural domain, the subspace

c- 2
Dz = {g € L2(R)’ 3 @20+ 1)%|(g, HY)|? < oo}, (5.22)
n=0
But now, at least formally,

Roll(@) = / Ry (2, y) g(y) dy (5.23)
where

7> — 2 : H)(x) H}!(y) —1 Z : Hn(ﬂéf) Hn(”%y)
1 n n 3
Kn(il,',y) =—-nN 2 7271 1 =—-nN (2’(7, 1) . (524)

n=0
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Using Mehler’s formula, we can write this as

~ 1 1 1 dnzyr —n(z? +y*) (1 +r?) dr
K, (z,y) = —5(7777) /0 exp [ 20— 2) } ) (5.25)

-

Now we compute

K(fl(z,t) = F K Ff)(w,t)
= / ™ f)(w, ) dT
R

_ / 27 R _[F(f],)(x) dr
R

2mitT 7> (526)
- / e / Ronr (,9) FIJ1- (y) dy dr
/ / Ronr (2, y) FIf)(y. 7) dy dr
/ fly,s / Qﬂ”(t_s)l?gﬂ(x,y) dT} dyds.
Thus the inverse to £ has distribution kernel
K (@), (0:5) = [ 709 Ragr () dr (5.27)
R

which equals

1 2 2 2
/ / e2miT(t—s) exp [27r|7|4xyr — (@ +y )0 +r )} di dr
0 JR

2(1—12) Ir|z /r(1 —r2)
(5.28)
o @+ 42)(1 +7)
_ Axyr— (2" +yT) (1 +r
A(m,y,r) - 2(1 _ 7"2) (529)
Then the inner integral is equal to
00771'7' z,y,r)+1 sdT Oof‘n'r x,y,r)—i(t—s dr
/ 2n7 [A(e,y,r)+ilt—s)] 4T +/ =277 [Alwyr) =it ﬂT
0 T2 0 T2
(A yr) it = )] 7+ = [AGe ) — il - )]
= —|A(x,y,7) +i(t — s — Az, y,7) —i(t — s
\/§ Yy \/5 Yy
- T (5.30)
V(@2 +y2) (1 +r2) — dayr + 2i(1 —r2)(t — s)
N V1—1r2
V(@2 +y2) (1 +12) — dayr — 2i(1 — r2)(t — s)
Hence, up to a non-vanishing constant, we have
K((Z‘, t)a (yv S)) = K+ ((1‘, t)7 (y7 S)) + K_ ((1‘7 t)7 (y7 5))7 (531)

where

1 dT’
Ki((@,1), (y,5)) = o (@2 + )1 +r2) —dayr £2i(1 —r2)(t — s) \/7;




CHAPTER 2

VECTOR FIELDS

Vector fields can be thought of either as geometric or as analytic objects, and
their importance is due at least in part to the interplay of these different points
of view. The main topic of this book is the theory and applications of Carnot-
Carathéodory metrics. While the metrics are geometric objects, the applications
we have in mind are mainly to various analytic questions. The link between them
is the concept of a vector field. The object of this chapter is to review the basic
results about vector fields, commutators, and flows that will be used throughout
this book.

Vector fields are often introduced geometrically as quantities, such as force,
velocity or pressure, which have magnitude and direction, and which vary from
point to point. There are many different ways of making this notion mathematically
precise. Thus for example, a single vector is commonly represented in Euclidean
space R™ as an n-tuple of real numbers. A vector field X on an open set Q C R"
should then assign an n-tuple of numbers to each point x € 2. This of course is the
same as prescribing an n-tuple of real-valued functions X = (a1, ..., a,) defined on
Q; the vector assigned to  is then the n-tuple X, = (a1(z),...,an(2)).

Although quite straight forward, this approach leaves an important question
unanswered. A quantity having magnitude and direction should have an intrinsic
meaning, and its definition should not depend on a particular choice of coordinates.
Thus if we adopt the simple-minded definition of the preceding paragraph, we still
need to explain how the n-tuple of functions changes if we choose a different set of
coordinates on 2. Thus it is natural to look for a definition of a vector field that is
coordinate free. This can be done by introducing the notion of the tangent space
at each point z € Q, and then thinking of a vector field as a (smooth) assignment
of a tangent vector at each point. To proceed rigorously in this way one needs
to introduce a fair amount of machinery from differential geometry, including the
notions of tangent space and tangent bundle.

We shall proceed by following an intermediate route. In Section 1 we define
tangent vectors as directional derivatives and vector fields as first order partial
differential operators. Working with a fixed coordinate system on an open set in
R™, we define and study the concept of commutators of two vector fields, and the
determinant of a set of n vector fields. In Section 2 we see how these concepts
behave under smooth mapping or smooth changes of variables. In Section 6 we
explain what it means for a vector field to be tangent to a submanifold, and we
review the Frobenius theorem. In Section 3 we define the flow along a vector field
and the corresponding exponential map. We also begin the study of the Taylor
series expansion of a function along a flow. In Section 7 we show that, locally, a
single non-vanishing vector field always has a very simple form after a change of
variables, and we consider the corresponding problem for two vector fields. Finally,

53
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in Section 8 we give a completely coordinate free characterization of vector fields
by showing that they are the same as derivations. This allows one to study vector
fields in more global situations such as on manifolds.

1. Vector fields and commutators

Throughout this section, 2 denotes an open subset of R”, and £({2) denotes
the the algebra of real-valued infinitely differentiable functions on Q.

1.1. Germs of functions, tangent vectors, and vector fields.

It is convenient to define tangent vectors or directional derivatives at a point
x as linear maps on certain spaces of functions which are defined near z. It does
not really make sense to require that the functions be defined in a fixed open
neighborhood U;, since we could apply the directional derivative to a function
defined on a smaller neighborhood Us C U;. On the other hand, if two functions,
defined on neighborhoods U; and U,, agree in some smaller neighborhood Us C
U; NUs, the value of the directional derivative applied to each function will be the
same. Thus the domain of the linear mapping should be some space of functions
which involve only the values in arbitrarily small neighborhood of x and which
regards two functions as equal if they agree in some small neighborhood. To make
this precise, it is convenient to introduce the notion of a germ of a function at a
point z. We begin by explaining this concept.

Let z € R™, and consider pairs (U, f) where U is an open neighborhood of x
and f € £(U). Define an equivalence relation ~ on the set of all such pairs by
requiring that (Uy, f1) ~ (Uz, f2) if and only if there is an open neighborhood Us
of the point x such that Us C U; N Uz and f1(y) = f2(y) for all y € Us.

DEFINITION 1.1. A germ of an infinitely differentiable function at x is an equiv-
alence class of pairs, and we denote the set of all germs at x by &,.

If f € &, is a germ of a function, it is convenient to think of f in terms of one
of its representatives: a real-valued infinitely differentiable function defined in some
open neighborhood U of z. We can make &, into an algebra in an obvious way. For
example, if f,g € &, let (U, f) and (V, g) be pairs in the corresponding equivalence
classes. We then define f + g to be the equivalence class of the pair (UNV, f + g).
This is independent of the choice of representatives of f and g. Multiplication of
germs is defined similarly.

If f € &,, it makes sense to talk about the value of f or any of its derivatives at
x, since these quantities only depend on values in an arbitrarily small neighborhood
of x. It also makes sense to talk about the formal Taylor series of f at the point
x. However, it does not make sense to talk about the value of f at any point other
than z.

We can now define tangent vectors and vector fields.

DEFINITION 1.2.
(1) Let x € R™. A tangent vector (or directional derivative) at x is a linear

mapping L : £, — R of the form

=Y ool w) =S¢ o, 1@
j=1 J j=1
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where (c1,...,¢n) € R™. The space of all tangent vectors at x is denoted
by T, and is called the tangent space at x.

(2) If Q is an open subset of R™, a smooth vector field on Q) is a first order
partial differential operator

n 9 n
X = Za]— 87;13] = Zajaxj
j=1 j=1

where each a; € £(QY). We denote the space of all smooth vector fields on
0 by T(2).

(3) If X = Z?Zl aj 0y, € T(Q) is a smooth vector field and v € Q, then
X Ty — R given by Xo[f] = >25_, a;(x) 0u,[f](x) is a tangent vector
at x.

Each vector field X € T(f2) induces a linear mapping of £(f2) to itself. If
fe&Q) and X = 37 a;0,,, then X[f] € £(Q) is the infinitely differentiable
function given by X[f](z) = Y°7_; aj(x) O, [f](x). If X € T(Q) and z € Q, the
product rule for derivatives shows that

X[fgl = X[flg+ f Xlg] if f,g € £(), (1.1)
Xelfgl = Xo[fl9(x) + f(2) Xa[g] if f,9 € £ (1.2)

Linear mappings satisfying equations (2.4) and (1.2) are called derivations. We shall
see below in section 8 that tangent vectors and vector fields can be characterized
as linear maps which are derivations.

The space T(2) of smooth vector fields on 2 has the structure of a module over
the ring £(€2) of smooth functions. Thus if X =} a;0;; and Y =3, by 9, are
vector fields and f,g € £(Q) we set

fX—i—gY:Z(faj—i—gbj)awj.

j=1

1.2. Commutators.

In addition to its structure as a module over £(2), the space T'(2) of smooth
vector fields on €) also carries in a natural way the structure of a Lie algebra over
R. A real Lie algebra is a real vector space & equipped with a distributive but
non-associative product written [z,y] for z,y € & so that

(1) afz,y] = [ax,y] = [z, ay] for all « € R and all z,y € &;

(2) [x+y,2] =[z,2] + [y, 2] and [x,y + 2] = [z,y] + [z, 2] for all x,y,z € &;
(3) [x,y] = —[y, x| for all z,y € &;

(4) [z, [y, 2]] + [y, [z, x]] + [, [z, 9]] = 0 for all z,y,z € &.

Property (3) expresses the anti-symmetry of the product, and property (4) is called
the Jacobi identity. Additional information about Lie algebras can be found in
Chapter 7.

To define a Lie algebra structure on T(Q), let X = 3 .a;0;; and YV =
> i bk Oz, be smooth vector fields on Q. If f € £(Q2), we can apply X to the
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smooth function Y[f] or ¥ to the smooth function X[f]. We get smooth functions
XY[f] and Y X[f] where

XY@) = Y a3(e) ela) o (@) + Y [ S as(0) g @)] 52
Jok=1 J k=1 j=1 !

VXU = D as) ) ot @)+ [Z @5 )] 5
j,k=1 J Jj=1 k=1 !

Thus XY and Y X are second order partial differential operators. Notice moreover
that the second order terms in XY are the same as the second order terms in Y X
since 0,0z, [f] = 0,,0.,f. Thus XY — Y X, although formally a second order
operator, is actually another first order partial differential operator, and is thus
another vector field, called the commutator of X and Y.

DEFINITION 1.3. If X = Zj aj Oy, andY =), by Oy, are two smooth vector
fields on Q, their commutator is the vector field [X,Y] = XY — Y X which is given

by
S 0b; Oa; 0
(X,Y] = Z [Z (a T — by, 8%)] o (1.3)
Jj=1 Lk=1

The commutator [X,Y] clearly measures the failure of the two linear mappings
X,V : £E(Q) — £(Q) to commute. This is an algebraic interpretation of [X,Y].
We will see later that the commutator also has an important intrinsic geometric
meaning as well.

The next proposition records some easily verified properties of commutators.
Properties (1), (2) and (3) below express the fact that T'(€2) forms a Lie algebra
under the bracket operation.

PROPOSITION 1.4. Let XY, Z be vector fields on Q, and let f,g € E(). Then:
(1) X +Y,2] = [X.Z] + [V, Z);
(2) [X, Y]+ [V, X] = 0;

(9) [X.[V. 2)) + [¥. [, X]| + [2,[X, Y] = 0;

(4) fX.qY] = glX, Y]+ [ X[g]Y — gVIf] X.

1.3. Vector fields of finite type.

Given a Lie algebra &, a Lie subalgebra is a linear subspace $) C & which is
closed under the Lie algebra product. We shall be particularly interested in Lie
subalgebras and Lie submodules of T'(Q2) generated by a finite number of vector
fields.

DEFINITION 1.5. Let Xq,...,X, € T(Q2).

(i) The Lie subalgebra generated by {X1,...,X,} is the smallest vector sub-
space of T () containing {X1,...,Xp} which is closed under the bracket
operation. We denote it by L(X1,...,X,).

(i) The Lie submodule generated by {Xi,...,Xp} is the smallest smallest
E(Q) submodule of T(Y) containing the vectors {Xu,...,X,} which is
closed under the bracket product. We denote this by Leo)(X1,...,Xp).
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In addition to being closed under the bracket operation, Lgq)(X1,. .., X)) is closed
under multiplication by functions in £(£2). It follows from conclusion (4) in Propo-
sition 1.4 that £(X,...,X,) is just the £(?) submodule of T'(Q?) generated by
L(X1,...,X,).

The elements of £(X7,...,X,) span a subspace of the tangent space T,,(§2) for
each x € Q. Thus set

L(X1,.. Xp)e = {L € T, (Q) ’(HY €L(Xy,..., X)) (L= Yx)} .

One could also consider the corresponding subspace Lgq)(X1,...,Xp)s, but it is
easy to see from Proposition 1.4 that Lg)(X1,...,Xp)e = L(X1,...,Xp)e. We
shall be particularly interested in cases where £(X1,...,X,)s; = To(Q) forallz € Q,
since in this case we can construct a metric from the vector fields {Xi,...,X,}.

DEFINITION 1.6. The wvector fields {X1,...,X,} C T(Q) are of finite type if
L(X1,...,Xp)s =T5(Q) for every x € 2.

It is important to know which vector fields belong to £(X7i,...,X,). How-
ever, since the bracket product is non-associative, even the enumeration of all Lie

products of elements {X7,...,X,} can be quite complicated. For example
(X, Y, [Z, W] (X, Y], [Z2, W]] [[X, [y, Z]], W]
(X, [y, 2], W] (X, Y], z], W]

are five distinct possible products of the four elements {X,Y, Z, W}. Some simplifi-
cation is possible. It follows from the Jacobi identity, and is proved in Chapter 77,
Corollary ??, that every element of £(X7,...,X,) can be written as a linear combi-
nation with real coefficients of iterated commutators, which are Lie products of the
elements {X7,..., X, } having the special form [X;,, [X;, ., - [ X4, (X, Xai]] - ]]
However the Jacobi identity also shows that not all of these iterated commutators
are linearly independent.

Let us illustrate the concept of finite type with two examples. We shall work
in R3 where we denote the coordinates by (z,y, 2).

Example 1:  Consider the three vector fields in T'(R3) given by
A=20y—-y0,, B=y0,—20y,, C=z0,—20,.
We then have
[A, B] =C, [B, C] = A, [C, A] = B.

The vector fields {A, B, C'} are linearly independent over R, so L(A, B, C) is the
three dimensional subspace of T(R) spanned by A, B, and C. In fact, L(A, B,C)
is isomorphic as a Lie algebra to R® with the usual cross product, and this is the
same as the Lie algebra of the orthogonal group O(3).

However since all the coefficients vanish at the origin we have L(A, B, C)0,0,0) =
(0), and if p = (z0, Yo, 20) # (0,0,0), it is easy to check that L(A, B, C), is the
two dimensional subspace of the tangent space T,(R3) which is perpendicular to
the vector (2o, Yo, 2z0). Thus the vectors {A, B, C'} are not of finite type.

Example 2:  Consider the two vector fields in T(R?) given by

1 1
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If we set Z = 0,, then we have [X, Y] = Z, while [X, Z] = 0 and [Y, Z] = 0.
The vector fields {X,Y, Z} are linearly independent over R, so £(X,Y) is the three
dimensional subspace of T'(R?) spanned by X, Y, and Z. Moreover, for every
p € R3 the three tangent vectors X, Y, and Z, are linearly independent, and so
L(X,Y), = T,(R3). Thus the two vector fields {X, Y} are of finite type on R3.

This is the first appearance of the Lie algebra of the Heisenberg group H;, and
we shall frequently return to this example.

1.4. Derivatives of determinants.

DEFINITION 1.7. Let Xy,...,X,, € T(Q) with X; = >} _, aj x0z,. The deter-
minant is the scalar function

det(X1,...,X,)(z) = det{a;r(x)}.

The determinant gives the (signed) volume of the parallelopiped spanned by the
vectors {X1(z),..., X, (x)}. In particular the tangent vectors {(X1)z, ..., (Xn)z}
span T,(Q) if and only if det(Xy,...,X,)(x) # 0. We shall need a formula for
the derivative of the scalar function det(Xy,...,X,)(z), and for this we need one

additional definition.

DEFINITION 1.8. If X = Zszl ay Og,, € T(2), the divergence of X is the scalar
function

-3 G
axk
We can now state the promised formula.

LEmMMA 1.9. Let X4, ..., X,,,T € T(). Then

T(det(Xy,..., X,)) =Y _det(Xy, ..., X5 1, [T, Xi], Xpp1,. .., Xp)
+ (V-T) det(X1,...,X,).

PRrOOF. Let X; =3, a0y, and T' =", b 05, . Then

| (TS

1=1 k=1
- 0 - - ob
:;(Z ! ;;lk)axk I;(Z Jlaxlz>3xk

=Y Tla; T Z (;aﬂ?l 87331) Ozy,
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Hence
det(Xl, . 7Xj—17 [T X] Xj+1, .. ,Xn)

:dCt(Xh... j— 1,ZTa]k _7+17--~7Xn)

- ob, 0
—det(X17~-~7Xj—1;Zaj,k (971']; aixk,Xj_*_l,.. 7Xn)
k=1

n

—det(Xy,...,X;_ 12(2 jkgii) X1, Xy)

k=1 I=
l;ék

:Aj*Bj*Oj.

Now using the product rule we see that
T(det(Xy,...,X,)) = > _Aj.

Expanding B; by minors of the 4" entry, we have

where M . is the (4, k)™ minor of the matrix {a,s}. Hence

> Bj= Zaxz D (Vg Mg = (V- T) det(Xy,..., Xa).
Jj=1

Similarly

non b
:ZZT;det(Xl’ '7X]€—17Xl7Xk+17"'7Xn)

since each determinant has a repeated row. This completes the proof.

2. Vector fields and smooth mappings

59

In this section £2; C R™, j =1, 2, are open sets, and ® : 3 — Q5 is a smooth
mapping. This means that there are functions {¢1,...pn,} C £(21) so that for

erl,

D(x) = (e1(x), .-, ony(T)).

We shall sometimes assume that ® is a diffeomorphism, which means that
n1 = ng = n, that the mapping ® is one-to-one and onto, and that the inverse
mapping @~ ! : Qy — Q; is also a smooth mapping. In this case, if we denote the

coordinates in Q; by x = (21, ..., 2,) and the coordinates in Qs by y = (y1, - . -

then ® can also be thought of as a change of variables y = ®(x).

Yn)s
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2.1. The differential acting on tangent vectors, vector fields, and
commutators.

If z € Qq, every smooth mapping ® : 3 — s induces a linear mapping
d®, : T, — Ty, called the differential of ® at w.

DEFINITION 2.1. Let ® : Q0 — Qo be a smooth mapping, let x € Qq, let L € Ty,
and let f € Eg(y). Then fo® € &, and we define

dq)x[L][f] = L[fo CI)]
If Lg] = 3771, bj Ou,[g](x) for g € E(), the chain rule shows that

A, [L][f Z[ibj g‘i’“ ] OF (a(2)). (2.1)

Oy

This shows that d®,[L] € Tg(s). Indeed, equation (2.1) shows that if we identify
T, with R™ and Tg(,) with R™2 via the correspondences

ni

R™ 3 (b,...,bn,) «— Y _b; 0, €T,
j=1
n2

R™ 3 (¢1,...,0ny) ch Oy, € T(z),
k=1

then d®, has the representation as the n; x n, matrix

o1 .. O¢ny
oz Oz
dd, =
o1 . Opmy
0%n,y 0xn,

When @ : Q; — ()5 is a diffeomorphism, more is true. The mapping ® induces
a linear mapping d® : T'(21) — T'(2).

DEFINITION 2.2. Let ® : Q1 — Qo be a diffeomorphism. Let X € T(Q1) and
let f € E(Qa). Put

dO[X][f] = X[fo®] 0@~ .

In fact, let X = 3771, a; 0,; where a; € £(). If we use equation (2.1) and let
y = ®(x) we have

d@[X][f](y) = [Zaj(qu(y))%(@fl(y))} gyJ;( )
I ) fj (2.2)
- kZIX[wk](fb Y(y)) 3yk( Y),

and this shows that d®[X] is indeed a vector field on Q.

The next proposition shows that commutators behave correctly under changes
of coordinates.
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PROPOSITION 2.3. Let ® : Q; — Qo be a diffeomorphism. If X, Y € T(y),
then
do[[X,Y]] = [d®[X], dB[Y]].

PROOF. Let f € £(Q). Then Y [f o ®] = d®[Y][f] o , and so
x[v[foa]] = x[aa[Y][f]o @] = do[xX]|[d®[Y]f] o ®.
Similarly, we have
Y{X [fo @]} — d®[Y][dB[X][f]] o ®.
Subtracting the second equation from the first shows that
[(X,Y][f o ®] = [@.[X], 2. [Y]][f] 0 ®,

and it follows that d®[[X,Y]] = [d®[X],d®[Y]]. O

2.2. Action on determinants.

Suppose again that ® : Q1 — Qo C R"™ is a diffeomorphism, and that ®(z) =
(¢1(2),...,n(x)). The Jacobian determinant of ® is

ger(@) o g (@)
J®(x) = det : : (2.3)
Fe) o @

PROPOSITION 2.4. If X1,...,X, € T(Q4) then
det (d®[X1],...,dP[X,]) (®(x)) = J®(x) det(X1, ..., Xn)(x).

PROOF. Suppose that X; = >°" | a;; 0;, and that d®[X,,] = 71, bm Oy, -
Then equation (2.1) shows that

dp1 .. Oomy

b1,1 te bl,n ox1 ox1 a1 0 Qin
ol 9pn

bn,l bn,n axnll .o anf Qn,1 Gn,n

where the right hand side is the product of two matrices. The proposition follows
by taking determinants. O

3. Integral curves and the exponential maps

In this section, € is an open subset of R™ and X € T'(2) is a smooth real vector
field on Q.
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3.1. Integral curves.

Returning for a moment to the geometric interpretation of a vector field, we
can think of a vector field X € T(f2) as prescribing a velocity X, at each point
x € Q. We can then ask for parametric equations ¢t — ¥(t) € Q of particles whose
velocity at time ¢ is Xy ;). The orbits of such particles are called integral curves of
the vector field X.

To make this question precise, we must identify the velocity of a particle with a
tangent vector. We do this as follows. If ¥ = (¢1,...,%,) : R — R™ parameterizes
a curve in R™, then the usual definition of the derivative (i.e. velocity) at time ¢ is
W'(t) = (¥ (t),...,¥,(t)). On the other hand, let T = 2 be the standard vector

ot
field on R. Then using Definition 2.2 and equation (2.2) we see that

- 0
dY[T]y) = Z Wt)aT«k
k=1

is a tangent vector at the point ¢(¢). Thus it is natural to identify the velocity at
time ¢ of a particle whose orbit is parameterized by the mapping v with the tangent
vector di)[T)]y ), and we write

Y'(t) = dy[T]y ).

DEFINITION 3.1. Let X be a vector field on Q C R™. An integral curve for the
vector field X is a C1 mapping 1 = (11, ...,%y) from an interval (a,b) C R to Q
such that for t € (a,b)

P'(t) = d[Tlye) = Xyo)-
If X = Z?:l aj Oy, the equation v'(t) = Xy is equivalent to the system of
ordinary differential equations
YL(t) = a1 (V1(t), . .., ¥n(1)),
(3.1)

UL () = an(¥1(1), ..., Yn(t)).

In addition to these equations, we can also require that the solution w(t) pass
through a given point « € 2. The following theorem provides the basic results
about existence and uniqueness of such systems.

THEOREM 3.2. Let X = Z;lzl a; 0z, € T(Q) and let K C § be compact. There
exists € > 0 and a C* mapping Ex = E : (—¢,+¢) x K — Q with the following
properties:

(1) For each x € K, the mapping t — E(t,x) is an integral curve for X
passing through x when t = 0. Thus
O E(t,x) = Xp(t,2);
E(t,0) = x.

(2) This solution is unique. If ¢ : (—n,+n) — Q is a C* mapping such that
'(t) = Xy and ¢(0) = x, then ¢(t) = E(t,x) for |t| < min(e, 7).
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(3) The constant € can be chosen to depend only the supremum of the first
derivatives of the coefficients {a;} of X on Q and on the distance from K
to the complement of 2.

(4) For (t,z) € (—€,+€) x K, we can estimate |0 8?E(t,x)‘ in terms of
the supremum of finitely many derivatives of the coefficients {a;} on the
compact set ).

(5) If the coefficients {a;} of the vector field X depend smoothly on additional
parameters {\1,..., \m} then the solution Ex also depends smoothly on
these parameters. We can estimate derivatives ‘85‘ (?f 81\11(15,37,)\)’ in

terms of the supremum of derivatives in = and X\ of the coefficients {a;}
on Q.

We remark that the solution function E(¢, ) actually exists for all z € , but
that as = approaches the boundary of €2, the interval in ¢ for which the solution
exists may shrink to zero. In particular, there is a unique integral curve of X
passing through each point of 2. These curves foliated the open set €2, and the
vector field X is everywhere tangent to this foliation.

COROLLARY 3.3. Let X be a vector field on 1 and let K C £ be a compact
subset. Let E(t,x) be the solution given in the Theorem 3.2. There exists € > 0 so
that

(1) If x € K and if [t1| + |t2| <€, then
E(t1,E(te,z)) = E(t1 + t2, x).
(2) Ifx € K, if \ € R and if |\t] < ¢, then
Ex(\t,x) = Exx(t, ).
(3) Let |t| < € and let
K,={yeQ |y = E(t,x) for some x € K}.
Then x — E(t,z) is a diffeomorphism of K onto K;. This mapping is
called the flow associated to the vector field X .

PROOF. We observe that the mappings t — F(t1, (E(t,z))) and t — E(t1+t, x)
satisfy the same differential equation and agree when ¢ = 0. Thus the first statement
in the corollary follows from the uniqueness assertion of the theorem. Similarly, the
mappings t — Ex(At,z) and t — E\x(t,z) satisfy the same differential equation
and agree when ¢ = 0. Finally, the first assertion of the corollary shows that
x — E(—t,x) is the inverse of the mapping © — E(t, z). O

3.2. The exponential mapping.

We now investigate the formal Taylor series expansion of the flow associated
to a vector field X € T(£2). We will use the following notation. Let f € &,, be a
germ of a smooth function at a point ¢ € R™. Then we write

@) £ (@ — 20)°

to indicated that the infinite series on the right hand side is the formal Taylor
series of the function f about the point xzg. If X € T(Q2), we can inductively
define the powers {X*} as operators on £(2). Thus if f € £(Q), set X°[f] = f,
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X'f] = X[f] and X*"[f] = X[X*[f]]. Note that with this definition X* is a
k" order differential operator. The basic result which allows us to compute formal
Taylor series is the following.

LEMMA 34. Let X € T(Q), let x € Q, and let f € E(U) where U C Q is an
open neighborhood of x. There exists € > 0 so that E(t,x) € U if |t| < e. Put
F(t)= f(E(t,x)) for |t| <e. Then for every k >0,

d*F

dtk

PROOF. Let X = >"7_, ai 0,, with a € £(Q). With z fixed, write E(t,z) =
(¢1(t),...,¥n(t)). Using the chain rule and equation (3.1) we have

(t) = FP(t) = X*[f](E(t, ).

N Of /
F0) = 3 g, (B0 vi(0)
= Zak(E(t’x)) aTck(E(t’x) = X[f](E(t,z)).
k=1
The case of general k now follows easily by induction. O

COROLLARY 3.5. Suppose that f is a smooth function defined in a neighborhood
of the point x. Then
¢ e tF
F(Bta) ~ > X [f](),
k=0
where now % denotes equality as formal Taylor series about t = 0.
The form of the sum in Corollary 3.5 suggests the following definition.

DEFINITION 3.6. The solution Ex(t,z) to the initial value problem v'(t) =
Xyt), ¥(0) = x, is called the exponential map associated to the vector field X. We
write

E(t,z) = "X (x) = exp[tX](z).
It follows from Corollary 3.3 that for s and ¢ sufficiently small we have
exp|(s + ¢) X](x) = exp[sX](exp[tX](x));
expl(st) X](z) = exp[s(LX)](x).

We can rewrite the case k = 1 of Lemma 3.4 in a form that will frequently be
useful.

COROLLARY 3.7. Let f € £(Q) and X € T(2). Then for x € Q and [t
sufficiently small we have

%f(exp(tX)(m)) = X[f](exp(tX)(m)).
In particular
X[71(r) = - 7 (expl(5)X) x)

If we use Corollary 3.5 and apply Taylor’s theorem, we also have

SZO.
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COROLLARY 3.8. Let X € T(2), let K C  be compact. Let x € K and let V
be an open neighborhood of x. Let f € E(V). There exists ¢ > 0 so that for every
integer M > 1 and every x € K, if |t| < € then

M-1,

f(exp[tX]( Z < CytM. (3.2)

Here C'yy depends on the supremum of derivatives of f up to order M on V and
on the supremum of derivatives of the coefficients of the vector field X up to order
M —1 on Q.

3.3. Exponential maps of several vector fields.

Now suppose that Xi,...,X, € T(Q). Fix § > 0, and let {di,...,d,} be
positive real numbers!. If u = (uq,... ,up) € R?, then Z; 1 Uj 5 X; is again a
smooth vector field on Q. Let B(e) be the Euclidean ball of radius € centered at the
origin in RP. It follows from Theorem 3.2 that if K C €2 is compact, there exists
€ > 0 so that the mapping

P
Es(u;z) = E((5d1 up, ..., 0% up); ) = exp [ZUJ 5% Xj} (2)
j=1

is defined and infinitely differentiable on the set B(e) x K and takes values in 2. We
investigate the Taylor expansion of smooth functions composed with the mapping
Es(u;z). We have the following analogue of Corollaries 3.5 and 3.8.

LEMMA 3.9. Suppose that g is a smooth function defined in a neighborhood V
P

ofre K, let 0<é <1, and put G(uq,...,up) = g(exp [Zuj 5% XJ} (m)) Then
j=1

G is a smooth function defined in a neighborhood of the origin in RP and its formal
Taylor series at the origin is given by

Glur i) 23 1 (Y% X,) lale).
k=0 j=1

Let d = mini<j<pdj. For every integer M > 1 and every x € K, if |u| <1

then
M—1

’G(ul,...,up Z 7 (Zuﬂ 8% X ) [g](z)

Here C)yy is independent 0f5 and depends on the supremum of derivatives of g up to
order M on 'V and on the supremum of derivatives of the coefficients of the vector
fields {X1,...,X,} up to order M —1 on Q.

PROOF. Set

é(t,ul,...,up):G(tul,.. L tup) —g(exp[ ZujédJX} )

< Cap MM,

If we write Y, = >°%_; u; 6% Xj, then Y,, is a smooth vector field and
Gt ug,. .. up) = g(exp(tYy)(z)).

IThis extra parameter § will be needed in Chapter 3, Section 3, when we introduce the
mapping O, s in equation (?77?).
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Thus according to the chain rule and Corollary 3.5, we have

nl . 0°G oG o\
S G O = G O = (0% ) o)

loe|=n

Consequently, as formal power series in (ui,...,up), we have the identity of formal

series .
« aaG oo "
2 % e =2 %(Zuy o Xj) [9] ().
o ' n=0 " j=1

The left hand side is the formal Taylor expansion of G, which gives the first assertion
of the lemma. The second assertion about approximation follows as before from
Taylor’s theorem. This completes the proof. ]

n
Note that (Z?:l Uj Xj) is a differential operator of order n. If the vector

k
fields {X1,...,X,} commute, we can write (Z?Zl u;j Xj) = Y|al=k B X
where X = X' ... X,". In this case the Taylor expansion of G' can be written
u® .
G(uh ceey UP) ~ Z J X [g](l’),
0°G
ou®

commute, the expression for

and we can conclude that (0) = X“[g](z). However, if the vector fields do not

[e3%
—(0) is a non-commuting polynomial of degree |af
u

in the vector fields {X1,..., X, } applied to g and evaluated at 0.

We shall need one further generalization of Lemma 3.9. Suppose that
P
Pu; X) =Y p;(u) X;,
j=1

where each p; is a polynomial in the variables (u1,...,u,) and has no constant
term.

COROLLARY 3.10. Suppose that V C Q is an open neighborhood of x € K and
that g € E(V). Put G(u) = g(exp (P(u; X))(:v)) Then G is a smooth function
defined in a neighborhood of the origin in RP, and

(1) The formal Taylor series of G, at the origin in RP is given by

U 1 k
G(u) %>+ (P(us X)) [g](); (3:3)
k=0
(2) There exists € > 0 so that for all v € K and all integers M > 1, if |u] < e
then

M1 i

Colu) = 3 (P X)) g](w)] < Carful (3.4
k=0

The constant Cp; depends on the supremum of the derivatives of g up to
order M on V and on the supremum of the derivatives of the coefficients
of the vector fields {X1,...,X,} up to order M — 1 on the set Q.
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4. Composition of flows

Let X and Y be two smooth real vector fields on an open subset Q2 C R™. Each
vector field defines a flow, exp(sX) and exp(tY'), which are defined on compact
subsets K C Q if |s| and |¢| are sufficiently small. In this section we study the
composition exp(sX) o exp(tY) when it is defined.

We begin by showing that the flows exp(sX) and exp(tY’) commute if and only
if the commutator [X, Y] = 0. Moreover, we show that in this case we have the
usual law for products of exponents exp(sX) o exp(tY) = exp(sX + tY). If the
two flows do not commute, the situation is more complicated. We show, using the
Campbell-Baker-Hausdorff formula, that there are smooth vector fields {Zn(s,t)}
so that exp(sX) o exp(tY') — exp (Zn(s,t)) vanishes to high order.

4.1. Commuting vector fields.

The goal of this subsection is to establish the following result which gives a first
indication of the relationship between flows and commutators.

THEOREM 4.1. Let X, Y € T(Q)) be smooth real vector fields. The the following
two conditions are equivalent.

(1) For every x € Q we have exp(sX)(exp(tY)(z)) = exp(tY)(exp(sX)(z))
for all (s,t) in an open neighborhood of the origin in R?, where the neigh-
borhood may depend on x.

(2) The commutator [X, Y] =0 on Q.

We begin by studying the differential of the flow associated to a smooth real
vector field X € T'(2). If K C 2 is compact, Corollary 3.3 guarantees the existence
of a constant € > 0 so that for |t| < e, the mapping exp(tX) : K — K; is a
diffeomorphism. The differential of the flow z — exp(tX)(x) gives an isomorphism
between tangent spaces dexp(tX) : Ty — Texp(¢x)(x)- In particular, the vector field
X defines a tangent vector X, € T}, and it follows from Corollary 3.7 that

deXp(tX)[X_»A = Xexp(tX)(ac)- (41)

Thus the vector field X is invariant under the flow generated by X.

We next observe that if Y € T'(Q2) is a second vector field, we can use the flow
associated to X to generate a local? one parameter family of vector fields ¢t — Y;
with Yy = Y. More precisely, for each compact subset K C 2, let ¢ be the con-
stant from Corollary 3.3. We define Y; by giving the corresponding tangent vector
(Yi)e € Tp at each point x € K. For [t| < § the vector field Y defines a tangent
vector Yeup(tx)(z) at the point exp(tX)(z). Since z = exp(—tX)(exp(tX)(z)),
the differential dexp(—tX) maps Texp(tx)(z) to 1%, and we define a tangent vector
(Yi)s € Ty by

(Yrt)m = dexp(_tX)[Y:axp(tX)(:I:)]~ (42)
This means that if f is a smooth function defined in a neighborhood of K, then for
x € K and |t| sufficiently small

(Ye)alf] = Y2l f](z) = Y[f o exp(—tX)](exp(tX)(z)). (4.3)

2The term local here means that the family {Y;} is defined on compact subsets for |¢| suffi-
ciently small.
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Let us see what this means in a simple example. Suppose that X = 9., is
differentiation with respect to the first coordinate. Then exp(tX)(x1,xo,...,&y) =
(x1 + t,zo,...,2y,), and f oexp(—tX)(z) = f(z1 — t,z2,...,2,). Suppose ¥ =
> i=1bj0z;. Then

Y[f oexp(tX)](z1,...,zn Zb (Z1,...,x gj( 1=t Ty ..., Ty)
j

and hence

n

Yilfl(z1, 22, ..., 2n) = Jz::lbj(ml +t,ac2,...,xn)ng;(thg,...,xn).

Thus (V). is just the value of the vector field Y at points along the integral curve
of X through =x.

The next Lemma provides a connection between this family of tangent vectors
and the commutator of X and Y. (See Narasimhan [Nar85]).

LEMMA 4.2. Let X andY be smooth real vector fields on 2, and let x € Q). Let
(Y € T, be the local one-parameter family of tangent vectors defined in equations
(4.2). Then

d

(We remark that if X = 0, as in the above example, then

d "L Ob, d
th[f](xl,xg,...,xn) = ;a—le(xl +t,m2,...,xn)((hj;(xl,xg,...,xn),

and this is indeed the commutator [X, Y;].)

PrOOF OF LEMMA 4.2. We have
(Ol = Jim 17 Y17 0 exp(—1)] o exp(tX) (@) — ¥ [f](x)]

= lim £ [Y[f 0 exp(—£X)] - Y[/]] 0 exp(tX) ()

— lim ¢! Y[f]oexp(_tX)_Y[f]} o exp(tX)(z)
= lim ¢t~ [Y[f o exp(~£X)] - Y[/]] (2)
— tim ¢! [Y[f) o exp(—tX) - Y[f]] ()
since limy_o exp(tX)(z) = z. Now

lim ¢! [Y[f] o exp(—tX) — Y[fﬂ (z) = =X [Y[f]](2)

t—0

by the definition of the exponential map. On the other hand

S {Y[f o exp(—tX)] — Y[f]} (z) = —limY {f oexp(tX)] — f} (@)

t—0 t—0 t

= -Y[X[f]}(=)
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This establishes the lemma when ¢t = 0. But for |¢| small we have

dexp(tX) [ (Vi[f])] = dexp(tX) [ (V7)) _]
= dexp(tX) [Yo, X][f]
= [dexp(tX)Yo, dexp(tX)X][f]
= [V, X][f],
which completes the proof of the lemma. ([

PROOF OF THEOREM 4.1. Suppose first that the flows generated by X and Y
commute. That is, assume that for all z € Q2 we have

exp(sX)(exp(tY)(z)) = exp(tY) (exp(sX)(z))

for all (s,t) in an open neighborhood of the origin in R?. Let f be a smooth function
defined a neighborhood of x, and put

F(s,t) = f(exp(sX)(exp(tY)(z)).
Then by Corollary 3.7, we have

TE =

a9 [g(s’ t)}

[X[f](exp(sX) (exp(tY)(x))]

SIS S&\@

[X (exp (tY) ( exp(sX)( x)]

<~

Since g:ai = %, we see that Y X[f] = XY[f], and hence [X, Y] = 0.

Next suppose that [X, Y] = 0. Let {Y;} be the local family of vector fields
defined in equation (4.2. Then since 0 = dexp(tX)[0], we have

d

= [dexp(tX)[X], dexp(tX)[Y]]
= dexp(tX)[[X, Y]]
= dexp(tX)[0] = 0.

Thus Y; is constant, and since Yy = Y, it follows that Y; = Y for all small ¢t. It
follows from equation (4.3) that if f € £(2) and if z € Q, then

YIf](exp(tX)(2)) = Y11 o exp(tX)](z)
for [¢| small. Then for €  and |s| + |¢| small we have
% [F(exp(t) o exp(sy) (x))] = [ o exp(LX) (exp(sY ) (x) |
= Y[f o exp(tX)] (exp(sY)(z))
= Y1/](exp(tX) (exp(sY) (x)))
=Y[f](exp(tX) o exp(sY)(z)),
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or equivalently

% [f(exp(tX) oexp(sY)o (—tX)(z))] =Y[f](exp(tX)oexp(sY)oexp(—tX)(z)).

But then the curves

71(s) = exp(sY) (),
72(s) = exp(tX) o exp(sY’) o exp(—tX)(2),
satisfy the differential equation

L)) = V1A (4(5)

and satisfy the initial condition 7;(0) = z. By the uniqueness statement in Theorem
3.2, it follows that 71 (s) = v2(s), and hence

exp(sY) o exp(tX)(z) = exp(tX) o exp(sY)(x)

for |s| + |¢| sufficiently small. This completes the proof. O

We can now show that the usual rule for multiplication of exponentials holds
for exp(sX) o exp(tY) is the vector fields X and Y commute.

PROPOSITION 4.3. Suppose that X, Y € T(Q) and that [X, Y] =0. Let K C Q
be compact. Then there exists € > 0 so that

exp(sX) o exp(tY)(x) = exp(sX + tY)(z)
for all x € K and all |s| + |t| < e.

PROOF. Let V be an open neighborhood of K, and let f € £(V). For z € K
and |t| 4 |s| sufficiently small, let
H(s,t) = f(exp(sX)oexp(tY)(z)) = f(exp(tY) o exp(sX)(z)).
Then it follows from Lemma 3.4 that

0H

E(&t) = X[f](exp(sX) o eXp(tY)(x))7

%(S’t) = Y[f](exp(sX) S) eXp(tY)(JJ))-

Hence
9 F(exp(tX) o exp(tY ) (z) = (X +Y)[f](exp(tX) 0 exp(1Y) ().
But since we also have
< flexp (HX +¥)) (@) = (X +Y)[fl(exp (X +Y)) (2)
the uniqueness of solutions implies that whenever X and Y commute, we have
exp(tX) o exp(tY)(z) = exp (H(X +Y))(x) (4.4)

for all small |¢].
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To show that exp(sX) o exp(tY)(z) = exp(sX + tY)(z), we may assume that
t # 0. Then sX = t(st71)X, and since (st71)X and Y commute, we can apply
equation (4.4) to get

exp(sX) oexp(tY)(z) = exp (t (st™")X) o exp(tY)(z)
=exp (t((st7'X +Y))
= exp(sX +tY)(x).

This completes the proof. O

4.2. Non-commuting vector fields.

Next we turn to the description of a composition exp(sX )oexp(tY’) when X and
Y do not commute. Ideally we would like to find a vector field Z(s,t), depending
smoothly on s and ¢, so that exp(sX) o exp(tY) = exp (Z(s,t)). In general this is
not possible, but we can find smooth vector fields {Zn (s, t)} so that exp (Zy (s, t))
agrees to high order with exp(sX) oexp(tY). Moreover, we can take Zy(s,t) to be
the N** partial sum of a formal infinite series in s and ¢ with coefficients which are
iterated commutators of X and Y. This construction depends on the Campbell-
Baker-Hausdorff formula.

We shall, in fact, work somewhat more generally. Let K C €2 be compact and
let Xq,...,Xp,Y1,...,Y, € T(Q) be smooth vector fields. If u = (u1,...,u,) € R?
and v = (vi,...,vg) € RY, write u- X = 3% u;X; and v-Y = 371, v, Yy Then
there exists € > 0 so that if |u| < € and |v| < €, the mapping

z — [exp(u- X)oexp(v-Y)](z) = exp(u- X)(exp(v-Y)(z))

is defined on K and maps K diffeomorphically onto its image.
Let x € K, let V be an open neighborhood of z, and let f € £(V). Then

F(u,u) = f(exp(u . X)(exp(v . Y)(:v)))

is infinitely differentiable in a neighborhood of the origin in R? x R?. Using Lemma

3.9, we have

o) &3 (- X)) (exp(t) (@),

or equivalently, for each m > 0,

u® o]
2 aaanm’”)* nlﬂ (- X)"[f](exp(v - Y)(2)).
|a]=m

We can apply Lemma 3.9 again and obtain

uaala\F v 1 > 1

lee|=m

or equivalently, for each m,n > 0.

la|+B8]
2 Z m O L0.0)= L vy X)),

nlm!
lal=m |B|=
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Thus the Taylor expansion of F' in u and v about the point (0,0) is given by

| . .
F(u,v) ~ X;Om!n! (v-Y)"(u- X)"[f](2).

However, as a formal power series in the non-commuting variables (u-X) and (v-Y'),
we have

Z ! . (v-Y)"(u-X)" =exp(v-Y) exp(u-X).

Thus we have a product of two formal power series given as exponentials.

The Campbell-Baker-Hausdorff formula expresses a product of exponentials
exp(A) exp(B) as the exponential of a formal series which is given in terms of
commutators of A and B. Explicitly,

exp(A) exp(B) = exp (Z(A,B))

where
Z(A,B)=A+B+> Py(AB)
n=2
and
1 N (_1)k+1
e ~ 7 - - mi ni . mi Nk
Py(A,B) = N ,; . T,y adytad ' ---adf*ad . (4.5)
- S (mj+n;)=N
mj—‘,—njzl

The proof of the Campbell-Baker-Hausdorff formula is given in Chapter 7, Section
5.
Recall that ad ,[y] = [z, y], and the meaning of equation (4.5) is
adPtady - adPrad B B] ifng > 1,
adytad ' ---ad*ad 5 = (4.6)
ad}tad’y - ad 5 tad P HA] if ng = 0.
Thus each Py is a linear combination of iterated commutators of A and B of total
length N. In particular,

PAAB)= L[4, B

Py(AB) = SIA A, B - 5B, (4, Bl

PA(A, B) = = 1B, [A4,[4, Bl = 2c[4,1B, 4, B

We now apply this formula to the case when A = Z§:1
B =>31_,v; Y. It follows that

F(u,v) % exp (Z(u,v))[f](=)

u; X; = u-X and

where as a formal series

o
Z(u,v)zu-X—!—v-Y—i—Z Z u“v’ P, 5(X,Y)

N=2|al+|8|=N
leef,| 8121
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and P, g(X,Y) is a linear combination of iterated commutators of the vectors
{X1,...,X,,Y1,...,Y,} of length |a| + |5]. Thus for example
q
S R = 3 Y
lal+[8]=2 2=
lal,181=1
and

p q
Z uavﬁPa % Z ZU upv [ X D (X%, Y1]]
k=

lorf+[B]=3 Jk=11=1
laef,18] 21

)4 q
Z Z v]ukvl Xk,leH

k=1j,l=1

—_
m"_‘
=

For any integer M > 2 let

Zy(u,v)=u-X+v-Y+ Z u*vP P, 5(X,Y).

laef,] 8|21
laf+IBI<M

Z i (u,v) is a polynomial of degree M in u and v with coefficients which are linear
combinations of vector fields, each of which is an iterated commutators of the vector
fields {X1,...,Xp,Y1,...,Y,}. In particular, Zy(u, v) is a smooth vector field for
each fixed (u,v).

LEMMA 4.4. Let K C Q be compact. There exists € > 0 so that if v € K and
if  is a smooth function defined in a neighborhood of x, then for all |u| + |v| < e

‘f(exp[zi:luj Xj} oexp[Zv] } ) (exp [ZM(u v)](a:))‘

< Cr (Jul + o)™

where the constant Cyy depends on estimates for derivatives of f up to order M +1
i a neighborhood of x and on the supremum of the derivatives of the coefficients
of the vector fields {X1,...,Xp, Y1,...,Yy}. In particular, if we take for f any
coordinate function on €2, it follows that

’exp[iuj Xj} o exp[zp:vj Xj} (z) —exp [ZM(u, v)](x)‘ < Cum (|u| + |v\)MJr1
j=1 j=1

Suppose again that {Xi,...,X,} are smooth vector fields on Q. For z € Q and
|s| + |t| sufficiently small, we can consider the mapping

P P
(s, t)(x) = exp Z sj+1tj) X;| oexp —thXj (2)
Jj=1 j

=exp[(s+t)- X]oexp[—t- X](x).
We list some elementary properties of the mappings I'(s, t):
(1) Fort=0,T(s,0)(x)=exp[sX](x).
(2) For s=0,TI(0,t)(x) = .
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(3)  If the vector fields {X;} commute, then for all ¢, I'(s,0)(z) = exp[sX](z).

Thus for each t € RP, s — I'(s,t)(z) is a smooth mapping of a neighborhood
of the origin in R? to €2 which takes 0 to x. When ¢ = 0, this mapping is just the
exponential mapping, but as ¢ varies, we get a family of such mappings.

LEMMA 4.5. For 1 < j < p, and for each multi-index o with |«| > 2 there is a
smooth vector fields Z; , on Q so that for any integer M, if we let Z; p(t) denote
the smooth vector field

Zin=X;+ Y. t*Zja,
2<]al<M
then if f is smooth in a neighborhood of x, we have
|£(T(s,t)(x)) — f(exp[s- Zu](x))| < C [s* + stMT].

5. Normal coordinates

Let 2 C R™ be an open set, and let X1,...,X,, € T(Q2) be smooth vector fields.
The exponential mapping allows us to introduce special coordinates near each point
in  which are particularly adapted to the n vector fields.

5.1. The definition of O,.

Let K C © be compact. Then using Theorem 3.2, it follows that there exists
e >0 so that if € K and if u = (uq,...,u,) € R™ with |u| < ¢, then

O, (ur,y ..., u,) = exp [zn:quj} (2) (5.1)
j=1

is defined and belongs to Q. Moreover, if B(e) is the ball of radius € centered at the
origin in R, ©, : B(e) — Q is an infinitely differentiable mapping with ©,(0) = 0.

LEMMA 5.1. Let X3,...,X, € T(Q). For every z € Q,
JO4(0) = det(X4,..., X,)(x),

where JO, is the Jacobian determinant of the mapping ©,. If K C Q is compact
and if det(Xq,...,Xn)(z) # 0 for all x € K there exists n > 0 so that for allz € K
(1) the mapping O, is a diffeomorphism of B(n) onto its image, denoted by
Ny;
(2) for ally € Ny, det(Xq,...,Xn)(y) #0.

PrROOF. Let x € 2, and let f be a smooth function defined in an open neigh-
borhood of . Put

F(t) = f(0,(0,...,0,t,0,...,0)) = f(exp(tX;)(z)),

where t appears in the j entry of ©,. Then F is a smooth function defined in
a neighborhood of the origin in R, and Lemma 3.4 shows that F'(0) = X;[f](z).
According to Definition 2.2, d©;[0,;]. = (X;)., and this shows that J©,(0) =
det(X7y,...,X,)(x). It then follows from the open mapping theorem that there is
an 1 > 0 so that ©, is a diffeomorphism on B(n), and 7 can be chosen uniformly
for all x € K. Shrinking 7 if necessary, we can insure that det(Xy,...,X,) does
not vanish on N,. This completes the proof. ([l

Proof?
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We shall denote the inverse of the mapping ©, by =,. Thus N, is an open
neighborhood of z € K and =, : N, — B(n) is a diffeomorphism. We can compose
the coordinate functions {u1,...,u,} on B(n) with the mapping Z,, and this gives
a new coordinate system on N, called the normal coordinates relative to the vector
fields {X1,..., X, }.

5.2. The action of dO, on tangent vectors.

On B(n) C R™ we have the standard coordinate vector fields {0, , ..., 0y, }, and
we can use the diffeomorphism O, to push these vector fields forward and obtain
n vector fields {d©4;[0y, ], ..,dO;[0y, ]} on N,. We also have the original n vector
fields {X7,..., X, } on N,. We observed in the proof of Lemma 5.1 that these two
sets of vector fields determine the same tangent vectors at the point z. However,
this is not true in general for y € N, with y # 2. To understand how the two sets
of vector fields are related in general, we need to use the Campbell-Baker-Hausdorff
formula.

LEMMA 5.2. Let K C §2 be compact and let N be a positive integer. Shrinking
71 if necessary, there is a constant Cn so that if x € K and |u| < eta
k-fold iterate

‘d@m[auj] - [Xj +§Njak W X [0 X, - [uX, ij]] < Oy |u/N+!
k=2

where it is understood that all vector fields are evaluated at the point ©,(u) € N,.
Here {az,as,...} are constants (rational numbers) which arise from the Campbell-
Baker Hausdorff formula.

ProOF. If we could find a family of vector fields W;(u) on N, depending

smoothly on u € B(7), such that

exp(u- X +tX;)(z) = exp (tW;(u)) (exp (u- X)(z)) (5.2)
it would follow from Lemma 3.4 that for any smooth function f defined in a neigh-
borhood of x we have

d

1 (exp (- X +1X5) (@) | = W)f)(©.(w).
The definition of the mapping ©, would then show that

(402 [04,)) . () = Wi ().

There may not be any such vector fields W;(u), but we can use the Campbell-
Baker-Hausdorff formula to find a family of vector fields W} n(u) for which equation
(5.2) holds up to order N in u. To do this, note that equation (5.2) is equivalent
to the equation

exp (th) = exp (u~X+th) oexp(—u-X).

We use Lemma 4.4 to approximate the right hand side. If é; denotes the unit vector
in R" with +1 in the j** entry and zeros elsewhere, we have u- X +tX; = (u+té;)-X.
Then if we put

Zin(ut) = (u- X +tX;) + (—u-X)+ Y (ut1é)*(—u)’Pa (X, X),

laf,|8]>1
le|+IBI<N
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it follows from Lemma 4.4 that
‘ exp (u- X +tX;)oexp(—u-X)—exp (Zj’N(u,t))’ < Cn (Jul N+ N,

Note that Z; n(u,0) =0, so Z; n(u,t) is divisible by ¢. We only want the part that
is linear in ¢, and we can write

k-fold iterate

N
Zjn(u,t) = t[Xj + apfu X u- X, [u- X, ij} +0(t?)
k=2

= th’N(u)i—‘r O<t2).

Then if f is a smooth function defined in a neighborhood of = we have

Gl (X ) @) = Wi (explu X)) < O fu'™

Since

(d@m[auj']) - % {f(exp (u X+ th)(x))L:d

this completes the proof. ([l

6. Submanifolds and tangent vectors

Let 2 C R™ be an open set, and let M C Q be a k-dimensional submanifold. If
X € T()), we investigate what it means to say that X is tangent to M at a point
pe M.

6.1. Submanifolds. We begin with the definition of a submanifold. Thus

DEFINITION 6.1. Let Q C R"™ be an open set. A subset M C € is a k-
dimensional submanifold of Q if M is relatively closed in Q) and for every point
xo € M there is a neighborhood U of xq in  and functions {pg+1,...,pn} C EU)
so that

(1) MOU = {2 € U prss () = - = pala) = 0},
(2) The matriz {g—‘;’;(w)} has mazimal rank n — k for x € U.

We list some local properties of submanifolds which follow easily from the open
mapping theorem and implicit function theorem.

THEOREM 6.2. Suppose that M C 2 is a k-dimensional submanifold of an open
subset of R™.
(1) For eachp € M, there is a neighborhood U of p in Q and a diffeomorphism
p=1(p1,---,pn) from U onto an open neighborhood V' of the origin in R™
so that

1

If p and p are two diffeomorphisms with this property, them po p~" is
infinitely differentiable on its domain.

(2) For each p € M there is an neighborhood U of p in Q and an infinitely
differentiable mapping ® from a neighborhood W of the origin in R* to
R™ so that ®(0) = p, and ®(W) = M NU. If ® and ® are two such

mappings, then ®~1 o ® is infinitely differentiable on its domain.
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(3) Let p e M, and let U and {pg+1,.-.,pnt C E(U) be as in Definition 6.1
so that MNU = {z € U| prs1(x) =+ = pu(x) =0}. If f € EU) with
f@)=0 forallz e MNU, then f = Z?:k-u fjpj with f; € EWU).

Given Theorem 6.2, we say that a real-valued function f defined on M is
infinitely differentiable near a point p € M if f o ® is an infinitely differentiable
function defined in a neighborhood of the origin in R*, where ® is given in part (2)
of the theorem.

6.2. Tangential vector fields.

Now let M C Q be a k-dimensional submanifold, let X € T'(2) and let f be a
infinitely differentiable function function defined on M. We ask whether it makes
sense to apply X to f. Tentatively, let us try to do this as follows. Near any point
p € M, we can certainly extend f to an infinitely differentiable function F' defined
in a neighborhood U of p in Q (so that F(x) = f(x) for all z € M NU). We can
then apply X to F', and we can restrict the result back to M. Of course, this will
provide a good definition of X[f] provided we can show the result does not depend
on the particular choice of the extension F' of the function f.

Thus suppose F; and F» both extend the function f to some open neighbor-
hood U of p € M. Then F; — F5, = 0 on M NU. Suppose that M NU =
{z € U|prs1(z) =+ = pn(z) = 0} as in part (3) of Theorem 6.2. Then Fy — Fp =
> i—ki1 fipj, and hence for x € M NU

n

X[R](z) = X[R](z) = Y X[fil@)pj(x) + Y file) X[pj)(x)

j=k+1 j=k+1

= Y filz) Xlpl(2)

j=k+1

It is now clear that for € M, the value of X[F](z) is independent of the choice of
extension F of f if and only if X[p;](z) =0for k+1<j <n.

DEFINITION 6.3. Let M C § be a k-dimensional submanifold. A wvector field
X € T(Q) is tangential to M if X[g](xz) = 0 for every x € M and every function
g € E(Q) with g(y) =0 for ally € M.

6.3. The Frobenius theorem.

THEOREM 6.4. Let {X1,...,X,} be smooth real vector fields on an open subset
Q C R™. Suppose there is a positive integer m < n so that for each x € ) the
tangent vectors {(X1)g, ..., (Xp)z} span a subspace of dimension m of the tangent
space T,,. Then the following two conditions are equivalent.

(A) For every x € § there is an open neighborhood x € U, C Q and a m-
dimensional submanifold M, C U, such that x € M, and for each y € M,
the tangent vectors {(X1)y,-..,(Xp)y} span the tangent space T,(M,) to
M, aty.
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(B) For every x €  there is an open neighborhood x € V,, C Q and functions
aé)k € E(Vy,) so that on V,, we have

M=

[Xja Xk] = aé‘7k Xl- (61)

=1

PrROOF THAT (A) IMPLIES (B). Let z € Q, and let « € M, C U, be as
in (A). Since the tangent vectors {(X1)g,...,(Xp)z} span a subspace of dimen-
sion m, we can assume, after renumbering if necessary, that the tangent vectors
{(X1)y;---,(Xy)y} are linearly independent at every point y in an open neighbor-
hood x € V, C U,.

Let y € V.. We can apply the hypothesis (A) again and conclude that there
exists an open neighborhood y € W, C V, and a m-dimensional submanifold
y € M, C W, so that the tangent vectors {(X1).,...,(X,).} span the tangent
space T (M,) for every z € M,. The vector fields {X1,..., X} are tangent to M,
and hence every commutator [X;, Xj] is also tangent to M,. In particular, the
tangent vector [X;, Xi], € Ty, M. But the tangent vectors {(X1)y, ..., (Xm)y} are
linearly independent, and hence span the m-dimensional space T, M,. It follows
that for every y € V, we can find real numbers {a§7k(y)} so that

m

[, Xal, = > ok (y) (X0),.
=1

It remains to show that the functions y — ozé-’ »(y) are infinitely differentiable.
However, the vector fields {X1,..., X} and [X;, X}] are smooth. Since we now
know that [X;, Xj] is in the linear span of {Xi,...,X,,} at each point y € V,,
Cramer’s rule shows that the coefficients {a .} C £(V,). O

PROOF THAT (B) IMPLIES (A). Let z € Q, and assume that equation (6.1)
holds in a neighborhood =z € V, C Q. Let us write X; = Y }_, a; 0, where
{ajx} C £(Q). Since the tangent vectors {(Xi)g,...,(Xp)z} span a subspace of
dimension m, the rank of the matrix {a;z(2z)}, 1 < j <p, 1 <k <nism. Thus
after renumbering the vector fields and relabeling the coordinates if necessary, we
can assume that the tangent vectors {(X1)z,...,(Xm ).} are linearly independent
and

ara(z) - arm(®)

det # 0.

am1(T) o amm(T)
It follows that there is an open neighborhood x € U, C V, so that if y € U,, the
tangent vectors {(X1)y, ..., (Xm)y} are linearly independent and the m x m matrix
[aj,k(y)];rfk:l is invertible. Let [bj7k(y)}zbk:1 be the inverse matrix. Then b, €
E(U,). Note that since the tangent vectors {(X1)y,...,(X,)y} span a subspace
of dimension m and {(X1)y,...,(Xm)y} are linearly independent, we can write
(X1)y =20 ci(y) (Xi)y for m+1 <1 < p. As before, it follows from Cramer’s
rule that the functions ¢;; € £(U,). Thus we have

Xl:ZCZ,iXi m+1<I<np. (6.2)
i=1
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We now construct new vector fields {Y3,...,Y;,} on U, by setting
V=) b;X; (6.3)
j=1
= [me‘ aj,k} Oz,
k=1 j=1

It follows that

Yi=0s+ Y cikOa, (6.4)
k=m-+1
where ¢y = 370 b jaj for m+1 <k <n.

The two sets of vector fields {X1,...,X,} and {Y3,...,Y,,} span the same
subset of Ty for any y € U,. Equation (6.3) shows that (Y}), is in the span of
{X1,...,X,}. Next, using equation (6.3) and the fact that [a;;] and [b; 5] are
inverse matrices, we can write

X; =Y axYi, 1<j<m, (6.5)
k=1

Also, it follows from equation (6.2) that

m

=3 Y]V, ma1<j<p. (6.6)

k=1 I=1

Thus equations (6.5) and (6.6) show that (Xj), is in the span of {Y7,...,Y;,}.
Now if we use the hypothesis given in (6.1), equations (6.3), (6.5), and (6.6),
and Proposition 1.4, it follows that we can write

V5, Yl =Y B, Y
=1

for 1 < j,k < m. However, it follows from equation (6.4) that for 1 < < m, the
coefficient of 9, in [Y}, Y}] is zero, and hence B;‘,k = 0. Hence [Y}, Y] = 0, and
the vector fields {Y7,...,Y;,} all commute on the set U,.

Now define a mapping ® from a neighborhood of the origin in R™ to € by
setting

D(Y1,- - Ym) = exp(y1Y1) 0 - o exp(ynYn)(z).

Note that ®(0) = z. The Jacobian determinant of this mapping at the origin of R™
is det(Y1, ..., Y;,)(x) # 0, and so there is a neighborhood z € U, C W, so that the
image of some neighborhood of the origin in R™ is an m-dimensional submanifold
M, C U,.

We claim that d®[d,,] = Yj. Since [Y}, Y] = 0, all of the flows

{exp(i Y1), ..., exp(ynYn)}

commute. Thus for any j we can write

D(y1,... Ym) = exp(y;Yj) o exp(y1Y1) o - - - 0 exp(ynYn)(2)
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where the flow exp(y;Y;) has been moved to the left. It follows from Corollary 3.7
that

d®[0,,][f1(®(y)) = d®[9,,][f](exp(y;Y;) o exp(y1Y1) o -+ 0 exp(yn V) (2))

— 5; [f(exp(yij) oexp(y1Yi)o---o EXp(y"Y")(x))}

= [Y; f](exp(y;Y;) o exp(y1¥1) o - - 0 exp(ynYn)(2))
= [V;f1(2(y)).

It follows that the vector fields {Y7,...,Y,,} are tangent to M,, and consequently
the vector fields {X7,...,X,} are tangent to M,, which completes the proof. O

7. Normal forms for vector fields

The discussion in Section 2 shows that the coefficients of a vector field change
if one makes a change of coordinate. In this section we study changes of variables
which allow us to write one or two vector fields in particularly simple form.

7.1. The case of a single vector field.

A single non-vanishing vector field is, after a change of coordinates, just the
derivative with respect to one of the coordinates.

PROPOSITION 7.1. Let X € T() and let x € Q. Suppose that X, # 0. Then
there is an open neighborhood U of the point x and a diffeomorphism ® : U — V
where V' is an open neighborhood of the origin in R™ so that ®(x) =0, and so that
if (Y1,---,Yn) are coordinates in'V, then
_9
Oy
Before starting the proof, let us investigate the meaning of (7.1). Suppose that

® = (p1,...,pn) is a difftomorphism satisfying Proposition 7.1. It is easy to check
that

(i) the functions {1, ...,vn—1} are constant along each integral curve of X;

dD[X] (7.1)

(ii) the function t — ¢, (exp(tX)(z)) must equal a constant plus ¢.

Conversely, any diffeomorphism ® satisfying (i) and (ii) will satisfy (7.1). With this
in mind, we now turn to the proof of the proposition.

PROOF. To construct the required diffeomorphism, it is easier to first construct
its inverse. Let U : R"~1 — R™ be a smooth mapping such that \I/(O) = x. Let
V be a sufficiently small neighborhood of the origin such that \TI(XN/) has compact
closure K C Q. According to Theorem 3.2 there exists € > 0 so that exp (¢X)(y) is
defined for y € K and [t| <.

In particular exp (tX)(\Tl(tl,...,tn_l)) is defined for (ty,...,tn—1) € V, and
|tn] < €. Define W : V x (—¢, +¢) — R™ by

\Ij(tlv cee atn) = exp(tX)(\Ij(tla s 7tn—1)atn)7
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It follows from Theorem 3.2 that ¥ is a smooth mapping. Moreover, it follows from
Lemma 3.4 that

. (i)_ cfl\\f!m(%) for1<k<n-1
“\ot,/

If we choose any U so that the Jacobian matrix J \Il(x) at x has rank n — 1, and

X for k = n.

so that X, is not in the range of J \I/(x), then the inverse function theorem implies
that W is a diffeomorphism on a sufficiently small neighborhood of 0. The inverse
mapping satisfies (i) and (ii), and this proves the proposition. O

7.2. The case of two vector fields.

After a change of variables, any two non-vanishing vector fields are locally
identical. The situation is more complicated if we try to find a standard form for a
pair of vector fields.

PROPOSITION 7.2. Let X, Y € T() and let xg € Q. Suppose that X (xy) and
Y (zg) are linearly independent. Then there is an open neighborhood U of the point
xg and a diffeomorphism ® : U — V where V is an open neighborhood of the origin
in R™ so that ®(xg) =0, and so that if (y1,...,yn) are coordinates in V, then

B.[X] = by (y) %
n—1 a (72)
©.1Y] = 3o b) 5,

Moreover b,(0) # 0.

PROOF. We must have X () # 0. According to Proposition ?? we can assume

that zo = 0 and that X = ;2. Let ¥ = Z;-l:laj%. Let ®(x1,...,2,) =

(ml, ey 1, 0(21, - ,:cn)) Then at y = ®(z) we have

n—1
X = @) g ad VY] = Y ) 5+ Yel)
n n i=1 g

9
Yn

Thus we only need to choose ¢ so that it is constant along the integral curves of
Y, and such that 867“’(0) = 0. But this is possible because the integral curves of X
and of Y are not tangent anywhere near 0. O

8. Vector fields and Derivations

We return now to the question of finding an algebraic characterizing of tangent
vectors and vector fields. As promised in Section 1, we show that this can be done
using the concept of derivation. If A; and Ay are two algebras over R, a linear
mapping D : A; — As is a derivation if D(xy) = D(z)y + «D(y) for all z,y € A;.
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8.1. Factorization.

The key to the desired characterization is the following simple but important
result on factorization of smooth functions.

PROPOSITION 8.1. Let  C R™ be open, and let y = (y1,...,yn) € Q. Let
fe&U). Then for 1 < k,l <n there exist functions fi; € E() so that for x € Q

we have
n

IEDSCEMI D SCEACE AT Ao}

k=1

PROOF. Suppose that B(y,r) = {:c e R | |z —y| < 7’} C Q. Let x € B(y,r),
and for 0 < ¢ <1 put ¢(t) = f(y + t(z —y)). Then

F(x) = (1) = $(0) + / W (3) ds = (0) +4'(0) + / (1~ )" () du.

Now
¥(0) = f(y)
V0 =3~ 1) )
W (u) = > (e — yi) (@ —u) 0%2];931 (y +u(z —y)).
k=1
If we put

Fuatw) = [ 0= 520 (g4 uta = ) du

then the functions {f;} are infinitely differentiable on B(y,r), and for |z —y| < r

we have
n

() + 35— ) o)+ (o — i) — 1) Frae).
j=1

J k,i=1

Choose x € 8(~Q) with x(z) = 1 for [z —y| < r and x(z) =0 for |z —y| > 34.
The functions {xfx,;} are identically zero for |z — y| > 3r and hence extend to

infinitely differentiable functions on 2 which we continue to write as XJ?k,b Then

~ n of n ~
F(z) = f(x) = fy) =Y (&5 — ;) 5 oz, (W) = > (we = ye) (@1 — u) X(2) fra(@)
j=1 k=1
is an infinitely differentiable function on  and is identically zero for |z — y| < ir.

Hence the function F(z) = F(z) |z —y|~2 is also infinitely differentiable on €. Thus
we can write

)+ Z: 6:3] )
Jj=1

+ > (@ =y (@ — ) () (@) + > (25— ;) F(z).

k=1 j=1
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If we now put

[ x(@) fra(z) i kA1
fra(z) = ~ : .
then we obtain the decomposition asserted in the proposition. 0

8.2. Derivations.

LEMMA 8.2. Let Q C R™ be an open set and let D : E(QY) — E(Q) be a
derivation. Then there exists a unique n-tuple (a1,...,a,) € E(Q)™ so that for
all f € £(Q) we have D[f](x) = > 7_, aj(x)ngj(x). In particular, D is a vector
field.

PROOF. Since D is a derivation, D[1] = D[1%] = D[1]1 + 1 D[1] = 2D[1], so

that D[1] = 0. By linearity, D[c] = 0 for any function which is constant. Next, if

fr 9, h € E(Q), then D[fghl(y) = D[f]g(y) h(y) + f(y) Dlg h(y) + f(y) 9(y) DIA].
Hence if y € Q and if f(y) = g(y) = 0, then D[fgh](y) = 0.

Now put a; = D[z;]. Then a; € £(2), and it follows from Proposition 8.1 and
the above remarks that

This completes the proof. O
Exactly the same argument gives the following result.

LEMMA 8.3. Let x € R™ and let D : £, — R be a derivation. Then there exists
a unique (c1,...,¢,) € R" so that D[f] = 377, cj%(x). In particular, D is a
J
tangent vector.



CHAPTER 3

CARNOT-CARATHEODORY METRICS

A Carnot-Carathéodory space is a smooth real manifold M equipped with a
metric induced by a distinguished family of vector fields. There are several essen-
tially equivalent definitions of this metric, and a typical approach is the follow-
ing. Let X1,...,X, € T(M) be smooth real vector fields on M. If [a,b] C R is
an interval and if v : [a,b] — M is absolutely continuous, then v is said to be
a sub-unit curve joining y(a) and (b) if for almost all ¢t € [a,b] one can write
' (t) = ?:1 a;j(t) (X;)y ) with Z?Zl laj(t)]> < 1. The Carnot-Carathéodory dis-
tance between two points p, g € M is then defined to be the infimum of those § > 0
such that there is a sub-unit mapping joining p and ¢ defined on an interval of
length 6.

In general, if the vector fields {X,...,X,} do not span the tangent space at
each point of M, it may be happen that the Carnot-Carathéodory distance between
two points is infinite. There may be no path v : [a,b] — M joining p and ¢ whose
derivative 7/ (t) lies in the space spanned by {(X1)¢), - - -, (Xp)y(¢) } for almost every
t € [a,b]. However, if the vector fields {X1,..., X} together with all their iterated
commutators span the tangent space to M at each point, then the distance between
any two points is finite, and this distance is a metric. This result goes back at least
to the work of Chow [Cho40).

The following (imprecise) argument gives a rough idea of why this is so. The
crucial point is that if X and Y are two vector fields on M, then motion along
the integral curves of X and Y also allows permits motion in the direction of the
commutator [X,Y]. Thus it follows from the Campbell-Baker-Hausdorff formula,
(see Chapter 2, Lemma 4.5) that

exp[—tX] exp[—tY] exp[tX] exp[tY] = exp[t?[X, Y] + O(t?)).

Thus we can flow (approximately) along the integral curve of [X, Y] by flowing along
Y, then flowing along X, then flowing along —Y, and finally flowing along —X.
We can flow (approximately) along integral curves of higher order commutators
by a more complicated composition! of flows along Y and X. Since the iterated
commutators span the tangent space, we can flow in any direction.

In this Chapter we develop a theory of metrics constructed from vector fields,
but we shall start with a different definition in which it is immediately clear that

IFor example, the Campbell-Baker-Hausdorff formula gives
exp[—tX] exp[—t2 [X, Y]] exp[tX] exp[t? [X, Y]] = exp[t®[X, [X, Y]] + O(t*)].
Using again the Campbell-Baker-Hausdorff formula for exp t2 [X, Y], we have
exp[t3[X, [X, Y]] = exp[tY] exp[—tX] exp[—2tY] exp[tX] exp[tY] + O(t?).
Thus we can flow (approximately) along the integral curve of the vector field [X, [X, Y]] by a

composition of five elementary flows along integral curves of Y and X.

84
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the distance between any two points is finite. We will later prove Chow’s theorem,
and show that that the different metrics are equivalent. In brief, our construction
of Carnot-Carathéodory metrics proceeds as follows. Let {Yi,...,Y;} be vector
fields on M which span the tangent space at each point. Then

e The vector fields {Y7,...,Y,} induce a ‘length’ function on each tangent
space T, M. In general, this length will not be a norm.

e If v:[0,1] — M is an absolutely continuous mapping, then for almost all
t € [0,1], we can calculate the length of the tangent vector v'(t) € T, ) M.
We then define the ‘length’ of v to the the essential supremum of the
lengths of the derivatives v/(t).

e The distance between two points in M is then the infimum over the lengths
of all absolutely continuous curves + : [0,1] — M joining them.

Note that this construction involves a very large class of curves. This has
the advantage that it is then relatively easy to show that the resulting distance
function is actually a metric. However, the corresponding disadvantage is that it is
often difficult to calculate the metric exactly, or to understand the geometry of the
corresponding family of balls. Thus the general theory develops in several stages.
We first deal with a large class of curves in order to establish the global metric
properties of the distance function. Later we show that an equivalent metric is
generated by a smaller classes of curves, and this allows a precise description of
local geometry of the metric.

Since we are primarily interested in local questions we shall take the underlying
manifold to be a connected open subset of Euclidean space. However there is no
difficulty in extending the global theory to the manifold setting.

1. Construction of Carnot-Carathéodory metrics
1.1. Homogeneous norms.

A non-isotropic family of dilations on RY is a family of mappings D : R? — R?
of the form
Ds(y) = D(;((yl, R yq)) = (5d1y1, . 7(S‘i‘lyq). (1.1)
Note that Ds, o D5, = Ds,+s,. We shall assume that the exponents {d;} are all
strictly positive. A {Dj}-homogeneous norm is then a continuous function on RY,
written x — || T H, such that

(i) for all y € RY, HyH > 0 and ||y{|:Oifandonlyify:O;

(ii) for all y € RY, ‘yH = H —y| ;
(iii) for all y € R? and all § > 0, || Ds(y) || = 0| v ||
If the family of dilations { Dy} is understood, we shall simply call || - || a homogeneous

norm.
Given the family {Ds}, there are many {Ds}-homogeneous norms. For exam-
ple, for 1 < p < oo, we can set

=

(o wlB]" e <o,
yllp = (1.2)

1
SUpi<j<q Y| if p=oo.
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When all the exponents d; = 1, these are the standard LP-norms on RY. We
will write

1
yl = (i ++yg)’
for the standard Euclidean norm, which is the case d; = 1 and p = 2.
As with an ordinary norm, a homogeneous norm on R? is determined by its
restriction to the unit (Euclidean) sphere S971 = {y € R? | ly| = 1}. Since S971 is
compact, it follows that any two homogeneous norms are equivalent.

PROPOSITION 1.1. Let {Ds} be a family of dilations on RY, and let || . Ha and

H . ||b be two Dgs-homogeneous norms. Then there exists a constant C > 1 so that
for all y € RY,

CHlylly < llwll. = Cllylly
We can also compare a homogeneous norm to the standard Euclidean norm.

PROPOSITION 1.2. Let {Ds} be a family of dilations on R? with exponents
{di,...,dq}. Let d = min{ds,...,d;} and D = max{di,...,d,}. Let H . H be a
D-homogeneous norm. Then there is a constant C > 1 so that for all y € RY,

¢t min {Jy[, [y P} < ||| < € max {Jy"/7, 57}

PROOF. Since y — ||y|| is continuous, there is a constant C' > 1 so that C~! <
lly|| < C if |y| = 1. Given an arbitrary y € R? with y # 0, there is a unique §,, > 0
so that |Ds, (y)| = 1, and hence C~' 5,1 < |[yl| < C6,". Now if y = (y1,...yqg),
dy is the solution of the equation

S2M |y |2 4 - 4 52y, = 1.

It follows that
S2Plyl* <1< o2y* if g, <1,

2yP <1< 62Py)? if b, > 1.
But these are equivalent to the inequalities

VP <ot < [y iffy| > 1

)

)

Ve <ot < ylVPif fy[ <1

and this gives the desired estimate. O

1.2. Control systems.

Let ©Q C R™ be a connected open set. We shall always assume that there is a
constant M < +oo so that for all x, y € € there is a continuously differentiable
mapping ¢ : [0,1] — Q with ¢(0) =z, (1) =y, and for all ¢ € [0, 1]

[’ (t)] < M |y — =, (1.3)

This is a smoothness assumption on the boundary 92 of 2, and it is always satisfied
if the closure €2 of Q is compact and 92 is a smooth hypersurface.
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DEFINITION 1.3. A control system on § is a set of smooth real vector fields
Yi,...,Y, € T(Q) and positive integers {di,...,d,} called the formal degrees of the
vector fields such that the following conditions are satisfied:

(H-1) For every x € Q, the tangent vectors {(Y1)z,...,(Yy)z} span the tangent
space T.

(H-2) For 1 <k,l,m < q there are functions c7y € E() so that

Y, Yl = > Vi (1.4)
1<m<q
dm <dj+di

Thus ci'y(x) = 0 for all x € Q unless dy, < di + di. We sometimes refer
to the functions {c;"k} as the structure functions for ..

Because issues of uniformity will be very important, we need a method for
measuring the ‘size’ of a control system Y = {Y1,...,Y;;d1,...,d;}. We measure
the size of the formal degrees by using notation already introduced in Proposition
1.2:

dy =d= d;
Y 1I<n]1£lq 7

Dy =D = max d;.

1<j<q

(1.5)

Next let us write
Y; = Zb] e Zb] k O, (1.6)

where b; , € £(). Then there are three additional quantities we need to control.
We need estimates on the size of derivatives of the coefficient functions {b;; } from
equation (1.6), we need estimates on the size of derivatives of the structure functions
{c;”k} from equation (1.4), and we need to quantify the hypothesis (H-1) that the

vectors {(Yj)m} span the tangent space T, for each = € €.

DEFINITION 1.4.

(1) For any set E C Q and every positive integer N, set

HyHEN_bup D D 0%l |+5UP ST [0gh(e)

‘0‘|<N Jk \oc|<N k,l,m
Note that if K C Q) is compact, then ||yHKN s finite.

(2) For any set E C ), put

vy(E) =v(F) = inf sup ’ det(Yi,,....Yi, ) (2)|.

T€E 1<i; < <in<q

Note that hypothesis (H-1) is equivalent to the statement that for every
compact subset K C Q we have v(K) > 0.
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1.3. Carnot-Carathéodory metrics.

Let Y = {Y1,...,Y,;dy,...,dy} be a control system on a connected open set
Q C R™. Let {Ds} be the family of non-isotropic dilations on R? with exponents
{di,...,dq}, and let || . || be a D-homogeneous norm on RY?. In this section we
define the Carnot-Carathéodory metric associated to control system ) and the
norm H . H

To do this we first introduce a class of allowable paths joining two point of 2.

DEFINITION 1.5. For x,y € Q and § > 0, AC(x,y;0) denotes the set of all
absolutely continuous mappings ¢ : [0,1] — Q with ¢(0) = x and ¢(1) = y such that
for almost every t € [0, 1] we can write

o'(t) = Zaj(t) Yoy with [ (a1(t),...,aq(1)) || <.

Next we define the Carnot-Carathéodory distance p and the corresponding family
of balls B,(x;9).

DEFINITION 1.6. The Carnot-Carathéodory distance between two points x,y €
Q induced by Y and the homogeneous norm || . H is given by

p(z,y) = inf {(5 >0 ‘ AC(z,y;9) is not empty} .
For x € Q and § > 0, the ball with center x and radius § > 0 is
B,(x;0) = {y €N ‘ pz,y) < (5} .

PROPOSITION 1.7. Let Y = {Y1,...,Y;;dy,...dg} be a control system on an
open set Q C R™, let H . H be a homogeneous metric on RY. Suppose that H Yy ‘ ‘Q 1 <
+o0o and vy(2) > 0. Then:

(1) There is a constant C' > 1 so that for all z,y € Q,
O™ min {|e — 4, |z y|P} < ple,y) < Cmax {|z —y|7, [« —y| P }.

(2) p is a metric. Explicitly:
(a) For all x,y € Q, 0 < p(x,y) < +o00, and p(x,y) = 0 if and only if
v =y;
(b) For all x,y € Q, p(z,y) = p(y,z);
(¢) For allz,y,z € Q, p(x,2) < p(x,y) + p(y, 2).

(8) The function p is jointly continuous on 2 x Q. In particular, the balls
{B,(x,0)} forx € Q and 6 > 0 are open subsets of R™.

PROOF. We first compare p(z,y) with the Euclidean distance |z — y|. It fol-
lows from the hypothesis in equation (1.3) that if z,y € Q there is a continu-
ously differentiable function ¢ : [0,1] — € such that ¢(0) = z, ¢(1) = y, and
|¢'(t)| < M|y — x|. Since the vectors {(Y1)g(t);-- -, (Yq)gw)} span R™, we can write
@' (t) = > iy ar(t) (Yi)g(r). Moreover, Cramer’s rule implies that we can choose
the coefficients {ax(t)} so that |ag(t)| < Cl¢' ()| < C1M|x — y| where C; depends
on the measures ||)||q,1 and vy(Q) given in Definition 1.4. It follows that

|(a1(t), ce ,aq(t))| < \/acleE - y|7
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and hence by Proposition 1.2 there is a constant C5 depending on Cy, M, and the
homogeneous norm, so that

||(a’1(t)a ) al](t))H S 02 max{‘x - y|1/d7 |:C - y|1/D}'
It follows that AC(z,y, Cy max{|z —y|*/4, |z — y|'/P}) is not empty, and hence
p(z,y) < Cy max {|z — y|Ve |z — |1/D}. (A)

In particular p(z,y) < oo for any two points z,y € Q.

Suppose next that p(z,y) = 6§ < +oo. Then given any € > 0, there exists
Y € AC(x,y,d + €). Since 9 is absolutely continuous, it follows that

ly —z| = ‘/01 P (t) dt’ = /01 _Xq:aj(t)(Yj)w) dt

< (C3 sup ‘(al ,aq(t))’
0<t<1

< Cs sup max{||(ai(t),. ., aq®)||% |[(ar(t), .-, aq()]|”}
0<t<1
< Cymax{(J + €)% (6 +¢)"}
where C'5 > 1 depends on H Yy ’ ’1. Since € > 0 is arbitrary, it follows that

‘SL‘ - y| S CS max{p(x,y)d,p(x,y)D},
which implies
Cfl/d . _ /4 |y — /DY < B
5 " min{lz —y[% [z —y[ 7} < plz,y). (B)

The two inequalities (A) and (B) give the desired comparison asserted in part (1)
of the Proposition.

Next we show that the function p is indeed a metric. It follows from the
comparison with the Euclidean distance that if z,y € Q, then p(x,y) = 0 if and
only if x = y. Also, if p € AC(x,y,0), then ¥(t) = ¢(1 — t) has the property that
Y € ACq(y, x,90). Tt follows that p(z,y) = p(y, x).

It remains to check the triangle inequality (c¢). Let x,y,z € Q. Choose any
01, 02 so that p(x,y) < 01 and p(y, z) < d2. Then we can choose p; € AC(x,y,01)
and @9 € AC(y, z,02). For i = 1,2 we have

Z 5, k Yk <p1(t)

where for almost every t we have ||(a;,1(t), ..., aiq(t))|| < 8;. Put A = 61(61462)~*
so that 0 < A < 1, and then define

¢1 (A1) if 0<t<,
Y(t) =
pa (=Nt —N) if A<t<1.

Clearly 9 : [0,1] — Q and ¥(0) = z, (1) = z. Moreover, since ¢1(1) =y = 2(0),
the function 1) is continuous at the point t = A, and so ¥ is absolutely continuous



1. CONSTRUCTION OF CARNOT-CARATHEODORY METRICS 90

on the interval [0,1]. If 0 < ¢ < X\ we have for almost all such ¢
q
Y(t) = A"t (AT = Z Alar, (ATH) Y-
k=1

But
(A s (A1), A e, (A1)
<7 o 7)oy (A7) |
<Al = (61 4+ d2)

by property (iv) of homogeneous norms. Similarly, if A <¢ < 1 we have

P(t)=(1=N"o2 (L=N)""(t=N)
=) (1=N"laor (A=N)"1(E=N) Yj(t),
k=1

and
(=X az 1 (A=X)" E=N), -, (=N laz (1 =N) "= )|
<(1- )\)_1"(@2,1((1 Y A),.azg((1— A7t — )\)))H
< (1 =Xy = (61 4 62).
It follows that ¢ € AC(z, 2,1 + J2), and so p(x, z) < §; + d2. But since §; was any
number larger than p(x,y) and 02 was any number larger than p(y, z), it follows

that p(z,z) < p(x,y) + p(y, z) so p is indeed a metric. This completes the proof of
assertion (2).

Finally we show that p is jointly continuous. Let x1,x2,y1,y2 € 2. Then
p(x2,y2) < p(a2, x1) + p(x1,91) + p(y1, y2)
p(z1,y1) < p(z1,22) + p(22,Y2) + p(y2, Y1),
and hence
Ip(z1,51) — p(@2, y2)| < pla1,22) + p(y1,y2)
<C max{|:z:1 - $2|1/d7 \$1 - $2\1/D, |y1 - y2|1/d, |y1 - y2|1/D}-

This last inequality establishes joint continuity, and completes the proof. O

The metric p we have constructed depends both on the control system ) and
on the choice of homogeneous norm H . H We remark that for many applications,
what is important is not one particular choice of metric, but rather a corresponding
equivalence class of metrics, and it turns out that the equivalence class does not
depend on the choice of homogeneous norm. We make this precise as follows.

DEFINITION 1.8. Let Q C R™ be an open set.

(i) Two metrics p1 and py are globally equivalent on Q if there is a constant
C > 1 so that for all x,y € Q,

C™ pa(z,y) < pi(a,y) < Cp2(,y).



1. CONSTRUCTION OF CARNOT-CARATHEODORY METRICS 91

(i) Two metrics p1 and pa are locally equivalent on  if for every compact
subset K C ) there is a constant C(K) > 1 so that for all z,y € K,

C(K)™ ! pa(x,y) < pr(z,y) < C(K) pa(,y).
The notion of local equivalence is appropriate when one is concerned only with local
behavior, and hence small distances.

We now observe that although different choices of homogeneous norm can lead
to different metrics, these metrics are globally equivalent.

PROPOSITION 1.9. Let Y = {Y1,...,Y,:d1,...,dq} be a control structure on a
connected open set 2 C R™. Let H . | . and H . Hb be two homogeneous norms. Then
the corresponding Carnot-Carathéodory metrics p, and py are globally equivalent.

PRrROOF. There is a constant C' > 1 so that C’1||y{|b < ||y||a < C’||y|’b
for all y € RY. Suppose that ¢ : [0,1] — Q and 9'(t) = > j_; ax(t) Y5,y Then
|[(a1(t),. .., aq(t))|lp < & implies |[(a1(t),...,aq(t))|la < Cd. It follows that the
space ACy(z,y;0d) of allowable paths for the homogeneous norm || - || is con-

tained in the space AC,(x,y;C¢). This together with the corresponding inclusion
AC,y(z,y;0) C ACy(z,y; Cd) show that the two metrics are globally equivalent. O

There are other modifications of a control system which do not change the
equivalence class of the corresponding Carnot-Carathéodory metric. The following
is an illustration.

ProOPOSITION 1.10. Let  C R™ be a connected open set, and suppose Y =
{M,...,Yd, .. dg} and 2 ={Zy,...,Z,;e1,...e.} are two control systems on
Q. Suppose ||3)HQ | < too, || Z HQ L <00, vy(Q) >0, and vz(Q2) > 0. Suppose
that for each 1 < j 7§ qand 1l <k< r we can write

- q
Yj=> o and  Zp=)_ fFrmYm
=1 m=1

where the coefficients {o;;} and {Br m} are bounded on 2.

(1) If a{ =0 unless e; < d; and 3%, = 0 unless d,,, < ey, the metrics py and
pz are locally equivalent.

(2) If o] =0 unless e; = d; and BE, = 0 unless d,,, = ey, the metrics py and
pz are globally equivalent.

PROOF. Since different homogeneous norms result in globally equivalent met-
rics, we can take the homogeneous norms both metrics to be || - || as defined in
equation (1.2).

Let K C 2 be compact, and let 0x = sup, ,cx py(7,y). Let z,y € K and let
0 < 20k. Suppose that ¢ € ACy(x,y;d) so that for almost all ¢ € [0,1] we can
write ¢'(t) = 23:1 a;(t)(Y}) () with |a;(t)] < 6%. It follows that

T q
¢ =3 [D 0 asa(6®)] (200,
=1 j=1
Under the hypotheses in (1), since 6 < 2Jx we have
q q

S aau@m)| < Y 8 sw e < (CE) DT (1)

j=1 j=1 zeQ
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where C(K) depends on dx and the supremum of the coefficients {a;;} on €.
It follows that ¢ € ACz(z,y; C(K)d) and hence py(z,y) < C(K)pz(z,y). The
opposite inequality is proved the same way, so the metrics py and pz are locally
equivalent.

If the hypotheses in (2) hold, we can repeat the argument for any pair of points
x,y € Q. If ¢ € ACy(z,y;9), write ¢'(t) = a; ()(Y5) e with |a;(t)] < 6%.
Then inequality (1.7) is replaced by

q
> ast) ezl ]
j=1

q
=1

4 sup |aj ()] < (C6) (L.7)
x€Q

\MQ

where C' depends only on the supremum of the coefficients {e; x} on Q. Thus the
two metrics are globally equivalent. This completes the proof. ([l

It follows that adding additional vector fields with maximal formal degree does
not change the local behavior of the metric associated to a control system.

COROLLARY 1.11. Let Q C R™ be a connected open set with compact clo-
sure, and suppose Y = {Y1,...,Yy;d1,...,d} is a control system on Q. Let
d = sup{di,...,dq}. Let {Yyy1,...,Y,.} be vector fields on Q and suppose that
we can write

q
YS:Z’YS,erﬁ Q+1§S§r7

where the functions s ; are bounded on ). If we set dgy1 = -+ = d, = d, then
Vi ={Y1,...,Y";dy,...,d.} is a control system on Q which is locally equivalent to
V.

1.4. Vector fields of finite type.

In this section we describe a standard method for constructing a control sys-
tem from a collection of vector fields S = {X1,...,X,} satisfying a certain span-
ning hypothesis. Recall that if Q@ C R™ is an open set, then T(Q) denotes the
space of real-valued infinitely differentiable vector fields on Q. If z € ©Q and if
Y € T(Q2), the value of Y at x is a tangent vector Y, € T, and . Also recall
from Chapter 2, Definition 1.5, that if Xi,...,X, € D(Q), then L(X4,...,X})
is the Lie subalgebra of T(2) generated by Xi,...,X,. As a real vector space,
L(X1,...,X,) is spanned by the vector fields {X1,...,X,} and all iterated com-
mutators {[X1, Xo],..., [ Xp—1, Xp|, ..., [X;, [X&, Xi]],...}.

DEFINITION 1.12. Let Q C R™ be a connected open set. Let X1,...,X, € T(Q).
Then {Xi,...,X,} are of finite type*on Q if for every x € Q,
(X1, ... ,Xp)} .

If for every x € Q, T, is spanned by the values at x of iterated commutators of
{X1,...,X,} of length at most m, then we say that {X1,...,X,} are of finite type
m on £).

T, = {Yw

2This condition is sometimes referred to as Hérmander’s condition. Hérmander made crucial
use of this condition in his study of partial differential operators of the form £ = X7 +--- 4+ X2 +
Xo in [H67] However, this condition was previously used by other mathematicians such as
Carathéodory and Chow.
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Suppose that  C R™ is a connected open set, and vector fields {X;,..., X, } are
of finite type m on 2. We shall write down a list of all possible iterated commutators
of {Xi,..., Xp} of length at most m. Thus for 1 < r < m let I, denote the set of
all ordered r-tuples J = (j1,...,J) of positive integers with 1 < j, < p. For each
J el, let

Y[J]: [Xjr’ o 7[Xj2’Xj1]"'H'
It is important to note that in general the vector fields {Y} 1} ser, are not all distinct.
For example, if » > 2 and if j; = ja, then Y;; = 0 since already [X},, X;,] = 0..
However, the collection {Y[ . J € ]IT} does give us a collection of p" different
symbols, each of which represents a vector field.

Now let {Y7,...,Y,} be a list of all these symbols {Y;;} where J € I, and
1 <r<m. Wehave ¢ = p+ p?> + --- + p™, and this list contains all iterated
commutators of {Xy,..., X, } of length at most m. If Y; = Y|;; with J € I, we
set the formal degree of the symbol Y} to be d; = r. Thus for example, X; and X,
have formal degree 1, the vector fields [X1, X;] and [X7, X5] have formal degree 2,
and the vector field [X7, [X7, X3]] has formal degree 3.

Some of the vector fields Y; may be zero (as in the example [X;, X;] above),
and it can happen that the same vector field is represented more than once in the
list {Y7,...,Y,}. Thus it is important to note that the formal degree d; is assigned
to a particular representation of the vector field in this list, and not necessarily to
the underlying vector field itself.

[

Jr—17 "

PROPOSITION 1.13. The data Yy of vector fields {Y1,...,Y,} and formal degrees
{d1,...,dq} described above are a control system on ).

PROOF. We need to verify condiitions (H-1) and (H-2) of Definition 1.3. But
the vectors {(Y1)s,...,(Yy)z} span the tangent space T, for every x € Q since
the vectors {X1,...,X,} are assumed to be of finite type m on Q. Thus (H-1) is
satisfied.

Next one observes that the Jacobi identity in a Lie algebra implies that the
commutator of two iterated commutators, one of length k£ and one of length [, can
be written as a linear combination of iterated commutators of length k + 1. (See
Chapter 7, Proposition 2.1 and Corollary 2.2). Thus since we have defined the
formal degree djy of a vector field Yy to be the length of the commutator in the
given representation for Y*, it follows that (H-2) is also satisfied. O

There are variants of this construction which are also used in applications.
Rather than formulate the most general result, we provide one illustration which
is important in the study of heat equations A, + 9; where formally the derivative
with respect to time acts like a second order operator, or more generally, operators
L=X?+4--+ X2+ X studied by Hérmander in which Xy should be counted as
a second order operator.®. Thus suppose Xo, X1,...X, € T(Q) are of finite type
m. We again let {Y7,...,Y,} be a list of all iterated commutators of length at
most m. However, this time we assign formal degree 1 to each of the vector fields
{X1,...,X,}, and assign formal degree 2 to the vector field X,. For any iterated
commutator Y; = Y; we assign formal degree d; which is the sum of the formal
degrees of the vectors {Xj} that are present in the commutator. For example,

3See the discussion in Chapter 5.
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[X7, X2] has formal degree 2, [X(, X»] has formal degree 3, and [Xg, [X7, X3]] has
formal degree 4. Let ) denote the collection of vector fields {Y1,...,Y,} together
with the (new) formal degrees {dy,...,d,}. Exactly as in Proposition 1.13 we have:

COROLLARY 1.14. The data Y1 of vector fields {Y1,...,Y,} and formal degrees
{di,...,dq} are a control system on .

2. Examples of metrics and operators

In this section we look at several examples of control systems that arise in the
study of partial differential equations.

2.1. Isotropic Euclidean space.

On the space R™ consider the vector fields

0 0
Yi,....Y, :{——}
{ ! } o0x1 oxy,
Since [Yj, Y] = 0 for all 1 < j < k, it follows that if we take dy = --- = d,, =
then Y1 = {Y1,...,Y"™:dy,...,d,} is a control system. Let || - || be any norm on

R™. Tt follows from Proposition 1.7 that the corresponding Carnot-Carathéodory
metric py is comparable to the Euclidean metric. As a warm-up exercise, we show
that in fact py(z,y) = ||z — |-

PROOF. Suppose that AC(x,y;d) is not empty. Then there exists an abso-
lutely continuous mapping ¢ : [0,1] — R"™ with ¥(0) = =z, ¥(1) = y, ¥'(t) =
o1 ai() Y, and || (a1(t),...,an(t))|| < & for almost all t. Hence

|w—x|=H1f%wwﬂ\gAWMm@»~w%uDHﬁs&

Thus ||y — z|| < py(z,y). On the other hand, let z,y € R™ and suppose that
ly — || =6 > 0. Put ;(t) = z; +t(y; — x;), andwt):(¢() ﬂﬂn())
Then ||[¢/(¢)]] = §. If € > 0, it follows that ¢ € ACy(z,y;8 + €), and hence

» Y5
py(z,y) < 0+ €. Since € is arbitrary, it follows that py (z,y) < ||z — y||, and this
completes the proof. O

The Euclidean metric (or any equivalent metric) plays a fundamental role in
the analysis of elliptic operators on R™. Here we wish to provide a very simple
example. Consider the Laplace operator on R™, which we can write

R
oz? 0z2 ’
It is well known that when n > 3, the Newtonian potential
N(z,y) = MW -y
is a fundamental solution for A. This means that, in the sense of distributions,
AL[N(x,y)] = 6.(y), where J, is the delta function at . From a more classical

point of view, if ¢ € C§°(R™), and if

uw) = [ o) Ny dy
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then Au(x) = ¢(x).

We can relate this fundamental solution for A to the Carnot-Carathéodory
metric py that we have constructed in the following way. Let {By(z;d)} be the
corresponding family of balls. Then it is easy to check that for all multi-indices
a, (3, there is a constant C(a, 3) so that

py(z,y)*~ 1~V

| B (; py(2,9))|

As we shall see, this is a very special case of a general theorem dealing with fun-
damental solutions for operators of the form X% + (X7)? + -+ + (X,,)*> where the
vector fields {X° X1,...,X,} are of finite type.

02 0 N(,y)| < C(a,9)

2.2. Non-isotropic Euclidean space.

Next consider the space R™ with the same set of vector fields

{Ewqu:{é%wwé%}

This time, however, assign formal degree d; to the vector field Y7 where 1 < d; <
dy < -+ <d,. Then Yo = {Y1,...,Y™;dy,...,d,} is also a control structure. As a
homogeneous norm, we choose

||(y17 R ayn>|| = sup |y]|1/dg
1<5<
PROPOSITION 2.1. The Carnot-Carathéodory metric is given by

p(z,y) = sup |z; —y;|"/P,
1<j<n

and the corresponding family of balls is given by
B(z,6) = {y eR” ‘|y] —z;| < 6d-7}.

The proof is a minor modification of the argument given in the isotropic case. If
AC(z,y;6) is not empty there exists an absolutely continuous mapping ¢ : [0,1] —
R™ with ¢(0) = z, ¢¥(1) =y, ¥'(t) = >7_; a;(t) Yj)(t) and |a;(¢)|"/% < § for almost
all t. Hence |y; — z;| = ‘fol a;(t) dt’ < 6% . Thus sup; |y; — x;|V/% < py(z,y). On
the other hand, let x,y € R™ and suppose that sup; |y; — z;|/4 =6 > 0. Again
put ¥;(t) = z; + t(y; — ;) and P(t) = (V1(t),...,¥n(t)). If € > 0, it follows that

Y € ACy(z,y;6 + €), and hence py (z,y) < sup; [y; — x|
As an example of the role of such metrics in analysis, consider the heat operator

on the space R"*! with coordinates (¢, 1, ..., 2,). This time we choose vector fields
YO0 = % and Y7 = % for 1 < j < n. We assign formal degrees dyp =2 and d; =1
for 1 < j < n. The heat operator is then
0 "L 92
-9 _ Y _yo_ vy (v
ot < 07 ) ¥

Again there is a well-know fundamental solution for H given by

{(47r(t —8))7 % exp [Z:’Sﬂ ift—s>0,

H((t,2),(s,y)) = ift—s<0

Give reference

Give reference
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The size of this heat kernel is somewhat difficult to describe using the standard
isotropic Euclidean metric on R®*!. However if we use a non-isotropic Carnot-
Carathéodory metric , then

62192200 0% H (1, 2), (s, 1))
p((2,1), (y, )" Ioe 22

V((2,1), (y,5))

< C(ai, oz, B1, B2)

Here V ((z,t),(y,s)) is the volume of the non-isotropic ball centered at (z,t) and
radius p((,t), (y,s)). Note that differentiation with respect to ¢ or s has the same
effect as two derivatives with respect to x or y. This is one of the reasons for
assigning the formal degree 2 to the vector field Y.

2.3. The Heisenberg group.

In the two examples we have considered so far, the Carnot-Carathéodory met-
rics have been invariant under Euclidean translations, reflecting the fact that the
basic vector fields have constant coefficients. In the next example the vector fields
have variable coefficients. Although the resulting metric is no longer translation
invariant, it does have an invariance under a different group of transformations, re-
flecting the fact that the basic vector fields still form a finite dimensional nilpotent
Lie group.

The underlying space in this example is R?"T! = R” x R"® x R, and it is
traditional to label the coordinates (z,y,t) = (1,...,%Tn,Y1,---,Yn,t). Consider
the (2n + 1) vector fields {Xq,..., X™ Y7,..., Y™ T} where

) 0

xi=2 19,2 1<ji<n
oz, T Vigy SIS
0 0

V=2 —o2p, =, 1<k<m 2.1
e Tk TSRS 21)
P

7=2
ot

We assign formal degree 1 to the vector fields {Xy,..., X"} and {Y7,...,Y"}, but
we assign degree 2 to the vector field T.

It is clear that the vector fields {Xy,...,X™ Y1,...,Y" T} span the tangent
space at each point of R?"*! so that hypothesis (H-1) of Definition 1.3 is satisfied.
Moreover, for 1 < j, k < n we have the commutation relationships

(X7, 7] = [Y*, T] =0,
e, X7 = AT if j =k, (2.2)
’ o ifj#£k

It follows that hypothesis (H-2) is satisfied as well. Thus the collection of vector
fields and formal degrees V3 = {Xq,..., X", Y7,...,Y™* T;1,...,1,1,...1,2} is a
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control structure.* Tt is also clear that the (2n + 1)-dimensional real vector sub-
space of D(R?"*1) spanned by {X1,..., X", Y},...,Y" T} is closed under the Lie
bracket, and hence forms a Lie algebra, which we denote hy b,

Before investigating the Carnot-Carathéodory metrics induced by )3, we define
the Lie group corresponding to the Lie algebra b,,. Define® a product on R?**+1 by
setting

n
(@,y,8) - (w,0,8) = (T +uy+v,t+s+2> (yu; — z;0;)). (2.3)

j=1
It is a straightforward calculation to check that this product defines a group struc-
ture on R?"*!. This is called the Heisenberg group and is denoted by H,. The
identity element is (0,0,0), the product is associative, and if (x,y,t) € H,, then
(v,y,t)~! = (—x, —y, —t). Moreover (x,y,t) - (u,v,5) = (u,v,s) - (x,y,t) f and only

if Z?:1(yjuj —z;v;) = 0. Thus H,, is not an Abelian group.
Define the left translation operator T 4 ; : H, — H, by setting

T(Ivy»t)(u’v’s) = (mvyat)_l : (U,U,S), (24)
and define the corresponding operator L, , ;) on functions by

Ly fu,v,8) = f((z,y,t)"" - (u,0,5)). (2.5)

Thus L, 0 [f] = foT(s,ys- Asis customary with non-Abelian groups, the inverse
is used on the right hand sides so that

T(whyhtl) °© T(9627y27t2) = T(Ihyhtl)‘(wz,yziz);

L(w17y17t1) © L(wz’ymtz) = L(mlvyl’tl)'($2;yz,t2)'

As we have already indicated, there is an intimate connection between the
group structure H,, and the vector fields {X7,...,X™, Y7,..., Y™ T}. The key to
this connection is invariance under translation.

DEFINITION 2.2. A vector field Z € D(R*"*t1) is left-invariant on H, if it com-
mutes with every left translation operator. This means that for every differentiable
function f and all (z,y,t) € H,,

Z[Leynlfl] = Lz [211]]- (2.6)

The following result then explains the meaning of equation (2.6) and provides
the connection between the group H,, and the Lie algebra b,,.

PROPOSITION 2.3. A wvector field Z on R?"*1 is left invariant if and only if it
is a real linear combination of the (2n+1) vector fields {X?, Y*, T}. In particular,
the vector space of left-invariant vector fields on H,, is the same as the Lie algebra

br-

4Note that equation (??) shows that we would still have a control structure if we assigned
T the formal degree 1. In this case, Lemma 1.7 implies that the resulting metric is equivalent
to the Euclidean metric on any compact set. However, if T" is assigned the formal degree 3 then
hypothesis (H-2) no longer holds.

5Using the Campbell-Baker-Hausdorff formula, one can derive the product structure of the
Lie group from the Lie algebra structure. Here however we first define the group multiplication,
and then later show the relationship with by
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- 0 0 0
PROOF. Let Z = E aj=—— +bj=—| + c= where {a;, b;, c} € E(R?>"*1).
o [ Oz 70y } ot

Then Ly f(u,v,5) = f(z+u,y+v,t+ s+ 2[(y,u) — (z,v)]) and hence
Z[ L3y f(u,v,s)

_Za]uvs f((x y,t) - (u,v,8) —|—Zb uvs)gj (z,y,t) - (u,v,s))

j=1 J
+ [ c(u, v, s) —ZZ xj bj(u,v, s) yjaj(u,v,s)]}%((x,yﬁ) . (u,v,s)).

On the other hand

- 0
Lzyt)[Zf U, v, S Zaj l‘y7 UUS))an_((.’I},y,t)'(u,’U,S))
i=1 J

+ ij((ac,y,t) . (u,v,s))%((m,y,t) . (u,v,s))

j=1 J

6f(

+ c((ac,ynf) - (u, v, s))g (z,y,t) - (u,v,s))

Thus if equation (2.6) is to hold for all functions f, we must have
(i) a;j(u,v,s) = a;((z,y,t) - (u,v,9));

(ii) bj(u,v,s) =b;((z,y,t) - (u,v,s));

(i) C(u,v,S)*Z 1 225b5(u, v 5)+Zj 1 2y505(u,v,8) = c((2,y,1) (u,0,5)).
Since these compatibility conditions must hold for all (x,y,t) and in particular for
(u,v,s)™', the equations (i) and (ii) show that a;(u,v,s) = a;(0,0,0) = A; and
b;j(u,v,s) =b;(0,0,0) = Bj. Then setting (u,v,s) = (0,0,0) and ¢(0,0,0) = C in
equation (iii), we obtain

j=1 7j=1

Substituting back in the original definition for Z, we see that a vector field Z is left
invariant if and only if

Z = ZA[ +2ngt}+3[azj 23@];}4—0%

:ZAij+Bij+C’T.
j=1

This completes the proof. ([l

We now describe the Carnot-Carathéodory metrics p associated to the control
system V3. The associated family of dilations on R?"*! is given by Ds(z,y,t) =
(0x, 6y, 6%t), and the metric depends on the choice of a D-homogeneous norm on
R27*1, However, for any choice of norm, we have the following invariance.
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PROPOSITION 2.4. Let p be a Carnot-Carathéodory metric on H,, defined using
Y3 and any D-homogeneous norm. Let pg, p1, and pa be any three points of H,,.
Then

P(p17p2) = p(Tpo (pl)’ Tpo (pZ))'

PrOOF. This is a simple consequence of the identity
AC(p1,p2; 0) = AC (T, (p1), Ty (p2)); 6),

which in turn follows directly from the left invariance of the basic vector fields
{X1,..., X" Yq,....,Y" T} O

Next, in order to investigate the actual nature of the metric p we choose the
homogeneous norm

1
||<x17'"amn7y17"'ayn7t)|| = max{\xﬂ,... |$n‘7 ‘y1|7"'7|yn|a |t|2}

Suppose that pg = (x,y,t) and p; = (u, v, s) are two points in H,,. Let ¢ : [0,1] —
H,, be an absolutely continuous mapping with ¥(0) = py and ¥(1) = p;. We
begin by unraveling what it means that ¢ € AC(pg,p1;6). Thus write ¢(r) =
((/51 (r)y oy (), m(r)y .oy (1), T(?“)). The key point, according to Definition
1.5, is that we must control the sizes of the coefficients of ¢’ (r) written as a linear
combination of the vectors {(X1)y(),. - - ,XZ(T,), Y1) g(rys -+ ng‘(r), Ty}, rather
than the sizes of the derivatives (¢} (r),..., ¢, (), ni(r),...,n,(r), 7 (r)). If we do
the algebra we obtain

n ) n . n
() = D0 S OX 0+ DO+ [T (0 -2 3 (8 0mi (&) -} (065(8)) | Tuco)

i=1 i=1 =

1

J

Thus ¢ € AC(po,p1;96) if and only if ¢(j) = p; for j =0, 1, and if for almost every
t€[0,1],

[95(t)] <6, 1<j<mn,
()] <6, 1<j<n,

() - 22 (#0065 (1)) | < 6

LEMMA 2.5. Let p be the Carnot-Carathéodory metric associated to the control
system Y3 and the homogeneous norm. If po = (z,y,t) and p1 = (u,v,s) then

1 - 1
max{h’j —ujl, |y; — v, \/ﬁh —st 2Z(ykuk - l’kvk)|é} < p(po, p1)
k=1

n
< max{|xj —uj|, |yj —Uj|7 t—S—FQZ(ykuk —xkvk)ﬁ}.
k=1

PRrROOF. Suppose first that

n 1
max{|xj — uj|, |yj — vj|, |t -5 —|—2Z(ykuk - xk’l}k)|2} < 4.
k=1
Define ¢ = (¢1, ..., &n, My .-+, M0, T) ¢ [0, 1] — H,, by setting ¢, (r) = w;+r(z;—u;),
n;(r) =vj+r(y;—v;), and 7(r) = s+r(t—s). Then ¢(0) = (u,v,s), ¥(1) = (z,y,1),
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and we have
|95(r)| = lz; —u;| <6, 1<j<n
i (r)| = ly; —vi| <9, 1<j<n

P =23 () — )50 = [ = 5) =23 (o — )| < 2
Jj=1 j=1

Thus ¥ € AC(po,p1;9), and it follows that

Yj — V5|,

n
p(p07p1)§max{‘a:j—uj}7 t_s+22(ykuk_$kvk)’%}.
k=1

Conversely, suppose that p(po,p1) < J. Then there exists a mapping ¢ €
AC(po,p1;0). Write ¢ = (1, ..., Pny M1y .- -3 M, 7). For 1 < j < n we have

1 1
/ ¢}(t)dt‘ <é and |yj—vj|=‘/ n;(t)dt’ < 6.
0 0

In addition, we have

) —uj| =

n

[t —s+2 (ypur — zevp)| = [t — s =2 (n(zr — ur) — 2x(ys — v0))|

k=1 k=1
1 n
= [ [P0 -2 3 (nohtt) - auri(0)] a
k=1
1 n
<|[ [0 =23 (060 - on(ori)] a
0 k=1
1 n
+2 | (e — e (£)) 5 () — (3, — ¢k(t))77;c(t))‘
k=1
< (4n+1) 6%
It follows that
max{|xj — Uj|, |yj — Uj|, 74,’1;4_1“ — s+ 2;(ykuk - xkvk)’%} < P(po’pl)
which completes the proof. ([

As an indication of the role of this metric, consider the second order left-
invariant non-elliptic operator on H,

Lo = —i [0 + (Y92 + il

THEOREM 2.6 (Folland, Stein[FS74]). Set
Pal(@,y.t) = (|2 + ly? —it) =" F2) (jaf? + [y[* + it) =72

Yo =

I((n+a)/2)T((n—a)/2)

Then Lo = 74 dg- Moreover
|bal@,y,)| S p((2,9,1),(0,0,0))* |B(0, p((2,y, 1), (0,0,0)))| "
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with corresponding estimates on the derivatives with respect to {X,;} and {Y}.

2.4. The Grushin plane.

In our first two examples, the Carnot-Carathéodory metric was invariant under
linear transformations, and in the third, the metric was invariant under the more
complicated Heisenberg group of transformations. In this last example, the Carnot-
Carathéodory balls ‘twist’ as one moves from point to point. Nevertheless, in all
cases, the basic geometry of the Carnot-Carathéodory balls is the same at all points.
This is a reflection of the fact that the linear relationships between the basic vector
fields and their commutators remains the same at all points.

We now consider a class of examples in which the nature of the balls varies
from point to point. We begin with the simplest case in which the underlying space
is R2. Consider the vector fields

LA
or dy Jy
The vector fields X and T by themselves span the tangent space at each point, so
the same is true for the triple {X,Y,T}. We assign degree 1 to the vector fields X
and Y, and degree 2 to the vector field T. The commutation relationships between
the vector fields is given by

X,Y]=T, [X,T]=0, [Y,T]=0.

Thus Vs = {X, Y, T;1, 1, 2} is a control system on R?.

There is one clear difference between this example and the three earlier ones.
In the earlier cases, there were the same number of basic vector fields as the dimen-
sion of the underlying space, and these vector fields were linearly independent at
each point. In this case, the number of vector fields is larger than the dimension.
Moreover, the linear relationships between them change from point to point. The
pair {X,Y} is linearly dependent along the y-axis where x = 0 since Y = 0 on that
locus. However at all other points, the pair {X,Y} are linearly dependent.

The Carnot-Carathéodory ball centered at the point (0,0) of radius ¢ is essen-
tially

{(m,y) | lz] <6, |y| < (52}.
The CC ball centered at the point (0, a) of radius ¢ is essentially

{(fcvy) || <8, |yl <&+ aé}.

3. Local structure of Carnot-Carathéodory metrics

We now return to the general theory of Carnot-Carathéodory metrics. Fix a
connected open set @ C R™ and a control system Y = {¥1,...,Y,;d1,...,ds} on
Q. Choose the compatible homogeneous norm

(b1, .- bg)[[ = sup [b;|% (3.1)
1<j<q

on R?. Let p be the corresponding Carnot-Carathéodory metric, and let {B,(x,d)}
be the associated family of balls. Our objective in this section is to give an alternate
characterization of these balls in terms of another family of sets {Bé(x, 5)}, called
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exponential balls, which are defined using appropriately chosen exponential maps
and canonical coordinates. This is primarily based on the paper [NSW85].

Because these new sets are defined explicitly as images of exponential mappings,
it is easier to understand the local geometry of exponential balls than Carnot-
Carathéodory balls. On the other hand, the main structure theorem for Carnot-
Carathéodory balls says, in particular, that for z € Q and § > 0 sufficiently small,
there is a choice of I and 7 so that the balls B,(z,d) and B} (z, §) are comparable.

In subsection 3.1 below, introduce some important notation. In subsection 3.2,
we give the definition of exponential balls, and we show that we always have an
inclusion B, (z,6) C B,I, (2,6). In order to establish the opposite inclusion, we will
need to make a careful choice of I and 7 for each x and §. The key to this choice
is the notion that an n-tuple I = (i1,...,i,) is (,0, k)-dominant, and we give
a precise definition of this concept in subsection 3.3. In subsection 3.4 we state
the main result, Theorem 3.7, about the equivalence of exponential and Carnot-
Carathéodory balls. The proof of this theorem, which is quite long and technical,
is deferred to Section 4.

3.1. Notation.
We begin by reviewing and establishing some notation.

DEFINITION 3.1. Let Y = {Y1,...,Yg;dy,...,dq} be a control system on a
connected open set  C R™.

(1) For each positive integer r, let . denote the set of all ordered r-tuples of
positive integers I = (i1,...,4,) such that 1 <i; <q for1 <j<r.
(2) If I €1, set
d(I) =di, + -+ d;,. (3.2)
(3) Put
dy =d= min d;,
Dy = D = max dj,

1<7<q

N, d(I) —d(J (3:3)
o—Ir’rJlgil (I) —d(J)l,

N, = inf {N € Z*|Nd > Ny + nD}.

(4) For every I = (i1,...,in) €1, let
(@) = det (Y, ..., Y, )(z) (3.4)

be the determinant of the vector fields {Y;,,...,Y; } at the point z as
defined in Chapter 2, Definition 1.7.

(5) Set
QI:{mEQ’/\I(x);AO}. (3.5)

Note that since Y is a control system, for each x € Q) there exists I € 1,
so that A\j(z) # 0. For such x the vectors {(Yi, )z, .., (Yi, )z} are linearly
independent and hence are a basis for the tangent space T .
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(6) For xz € Q and § > 0, set
A, 8) =Y [Ar(@)] 690, (3.6)
Iel,

There are q" elements in I, so this is a finite sum.

Note that A(z,d) is a non-zero polynomial in ¢ of degree at most nD. For each
x € (Q, each non-vanishing term in A(z,0) is of degree at least nd Moreover

sup | A (z)] 6% < A(z,0) < ¢ sup |As(2)] 64, (3.7
JEl, Jel,

3.2. Exponential Balls.

Recall from Chapter 2, equation (5.1), that for each I € I,, and each = € Q2 we
have a mapping

OL(u) =OL(uy,..., u,) = exp [Zuj Yzj}(x) (3.8)

j=1
defined for v = (uq,...,u,) belonging to some neighborhood of the origin in R™.
It follows from Chapter 2, Lemma 5.1, that if = € ©; then dOL(0) = |Ar(z)| # 0,

and hence ©! is a diffeomoprhism from a neighborhood of the orlgm in R” to a
neighborhood of z in .

One of our objectives is to obtain a more precise description of these neighbor-
hoods when we make an appropriate choice of I. In order to do this, we introduce
a variant of the mapping ©1.

DEFINITION 3.2. Let I € 1, let x € ), and let 6 and n be positive parameters.
Set

@r5n( ):Qi,&n(“l’“" —exp[ ZuJ(SL Z]} z).

‘We have
@ac 5 n(u) = @£(775d” ULy - 7776di" Up),
@x §,M1M2 (u) = 9; 8,m (UZU)a

whenever these expressions are defined. Thus ©7 is just a re-scalled version of

x,6,m
the mapping ©L. Let us try to give an explanation of the purpose of the various

extra parameters that appear in @I 5

(1) Clearly ©1 6,(0) =z, and thus x is the ‘center’ of the image of B(0; 1).

(2) When considering a Carnot-Carathéodory ball B,(x,0), the parameter 0 is
the radius. For the mapping @I S the parameter § is the corresponding
‘scale’ at which we are working. Note that the parameter § appears with
powers reflecting the formal degrees of the vector fields {Y;,,...,Y;, }.

(3) For each x € Q and § > 0 we need to choose a coordinate system deter-

mined by the canonical coordinates associated to particular ‘dominant’
set of vector fields {Y;,,.. }. This choice is described by the index

I = (i1, .,in).

Zn
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(4) If we were to eliminate the parameter 7 in the definition of ©Z sy DY
setting it equal to 1, then in order to establish good properties of the
mapping u — @i,m(u) we would need to restrict the mapping to the a
ball in R™ of small radius. The parameter 7 is introduced in order to
keep the domain of the mapping the unit ball B(0;1) € R™. Thus the
parameter 7 is just ordinary Euclidean scaling, unlike the non-isotropic
scaling introduced by d. As we proceed, we shall need to shrink 7 several
times.

The following result follows from the discussion of existence, uniqueness, and
smooth dependence on parameters of solutions of differential equations in Chapter
2, Section 3.3.

PROPOSITION 3.3. Let K C K C and suppose that K and K are compact
and that K is a subset of the interior of K. Then there exists 0 < ng < 1 so that

fre K, I€l,,0<d<1, and0<n <y then the mapping u — @i,ém(u) 18

defined and infinitely differentiable on the open unit ball B(0;1) C R™. Moreover if

u € B(0;1) then @i,ém(u) € K.

Now fix compact sets K C K C Q and the corresponding constant 7y given

in Proposition 3.3. We use the mappings {@i’[m} from Definition 3.2 to define

exponential balls centered at x € K of radius 6.

DEFINITION 3.4. Letz € K, let I € 1,,, let 0 < § <1 and let 0 < n < ng. Then
BTII(J;, J) = {y €N ‘ (Hu € B(0; 1)) (y = @i’&n(u))} CK.
The sets {B,I](x,é)} are called exponential balls.
Recall that we have two different families of dilations on R™. Suppose that
o >0 and that v = (uq1,...,u,) € R". Then we put
ou= (Uul,...,oun)
D,[u] = (6%1uy,... 0% u,).
Then we have
®£,6,07y(u) = Gi,é,n(au)
@i,o‘é,n (u) = @:Ib,é,n(DG' [UD
We have the following easy but important relationship between the Carnot-

Carathéodory balls {B,(z,0)} and the exponential balls {B](x,d)}.

ProPOSITION 3.5. Let x € K and 0 < § < 1. Then for every I € I, and
0 <n < no we have
Bf](x,(s) C B,(z,9).

PRrROOF. Let u € B(0;1), and define ¢ : [0,1] — Q2 by setting

o(t) = exp {tn En:uj 6% Y;j] (z).
j=1
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Then ¢(0) = z, ¢(1) = 91,5,77(1‘)’ and since 17 >0, u, 5% Y;, is a smooth vector
field, it follows from Corollary 3.7 in Chapter 2 that

¢'(t) = (n ;u 5% Yij)w(t).

Since each nu € B(0;1), it follows from our choice of the homogeneous norm in
equation (3.1) that
d d i
|| (0" nuy,....0% nuy) || =6 sup (nu;])% <4
1<j<q
Thus according to Definition 1.5, this means that ¢ € AO(I, @i,a,n(“)? 6), and so
AC (ac, ol « (u); 5) is not empty. Thus according to Definition 1.6, p(:c, of (u)) <

x,0,m z,8,m
8, and so BJ(x,0) C B,(x,0), as asserted. O

3.3. (z,0,n)-dominance.

We want to show that if z € K and if 0 < § < 1, then for an appropriate choice
of n-tuple I € I, and all sufficiently small n, the mapping @alc,é,n :B(0;1) — Bé(x, d)
is a diffeomorphism, and the exponential ball B,I](x, J) is comparable to the Carnot-
Carathéodory ball B,(z,d). When this is the case, the inverse mapping (9;6)”)’1
will give a natural set of coordinates on the exponential ball Bé (z,9), and hence
also on the comparable Carnot-Carathéodory ball. The choice of the n-tuple I
which makes this work depends on the following key concept.

DEFINITION 3.6. Let x € Q, let § > 0, and let 0 < k < 1. Then I € 1, is
(z,9, k)-dominant if

IAr(z)] 04D >, max \Ag(z)| 64,

For each x € Q and § > 0 there always exists at least one n-tuple I € I, so
that

) _ ()
A (@)] 8700 = x| () 577,

and thus I is (z, 0, 1)-dominant. However, if I is (z,d, 1)-dominant, there need not
exist any open neighborhood U of x so that I is (y,d,1)-dominant for all y € U.
On the other hand, if T is (x,d,1)-dominant and if x < 1, it follows by continuity
that there will be an open neighborhood U so that I is (y,d, k)-dominant for all
y € U. This is one of the reasons for the introduction of the parameter .

3.4. The local structure of Carnot-Carathéodory balls.

We now state the main result of this chapter, which describes the local geometry
of the Carnot-Carathéodory balls {Bp(x, 5)} by relating them to the exponential
balls {Bé(w, §)} defined in Section 3.1. As usual, Q C R™ is a connected open set,
and Y = {Y1,...,Y,;dy,...,dg} is a control system on Q. The constants d, D, Ny,
and N; are defined in equation (3.3).
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THEOREM 3.7. Let K C K C § be compact subsets with K contained in the
interior of K. There exist positive constants 0 < 7 < 1 and 0 < n < 1 depending
only on v(K) and Hny(Nl so that if v € K and if 0 < § < 1, there exists I € I,
so that the following statements hold.

(1) If J@i@ is the Jacobian determinant of the mapping ©1 then

z,0,m’
J@az é. 7]( - 77” ‘)\[(l‘)‘ 6d(1)7

and for every u € B(0;1) we have

T (@) 670 < TOL 5, (u) < 40" [ s (2)] 67D, (3.9)

(2) The balls B,(x,6) and B} (x,d) are comparable. Precisely, we have
By(x,76) C Bl(2,8) C By(x,0). (3.10)

(3) The mapping ©L o i B(O;1) — Bl(x,0) is one-to-one and onto.

(4) Let {Z1,...,Z,} be the unique smooth real vector fields on the unit ball
B(0;1) such that

Then Z2 ={Z1,...,Zy; dl, A zq} is a control structure on B(0; 1) uniform
in x and 0. Precisely

||Z||]B(O;1),M < ||y||K,Ma

3.12
TQ(Z) 272(3)) ( )

Moreover, for the special vector fields {Zil, ooy Zi }, we can write
Ny 3.13
Zi; = auJ + Z:: L au ( )

and
1

sup Z laj i (u)]? < T (3.14)

An immediate consequence of parts (3) and (1) of Theorem 3.7 is that
e [ M (@) 890 < | Bl (@,0)| < " e [Ar()] 7D

where ’E } is the Lebesgue measure of a set £ C R™, and ¢,, is the volume of the
unit ball in R™. Thus equation (3.7) gives the following estimate for the volume of
the Carnot-Carathéodory ball B,(z,d).

COROLLARY 3.8. Let K C § be a compact subset. There exists a constants
n>0and C >0 so that if vt € K and if 0 < § <1, then

C™'n" Az, 0) < |B,(z,0)] < Cn™ Az, 6).
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4. Proof of the main theorem

In this section, we present a proof of Theorem 3.7. Fix a connected open subset
QCR" andlet Y = {Y1,...,Y,;d1,...,dy} be a control system on Q2. Fix compact
subsets K C K C Q such that K is contained in the interior of K. Let 1o be the
constant given in Proposition 3.3.

The proof is rather long and technical. Subsection 4.1 contains some prelimi-
nary results of an algebraic nature that do not involve any estimates. Subsection
4.2 then uses these algebraic results to obtain estimates at a point x assuming that
an n-tuple I € I, is (z,d, k)-dominant. Subsection 4.3 uses the theory of Taylor
expansions developed in Chapter 2, along with the results of subsection 4.2, to ob-
tain estimates on the exponential balls {Bé(x, 5)} Subsection 4.4 presents some
topological results needed later in the proof. Finally, subsections 4.5, 4.6, 4.7, and
4.8 present the proofs of parts (1), (2), (3), and (4) of Theorem 3.7.

4.1. Algebraic preliminaries.

Recall from (H-2) of Definition 1.3 that there are functions ¢ € £(Q2) so that

for 1 <Il,m<gq
q

Y5, Yl = ) ¢l Yo (4.1)
m=1
and
() =0 unless d,,, < d; + dy. (4.2)

The coefficients {c]% } are called the structure functions of the control system ).
More generally, we have the following.

ProrosITION 4.1. Let if L = (l1,...,1.) € L.. Then we can write the iterated
commutator

q
Yv[L] = [YEM I:}/ir—l’ . Y227 Y2 Z C )/J (43)
=1
where ¢ € £(Q) and

¢ (x) =0 unless d, < dyj, +---+d;, =d(L). (4.4)

The coefficients {CJL} are linear combinations of the structure functions and their
Y -derivatives up to order (r —1).

PrOOF. We argue by induction on » > 2. The case r = 2 is the hypothesis
(H-2) of Definition 1.3. Let L' = (I1,...,lr,lp41) € L,41 and L = (I4,...,1,). Then

Y—[L/] = [Y}T+1, [}/iry [}/ZQ) }/ll]]:l
= [ler+17 Yv[L]]

[
B

Yi,1s 2 Yim]

3
I

q

Y7+1[CZL Ym+zclz }/27+17 Y]
k=1

¥l (i% i) | Yo (45)

=1

[
MQ

3
&

[
M=

3
I
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Now if Y, [c]'] # 0, the by induction we have d,, < d(L) < d(L'). Also if
ck CIT:L+1J< # 0 we must have d < d(L) and d,,, < dy, ., + di. Thus d,,, < dj,, +
d(L) = d(L'). The statement about the structure of the coefficients also follows by
induction and an examination of the formula in equation (4.5). This completes the

proof. O

For the rest of this subsection, fix I € I,,. We shall suppose that I = (1,...,n)
in order to simplify the notational burden®. This can always be achieved by re-
ordering the elements of {Y7,...,Y;}. For each point x € Qy, the tangent vectors
{(Y1)z, .., (Y,)z} span the tangent space T,. Thus there are real numbers’ {af (z)}
so that for 1 < j < g we can write

(V)e =D af(x) (YVi)a- (4.6)
k=1

We can now use Cramer’s rule to solve equation (4.6) for the n unknown values
{aj(x),...,a}(x)}.
PRrROPOSITION 4.2. For1 < j <gq, for1 <k <mn, and for each x € Qp
A(x)
aj(x) = ()
where J = (1,....k— 1,5,k +1,...,n) € I, is obtained from I = (1,...,n) by
replacing k with 7.

(4.7)

Note that £(€;) is a module over the ring £(£2). We need to deal with linear
combinations of products of the functions {a?}, with coefficients coming from £(€2).
It will be convenient to keep track of these expressions in the following way.

DEFINITION 4.3. For every integer m and every positive integer s, AT is the
E(Q) submodule of £(Ur) generated by all products of the form

ki k kr
akt-ak? . al (4.8)

where r < s and
m < (dkl +d7€2 +e +dk7) - (djl +dj2 +eee dr) = d(K) - d(‘]) (49)

We let AY be the submodule generated by the function 1, so that AY = £(Q). If
f €A™, we can write

F=2 0 2 Twgdi-aod (4.10)

r=1 J,K€l,
m<d(K)—d(J)

although the coefficients fi,; € E(Q) are not uniquely determined. We have the
inclusions

A;nl D) A?Z Zf mi < mao,
AZ} C.A;Z if 81 < s9.

6This simplification is convenient, and we shall do this several times, even though the choice
of n-tuple I may have changed.
"The numbers {ajl- (z), ..., a;-’ (z)} depend on the choice of n-tuple I, and should perhaps be

written {a§’1 (z),..., aJIn(:p)} As long as I is understood, we suppress the additional parameter.
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We show that the modules {A7"} behave well under differentiation by the vector
fields {Y1,...,Y,}. The key is the following calculation.

PROPOSITION 4.4. For1<1<q,1<k<n,andl <j<q we have

ch]a —|—ZZCM ak,. (4.11)

i=1 m=1
. dy—d;—
In particular, Y;[a¥] € A5

ProOF. Using equations (4.1) and (4.6), it follows that on £ we can write

v, Y, zn: [zq_:l A a m] (4.12)

k=1
On the other hand, we can also write

n

Ve, Vil = > [V, @} V]

&
Il
—

(Yi[a}]Y; + al [V, V3] )

@A
I M§
I

Msnms

Y—i—ZZa Y

i=1 m=1
= Yila YkJrZZZa;cmak Y.
k=1 i=1 m=1k=1
n n q
= Z [ Yi[ah] + Z Z s al afn] Y. (4.13)
k=1 i=1 m=1
Since {(Y1)z,- .-, (Yn)s} is a basis for T, on € we can equate the coefficients
of Y}, in equations (4.12) and (4.13), and we obtain equation (4. 11)
In the first sum on the right of equation (4.11) we have ¢;"; = 0 unless d,,, <
d; +d;, and so dy, — d,, > dy, — dj — d;. Thus the first sum belongs to Ad" —di—d -
Adk ~4=d 1y the second sum, we have cl’i = 0 unless d,, < d; + d;. Thus
(di +di) — (dj +dm) > d; +di, —dj — dy — d; = di, — dj — d;. Thus the second sum
belongs to Aﬁ’“‘df ~%  and this completes the proof. O

We can now describe Y-derivatives of elements of A7*. The following follows
easily from the product rule and Proposition 4.4.

PROPOSITION 4.5. Let f € AT, and suppose [ is written as in equation (4.10)
with coefficients {fx s}. Then

(1) For1<1<gq,
Yi[f] € ATHY,
with coefficients which can be written as linear combinations of the func-

tions {Yl[fKJ]} and products of the functions {fKJ} and the structure
functions {cm}
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(2) More generally, if L = (ly,...,l.) €1, then

Yilf] = Vi Vi, - Vi Ya [f] € AT A

and the coefficients of Y1[f] can be written as linear combinations of prod-
ucts of functions which are up to r-fold derivatives of the functions fx ;
and r — 1-fold derivatives of the coefficient fucntions {c’”} with respect to
the vector fields {Yi,,..., Y. }.

We next derive formulas for derivatives of the determinants {\;}, J € I,,. We
begin with the special determinant A; where I = (1,...,n).

PROPOSITION 4.6. For x € Qr and 1 <1 < q we have Yi[A\[] = fi A\ where
filz) =V -Yi(a +ZZcik
k=1j=1

In particular, the coefficient f; € .Afd’, and is a linear combination of derivatives
of the coefficients of the vector field Y; and the structure functions.

PrOOF. Starting with the formula from Lemma 1.9 in Chapter 2, and then
using equations (4.1) and (4.6), we have

Vil = (V-Y) A+ ) det(Yy,..., Y1, [Vi, Vil , Yaga, ..., Vo)

k=1
n q

= (VYDA + D)l det(Ye, .., Vie1, Yy, Vi, .., V)
k—lj—l

= (V.Y AI+ZZZ%@ det(Yi,...,Yeo1,Ye, Yig1,..., Vo)
k=1j=1r=1

n q
= (VYDA + D> pab det(vi, ..., Vie1, Vi, Vi, -, Vo)
k=1 j=1

no 49
= (VY ) A
k=1j=1

Now V-V, € A) ¢ A;%. Moreover, since c{k(gc) = 0 unless d; < d; + d,
di, —dj > di, — dy — d, = —d;. This completes the proof. O

COROLLARY 4.7. Let L = (I1,...,l.) € 1,,. Then
Y, Vi, Vi [Mr] = fr g,

where fr, € .Ar_d(L), The coefficients of fr can be written as linear combinations of
up to r-fold derivatives of the coefficients of Y; and up to (r —1)-fold derivatives of
the structure functions.

Proor. This follows easily by induction, using Propositions 4.5 and 4.6. O

PROPOSITION 4.8. Let L = (l1,...,l.) € 1., and let J € L,,. Then
Y, Yi, - Y [As] = froAr
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where fr.y € Aigl_d(‘])_d(K). The coefficients of fr,; can be written as lin-

ear combinations of up to r-fold derivatives of the coefficients of the vector fields
{Y1,...,Y,} and up to (r — 1)-fold derivatives of the structure functions.

Proor. Let J = (j1,...,jn). Then
Ay =det(Y,,....Y;,)
 der (z Y 3 ag;;yk,,)
kn=1

ki1=1
n

= Z Z a?ll---a?: det(Yiy, ..., Yx,)

ki=1  kn=1

o o(l o(n
(X ]

ceG,
= fJ )‘17

where &,, is the group of permutations of {1,...,n}. Now if 0 € &,,,
(doy + - +do(ny) = (djy + -+ +dj,) = d(I) —d(J).

Thus f; € ALD=dD) e proposition then follows by using Proposition 4.5 and
Corollary 4.7. O

4.2. Estimates at z using (z,d, x)-dominance.
If we assume that an n-tuple I € I, is (z,d, k)-dominant, we can obtain esti-

mates at x for functions f € AT and for the determinant functions {A;}.

PROPOSITION 4.9. Let 0 < k <1, let 0 < § <1, and let x € Q. Suppose I € 1,
is (x,0, k)-dominant. We assume, for simplicity of notation, that I = (1,...,n),
so we can use the notation introduced in subsection 4.1.

(1) Ewery generator a?ll e af: of AT satisfies

‘afll (x)-- af:(x)’ < K7™, (4.14)

(2) Let L = (ly,...,1l,) € L,.. Suppose that f € AT. Then
Vi, Vi, [fl(2)] < Crmommomdd) (4.15)

where C' depends only on the supremum at © of up to r derivatives of the
coefficients of f and up to (r — 1) derivatives of the coefficients of the
vector fields {Y,,...,Y,, } and the structure functions {c]";}.

3) Let L = (ly,...,l,) €1, and suppose J € 1,,. Then
(3) ; ; pp
Vi, Y, Pl(@)] < O R mr gD mAD =A@ A (a)] (4.16)

where C' depends only on the supremum at © of up to r derivatives of the
coefficients of the vector fields {Y1,...,Y,}, and up to (r — 1) derivatives
of the structure functions.
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PROOF. Since I is (z,d, k)-dominant and A;(z) # 0 for some J € I, we
certainly have x € ;. Thus according to Proposition 4.2, a?(x) = As(z) /A (z)
where J is obtained from I by replacing k by j. However, since [ is (z,9d, k)-
dominant, this implies that

b ()] < w1 SUD=A) = o1 gl

Hence

a1 (@) - abr ()] < w7 gl b)) < s g

and this gives statement (1).
It follows from Proposition 4.5 that if L = (I4,...,1.) € I, and if f € A7, then

S

Y, Y, [fl € A:Ed(L) where the coeflicients can be written as linear combinations
of up to r-fold derivatives of the coefficients of f and up to (r — 1)-fold derivatives
of the structure constants. On the other hand, if f € A7, it follows from part (1)
of the Proposition that |f(z)] < Ck~®§~™, where C' depends on the number of
generators of A7 and on the supremum at x of the values of the coefficients of f.
This proves statement (2).

Finally, Proposition 4.8 shows that Y}, Y, --- Y, [A\j] = fr,s Ar where fr ; €

Aigz_d(‘])_d(m. Thus part (2) implies part (3), and completes the proof. O

The next proposition gives a lower bound for [A;(x)| on compact subsets when
I is (x,6,n)-dominant. Recall from Definition 1.4 that if K C Q is compact, we put
v(K) = infyex maxjer, ’)\J (y)|. The quantity v(K) is a measure of the linear inde-
pendence of the vector fields in ), and v(K') > 0 since the vectors {(Y1)y, ..., (Yy)y}
span T, for every y € K. In equation (3.3) we also put Ny = maxy, jer, |d(I)—d(J)|.

ProPOSITION 4.10. Let K C Q be compact. Let x € K, let 0 < § < 1, let
0 <k <1, and suppose I € 1, is (z, 9, k)-dominant. Then

5N < ﬁ Ar(@)]- (4.17)

PRrOOF. Since [ is (z, §, x)-dominant and § < 1, it follows that for all L € I,, we
have [A;(z)| > k|AL(2)] 64E)=4D)  In particular, if we choose L so that [A,(z)| =
max jer, |As(z)| we have

[Ar(z)] > kv (K)§HE =) > kp(K) 6N,

which gives the desired result.

O

4.3. Estimates on exponential balls.

In this section we use Taylor expansions in canonical coordinates and the es-
timates obtained in Section 4.2 to obtain estimates for determinants {A;} and
functions f € A" on an exponential ball BJ(x,8). As usual, we fix a connected
open set @ C R™ and a control system Y = {Y1,...,Y;;d1,...,dg} on Q. We also
fix compact sets K C K C Q and the corresponding constant 1y as in Proposition
3.3. The following lemma shows that if I is (z,d, k)-dominant, then for n suffi-
ciently small, the determinant A; is essentially constant on B,I] (z,9). Recall that
d= minlgqu dj, D = maxi<;<q dj, N() = supJ,Le]In ’d(J) — d(L) s and N1 is the
smallest positive integer such that Nid > Ny + D.




4. PROOF OF THE MAIN THEOREM 113

LEMMA 4.11. Let 0 < k < 1. There is a constant 0 < 11 < 19 depending only
on k and ||y Hf(Nl sothat if v € K, if 0 < <1, if I €1, is (x,0, k)-dominant,
and if 0 <n <, then fory € Bé(x, 0) we have

M) = Ar(@)] < 5 Mo,

and hence
1 3
§|)\(3c)| < [Mw)| < 5‘)\(,%)‘
PRrROOF. For simplicity of notation, we again assume that I = (1,2,...,n).
Write

Fluy,...,u,) = AI(@iyéyn(ul, CUp)) = )\I(exp (n Zuk 5k Yk)(x))
k=1

The statement that y € BJ(x,§) means that y = @i,ém(u) for some |u| < 1. Then
F(0) = Ar(x) and A;(y) = F(u).
If w € B(0;1) C R, Lemma 3.9 in Chapter 2 applied to the function F' gives
Ni—1 g
’()\I(y)*Al(x)) - Z i(ul 8N Y+ Huy, 8% Yn)k[)‘f](x)‘ < Cy, NN )M

k!
k=1

where C, depends on the supremum on K of N, applications of the vector fields
{Y1,...,Y,} to the function A;. Thus Cy, depends only on the quantity | | Yy Hf( Ny
It follows that

N;—1 k
M) =Ar(@)] < > %‘(ul SN Y14+ -y, 6% Yn)’“[AI](x)‘+CN1 g N N1
k=1

We first estimate the error term Cy, §V14n™Nt |u|N1. Since |u| < 1 and Nyd >
Ny, it follows from Proposition 4.10 that we have

Cyn 1
Nid Ny, |N No Ny N
Crny 67 u| ™ < Oy 670 < KV(I})\/\I(%"WI L< g @)
provided that n™t < iC;,ll kv(K).

Thus in order to complete the proof of the lemma, it suffices to show that for
sufficiently small  and |u| < 1 we have

Ni—-1 [

3 %’(ul SUY, 4 g, g Yn)k[)\l](x)‘ <
k=1

|Ar(z)|. (4.18)

Using (3) from Proposition 4.9, we can estimate a typical term on the left hand
side of the last inequality when |u| <1 and n < 1 by

k
- | 8% (Y, )

<n §diy +otdy,

Vi, -+ Vi (@)
< "R gty godn = di |y ()|

< Cpnr "M |)\1(x)|
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where C depends only on || y | | KN, Since there are only a fixed finite number of
such terms, we can choose 7; sufficiently small, depending only on x and | | Yy H RN
so that equation (4.18) is satisfied for all 0 < n < ;. This completes the proof. O

It follows from Lemma 4.11 that A;(y) # 0 for y € B} (2,8). This gives us the
following.

COROLLARY 4.12. Suppose that 0 < k < 1, that v € K, that 0 < § < 1,
and that I € 1, is (x, 0, k)-dominant. If m is chosen as in Lemma 4.11 and if
0 <n <m, then B)(x,6) C Q.

For any J € I,,, part (3) of Proposition 4.9 gives an estimate for the value of the
Y -derivatives of A; at the point z. Using the same kind of argument as in Lemma
4.11, we can obtain essentially the same estimates at any point y = 9£76’n(u) if
u € B(0;1). We restrict our attention to A itself. Recall that N; is the smallest
positive integer such that Nid > Ny + nD.

PrOPOSITION 4.13. Let0 <k <1,z € K,0< 6 <1, and 0 < n < 1y, wheren;
is given in Lemma 4.11. Suppose I € 1, is (z, 6, k)-dominant (with I = (1,...,n)
for notational simplicity). Then for J €1, and all y € ny(x,é) we have

()] < Crmmm N gUD=A0) [\ ()]
where C depends only on k, v(K), and ||y||f( N

ProoOF. Put

Gugy...,uy) = )\J(exp (nzn:uk 5k Yk)(x))

k=1
Then Lemma 3.9 in Chapter 2 gives
Ni—1 nk N
G0 = 3 08 Y5 o4 6 )P0 )] < o, 6540 ™
k=0

where C'y, depends only on \|y||l~{ Ny Note that Nyd > Ny + d(I) — d(J). Thus
for the the error term we have

Cn
O §N1d N1 N1 < o §No gd(D)—d(J) < [71
Ny n | ‘ = VN = HZ/(K)
where we have used Proposition 4.10. It remains to estimate a finite number of
terms of the form

} sAD)—d(J) |>\1(ﬂc)|,

k
n
Elum1| o |t | ghmattdmy ’Ym1 < Yo, [)‘J](x)|
But using part (3) of Proposition 4.9, if all |u;| < 1 this expression is bounded by
Cy H—n—k (sd(I)—d(J) ’/\I(-T)’
where again C} depends only on H y ‘ ‘ BN, This completes the proof. O

We can also obtain estimates for functions f € AJ*. We will need the following
simple version.
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ProprOSITION 4.14. Let0 <k <1,z € K,0< 6 <1, and0 < n < ny, wheren;
is given in Lemma 4.11. Suppose I € 1, is (z,9, k)-dominant (with I = (1,...,n)
for notational simplicity). If y € Bé(m, d), then

|a2”(y)‘ < C kN gdm—di
where C depends only on v(K) and |y Hf( Ny

PROOF. According to Proposition 4.2, we have a*(y) = A (y) Ar(y) ™! where
M €1, is obtained from I = (1,...,n) by replacing m by k. The result now follows
from Proposition 4.13 and Lemma 4.11. d

4.4. Some topological remarks.

Many of our arguments would be considerably simplified if we knew a priori
that the mapping @i,’ sy were globally one-to-one on B(0;1). We will eventually
show that this is true for n sufficiently small, but at first we will only be able to
show that J@i,&n (u) # 0 for |u| < 1 and 7 sufficiently small. It will follow from the
open mapping theorem that @7{,, s 18 then locally one-to-one. In this section, we
provide the version of the open mapping theorem and some additional topological
results which we shall need.

LEMMA 4.15. Let U C R™ be open, and let © : U — R™ be a C?> mapping.
Suppose that for every uw € U, JO(u) # 0. Let E C U be a compact, connected,
simply connected subset, and let W = O(E) C R™. For u € U, let B(u,¢) denote
the open Euclidean ball centered at u with radius €.

(1) There exists €1,€2 > 0 so that:
(a) for every u € E, B(u,e1) C U;
(b) for every u € E, the mapping O is globally one-to-one on B(u,¢€1);
(c) for every u € E, B(O(u),e2) C O(B(u,e1)).

(2) If [a,b] C R is an interval, if ¢ : [a,b] — W is continuous and one-
to-one, and if O(ug) = a then there exists a unique continuous mapping
0: [a,b] — E such that 6(a) = ug and ¢(t) = ©(6(t)) for allt € [a,b].

In order to finally prove that 95«35,7} is globally one-to-one, we will use the
following fact.

LEMMA 4.16. Let U C R™ be open, and let © : U — R™ be a C?> mapping.
Suppose that for every u € U, JO(u) # 0. Suppose Ey C Ey C U are compact,
connected, simply connected subsets, and supposet W; = O(E;). Suppose W1 C
S C Wy where S is simply connected. Then © is globally one-to-one on Ej.
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4.5. Proof of Theorem 3.7, part (1).

In this subsection we give the proof of part (1) of Theorem 3.7. We fix a
connected open set  C R™ and a control system Y = {¥3,...,Y,;dq,...,ds} on
Q. We also fix compact sets K C K C Q with K contained in the interior of K
and the corresponding constant 77 as in Lemma 4.11. Let x € K, let 0 < § < 1,
and let 0 < k < 1. Choose I € I, which is (z,d, n)-dominant. As usual, we assume
I'=(1,...,n). Let 0 < n < where 7 is given in Lemma 4.11.

We start by computing the Jacobian of the mapping

91 sq(u) = =exp ( Z uy 0% Vi) (

To do this, we need to compute d@w 517[(0 )u] It is easy to check that at the
origin, dO% 577[(3 o) = 16% (Y;)z, and so JOL 5n( ) = nodd) |A7(0)|. However,
it is not true in general that d©, 5[(8,),] = 10% (Yj)e, s

According to Corollary 4.12, if y € Bé(x, 9), then A;(y) # 0, and so the tangent
vectors {(Y1)y, ..., (Ys)y} span the tangent space T,,. Thus if n < 11 we can write
doeL 577[(8 ) | as a linear combination of these vectors. The following Lemma

gives a more precise result for i sufficiently small. Recall that N is the smallest
positive integer such that Nid > Ny + nD.

LEMMA 4.17. Let 0 < k < 1. There exists ny < m1 depending only on k, v(K),
and \|y||K Ny with the following property. Suppose that x € K, that 0 < § < 1,
and that I € 1,, is (z,8, k)-dominant. If 0 <n <o, lu| <1 and y = OL o(u), we

have
n

402 5., [(0u,)u] = 18% (Vi) + D bi(y) (Vi) (4.19)
k=1
where
b1 (y)| < not—b, (4.20)

PROOF. Let us write u -5 Y = Y_;'_ uy, 0% (Y3),. Then let W' € T, be the
vector

I-fold iterate
N;—1

W =n6% (Y;), + Z ar nu-sY, [nu-sY, - [nu-sY, n 6% (Y])y]]]} (4.21)
1=2

where the rational numbers {«ay} are defined in Chapter 2, Lemma 5.2. This Lemma
shows that when |u| <1 we have

’dgzén (0u,) ] = WHH| < C, N 6™ (4.22)

where Cy, depends only on H)} ‘ |K N . Let us also write EN1 = d@w 5m [(8 ) ] -

W{,Vl so that
Ao} ;,[(0y,),] =W + E). (4.23)
We first deal with the ‘error term’ Eévl. According to equation (4.22), this is
a vector with length at most Cn, n™V* §™4. The tangent vectors {(Y1)y, ..., (Yn)y}

span Ty, so we can write Eév 1 as a linear combinations of these vectors. Cramer’s
rule shows that we can bound the resulting coefficients by a constant C' times the
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length of EN* divided by [A;(y)], where C' depends only on Y| 71+ Thus using
Proposition 4.10 and Lemma 4.11, each coefficient is bounded by

2CN 1
Ny sN1d -1 <9 Ny sN1d —1 < N1 ¢N1d— Ny < = 2 ¢D
CN177 4 |)‘I(y)| = CN77 d |/\1($)| = K)I/(K) 4 = 277 d

provided that 4 Cy n¥ =2 < kv(K). Thus we can write E)* = n6% S b (Yi)y
where [by| < 5 %—di,

Next we deal with the terms in the sum defining W)* in equation (4.21). A
typical term in the sum has the form

77l i, _._uililédi1+<..+dil71+d7‘ [Yin [yiz’ [szn yj”] (4.24)
where | > 2. According to Proposition 4.1 with L = (i1,...,4;-1,j) € I;, we can
write

n q
[)@1’ [}/i27"'|:Y7;1,17}/j]:|j| :chzyk?: |: C]za;::l:| Ym
k=1 m=1 k=1

where c¥ (y) = 0 unless dj, < d(L). Thus the term (4.24) can be written

7' Z [Zuil TR L cRie i I

m=1 k=1
If |u| <1, we can estimate the coefficient of Y,, by

q

q
1> 8" D |k ()] agt ()] < Con? Y 54Tk |6k ()] < €, g6
k=1 k=1

where C,,, and C’

m
estimate |a}*(y)|. If we choose 7 sufficiently small, the sum of the various coefficients
of Y,, is bounded by %nédm, and this completes the proof. O

depend only on H N | | RND and we have used Corollary 4.14 to

We now establish part (1) of Theorem 3.7.

LEMMA 4.18. Let 0 < k < 1. There exists 0 < n2 < 1 depending only on k,
v(K), and H ny( n, With the following property. Let x € K, let 0 <6 <1, and
let I €1, be (z,0,k)-dominant. If 0 < n < nq, then for u € B(0;1) we have

nn

7 M@ 87 <65, (u) < dn® A ()| 540, (3.9)



4. PROOF OF THE MAIN THEOREM 118

ProoF. Using Lemma 4.17, we have

JOL s (u) = |det (d@wn((a Ju)s - dOL 5, (O, )u))‘

= | det (na™ [(Yl)y+zn:b17k(Yk)y},...,n6d (v2) +ankyk D‘

k=1

= |nm 54D [det (M)ys - (Ya)y) +

Py me busea) det (Vi) (Ve )y) ]|

k1=1
750 [det (V). (V2),) +
+ D (ro() bug(w) det ((Yau))yvm’(ya("))y)}’

ceG,

76D M) 14+ D (17 iyt ||

oe6,

since any determinant with a repeated row is zero. However, using Lemma 4.17
again, we have

| <" §lde@)++do(n)) = (di+-+dn

101,0(1) "+ bn o (m) =g

and so

‘ > (=1)7 (bro ---bn,a(n))) <nln". (4.25)

ce6,
Thus if n!n" < % it follows that

%n(sd(” Ar(y)]| < JOL 5, (u) < 5d<1> IAr(y)]-

Combining this with the estimate in Lemma 4.11 gives the estimate in equation
(3.9) and completes the proof. O

Since the mapping @x 5o has non-vanishing Jacobian determinant on the unit
ball, we can apply Lemma 4.15 to a dilate. If 1 < n2 we have

92 é 77( ) = 9;,6,772 (77 ,'7271 u)

and thus GI , 18 just the mapping ef restricted to the Euclidean ball of radius

z,0,M2
NNy b, Thus applying Lemma 4.15, we have the following.

COROLLARY 4.19. With the notation of Lemma 4.18, let n < n2. There exist
e > 0 so that

(1) for everyu € B(0;1), the mapping 9918757,7 is globally one-to-one on the ball
B(use);

(2) if ¢ : [a,b] — Bl(x,0) is continuous and one-to-one with p(a) = x, there

exists a unique continuous mapping 0 : [a,b] — B(0;1) so that 6(a) = 0
and @Tan(Q( )) = (t) fora <t <b.
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We continue our investigation of the images of the vector fields {d,, } under the

differential of the mapping 9; sy that are described in Lemma 4.17. Let n < 72

and let € > 0 be as in Corollary 4.19. Let u € B(0; 1), let y = G)é’(;m(u), and let Vj,
be the diffeomorphic image under © 5 of the ball B(u,¢). Let {W1,...,W,} be

the vector fields on V,, where W; = de! [8uj]. Lemma 4.17 shows that

z,6,m
(&)W =Y+ Y bjnYe =) (Fix+bjn) Vi (4.26)
k=1 k=1

where b; x € £(V,) and sup_cy, [bjx(2)] < 73~ %. We want to solve this system
for the vector fields {Y}} in terms of the vector fields {W;}. After possibly shrinking
7 again, we can achieve the following.

LEMMA 4.20. Let € > 0. There exists n3 < 12 so that if n < n3, we have

n8M"Yy, = Wy, + Zﬁj,k W;

j=1

where 351, € £(Vy) and

PROOF. Let B be the n x n complex matrix

big big - bign
boi bao -0 ban
B - . . . . 9
bn,l bn,2 e bn,n
and let
sl ... 0 §—dh 0 . 0
0 &% 0 0 &% 0
D=1 . . ) . so that D=
0 0 ... ¢§ 0 0 oo §7dn

Then equation (4.26) can be written as
N~ DTHW] = (I+ B)[Y].
Hence if (I + B) is invertible, we can solve for the {Y;} by writing
Y] =(+B)"'(nD)"[W].
On the other hand, we have

b1 §h=dapy, ... ghmdzp,
L 5%~ % by ba,2 e 0BTy,
D(I+B)D ' =1+ . ) , . =1+ By,
5dnid1 bn,l 6dn7d2 bn,2 e bn,n

and now the entries of B; are all bounded in absolute value by n. If 7 is sufficiently
small, we can write

(I+B) ' =I1+> (-1YBy=I1+5
j=1
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where the entries of B; are all uniformly bounded by 27. Putting everything to-
gether, and taking n < 5, we have

nD[Y] = (nD)(I+ B)~" (nD)~'[W]
=nD)D™'(I+By)"'D(nD) W]
=(I+ §1)[W}

This is equivalent to the statement of the Lemma. ([

We can interpret Lemma 4.20 in the following way. If |ug| < 1, the map-
ping @iyém is a diffeomorphism of the open ball B(ug,€) to its image, which is a

neighborhood V,,, of yo = 9315075777 (u). There is an inverse mapping

U= (Y1,...,9%n) : Vy — B(uo, €),

so that if u = (uy,...,u,) € B(ug, €) we have

U = Yy (95,5,n(u))~
Thus we can regard the functions {¢1,...,%,} as coordinates near y. Now if
u € B(ug,€) and y = @£7577](u) then

Wikl (y) = dOg 5,100, 1[1k] (v)
= auj [wk °© @016-,5771] (u)
= Ou, [u] (u)
=8 k-

Thus 16% Y;[vk](y) = 6,k + Br,j(y). This gives the following.

COROLLARY 4.21. With n < n3, if U = (¢1,...,%y) is the inverse to the

mapping ei-,&n on the neighborhood V,,, then for y € V,,
l+e)ynté 4 ifj=k
Vitsd)| < Lm0 (@.27)
en o % if j # k.

4.6. Proof of Theorem 3.7, part (2).
We now can prove part (2) of Theroem 3.7.
LEMMA 4.22. Let 0 < k < 1, and let 0 < n < n3 where n3 is given in Lemma

4.20. There is a constant C, depending only on ||y||[~{ Ny and constant o > 0
depending only on n, Ny, and d, so that if

T < CkKY,
thenifr e K,0<d <1, 1¢€l, is (x,0,k)-dominant, and 0 < o < 1, we have

B,(z, Tnl/dagé) C B,I](:r, ad).
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PRrROOF. Let 7 > 0 and let y € Bp(x,ﬂﬁ 0%6). Then there is an absolutely
continuous mapping ¢ = ¢ : [0,1] — Q with ¢(0) = 2 and (1) = y such that for
almost all ¢ € [0, 1] we can write

@) =D b1 (YV)e, ) (4.28)
j=1
with
sup |b;(t)] < (7'77%0%5)‘1" < n(TO‘%(S)dj. (4.29)

1<j<q
Without loss of generality, we can assume that the mapping ¢ is one-to-one.
Recall that

Bl(x,00) = {y €0 ‘ (Fu € B(0;1)) (y = @;M(Dg[u]))} .

Let
E= {t € [0,1] ‘ o(s) € B,I,(J:,U(S) for all 0 <'s < t}.

Since Bé(a@a&) is open and ¢ is continuous, the set E is relatively open in [0, 1].
Our object is to show that if 7 is sufficiently small, then 1 € E, and hence y =
¢(1) € B)(x,06). This would imply B,(z, Todd) C Bl(z,06).

Now if 1 ¢ E, it follows that E = [0,a) with a < 1. Moreover, ¢(a) belongs to
the boundary of B)(x,04), and so ¢(a) = @i”&n (Dy[u]) with |u| = 1. According to
part (2) of Corollary 4.19, we can lift the mapping ¢ to a mapping 6 : [0,a] — B(0;1)
so that 6(0) =0, |6(s)] < 1for 0<s<a, |f(a)] =1, and for 0 < s < a,

p(s) = exp (n Z Jdkek(s) (5)dk Yk) (x) = Q{c’(gm (DU [9(5)]) (4.30)
k=1

Since the mapping @i, s 18 locally one-to-one and the mapping 6 and ¢ are
one-to-one, it follows that eslc,&n is actually globally one-to-one on some small

open neighborhood of the image 9([0,@]). If we write the inverse mapping as
U = (¢1,...,%,), then these components are well-defined functions in some neigh-
borhood of ¢([0,a]). Thus we can write

Do[0(s)] = (1((3)), - tn(0(s)) ).

Since 6(0) = 0, we can use the fundamental theorem of calculus, equation
(4.28), and equation (4.6) to calculate:

adkﬂk(a) = ad’“Gk(a) — O’dkok(O)
= i (p(a)) — i (0(0))

But for 0 < s < a we have
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|bu(s) af (2(9)) Yilwl ((9))| < (r 0@ §)% CrmnNogdi=di =1 5=
< R Nordi (g )
< O g~ No pd s
< g

since Dd; > ddj,, provided that C k™" Nord < 1. Here C depends only on
H Yy ‘ | B.Ns' This is a contradiction, and completes the proof. ([

4.7. Proof of Theorem 3.7, part (3).

We can now show that for 7 sufficiently small, the mapping Gz 5m
one-to-one. The key is the following comparison of exponential balls.

is globally

LEMMA 4.23. Suppose that I,J € 1, that v € K, that 0 < 6 < 1, and that
both I and J are (x,0, k)-dominant. Then there exist constants 0 < 7o < 171 < 1
depending only on k, n, and ||y | ’f( N, 5O that

B;]](:c,TQ(;) - Bf,(:v,ﬁé) C B;Yl(x,é).

PRrROOF. Since [ is (z, 9, k)-dominant, it follows from Lemma 4.22 that if 7 =
C’no‘né, we have B,(x,76) C Bf,(d, 0). Here C depends only on ||y||1~{7N3. On
the other hand, Proposition 3.5 shows that B (x,716) C B,(x,116), and so

BY(z,m6) C Bé(x,cS). (A)

Next, since J is (z, 0, k)-dominant, we have

Mg (@)] (118)4) > k') sup [Ap(x)] 6P
Lel,

_ KT{i(J)—d(L) LS‘;]? IAL(2)] (Tld)d(L)

> K7y AL ()] ()",

Thus J is also (m,(7'15),(ff71N°))—dominant. Using Lemma 4.22 again, if 7 =
C (k1Y°)®, then we have B,(x,720) C B;{(x,ﬁé), where C' again depends only
on ||y HI~(N3 But then by Proposition 3.5, we have B](x,720) C B,(z,m26). This
gives us

Bl(z,726) C B (x,716). (B)
Combining (A) and (B) gives the desired result. O

LEMMA 4.24. There exists 1 > 0 and kK > 0 so that if x € K and 0 < § <1
there exists I € 1,, which is (x,0, k)-dominant and ©% ; : B(0;1) — Bé(m,é) is
globally one-to-one.

z,0,m

PrROOF. Let 2y € K. Choose Iy € I,, such that
d(Io) = min {d(J)|J € L., As(x0) # 0},

|)\]0 | = d(J) d |>\]((E0)|
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Then there exists 0 < o < 3 depending on the point zo so that

)

| Ao (20)| = 20 sup |As(zo)
Jel,

and hence, since d(Ip) is minimal among indices J with \j(x¢) # 0, it follows that

RYNED] §2U0) > 944 sup |\ (z0)| 64
Jel,

for all 0 < § < 1. Thus Iy is (zo, 9, 2K0)-dominant, and hence also (zo,d, Kg)-
dominant for all 0 < § < 1. - _ .

Choose an open neighborhood W of z( contained in K such that for x € W we
have

|1, (2)] = ko sup |As(2)].
Jel,
Thus I is (z, 1, kp)-dominant for all x € w.
Let n3 be the constant from Lemma 4.20. Define a mapping © : W x B(0;1) —
W xQ by setting
O(z,u) = (337@21,7;3 ().

Then the Jacobian determinant of the mapping 63{71,7]3

JO(20,0) = (n3)" [\, (z0)| # 0, and by the open mapping theorem, it follows
that there is an open neighborhood ¢y € W C W and a constant € > 0 so that the
mapping O is globally one-to-one on the set W xB(0, €). If we let n4 = €73, it follows

that the mapping O (z, u) = (z, 621,7}4 (u)) is globally one-to-one on W x B(0;1).

at the point (x0,0) is

Thus we are in the following situation. For xg € K, we have found Iy € I,
constants 0 < kg < % and 0 < my < 1, and a neighborhood W of zq in §2 so that

e I is (zg, d, Ko)-dominant for all 0 < § < 1.
o Iyis (z,1,Kg)-dominant for z € W.

e The mapping @:{c?é,n : B(0;1) — Bé(:ﬂ,é) is globally one-to-one for all

0<n<m,all0<d<1,and all z € W..

However, it is important to note that it is not necessarily true that Iy is (x, 6, ko)-
dominant if x # xg and § < 1. As soon as we move away from xg, there may be
n-tuples J € I, with d(J) < d(lp) such that Aj(zg) = 0 but Aj(z) # 0. It then
may happen that for § small we have kg |)\J(x)|5d('1) >> | Mg (2)] §ao),

We can, however, proceed as follows. For each x € W we can choose a sequence
of n-tuples Iy, I1,...,Iy € I, and a sequence of positive numbers 1 = dg > 61 >
-+« > dpr > 0 so that

Az, (@) gL > 10 sup [As(z)] 6 for0<j <M —1and §;11 <6 <9,
Jel,
|1y ()] 5 > % sup [As(z)] 6% for 0 <6 < by
Jely,

The number M can depend on z. However, we can assume that d([;41) < d(I;) for
0 <j <M —1. In particular, each chosen n-tuple occurs only once, and thus M
is at most the total number of elements of I,,, and hence is bounded independently
of x.
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In particular, we can apply Lemma 4.23 since Iy and I; are both (z,d1, %/@2)—
dominant. It follows that there are constants 0 < 7{ < 71 < 1 so that

B}t (z,7{61) C B°(x,7161) C B} (x,61).

iflm is globally one-to-one, the set Bé" (x,7101) is simply con-
I

z,01,m

Since the mapping ©

nected. It follows from Lemma 4.16 that the mapping © is globally one-to-one

on the set {u € B(0;1) ‘|u| < (m{)P}. In particular, BJ*(z,7{8;) is simply con-
nected.
We repeat the argument. Note that I; and I3 are both (,ds, 4 kg)-dominant.
Since 71 < 1, we have for j = 1,2
d(1;)—d(L) Ko

I\, (2)|(7102)"%5 > 7 5 Sup IA(@)| (r16)4")
Lel,

> kot sup [A(z)] (7182) ")

n

Thus both I; and I are (z, (7{82), 3o (7{)"°)-dominant.
It now follows from Lemma 4.23 that there are constants 0 < 75 < 75 so that

Bl (x,757182) C Bl'(z,727(02) C B} (,7(02).

DN | =

Since 7 < 1 it follows that Bl (z,7o7{d2) C Bl (x,7{81), which we know is the

image of a globally one-to-one mapping. Then Bf;l (2,271 d2) is simply connected,
Iy

w6 is globally one-to-one

and another application of Lemma 4.16 shows that ©
on the set {u € B(0;1) ‘|u| < ()P}

We can now repeat this process M times. We find a sequence 1 > €7 > €5 --- >
enm > 0 so that Gijaj,n is globally one to one on the set {u € B(0;1) ’|u| < €}

Then if we put n5 = €j; we have shown that 95; 5; is globally one-to-one on the

unit ball B(0; 1).

575

Io

Let n = n3. The mapping © is globally one-to-one, and so Bff (z,€101) is

z,1,n
simply connected. If @5}62 51,y Were not globally one-to-one, there would be a line
segment in B(0; 1) which @56251 , maps to a closed curve in szl (2, €201). But this

curve can be deformed to a point in B#} (z,€d1), and hence it can be deformed to a
point in BJ* (z,d;), which is impossible. Thus G)il)ez 5, 18 globally one-to-one.
We now repeat this argument N times, and conclude that all the mappings are

globally one-to-one. This completes the proof, since F is compact. O

4.8. Proof of Theorem 3.7, part (4).
Let {Z;} be the vector fields on B(0;1) such that dOL s [Z;] = né%Y; on

z,0,m
B;(%é). We want to show that Z = {Zl7 ceisZgyda, ..., dg} is a control system
on B(0;1) and that || Z ||B(O )N and v(Z) is bounded independently of z, §, and

7. According to Lemma 4.17, for 1 < j < n we have

401 54[00,) = 402 5., | Z; + 3 i 2]
k=1
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and since dO 5.y is one-to-one, it follows that

Ou, = Zj+ Y _bjn Zn,
k=1

where {|b; x|} are uniformly bounded Thus arguing as in Lemma 4.20, we can solve
for the vector fields {Z;} and write

N2k =0u, + Y BjkOu,

Jj=1

for 1 < k < n, where {|3; x|} are uniformly bounded. For other indices, recall that
forn+1 <1< q we have

n
Yi=Ya" VY,
m=1

and hence
n

oy, = Z §hi=dm gim (n §4m y,,).
m=1

But this means that
n
Z, = Z sli=dm gm 7.
m=1

and {|6% = g} are uniformly bounded.

5. Smooth Metrics

We now use the information about the local structure of Carnot-Carathéodory
balls to construct a smooth version of the metric p.

5.1. Differentiable metrics.

The key is the construction of local bump functions which behave correctly
under differentiation.

PROPOSITION 5.1. Let u = (ug,...,u,) € B(0;1) and suppose |u| < n < 1.
d;
Then there exists v € B(0;1) with [v| < 1 and u; =nD v; for 1 <j <n.

1

PROOF. Let w =n~tu, so that |w| < 1 and ©v = nw. Write

d

n=(?)" = )" )

Hence
u=(nwi,...,nw,)
d D—dj dp D—dp
:(nDn 5 wy,...,(nPny D wn)
dy dn
= ("7i U1, anﬁ Un)
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COROLLARY 5.2. If u € B(0;1), with |u| < XA <1, then
0! ;. (u) € BL(x, AP §) C B,(x,A59).

PROOF. Let |u] < A < 1. Then we have

@;5, fexp< Zujé Y)
= exp (nZUj (A%é)djyj)(x)
k=1

I I 1 N
- 6@)\%5’77(,0) € Bn(xa )‘Dé) C Bp(.')L‘7 AD 6)
O
LEMMA 5.3. Let K C K C Q be a compact sets with K contained in the interior

of K. Let n, T be the corresponding constants from Theorem 3.7. Then for x € K
and 0 < 0 <1 there exists ¢ = @y 5 € E(Q) with the following properties:

(1) 0 <, 5(y) <1 forally € .

(2) We have
o i pzy) >
Pz,5(y) = {1 if p(z,y) <

n.\tj

g,
T?ﬁ 0.

(3) For every J = (j1,...,4r) € L. there is a constant Cy, independent of x
and 6, so that

sup | Jr J7 100 szle [‘pwﬁ](y)’ < CJ 5_d(J)-
yeQ
PrRoOOF. Given z € K and 0 < 6 < 1, let I € I,,, n, and 7 be as in the
conclusions of Theorem 3.7. The mapping @w o :B(0;1) — B,I](x, 9) is a diffeo-
morphism. Let us write @ : B,I,(x,é) — B(0;1) be the inverse mapping. Choose a
function ¢ € C5°(B(0;1)) so that 0 < ¢(u) < 1 for all u, ¢(u) =1 for |u| < 7P, and
¢(u) = 0 for |u| > 1. Put ¢, 5(u) = ¢(®(y)). Then clearly ¢, 5 € C5° (Bl (,9))
and 0 < ¢(y) <1 forall y € Q.
Since BJ(x,8) C By(x,6) and the support of @, s is contained in BJ(x,d), it
follows that ¢, s5(y) = 0 if p(x,y) > 6.
If y € B)(x,76), then there exists u € B(0;1) so that y = @i)ﬂ;yn(u). This
means that

Yy = exp (nZude’“Jd’“Yk) (x) = exp (nkaéd’“Yk)( )=6! s(0)
k=1 k=1
where v, = 7% uy. Since 7 < 1 it follows that [v] < 7%u| < 7%. Thus B](z,70)
is contained in the image under @x sy Of B(0; 7%), which is where we know ¢ = 1.
Thus ¢ geita = 1 on B{](J},T(S). But it follows from part 2 of Theorem 3.7 that
BP(ZL',TH%T%(D C Bl(z,76). Thus if p(z,y) < TnaT e, it follows that wzs(y) =1
This completes part (2), and condition (3) follows from the last part of Theorem
3.7. This completes the proof. (]
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PROPOSITION 5.4. Let K C § be compact, and let C > 1. There is a positive
integer M so that if 0 < § < 1 and if {B,(z;,9)} is a disjoint collection of balls
with centers x; € K, then every point of K is contained in at most M of the dilated
balls {B,(x;,Cd)}.

PRrROOF. Let y € K and suppose that y € B,(z;,C9) for 1 < j < M. Then for
these indices, B,(x;,0) C B,y(x;,C0) C B,(y,3C6), and B,(y,3C6) C B,(z;,4C9).
Since the balls {B,(xz;,d)} are disjoint, it follows from the doubling property that

M
|B(y,3C6)| > > | By(x;,0)]
j=1

M
> A |B,(x;,4C6)]

J=1

> AM |B(y,3C9)|
Thus M < A~1. O

LEMMA 5.5. Let K C ) be compact and let 0 < 6 < 1. Then there exists
w=ws € C®(Q x Q) with the following properties:

(1) For all x,y € Q we have 0 < ws(z,y) < M.
(2) For all x,y € Q we have

ws(z,y) > 1 if p(z,y) <6
ws(z,y) =0  if p(z,y) > Co.

(8) Forevery J = (j1,...,j4r) €L, and L = (l1,...,ls) € I, there is a constant
Cy1 independent of § so that
sup (¥, -+ V][V, o Vi fws] (2, 9)] < Gy 67407,
(z,y)€QxQ
Here [Y;, -,
y.
ProoF. Consider the collection of balls {B,(z,d)} for € K, and choose
a maximal sub-collection {B,(x;,d) so that B,(z;,0) N By(x,0) = 0 if j # k.
For any y € K, the ball B,(y,d) must intersect one of the balls B,(x;,d), and
hence y € B,(z;,26) for some j. Thus the collection {B,(z;,2d)} covers K. By
Proposition 5.4, each point in K belongs to at most M of these larger balls. But
then if z,y € K with p(z,y) < ¢, there exists an index j so that both  and y
belong to B,(z;,30).
Now using Lemma 5.3, for each j there is a function ¢; € C5°(€2) such that
w;(x) =11f p(z;,z) <38, p;(xz) =0if p(x;,x) > CJ, and

Sup |Y'r Y [@J](y” <Cy 54
ISy

| acts on the variable x and [Y;, - - - Y}, ] acts on the variable

for every J € I,.. Put

ws(z,y) = ij(w)soj(y)-
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Note that each term in this sum is non-negative. if ¢;(x)¢;(y) # 0, then
z,y € By(xj,C6). There are at most M balls B,(z;,Cd) which contain z. Thus
for x,y € Q, there are at most M terms in this sum which are non-vanishing. Since
each term is bounded by 1, it follows that for all x,y € Q,

0 <wj(z,y) < M.

Next, if p(z,y) > 2C9, it follows that there are no balls B,(z;,Cd) containing
both z and y, and hence each term ¢;(z)p;(y) = 0. This shows that

wji(z,y) =0 if p(z,y) > 2C9.

If p(z,y) < 6, we have seen that there is an index j so that x,y € B,(z;,39).
Hence ¢;(z) = ¢;j(y) =1, and it follows that

wi(z,y) =1 if pla,y) < 6.

Finally, we have

HYJTYhHYl -V, ws] my Z|Yr" J1 SDJ H Y, ‘PJ( )‘

For eachz,y € ), here are at mots M non-zero terms in this sum, and by Lemma
5.3, each term term is bounded by Cj 1, 5~ —d(L)  Thyus

Supﬂ | e Y]l][Yl-s e }/ll][w(s](m7 y)| < CJ,L M 6_d(J)_d(L)'
z,Yy€
This completes the proof. ([l

REMARK: Variants of this a result appear in [Sta93], and in [Koe00] and [Koe02].

THEOREM 5.6. Let K C € be a compact set. There is a function p: Q x Q —
[0,000 which is infinitely differentiable away from the diagonal

A:{(a:,y)eQxQ‘x:y}
with the following properties.

(1) There is a constant C > 0 so that for all x,y € K with x # y we have

C—l S 6(‘r7y) S C
p(z,y)

(2) For every J € 1, and L € I there is a constant Ck,1, so that for all
z,y € K with x # y we have

Y], - Y5 ], -+ Y3, )[p(e, )] < Cup pla,y)t =400 —40),

PRrROOF. There are functions {w;} defined on © x Q such that

0<wj(z,y) <M for all x,y € Q,
wj(z,y) > 1 when 0 < p(z,y) <277,
w;(z,y) =0 when p(z,y) > C277.
Now put
0 ifx=y
plz,y) = -1

[ZJ 1 Y wj(z,y) if x #£y.
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Fix z # y. Let jo be the smallest non-negative integer such that €277 <
p(z,y). Then for j > jo we have w;(z,y) = 0 and so

00 Jo—1
> Ywjay) =) Y,y
Jj=0 j=0

Jjo—1

<M Z 27
3=0

< M 2% < 20M p(z,y)~*

since by hypothesis C'2~0Uo=1) > p(z,7). Next let j; be the largest integer such
that p(z,y) < 2771, Then for 0 < j < j; we have w;(z,y) > 1, and so

[e7e] J1
ZQJ Wj(l‘,y) > Z2J wj(xay)
7=0 j=0

J1

>y Y

=0
] .
> 27t > §p(x7y)
since by hypothesis 2771 =1 < p(z,y). Thus it follows that for z # y we have
1 - -1
o P [22 wgﬂcy} < 2p(x,y),

and so p is comparable to p, proving (1).
The differential inequality in (2) follows in the same way, using the fact that

1Y, - Y)Y, - Vi Jfw;](z, )| < Cyyp (279) 74 =dE),
[l

5.2. Scaled bump functions.



CHAPTER 4

Subelliptic estimates and hypoellipticity

1. Introduction

In this chapter we study of the L2-Sobolev regularity properties of second order
partial differential operators of the form £ = X, — §=1 XJ2 + 1Yy + ¢, where
{Xo,X1,...,X,} and Y} are smooth real vector fields and c is a smooth complex-
valued function. Under an appropriate finite type hypothesis on the vector fields
{Xo,...,X,} and an appropriate assumption about the size of the vector field Yy,
we shall derive what are called subelliptic estimates for £ in the scale of L?-Sobolev
spaces H*(R™). The definitions and properties of these Sobolev spaces are discussed
in Chapter 10.

2. Subelliptic estimates

2.1. Statement of the main theorem. Let (2 C R” be a connected open set.
Let Xo, X1,...,Xp, Yo € T(Q2) be smooth real vector fields, and let ¢ € C*(2) be a
(possibly) complex-valued function. We study the second order partial differential
operator

P
L=Xo—) X +iYo+ec (2.1)
j=1
A subelliptic estimate for £ asserts the existence of a constant ¢ > 0 with the
following property. Suppose ¢ < ¢’ € C§°(€?). (Recall that this means that {'(x) =1
for all  in the support of ¢). Then for all s € R, there is a constant C so that if
u € D'(Q) is a distribution,

1¢ullpe < C{IICLR], + [ Cull,]-

Note that the three terms (ou, (1L[u], and (yu are distributions with compact
support in 2. Part of the content of subellipticity is that if the two terms on the
right hand side are finite, then the left hand side is also finite.

In the operator £, the term i Yy + ¢ is regarded as a perturbation of the main
term Xy — Z§:1 XJZ. In order to obtain subelliptic! estimates, we shall assume
the vector fields {Xo,...,X,} are of finite type and the vector field Yy is suitably
dominated by the vector fields {X1,..., X,}. Precisely, we assume:

IThe expression ‘subelliptic estimate’ derives from a comparison of the above estimate with
the classical estimates for elliptic operators. Thus if A = Z?:l 8%]_ is the Laplace operator on

R™ and if ¢ < ¢’ € C§°(R™), then for every s € R™ there is a constant Cs so that if u € D'(R™),
[ Cullspy < CsIIC AR, + (] ¢ull]-

130
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(H-1) The iterated commutators of length less than or equal to m of the vector
fields {Xo, ..., X, } uniformly? span the tangent space T}, (R") for every
x € Q.

(H-2) There exist constants 1 > 0 and Cp, C1 < oo so that for all p, 9 € C§°(Q)

|[(Yoliel )| < (1= ZHX [l ||;+ Co| | ]5,  and (2.2)
| (Yolel |<01[Z (15EA I+ 1) + el +1ell] @3)

Write the vector fields X; = Y p_ a0, and Yo = >7_, by 9y, where
{ajr}, by € CR°(?). By shrinking the set €2, we can always assume in addition
that:

(H-3) All derivatives of the functions a; , by, ¢ are bounded on the set (2.

Before stating the basic subelliptic estimate for £ in the Sobolev space H®, we
need to discuss the nature of the constants that appear in the theorem. For later
application it will be important to see that the bounds we obtain are uniform in
the sense that they only depend on the parameter s, on the size of the coefficients
of the operator £, and on the choice of various cut-off functions {¢;} C C3°(2) that
are used in the proof.

DEFINITION 2.1. Fiz (y,...,C m € CC(2). For any non-negative integer N, set

n

P
B(N) =sup sup [Z 0%aj i (z |+Z|8°‘bk

2€V |a|<N

i (2.4)
+|0%(x)| + ZZ 0°G (@)
§=0 k=1

If s € R, a constant Cs is allowable if there is an integer Ny so that Cy depends
only on s and on B(Nj).

With this definition in hand, we now state the main result of this chapter.

THEOREM 2.2. Let Q C R™ be an open set, and let L be the second or-
der partial differential operator given in equation (2.1). Suppose the vector fields
{Xo,X1,...,Xp, Yo} and the function ¢ satisfy hypotheses (H-1), (H-2), and (H-3).
Set e =2-47™ and fixr ( < ¢’ € C°(Q). For every s € R there is an allowable
constant Cs so that if u € D'(Q) and if ('u € H*(R™) and ¢'Llu] € H*(R"), then
Cu € H5T<(R"), (Xju € H*"2¢(R™) for 1 < j < p, and

p
[[Gull o+ Do M1¢XKpull,p s, < C[[[CLWl ||, +[[Cull,]. @5)
j=1
2This means that there is a constant n > 0 so that for all z € Q, there is an n-tuple of

iterated commutators of length at most m whose determinant at z is bounded below in absolute
value by n. This can always be achieved by shrinking 2.
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2.2. Hypoellipticity of L. The classical Weyl Lemma asserts that if u is a
distribution on R™ and if Afu] is smooth on an open set U C R"™, then u itself
is smooth on U. This qualitative property of the Laplace operator /A and other
elliptic operators is called hypoellipticity.

DEFINITION 2.3. If L is a linear differential operator with C°°-coefficients on
an open set Q C R™, then L is hypoelliptic provided that for every open set U C €,
if ue D'(Q) is a distribution and if L{u] € C>°(U), then u € C*(U).

An important consequence of Theorem 2.2 is that the operator L is hypoelliptic.

COROLLARY 2.4. Suppose that L = XoJrZ?:l ngJriYOJrc, and that the vector
fields {Xo,X1,...,Xp, Yo} and the function c satisfy hypotheses (H-1), (H-2), and
(H-3). Then L is hypoelliptic.

PROOF. Let ¢ € C§°(U). Choose (o, (1, ... € C3°(U) with ¢ < ¢; and (j41 <
¢; for all j. Since (ou has compact support, there exists an s € R such that
Cou € H*(R™). Since by hypothesis (oL[u] € H*(R™), the inequality then shows
that (;u € H*T¢(R™). We can then repeat this argument N times to show that
(vu € HSPNE(R™). Tt follows that g u € ), H'(R™) C C*°(R™). Since this is true
for any ¢ € C§°(U), it follows that u € C*>(U). O

2.3. Commentary on the argument. The proof of Theorem 2.2 uses the
Schwarz inequaltiy, the calculus of pseudodifferential operators, and a long and in-
tricate series of calculations involving integration by parts. The argument proceeds
in two main steps. The first deals with estimates when the distribution v € D’(§2)
is actually a function ¢ € C§°(£2). Since one is assuming the data is differentiable,
these are called a priori estimates. The second step then deals with the passage
from smooth functions to general distributions u € D'(Q).

Let us isolate some key elements in the proof of the a priori estimates. The first
is the proof that if ¢ € C§°(Q2), then Z§:1 Hngo ’ E is controlled by Re(L[g], ¢)

and H ) ‘ |§ This is the subject of Section 3. In particular, the conclusion of Lemma
3.12 is that

S

p
I 1 X |[2 < Re(£lel o), + Coll oI
j=1

where 7 is the constant that appears in hypothesis (H-2), equation (2.2).

For s = 0, this estimates follows easily from an argument involving integration
by parts. The proof is given in Lemma 4.2. In order to pass to a general parameter s,
we write ||ng0 HS = ||A5nga Ho and %e(ﬁ[gp],(p)s = %e(ASE[w],Ascp)o. Roughly
speaking, we would like to replace | | A X | |0 by | | XN | |07 and Re (Asﬁ[go], Asgo) 0I
by Re(L[A*¢], A*p),, and then apply the case s = 0. Unfortunately, A®p is not
compactly supported, so we introduce additional cut-off functions to deal with this
difficulty. In addition, we need to control the commutators of X; and £ with
pseudodifferential operators A® of order s. These manipulations generate a large
number of terms, all of which must be bounded by the right hand side of equation
(2.5).

In dealing with the commutators, note that an error term || [X;, A°] ¢| |0 is
dominated by | ’ ® HS since [X;, A®] is an operator of order s. However an error term
|| £, A%] | |O cannot be handled so easily since [£, A®] is an operator of order s+1.
Thus a second key ingredient in the proof is the observation that such commutators
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are not just an operator of order s+ 1, but can be controlled by operators of order
s composed with the vector fields {X1, ..., X,} or their adjoints. In Proposition
3.6 below we see that one can write

p
£, A*)=>"B; X; + B}

Jj=1

P
£, A*)=> X7 B + B}
j=1
where {Bj} and {gj } are pseudodifferential operators of order s. This is used in
Lemmas 3.7 and 3.10 to estimate the commutator [£, A®] in terms of the vectors

{X;}-
If the vectors {X1,..., X, } spanned the tangent space at each point, we could

immediately estimate | | % H§+1 in terms of Z§=1 H Xjp | |§ In order to use the much

weaker finite type hypothesis (H-1) and complete the proof of the a priori estimates,
we need to employ a third key observation: if we have a favorable estimate

120l sras Sl Lol 0,

for a vector field Z and some a > 0, then we get a possibly less good but still
favorable estimate

X5 2ol S Lol + el

for all 0 < j < p and some 0 < b < a. This is the content of Lemma 4.5 below.
More generally, in Section 4 we study spaces of subelliptic multipliers, which are
pseudodifferential operators A such that

Ao |l S L]l + e,
for some a > 0.

In order to pass from a priori estimates of smooth functions to estimates for
general distributions v € D’(Q), we multiply u by a cut-off function ¢ € C§°(),
and then consider the ‘mollifier’ or convolution T;[¢ u] = ( uxy; where x € C§°(R™),
and x¢(x) = t"x(t~1x). For t > 0 sufficiently small, T;[C u] € C5°(Q2), and so we
obtain

NTelCul ],y S LTS ], + ([ TeCul ],

from the a priori estimate. To complete the proof of Theorem 2.2, we then need to
control the commutator [£, T;¢]. This is done in Section 5. Finally in Section 6,
we give examples of vector fields Yy which satisfy hypothesis (H-2).

3. Estimates for }_7_, || X0 ’i

In this section we prove that for every s € R there is an allowable constant C
so that

P
SlIxelP <l +llell?]
J=1

for every ¢ € C§°(Q).
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3.1. Integration by parts. Recall that the inner product of two functions

f,g € L*(Q) is given by
= /Q f(2) 9(@) da

and the norm of f € L?(f) is denoted by H f Ho =/(f, f)o. IfX =37_,a,0s,
is a smooth real vector field, the divergence of X is the smooth function

-3 G
(95%
The formal adjoint of the vector field X is the operator X* whose action on a

function ¢ is given by

Xpl(z) = =X]gl(z) = V-X(2) ().

The following proposition summarizes the elementary properties of formal adjoints
that arise in integration by parts.

PRrROPOSITION 3.1. Let X, Y be smooth real vector fields on an open set Q C R™,
let f € CR(QY) be a smooth real-valued function, and let @, € C§°(R) be (possibly)
complex-valued functions with compact support. Then

(X[l ¥)y = (0. X W), =—(e. X[¥]), — (0, V-X9b) 5 (3.1)
(X[e], f0), = =, f [ ]) + (0, X [f1%) o; (3.2)
(XY e, ¥), = = (Yol X)) = (Y], V-X¥) 5 (3.3)
Re(X[e], ¢), = - ;w X¢),: (3.4)

Re(X[pl, f ), = §(<p,X*[f]s0)0; (3.5)
Re(X?[g).0), = ~|| Xlel |l — (0. X [V-X] ), (36)

PROOF. Let X = Z?:1 aj 0., be a smooth real vector field on (2, and suppose

that o, 1 € C§°(Q2) are complex-valued functions. The function ajgo@ has compact
support in €2, and so fQ O, (ajpv)) dz = 0 by the fundamental theorem of calculus.
Thus integration by parts gives

|
\
593
)
©
G
=
8
|
\
QH
Q@
E
<y
g

/ [Z% ]df— /Qsom [J}_jlaz_jaj(w)]w(w) o

= _(‘va[w])o - (@’V'Xw)o'

This gives equation (4.1). Equations (3.2) through (3.6) follow from repeated ap-
plications of this identity. O

We can now calculate the formal adjoint of the operator L.
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PROPOSITION 3.2. Let L = — le X]2 + Xo+1Yp +c be a second order partial
differential operator on an open set @ C R™ as given in equation (2.1). If o, €

C5° (), then (L[e], ), = (¢, L*[¢]), where

fixffxwiw.xjxjﬂywa (3.7)
j=1 =1
and ¢(z) = c(z) — div[Xo](x) + idiv[Yo](z Z [ V-X;] + (V-X;) ]( ).
j=1

PRrOOF. Using equation (3.3) we have
(X3l ), = —(X5e), X5 [00),, — (X;0], V-X;9),
= (@ X7 ), + (. V- X5 X5000),
+ (9, X5[V-X59]) + (00 (V-X5)%¢)o
= (2. X7 ), + (:2V- X555 [0]),
+ (6, [X5[V-X,] + (V- X,)%|)o
Summing and using equation (4.1) gives the desired formula. [

REMARK 3.3. If we set Xo = —Xo + 2 Zle V-X; X;, then

P
—ZXJQ + Xo + 1Yy + ¢,
j=1
and so has L* has essentially the same form as L. Note that the linear span of the
vector fields {Xo,X1,...,Xp} is the same as the linear span of {Xo, X1,...,Xp}.

3.2. The basic L?-identity and L?-inequality. The key first step in deriv-
ing L?-estimates for the operator £ is to observe that the quadratic form (E[go], (p) 0
can be rewritten in terms of the vector fields Xo, Xi,...,X,, Yo. We have the
following basic identity.

LEMMA 3.4. For ¢ € C§°(Q),

% ZH Ho (YO[QOL()D)O
(3.8)

£330 (0. X[V X]6) — 5 (0 dilXolo), + Re(e, ),

=1

DN =

PRrROOF. We have

(Llel )y == D (X71el 0), + (Xolel, 0) o +i(Yolel, 0), + (e, 0),

j=1
It follows from equation (3.6) that

—(X2[e),0) o = || X;le] g + (X51), div(X;) @),
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so that
P
Z H Xl ||0 Z |, V-X; 90)
+ (Xo <ﬂ) i(Yolel ) + (e, 0) -
Taking real parts and using equations ( A4) and (3. 5) gives the equality stated in
(3.8). O

Note that the last three terms in equation (3.8) do not involve any differentia-

tion of the function ¢. Thus these terms can be estimated in terms of H ) | |(2) and
are usually viewed as error terms while the first two terms in (3.8) are the main
terms. We now use the first hypothesis on the vector field Yy; recall we assume that
for all p € C§°(Q2),

|Sm (Yolg], )] < (1= n) ZHX (][5 + Col ¢ |lo- (2:2)

This leads to the following basic estimate.

LEMMA 3.5. Suppose that the vector field Yy satisfies (2.2). Then for all v €
C5o ()

n 3|1 Xslel g < Re(Llel. 0)o + Orll ol (3.9)

1 1o~ o,
where C; = Cy + ilég {§|dw[X0](x)| +3 ]; X5 [V-X5](z)| + |c(x)|}

ProoF. Using equations (3.8) and (2.2), if ¢ € C§°(U) we have

p p
D11 X5lel [[g < Re(clel. o Y11 X506 [+ Colle |
j=1 j=1
1< . 1 .
=52 (0. X5 [V-X;]e), + 5 (e div[Xolp) , + Re(cp, 0),
j=1
P
< Re(Llel @)y + (1= D || Xslel [ + Cal | o [5,
and this is equivalent to equation (4.3). O

3.3. Commutators. In this section we collect the statements and proofs of
several estimates for commutators of pseudodifferential operators. In practice one
needs to deal with a large number of commutators, and this can make it difficult
to keep track of the allowable constants that arise in the estimates. We attempt to
balance the need for precise descriptions of the allowable constants with the need
for conceptually concise statements by using the following procedure. The first time
we make an estimate, we write an explicit formula for the constant that shows it
is allowable, but after this first appearance, we replace the explicit formula with a
generic symbol C or Cs.
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Recall that if A® and B! are operators of order s and ¢ then the commutator
[A%, B is a pseudodifferential operator of order s + ¢ — 1. In particular, when we
commute a pseudodifferential operator A® of order s with the second order operator
L, the commutator [£, A®] is of order s + 1. However, because £ has the special
form given in equation (2.1), we can say more about the form of [£, A®]. This is
based on the following elementary observation.

PROPOSITION 3.6. Let L = — Z?:l ij + Xo + 1Yy + ¢, and let A® be a pseu-
dodifferential operator of order s. Then we can write

b
(L, A*] =) "B X; + B; (3.10)
j=1
p ~
(£, A*] =YX} B; + B; (3.11)
j=1

where

— Z iy [ X5, A%)] + [Xo, A%l +i[Yo, A*] + [g, A%,

The pseudodifferential operators { B, Eé, Bi,..., Bg} have order s. If A® is prop-
erly supported, so are these operators.

PROOF. Since £ = — le X? + Xo +1iY) + ¢, we have
(L, A®] = Z (X2, A%] + [Xo, A*] +i[Yo, A%] + [c, A°].
j=1

But
2 [va As] Xj + [va [va AS]]v
(X7, A°] = X; [X;, A°] + [X;, A°] X; =
2X; [X;, A°] - [X;, [X;, A%,

and this gives the desired formulas. O
We now establish two important consequences.
LEMMA 3.7. Let A® be a pseudodifferential operator of order s, let U € €2 be a

relatively compact open subset, and assume that ¢ € C§°(U) implies A%[¢] € C3°(Q).
There is an allowable constant Cs so that for all ¢ € C§°(U)

12, A e Ho<c[2||x Al + el (3.12)
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and consequently

P
lealel[l, < . ||| 2ial], + S Xstel ], + el (3.13)
j=1
PRroOF. Use Proposition 3.6 to write [£, A*] = >0_| B:X; + Bj. Then

11 ATl lly < D1 B XLl [l + 1| Bl g

p
<l BA= ||| X500 ], + 1 BsA~ || 2]l
j=1

and this give inequality (3.12). But then
|24 [ < [[ ALl ] + ] [£, ATl ]
< [[Aaa [ £lel [l + [ £, ATl -
Combining this with inequality (3.12) gives inequality (3.13). O

REMARK 3.8. We will see below in Corollary 3.13 that 377_, || X;[e] HS <

C, U ’ Lo | ’S—l— ’ ’ © ‘ ‘S} . Hence it follows from equations (3.12) and (3.13) in Lemma
3.7 that in fact we have

12, 4l < &l 2o, + [l l,] (3.12)

leattall, < Il 2ol + N1l 3.13)

REMARK 3.9. We will later need to commute L with two special kinds of oper-
ators of order zero. We take this opportunity to indicate the nature of the operators
B? in these cases.

(1) If M[g](z) = ((x) p(x) where ¢ € C§°(R), then M is a pseudodifferential
operator of order zero. If X is a vector field and c is multiplication by a
function, then

[e, M][e] =0
(X, M][p] = X[(] ¢
[X’ [X7 M]] = X2[d P-

(2) If x € C°(R") and if T[f)(x) = x * f(2) = [g. f(y)x(x —y)dy, then T is
a pseudodifferential operator of order zero. If X is a vector field and c is
multiplication by a function, then

e, T ¢)(z) = / (c(x) — () e(y)x(z — v) dy
(X, T][p] = T[V-X¢]
X, [X, T)) = T[V-X2]
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If we have an inner product rather than a norm in Lemma 3.7, we can obtain

an improved estimate involving an arbitrarily small multiple of Z§=1 H X,le] ||5
This will be important, for example, in the proof of Lemma 3.12 below.

LEMMA 3.10. Let A® be a pseudodifferential operator of order s, let U € €2 be a
relatively compact open subset, and assume that ¢ € C3°(U) implies A*[¢] € C3° ().
There is an allowable constant Cy so that for every 6 > 0 and every ¢ € C§°(U)

K[E’ASH )‘<5Z||X )2+ c@+a Y ell2, (3.14)

and consequently

s 2 _ 2
Re(LA%[0], A%[¢]) < Re(A*Llg], A°[¢]) + 0 ZHX A+ .+ e
(3.15)
PROOF. Again use Proposition 3.6 to write [£, A°][¢] = 3-%_, B; X;[p|+Bg[]
where {B§, B, ..., B, } are pseudodifferential operators of order s and carry Cg°(U)

to Cg°(€2). Using the inequality

p p 12
‘Zajbj‘ <6 lail* + oy > Il
Jj=1 j=1 j=1

it follows that

16 4161 4161 < | (i 4) |+ X2 | (500 401
<Ay ol

p
+Z [ X5l I, [JA @B A A~ [ [ e |l

<5Z||X 15+ Catt+ D] I

This completes the proof. O

We shall need one additional technical lemma whose proof involves estimates
of commutators.

LEMMA 3.11. Suppose that T is a properly supported pseudodifferential operator
of order 2s — 1 and that Y is a vector field on Q such that

Y16l sy < 1 £EA L, + 1011 (3.16)

Then there is an allowable constant Cy so that

i\(X?YM, 7)) | < eIl ctel ly + Il o) (3.17)
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PRrROOF. We have

(X371 Tlel) =

Note that [T, X;], [X;, T}, and [X;, [X;f, T]] are also properly supported pseu-
dodifferential operators of order 2s — 1. Thus for the last three terms we have

(1, X110, X5 1) | <[] [ XA~ | Y Tl ], X5 Tl g

o
(Ve 15, 15 7] el | < 1A 15 (X5 T0) 1YLl oo

For the first term, we have

(Vi [x5, ) X5Tel) | < 1A 12 X [V T |, |1 X T

(XTIl X3100) | < 1| %Y ], |1 X

el lo-

But
X7 ||y < C[Re(LITYIp), TV [e]) + | TV ] ||
Now
T[]y < ([T A [ Yol ]y
and

(LYol 7Y Te)) = (7Y Lle). TY [g]) + (12, T7Y] o] T[]

(£lel v 1TV

+Z (BF X1 7Y lel) + (B[l 7Y (4]

= (e j} Y*TT*Y [y ])

+Z( (BT + (0, (B TV [g])

where the operators BJQ-S are properly supported of order 2s. It follows that all the
operators {Y*TT*, (B3*)*T*, ..., (B2*)*T*} are of order 4s — 1. Hence

(Y lell 7Y 1el) | < || £l ||, + Z 1 %5001 o + [ o] 11V T [y

Putting all the estimates together, we obtain the desired estimate (3.17). (I
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3.4. The passage from L? to H°. An important ingredient in the proof of
sub-elliptic estimates for £ is the fact that an estimate in the space L?(R") can
often be ‘bootstrapped’ into estimates in all Sobolev spaces H*(R™). The key to
such arguments is the ability to control commutators and to localize the operator
A®. Let us try to understand the structure of these arguments.

Suppose A and B are operators and there is an estimate which says that for
all ¢ € C5°(2) we have || Aly] Ho < C|| Bly] ||0. We want to use this to establish
a Sobolev space version || A[y] Hs < C, || By ||S If it were true that:

(i) the operator A® carries the space C§°(2) to itself, and
(ii) the operator A® commutes with the operators A and B,

then we could simply write

14kl [, = [[A* Al |, = [ A[ATel] [,

<c||B[Alel] |l = Cl[A*Blel ||, = C | Blel ],
Of course, (i) is false unless s is a non-negative even integer, and (ii) is rarely true.

To deal with the fact that (ii) may be false, we must use the various estimates
for commutators that were established in Section 3.3. To correct statement (i), let
U € Q be a relatively compact open set, and choose (1 < (2 € C§°(Q2) such that

Gx)=CGx)=1forallz e U. If p € C§°(U), then ¢ = (3¢ and hence

Alp] = A G+ (1= Q)A Gy

Note that (aA°C1p € CS°(£), and so we can apply the L2-estimate to this term.
On the other hand, ¢; and (1 — ¢{2) have disjoint supports. Thus the operator
(1 —(2)A®(y is infinitely smoothing and hence extends to a bounded operator from
H*(R™) to H'(R™) for any s and ¢.

With this background discussion out of the way, we now state and prove the two
main bootstrap results. We first obtain an extension of the ‘basic estimate’ from
Lemma 4.2. Recall that this asserts that if the vector field Yj satisfies hypothesis
(H-2), then for all ¢ € C3°(9),

n Y- I1Xll5 < Re(Llel o)y + Ol o 5 (4.3)

LEMMA 3.12. Suppose that the vector field Yy satisfies condition (2.2). Let
U € Q be a relatively compact open subset. For every s € R there is an allowable
constant Cs so that for all ¢ € C§°(Q),

|3

ZHXJ‘[‘P]Hi < Re(Llgl, @), + Csl| ¢ || 2 (3.18)

PRrROOF. Choose (1 < (2 € C§°(92) such that (1(z) = 1 for all x € U. We
will sometimes simplify notation by writing 7° = (oA(;. If ¢ € Cg°(U), we have
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(1X;[e] = X[ and 50
Tl = T3 Al

P
<o lleraXel+ gz |- @A axse|l;

J=1

<03 ||l !|0+nZH 7, %) [l

To estimate the terms I and 111, note that [T°*, X;] is a pseudodifferential operator
of order s, and so || [T, X;] [¢] Ho < || [T, XA~ ||[ || |L Also, since (; and
(1—¢2) have disjoint supports, the operator (1 —¢2)A°(1X; is infinitely smoothing,
and hence H (1—-CQ)ANGX e | |O < || (1—-C)AGXAS H || © | |S. Thus we have

I+ <C|e||

To deal with the main term I =7 Z§=1 || X; T[] ||(2J, note that T%¢ € C§°(Q),
and so we can apply Lemma 4.2 to obtain

- |17l |[g < Re(£[1[A), 7°0]) + Cu || 70 |

<Re(L2el]. 7)) + o[l 787 P e,

But now we use Lemma 3.10 to conclude that for any ¢ > 0,
P
1< Re(T°Llg), T[] +5Z X506l |+ G+ 6790 ?

2

= Re(GALlg), Al )+5ZHX ]2+ Co(t+ 671 |2

= Re(A°Llg), GA%[p )+<SZHX 12+ Co(t+ 67| |2

= e(A'L[p], A'[]) + e (AS CRCERINAE)
+6 21Xl + o+ sl
= %6<E[<p], so)s - éRe(ASE[sDL (G - l)AsCl[cp])

+6 [0l + G+ e[
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Again using the fact that the functions {; and 1 — (5 have disjoint supports, it
follows that the operator (¢ — 1)A*(; is infinitely smoothing, so

e (ALle, (GG — DA*GI])| < | A GAY(G — )ALA~ [] ] |[2
so that

n 11X/l [lg < Re(Llel. o) +5ZI!X eIl +Cer+a7 o[}

Putting the estimates for I, 11, and III together, we see that

121X ]2 < e(£lel. o) +5ZHX Cs(1+57Y)|lell:-

Thus if we let 6 = ¢ we obtain the estimate in (3.20), and this completes the
proof. O

COROLLARY 3.13. Suppose that Yy satisfies the condition (2.2). Let U € Q be
a relatively compact subset. Then for every s € R there is an allowable constant C
so that for all ¢ € C3°(U)

ZHXJM||fSCsUM[@HﬁHI@Hﬂ. (3.19)

Our next result shows that we can obtain results for more general pseudodif-
ferential operator A' of order 1 which are analogous to the estimate in (3.19). This
will be used in the discussion of subelliptic multipliers in Section 4.2.

LEMMA 3.14. Suppose that A' is a properly supported pseudodifferential oper-
ator of order 1, and suppose there are constants 0 < a <1 and C < oo so that for
all ¢ € C§° ()

1Al < e[l £l Il + Il |l,)- (3.20)

Let U € QQ be a relatively compact subset. Then for every s € R there is an allowable
constant Cs so that for all ¢ € C§°(U)

1A ooys < Gl LLR ], + o1, (3.21)

PROOF. Choose (1 < (2 < (3 € C°(©2) with ¢; = 1 on U and |(j(z)| < 1 for
all x € Q. Then

|| AT ) = [[arretAlG el
<A ANG ] [+ [[ AT - Q) A G A
< || AT GA QA G ||, + || AT = () A G A G [

| AT (1 = ) AN G
=I1+11+1I1I.

Hs—i—a 1

o

o

Because of the disjoint supports, the two operators A% 1(1 — (3)A*(2A'(; and
AsTa=1(1 — () AY¢y are infinitely smoothing, and so

1< || (1= AT GA QA ||| ¢ ],
IIT < [[ A+ (1= Q) A QA ||| o]
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To deal with the term I = || A*"'(3A* A (i [¢] ||, write
I < || AT AN GAS GG ] |, + | A [GA%Ce, A Gily] o
—

Since A! is of order 1, the operator A®~1 [CgASCQ, Al] (1 has order s+a—1 < s.
Hence

I < || [GAT 716, AT AT [ ] ¢
Finally, using the hypothesis (3.20) on A! we have
I = [ AT ANGA GG ] ], = [[ ATGA GGl |,
< C[||£[C3ASC2<P] I, + 1] A°Gle] HJ

<Ol £len* ||, + || h a1l ]],]
But using Lemma 3.7 with A° = (3A®(s, and then Corollary 3.13 we have

1£lesn ||, < Gl £l ], + XN Xl 1+l o]

<alleielll,+ el

Putting all the estimates together yields the estimate in equation (3.21) and com-
pletes the proof. O

4. Estimates for smooth functions

Our objective in this section is to establish a preliminary version of Theorem
2.2 where the distribution u is taken to be a compactly supported smooth function
¢, and cut-off functions {y and (; are not needed. In Theorem 2.2, one of the
main results is that the compactly supported distribution (;u belongs to the space
H S“‘%G(R"). In this preliminary version, ¢ is assumed to be smooth with com-
pact support, and the corresponding result is often called an a priori sub-elliptic
estimate.

THEOREM 4.1. Suppose that hypotheses (H-1) and (H-2) are satisfied. Set
%e =2-47™. Let U € Q) be a relatively compact open set. Then for all s € R there
is an allowable constant Cs such that for all ¢ € C§°(U) we have

1€ 1l,ey. < Gl 211, + 110 1L)- (4.1)

4.1. Introduction. Despite its apparent simplicity, the proof of the estimate
in (4.1) is quite intricate. Before starting on the details we begin with an overview
of the argument. Note that if ¢ € C3°(U) then

101l ge > 2100l ]
k=1
Thus to establish the inequality (4.1) it suffices to show that for all ¢ € C3°(U),

10061,y s <[l I+ 1 11]
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for 1 < k < n. A fruitful approach to this problem is to consider the collection
M(s, 2€,U) of all real vector fields Y on Q such that for all ¢ € C5°(U),

1Y g gecs < [l £0A ], + [ 11, ]

for some allowable constant Cs. The collection of spaces of sub-elliptic multipliers
{M(s, 3¢,U)} of order e turns out to have unexpected Lie-theoretic properties.
In particular, the commutator of two vector fields, each of which is a sub-elliptic
multiplier, is again a subelliptic multiplier but of smaller order. The objective, of
course, is to show that for some %e > 0, each operator 0,, € M(s, %G,U), and
these Lie-theoretic properties allow one to use the hypothesis (H-1). There are
three critical steps in the argument.

(a) We show that the vector fields {X7, ..., X,} belong to M(0,1,U) and the

vector field X, belongs to M(0, 3,U).

(b) We show that if ¥ € M(0,%¢,U) then [Xo, Y] € M(0,313¢,U) and
[X;, Y] € M(0, 3¢,U) for 1 < j < p.

(c) We show that if Y € M(0, %6, U), then Y € M(s, %e, U) for every s € R.

Suppose these facts are established. It then follows by induction from (a) and
(b) that any iterated commutator of length & of the vector fields {Xo, X1,...,X,}
belongs to the space M(0,2-47% U). Then (c) shows that every such commutator
belongs to M(s,2-47% U). On the other hand, hypothesis (H-1) says that every
partial derivative 0., can be written as a linear combination of commutators of
length at most m, and hence 0,, € M(s,2-47™,U). This then gives the desired
estimate with %e =2-4="

4.2. The space of sub-elliptic multipliers. The Sobolev norms H © ‘ ‘5 are
defined through the use of the pseudodifferential operator A®. For this reason,
in the definition of the space of sub-elliptic multipliers, it is convenient to allow
appropriate pseudodifferential operators of order 1 rather than just vector fields.

DEFINITION 4.2. For every relatively compact open subset U € € and every 0 <
a <1, let M(s,a,U) denote the space of all properly supported pseudodifferential
operators A € OPY(R™) with the property that there exists an allowable constant
Cs < 00 so that for all ¢ € C3°(U),

Al ], pams < [l 211, + Il (4.2)

Let H A | |S o denote the optimal constant Cs so that
Al =sw0 {4 ], oy | [ €1 ], + 0], <1} @3)

We begin by establishing two basic properties of M(s,a,U). The first deals
with compositions.

PROPOSITION 4.3. If A € OP'=%(R") C OP'(R") is properly supported, then
A€ M(s,a,U) for every s € R, and

| Al | AsTemt AN | (4.4)

s,a,U S
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If B € OP**(R"™) is properly supported and if A € M(s,a,U), the composition
BA € M(s,b,U), and

| BA|, .y < [[AT7EBAT ][ A]] (4.5)

s,b,U s,a,U”

In particular, the space M(s,a,U) is a module over the algebra of properly supported

pseudodifferential operators of order zero.

ProoOF. If A € OPpl_“(IR")7 then AT~ AA~* is a pseudodifferential operator
of order zero. We have

AL | oy = AT AN A ][] < [[ATTTRAAT [ [ ]

and this gives inequality (4.4). Next, since B is properly supported, the same is
true of BA. Note that AST*"1BA~s~%*! is a pseudodifferential operator of order
zero. Let ¢ € C5°(U). Then

| BAW] ] 4y = [ AT BALA] ]
| S 1 21 2
<|[atmtiBamm e Al [l ]+ e ],
and this gives inequality (4.5). O

The second results shows that for a < %, the space M(s,a,U) is closed under
taking adjoints.

PROPOSITION 4.4. If A € M(s,a,U) and if a < 3, then A* € M(s,a,U).

PROOF. The proof is another exercise in moving an operators around an inner
product, and keeping track of the commutators. Write T = A25722=2, Then

||A* (As+a IA*[QD] As+a 1A*[ ]) _ (A*[ LTA*[SO])

||s+a 1

= (A47[¢], Tlel) + (A"[¢], [T, 4] [0)])
(A*A Tlel) + ([A A] 2] Tlel) + (A7[el, [T, A7][e])
= (Alpl, TAlp]) + (Ale], [A, T )+ [A4, A% [¢], Tl))
+ (A7), [T, ][ )
— (| AL |2, + (ALl 14, T ) + ([4, A7), TI])
+ (4[], [T, A" [¢])
= || Algl |2, , + T+ II+IIL.

Now we make estimates of the last three terms. First

I=[(A+ Al A7 A, T] []) |

IN

|| Ale]

b oA, 7]

Hera 1

IN

1
2
1 e _

SlAWT oy + A7 1A, TIA o]
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since the order of A=57%T1[A, T] A% is a — 2 + 0o(A) < 0. Next
IT = |[(A*T272[A, A*][¢], A®[¢])|

IN

1 2a—2 * 2 1 2
A2 1A ATl [+ Sl el

IA

Sl 4 aa P ] o2

since the order of AST2972[A A*] A=% is 2a — 3 + 20(A) < 0. Finally

‘(A*[(P]’ [T7 A*] [‘P])’ = (AS+a_1A* [‘P]’ ATsTett [Ta A*] [@D‘

S

1
+ S [[ATRTHT, AT ||

1
<Al

< A Rl |12 0y + AT T, AA | |||

Hs—&-a 1

since the order of A™*7 [T, A*] A=% is a — 2+ 0(A*) < 0. Putting these inequal-
ities together, we get

1 ‘O 2
AP < S a2+ |
where
C2 = || A== A, TIA || 4 || A7 T, AT A= |
1 +2 2 >k —(
5{”1\3 a2 (4, AT A ) +1}
is an allowable constant. O

4.3. The main theorem on sub-elliptic multipliers. As outlined in Sec-
tion 4.1, the proof of Theorem 4.1 follows from the following statements about the
spaces of subelliptic multipliers M (s, %e, U).

LEMMA 4.5. Let U € Q2 be a relatively compact open subset. Choose (1 < (2 €
C3° () such that ¢1(x) =1 for allz € U, and |(j(z)| <1 forallz € Q and j =1, 2.
Then:

(1) For each s € R there is an allowable constant Cs < oo so that for all
p ()

> 11X5lel; < 0 (112l |12+ 11 112]. (4.6)

Thus the vector fields X1,...,X, € M(s,1,U) for all s € R.

(2) For each s € R there is an allowable constant Cy < oo such that for all
peCU)

H%MMS@WMMM%HWM%] (47)
Thus the vector field Xo € M(s, 5,U) for all s € R.

(3) If A € M(0,a,U) then A € M(s,a,U) for all s € R, and || A||
Coavl|lAllg g

,aU—
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(4) Suppose that Y1 and Ys are smooth real vector fields on 2 and that'Y; €
M(0,a;,U). Then the commutator [Y1, Ya] € M(0,a,U) provided that
0<a< min{%ah %aQ, %(al + ag — 1)}

(5) If a vector field Y € M(0,a,U), then for 1 < j < p, each commutator
[X;, Y] e M(0,5,U).

(6) If a vector field Y € M(0,a,U), then [Xo, Y] € M(0,2,U).

540

Note that we have already established conclusion (1) in Corollary 3.13, and conclu-
sion (3) in Lemma 3.14.

PROOF OF (2). If ¢ € C§°(U) we have

| Xolg] |12 = (Xolel A% Xol]) = (Xolel, A Xo[Gre]) = (Xoliel, 4% (i)

where A2t = (,A?5X((;. Since we have Xo = £ + 21;:1 ij — 1Yy — ¢, this shows
that

| %ol || = (c[ ], A%+ ) + Z ( ], A% H w])
~ i(Yolel A%“m) ~ (e A7)
=I+I1I+1IT+1V.

We deal separately with each of these four terms. First

1] = | (clel A% ] )| = | (4B L), A3 A% ) )|
<|jametanrae | ol

<Gl Lol By + 11014 )
Next we deal with the term 1. We have

(X3t A%+ el)| = Z\( | X4 )
( []A25+1X )""Z‘( X* A23+1] [go])‘

Plary llellry

M=

IS

<.
Il
N

<
Il
-

ngh ‘M@

||A 57§A28+1A S**||||X ‘|S+%||X;[¢]||s+%

<.
Il

P
2173 G, A AR [ Xl ]y el
j=1

P P
<Ny + Xy + ey
j=1 j=1

Each vector field X; € M(s + 3,1,U), and since X7 = —X; 4 div(X]) it follows
. 3
that X; € M(s+4,1,0). Thus |11] < || [l |2, , +]] @HHQ-
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The term IV is easy to deal with since

Vi< (b A eate i) < | andeat i oy

To deal with the term I, write
111] = | (Yoll, 4211l ) | = | (A aYolel A Xl )|
< | (ARG Yolel. A R xolel) | + | (1 - )A Gl A E Xl )|
=III, +III,.

Since (1 — {2) and ¢; have disjoint supports, the operator (1 — <2)As+%<1YO is
infinitely smoothing,
11D < || (1= AT YA ™3 ||| A2 XA 2 ||| |I2, -

On the other hand, we have

ITI, < ’(YO[CQAH%CNP],C3A5_%Xo[<ﬂ]>‘ + ‘( [@A”égl, YO} [80}7(3/\5_%)(0[80})‘
=111+ 111,5.

Since the order of the operators [QAS*%Q, YO] and AS*%XO is s + l, we have

I, < || [GA™ 3G, Yo A= 73 [[[|A5x0A™F [ || [[2, ,.

Finally, using the hypothesis on the vector field Yy given in equation (2.3) with
o= A E([p] and ¢ = (A2 Xo[y],
oy < || A2 G|+ | A2 Kol ||,

P p
+ I XeAGel ||, + D0 1] X5[GA 2 Xog] ||,

j=1 Jj=1
Now
| A3 el < [| A a4 ||[l¢]],,,
| GeA™ 2 Xole] ||, < [ GaA* 2 XoA™ 2 [[ || o],
and
| XA A |, < [ (@A) XTel ||, + || [ X5, (@A e 1,
<[l traa== ||| Xlel |,
|| [ X5 @A) A H ][l
while
[ X5(Gn= 2 Xo)ll ], < [ (GA* ™ X0) X1l [, + || [, (A2 X0)] [ [,

< [l(Gas=a S"HHX oMoy

| [ @A xo)] A Loy

Since we already know that each X; € M(s +1 5, 1,U), the completes the proof. [
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PROOF OF (4). Suppose that Y; € M(0,a;,U) for j =1, 2, and suppose that
0 < 3¢ <min{3ay, 3az, 3(a1 +az —1)}. For ¢ € C§°(U),

| W, Yl [l [}, < | (MYalel A% 2 1, Yal Gl )|
+ ‘ (Y2Y1 o], A% 2 [V, Yol G [80]) ’
We deal with both terms the same way. Write (;A2272 Y3, Y3] ¢ = A22¢~!. Then
|(nvalel a2l | = | (alel, Y a2 )|
< | (valel 4% v )|
+ )(YQ[W], [Yl AQ%H} [w])’
< |[ameerraze A e [ vifel ||, || Yalel ],y
|l [vi a2 | kel |,y e

<ol llo+ el

because of our assumptions on ie. Thus [V1, Y] € M(0, 2¢,U). O

PROOF OF (5). Suppose that a smooth real vector field Y € M(0, a,U). Each
vector field X; € M(0,1,U). Using part (4), it follows that [X;, Y] € M(0, 3¢,U)
if e <min{3,%,1(1+a—1)} =%, and this is what we want to show. O

PROOF OF (6). Let Y be a smooth real vector field on © and suppose for all
v € C°(U) we have

YTl [[y.y <[l £l o+ 1 ¢ ly)-
We must show that

| %o, Y11l ],y < G [I[ 2L [l + [l 011o]

. ) e
provided that s < min { 5

}. Set 7251 = (,A%~2[X,, Y] (1. Then

|| [Xo, Y1Ie|°_, =

(X0, Y11l A2 X0, Y] [l
(X0, Y1 [l (2A*72 [Xo, Y] 1) [#])
= (X0, Y11}, T[]
(
I

XoY[el, T2 [¢]) = (¥ Xolie), T2 [¢])
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These two terms are handled slightly differently. To deal with term II, write
=L+ % X7 —iYy —c. Then

11 = (VL[ T g]) + XP:(YX2 ), 7))

- z(wo[sow% ) = (Yiewl. T[]
=11, + 1L, +1I.+ 11,

Now

I11,| < ‘(.C o], T2 1Y )‘ + ]( | [y, 727 [sa])’
<[ AT Ll [ ] Y

<l el llo+ 1l

H2571

since 2s — 1 < %e — 1. Similarly

1z < | (Yolel, 7Y Tl + | (Yolel, [v2 727 4]
<[l a [ Yolel [ 1Y L)
<G|l £t 5 + Il ell3]
because of our assumptions on the vector field Y. We also have
1) < | (Ylele, 72 1)) + | (e YTl 72 (o)
<YL [ [ oo + A7 e > Y[l ], [ ],

<alled] 2+ 1o l2).

Finally, to deal with the therm II;, note that

||2571

VX2 =X2Y +[Y, X;] X; + X; [V, X;].
Thus

p

11, = 3 (XYL 121 g]) + 3 (Y. ) 6,6 72 o))

J=1 Jj=1

+Z< T2s 1[ ])
= IIb’l + IIb,g + IIb’g.

The bounds for 11 ; follow from Lemma 3.11.
To deal with the terms in I}, o write

(v, X3 X0, 727 el ) = (X500l T2 Y, X0 ()

+ (Xl (v, X1, 771 ).
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We have
(x50, [, X0, 7= 1) | < 1 (s 50, 72 | Xl o el

<l el llo+1lell)

since s < 3. Also, since Y € M(0, 3¢,U), it follows from part (5) of the Theorem
that [Y, X;] € M(0, 2¢,U), and hence by Proposition 4.4, [Y, X;]" € M(0, 3¢,U).
Thus

| (Xl 77 1Y, X517 [g]) | < (|72 a2 | 1y, X507 )|

<clleilllo+ el

1
se—1

11
since s < 73€

We deal with the terms in I}, 3 in a similar way. Write

(%517, X)), 72 [g]) = (1Y, X1 el T X))

+ (¥, X1l [X5, 777 [4]).
Then as before

(v X el 727 X5 L)) < || A2 )] ¥ X el ]y |l X5

<l el flo+1lell)

o

and
(v, X1, [, 7] 1))
< [lamFe g, 72 ||| 1Y, X1l |y el
<l 2o+ e ll)-

Now we turn to the term /. This time we write Xy in terms of £*. Thus we

have , .
Xo=—L+> X7+> 0X;—iY—¢
j=1 j=1

where the functions {¢;} and ¢ belong to C*>*(€2). Thus we can write

—(E* [0, T2 ) Z( o], Ty })

i

iX%XY ) 721 g]) — i (WY ) T 1)) - (Y[ T o))

o+ + 1.+ 1+ 1.
We write

I, = (Ylel, T cle]) + (Yol [£, 77 [e])

= (Y[ |, T L] )+Zp:( l BP X [e ]) (Y[w],BSS_l[w])

Jj=

—
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Thus

|| < [[A3 T2 Y[l |, ] £l

P
+ 2 |[AT= BR[| Vil |l Xl |

j=1
+{[ AT B [ VIl ]y, el

<afll gl flo+1lell)-

The corresponding estimate for the term I, follows from Lemma 3.11. To deal with
the term I, write

p p

1 < 32| (Ve w7 X el |+ 3

Jj=1 j=1
P

<D lIATEy T Y.
j=1

(Yl [X5, w5721 4]

P
+ 2 llamErt (x5, T [ ViR |y M el
j=1

<alleiall, + llelly)

The terms Iy and I. are estimated exactly as are the corresponding terms in term
I1. This completes the proof. O

5. The theorem for distributions
5.1. Mollifiers. Choose x € C§°(R™) such that x(—y y), [ x(v)
and suppt(x) C {y € R" | |y| < 1}. For t > 0 set
Xe(x) =" x(t" ).
Then suppt(x¢) C {y € R" | |y| < t}. For f € S(R") define

T fl(x) = f* xe(z /f y) xe(z —y) dy,

or equivalently

T[f](x) = / ST GO J€)dg = | T (1) FlE) de..
Then {T;} : S(R") — S(R") is a family of pseudodifferential operators in O PY(R")
with uniformly bounded norms, and

lim T3 [ f](2) = f(x).

t—0

Note that since x:(z — y) = x¢(y — x),

| min@ateyde = [ ) <)) du
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By duality, the operators {T;} extend to the space S'(R™) of tempered dis-
tributions on R™. If u € S'(R™), then Ti[u] is the distribution whose action on
f € S(R™) is given by

(Telul, f) = (u, xe * f).
If we write Ty x¢(x) = x¢(x — y), then x; * f is a limit in S(R™) of sums of the form
> f(yj)1y,(x). Since u is a continuous linear functional, it follows that

(lul.£) = [ 1)) .

Thus the distribution T;[u] is given by integration against the function w(y) =
(u, 7y[x¢]). Moreover, it is easy to check that u, is infinitely differentiable. In fact

0“ue(y) = (=) (u, 7, [0%x4]).

LEMMA 5.1. Let u € &'(Q) be a distribution with compact support K C Q.
Let n be the distance from K to the complement of Q, and let uy = Ti[u]. Then
up € C§°(2) for 0 <t < n. Moreover,

(1) If u € H*(R"), then ||u, ||S < ||u||s, and limy o || u — u ||5 =0.
(2) If supys || we ||S =C < oo, then u € H*(R") and || u||s <C.

5.2. The main result. Our object is to finally prove

THEOREM 2.2  Let Q C R™ be an open set, and let L be the second or-
der partial differential operator given in equation (2.1). Suppose the vector fields
{Xo0,X1,...,X,, Yo} and c satisfy hypotheses (H-1), (H-2), and (H-3). Set ¢ =
2-47™ and fixr 4 < (o € C§°(Y). For every s € R there is an allowable con-
stant Cy so that if u € D'(Q) is a distribtuion on Q and if (o Llu] € H*(R™) and
Cou € HS(R™), then Cyu € HSPE(R™), ¢ X u € HST2¢(R™), and

p
|’C1u|’s+e+z‘|<1XJ’uHs+ € — |:H<O ]Hs—'_HCOuHs} (25)
j=1

6. Examples of vector fields Y| satisfying hypothesis (H-2)

In many applications the vector field Yy has the form

p p
1
Yo = E ijj + 5 E Ck,l [Xk, Xl} (61)
J=1 k=1

where bj, ¢, € C*(§) are real-valued. The Lie bracket is anti-symmetric, and
hence
P

p
1
> era Xk, X)) = §ZClekaXl_*ZClelan}
k=1 =1 k,l
2 (cpa — Cl k)
Z (X5, X1].
Thus there is no loss in assuming ci; = —¢; ;. We will show that if the matrix

{ck.1} is sufficiently small, the operator Y, given in (6.1) satisfies the hypotheses
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given in equations (2.2) and (2.3). Note that no size assumptions are needed on
the coefficients {b;}.

LEMMA 6.1. Let Yo = Y0_ 1 0;X; + 530 1_ 1 [Xi, Xi] where bj, ey €
C(Q) and ci; = —c . Suppose there exists 1> 0 so that for all x €

]chl )6 & < (1-2n) zw (6.2)

k=1
Then there are allowable constants Cy and C1 so that for all v, 1 € C(U),

[3m (aliel, 0)| < (=) (D21 X5lel [[o) + 07" Col oI5 (2.2)
|(oliel,w)| < [ Sl [l + 10 ) + e lls + 111]- 23

Proor. It follows from equation (3.4) that for any vector field Y,

[Re(Yolel, #)o| = (9, VYo ) < Cll ]l

where C' = suszU |div[Yp](x )| Thus to establish equation (2.2) it suffices to esti-
mate |(YO )0| We have

p

(Yolel,9)y = X (05 X;l¢l ) + % > (era Xk X [], ),
j=1 k.l
—I+1I

We deal with the term I as follows. If ¢ € C§°(U), then for any 7 > 0 we have

p
L=l llo D105 [ e 11 Kl g

j=1

< el 1 ) (S 00611
S%(Zux o) + ( ZHbHLw(U)H(pHo

j=1
To deal with II, use equatlon (3.5) and the fact that cy; is real valued to obtain

(cr [ Xk, Xi] 9], 0), = (Xle serap) o — (XiXe[e], crae),
—(Xle], eraXu[el) oy + (Xalel, Xilenal ),
+ (Xk[ I, ek Xalel), — (Xilol, Xi'leral ),
Since c; = —¢; 1, it follows that
P )
IT="Y" (eraXelel, Xalel) g — D (Xklel, X7 lexal ),
k=1 k=1

and thus

p p p
|II|<’ Z ek Xk[p l[%ﬁ])0’+ Z ‘ ’ZXZ* el @ ’
=1 k=1 =1
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As above, for any n > 0 we have

1 p
wzzlum il el

Putting the two estimates together, it follows that there is a constant Cy < co
depending only on the supremums of {|b;|(z)} and {| X} [cx](z)|} on € so that

|(Yolel, ¢ )i (craXele], Xl )‘H?(ZH )+77_ICOHLPH(2)'

However by hypothesis

P

‘Z ek Xklel, Xile ‘<
k=1

ra(2) X [¢)(2) Xi[(w) | da

k,l=1

< <1f2n>/Rn_Z|Xj[so1<x>|2dx: (-2 3|1 X4 [o

and so we have

| (Yolel ¢)ol < (1 =7 (ZHX 15) +n7Coll ol

This establishes estimate (2.2).
The proof of the estimate (2.3) is even easier. Using the same calculations as
before we see that

Z (craXalel, Xalw])]| + D | (Xale], X5 ler]s)|
=1 k,l=1
+ 2 105X, 9)|
[ X U1t Il + 11X, 15) + e lls + 11 lc).

Jj=1

where C; depends on the supremums of |cg ()], | X[ [ck,i](z)|, and |b;(x)]| for z € Q.
This completes the proof. O

Suppose u € D'(2) and that v and L[u] are locally in H*(R™). This means
that if ¢ € C5°(2), then both pu and ¢ L]u] belong to H*(R™).

PROPOSITION 6.2. Let ¢ € C3° (), let Ti[f] = f * x¢, and let X be a vector
field. There exists ¢' € C§°(Q) with ¢ < ¢’ so that for all s € R there is an allowable
constant Cs so that for all distributions u € D' ()

|| TCull, < Csf| Cul],
| [Tep, X][u] ||, < O] Cul],-



6. EXAMPLES OF VECTOR FIELDS Y, SATISFYING HYPOTHESIS (H-2) 157

PROPOSITION 6.3. X,u is locally in H*(R™). If ( € C§°(QQ) there exists ¢’ €
C°(Q) with ¢ < ' so that

[[¢Xpull <[] ¢l |2+ [l 2] (6:3)

PRrROOF. We need to show that if ¢ € C§°(2), then (X;u € H*(R"), and it thus
suffices to show that H Ty X u ’ ’S is uniformly bounded for small t. Let the support
of ¢ be the compact set K C Q2. We have

| Tl < [ X Ticul|, + [ 176, Xilull, < [| X;Tiu ||, + Cs || Cull,

by Proposition 6.2. Since T3¢u € C§°(Q2) for 0 < t < dx we can apply Lemma 3.12
and write

p
n
< ; || X5 TeGul |2 < Re(LTiu, Ticu) +C. || Ticu [}

= |(n¢Lu, Ticu) | +|( 1. T, Ticu) |+ €4 || Ticul |2
< |(16, Tiqdw mcu) |+ 1 Tictull [ Ticul |, + G| Tigu |
< |(1£. T u. Ticu) |+ [[[¢Lulll+ [ ¢ulf2].

Now use Proposition 3.6 to write [£, T;¢] = Bo + .7_; X! B;. Then

S (32X By T [+ | (4% By T |

j=1

(2. TicJu. Ticu)

gi‘(XA2SBuTtgu)‘+Z]( (A%, X;] Bju, ATiCu) |

J

[

+ ’(A2 Bou TtCu) ‘

_Zp:‘(BuXTtCu) )+Z||A 2 (72, x7) Bu ||| Tucu |,

Jj=

=

| Bl | T,
<6 3 (| XDcu [+ 0t + 07| Cul
=1
Choosing 0 = 7 ijt follows that
iluncxjuui <c.fll¢cul+ | ¢ul]
j=

which completes the proof. (]

LEMMA 6.4. Let %e =2:47™. Letu € D'(Q) be a distribution, and suppose that
for all ¢ € C(Q), Cu € H(R™) and ¢ L[u] € H*(R™). Then (u € H  2¢(R"),
and there is an allowable constant Cy such that

1wl pge < s [ll Lt [l + [ ¢wll,)- (64)
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PROOF. Suppose the support of ¢ is the compact set K C Q. For 0 < t < dg,
T:¢u € C§°(2), so we can apply Theorem 4.1 to conclude that

[ Ticull,ys, < G|l £Ticu|, + || Ticu]],].
As usual, we commute £ and T;( to obtain
| £TCul], < [T Llul ||, + ] [£, TicTu ][

Again using Proposition 3.6, we can write [£, T3(] = By + ijl B; X, where
{By, ..., By} are pseudodifferential operators of order zero with

|| Bioll, < Csl[¢'v]l,
for any distribution v € D’(€2). Thus by Proposition ?7?,

p
11, TucTull, < [ Boul|, + > | BiXjull,
j=1

P
<|[¢ull,+ D[ X5ull,
j=1
<cllcel, + ¢l

It follows that || TiCu ‘ |s+ < [H ¢"L[u] || + H ¢"u H } and the Lemma follows.
O

The last step is to derive an improvement of Proposition 6.3.

LEMMA 6.5. Lete=2-4"™. Let u € D'(Q) be a distribution, and suppose that
for all ¢ € C3°(Q), Cu € H(R™) and ¢ L[u] € H*(R™). Then X,[u] € H*t2¢(R")
for1<j<p, and

p
Z|I<XUIIS+€<C[HC£ al |2+ |1 ¢l 2] (6.5)
st

PrOOF. The proof consists of repeating the argument for Proposition 6.3, ex-
cept that we now can replace || Cu Hs by |’Cu||s+e. We have T;¢u € C§°(Q2) for
0 <t < dg, and we so can use Lemma 3.12 to conclude that

p
gZHXjTtguH;%E g%e(C[TtCu],TtCu) + G| TiCu |2,
j=1

= %e(T&E[u],Tm) .+ 3?6( (£, Ty u, Ty u)

sts€ s+%e
+a|Tculll,,
But

%e(TtC‘C[u]’Ttu>s+1 <HTtC£ H ||Tt<uH9+e

*HCE 12 +*||< ullZ,.
and

(le Tl ful. Tow) = (A+[L. T [u]. Tou)

s+%e
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According to Proposition 3.6, we can write [£, Ty(] = By + Z§:1 X]’-‘Ej where

{EO, ceey Bp} are pseudodifferential operators of order zero, and hence
A% (L, T ZX A*Bj + Z [A%, X7] B; + A*B,.

Hence for any > 0 we have
P
(16 Tl Ticw) |, =D (Bil XlTicul) | +Cllcullly,
j=1 2€
P
Z | X, Ti¢ul|? LT O+ ||Cu”s+6

Putting these inequalities together we get

nZHX ¢l [[. <oy lIxmen| e

j=1
+C || T £l |2+ || Tl 2, ]
If we choose 0 = %, it follows that
ZH ATl |2, < Gl |2+ 11 ¢ull2,
Finally,
Z|ITtCXU||s+ ESQZIIX [Ti¢u] || +16+2ZII T, X1 ll[[2,,
7j=1

<c[>|<z HE + | ¢ HHJ
which by Lemma 6.4 is
<G [HC”E 12+ ] ¢ M

This shows that ¢ X,u € Hs+2¢(R™) with the correct estimate for the sum of the
norms. g



CHAPTER 5

Estimates for fundamental solutions

1. Introduction

Let © C R™ be a connected open set, and let {X1,...,X,} be smooth real
vector fields on 2 of finite type m. In this chapter, we construct a fundamental
solution K for the second order partial differential operator

P P P
L= X;X;=-) X]-> (V-X;)X; (1.1)

Jj=1 Jj=1 Jj=1
and obtain size estimates for K and its derivatives in terms of the control metric
p:QxQ —[0,00) induced by the given vector fields. These estimates provide the
first hint of the deep connection between the geometry of control metrics developed
in Chapter A and analytic problems that arise in certain non-elliptic problems.
And just as the properties of the Newtonian potential N(x) = ¢, |z|>~", which is
a fundamental solution for the elliptic Laplace operator A, play an important role
in the development of the calculus of pseudodifferential operators, in Chapter B
we will use the estimates for the fundamental solution K to develop a calculus of
non-isotropic smoothing (NIS) operators that are useful in the study of non-elliptic

by still hypoelliptic operators such as L.

Our construction of the fundamental solution for £ proceeds in roughly four

steps. We begin by studying the initial value problem for the heat operator associ-

ated to L,
P

p
H=0+Le=0—Y X =Y (V-X;)X;, (1.2)
j=1 j=1
which acts on functions and distributions on R x €. Given g € L?(2), we want to
find u € C>((0,00) x Q) such that

Opu(t, z) + Ly[ul(t,x) =0 for (¢,x) € (0,00) x €, and (1.3)
lirgl+ u(t,") =g(+) with convergence in L?(9). (1.4)
t—

We show that the partial differential operator £, defined initially on C§°(£2), has
an extension to a self-adjoint (unbounded) operator on L?(f2). We then obtain
a solution to (1.3) and (1.4) by setting u(t,z) = e~**[f](z) where the bounded
operator e *¢ : L2(Q)) — L%*(Q) is defined by the spectral theorem. At least
formally, the function u will satisfy both conditions (1.3) and (1.4), since

D= (e 2lg]) = Lo (e lo]) = ~Lalu]
and

li = 1 —tL —
HEL

9l =g.

160
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The family of operators {e~**} _ ' form a strongly continuous semigroup of
bounded operators on L?(2), called the heat semigroup for £. The second step of
our program is to show that there is a function H € C((O, 00) X 2 X Q) so that if
g € L*(Q),

2 lg)(x) = / H(t,z,y) g(y) dy. (15)
Q

Our proof of the existence and smoothness of H relies on the subelliptic estimates
established for the operator £ in Chapter A. The function H is called the heat
kernel for £. Moreover, we show that if H is extended to R x € x Q by setting
H(t,z,y) = 0 for t < 0, then ﬁ((t,x), (s,y)) = H(s+t,x,y) is a fundamental
solution for the heat operator 9, + L, on R x €). We now observe that ~the operator
0+ L is hypoelliptic, and since [0s + L] H = 6; ® d,, it follows that H is infinitely
differentiable on (R x Q) x (R x Q) except when ¢t = s and = = y.

The third step is to obtain pointwise estimates for the function H and its
derivatives in terms of the control metric p. For example, we show that for any
integer N > 0 there is a constant C'y so that

N
1Bz o)l (el ) i< @y,
H(tv‘ray) S C’N
1Bz, V)| ! if £ > plz,y)?,

The proof uses a scaling argument and the fact that the operators e~ ** are con-

tractions on L?(Q).

The final step is to show that we can make sense of the integral fooo e L dt
(which formally equals £71), and that the resulting operator is indeed a fundamen-
tal solution K for L. Explicitly,

K(z,y) = /000 H(t,x,y)dt. (1.6)

We can then use the estimates obtained for H to derive estimates for K. For
example, we show that there is a constant C so that

p(z,y)?
|B(x, p(x,y))|

2. Unbounded operators on Hilbert space

K (z,y)| <C

Hilbert space techniques are frequently used to reduce problems about the exis-
tence of solutions to linear partial differential operators to problems of establishing
estimates. The basic idea is very simple. Let T': V' — W be a linear operator from
a Hilbert space V to a Hilbert space W, and suppose we want to show that for
every yo € W, we can solve

T[z] = yo (2.1)
with x € V. Let T* denote the adjoint operator, and suppose we can prove that
for all z € W,

2 [lw = ClI T[], - (2.2)
It follows from equation (2.2) that 7 is one-to-one. Define a linear function Ly,
on the range of T* by setting Ly, [T*[2]] = (z,y0)w. Then

[Loo [T < M w0 [l 1= 1l < €l wo [l [T
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and so Ly, is bounded. Using the Hahn-Banach theorem®, we can extend L, to a
bounded linear functional on all of V' (with no increase in norm), and by the Riesz
representation theorem?, there exists xo € V so that Ly, [2] = (2,20)y. But this
means that for all z € H we have

(z,90)w = Ly, [T*[2] = (T*[2], 0)v = (2, T[xo])w,

and hence T'[x¢] = yo. The the estimate (2.2) implies the existence of a solution®
to the equation (2.1).

Unfortunately, a linear differential operator 7" on a set  C R™ will generally
not be defined for all functions in the natural Hilbert space L?(Q2) and will not be
bounded on those functions for which it is defined. In particular, the symbol T
in the inequality (2.2) is not defined. Thus in applying Hilbert space techniques to
problems involving differential equations, it is important to consider operators on
a Hilbert space H which are not bounded. To do this, it is convenient to consider
linear mappings which are only defined on some (usually dense) subspace of H and
which is not bounded on this subspace.

In contrast with the theory of bounded linear operators on a Hilbert space, it
is a critical and often delicate issue to specify the domain of an unbounded linear
operator such as a differential operator. As we will see, the choice of this subspace
often encodes the appropriate boundary conditions for the differential operator.
Different subspaces correspond to different boundary conditions. Although we do
assume familiarity with the elementary aspects of the theory of bounded operators
on Hilbert spaces, in this section we develop the theory of unbounded operators to
the point where we can quote the spectral theorem for self-adjoint operators. We
begin with the formal definition.

DEFINITION 2.1. An unbounded operator T from a Hilbert space V' to a Hilbert
space W is a pair (T, Dom(T)) where the subspace Dom(T) C V is the domain of
the operator, and T : Dom(T) — W is a linear mapping. An operator (S, Dom(S))
is an extension of the operator (T, Dom(T)) if Dom(T) C Dom(S) and T[z] = S[x]
for every x € Dom(T).

2.1. Closed, densely defined operators and their adjoints.

For our purposes, the most important unbounded operators are densely defined
and closed. These concepts are defined as follows. First, the operator (T, Dom(T))
is densely defined if Dom(T') is a dense subspace of V. Next, recall that V @& W is
a Hilbert space with inner product given by

(@1, 91)s (22,92)) y gy = (@1, 22)v + (1, 92)w-
Then the operator (T, Dom(T)) is closed if the graph

Gr = {(x,y) EVEBW‘xEDom(T) andy:T[x}}

lHAuN-BANACH THEOREM: Let X be a complex normed vector space, let Y C X be a sub-
space, and let £ : Y — C be a linear functional such that |¢(y)| < C| | y || forally € Y. Then there
exists a linear functional L : X — C such that Lly] = {[y] for ally € Y, and |L[z]| < C ||z || for
all z € X. (See, for example, [Fol84], page 150.)

2 RiEsz REPRESENTATION THEOREM: If L is a bounded linear functional on a Hilbert space
H, there exists a unique element x € H so that Lly] = (y,z)mg for ally € H. (See, for example,
[Fol84], page 166.)

3We shall use a variant of this argument in Theorem 3.1 below. See Remark 3.3.
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is a closed subspace of V'@ W. Equivalently, (T, Dom(T)) is closed if whenever
{z,} is a sequence in Dom(T") such that lim,, o, x, = z¢ and lim,, o, T'[z,] = o,
it then follows that 2o € Dom(7") and T'[zo] = yo.

If (T,Dom(T)) is a closed, densely defined operator on H, we can define the
Hilbert space adjoint (T*,Dom(T*). This is intended to extend the concept of
the adjoint B* of a bounded operator B : V' — W for which we have (B[x],y)w =
(z, B*[y])v. To motivate the definition, note that if x € Dom(T') and y € Dom(7T™),
it is reasonable to expect that we should have

(Tl y)w| =@ W)y < [[T*WH]y 2]l = Oyl =]l

In particular, the linear functional Ly[z] = (T[z],y) defined on Dom(T') should be
bounded.

DEFINITION 2.2. Set
Dom(T") = {y € W | (3C,) (v € Dom(T)) (|(Tlal, y)w| < G, |;) }

The linear functional Ly[z] = (T[z],y) defined for & € Dom(T) extends by con-
tinuity to V' which is the closure of Dom(T'). If y € Dom(T*), then T*[y] is
the unique element of V' (given by the Riesz representation theorem) such that

(T[x]’y)w = Ly[x] = (QT,T*[:U])V-
Put slightly differently, if # € Dom(7T') and y € Dom(7T™), then
(T[JZL y)W = (ZIJ, T*[y])v,
and if y, z € W have the property that (T[z],y)w = (x, )y for every x € Dom(T),
it follows that y € Dom(7™) and T*[y] = =.

REMARK 2.3. It follows immediately from this last characterization of the ad-
joint that if V.= W = H and I : H — H is the identity operator, the stan-
dard formula (T + X)* = T* + X continues to be true. Precisely, suppose that
(T, Dom(T)) is a closed, densely defined operator on a Hilbert space H and that
A € C. Then (T + M,Dom(T)) is a closed, densely defined operator with adjoint
(T* + X, Dom(T™)).

The basic properties of adjoints follow easily from a study of the graphs of the
operators. We first introduce the following notation. Define J, R : WV — VoW
and J*, R* : V@ W — W & Vby setting

J(xa y) = (7:% :L') R(:L'7 y) = (y7 :L')a
J*(yvx) = ($7 _y) R(yvm) = (.’E, y)
The following is then the basic result about adjoints.

LEMMA 2.4. Let (T,Dom(T)) be a closed, densely defined operator on a Hilbert
space H. Then

(1) The graphs of T and T* are related by
Gre = (J(Gr)) " = J((Gr)™b);
Gr = (J*(Gr)) " = T ((Gr)b).

(2) The operator (T*,Dom(T™*)) is closed and densely defined.
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(8) The Hilbert space adjoint of the operator (T*,Dom(T*)) s the operator
(T, Dom(T)).

PRrOOF. Let (—Tlz],z) € J(Gr) and (y,T*[y]) € Gr+. Then
((—T[:L’},l’), (ya T*[y])v )WQBV = _(T[m]vy)W + (.’E,T*[y])v = 07

so Gpx C (J(GT))L. On the other hand, if (z,y) € ( (GT))l then for every

z € Dom(T) we have 0 = ((2,y), (z, =T[]))yyu, = (2:2)y, — (v, Tlz]) .y, or
(T[z],y)w = (x,2)y. It follows that y € Dom(T*), and T*[y] = 2. Thus Gp~ =

1
(/(Gr))

In a Hilbert space, the orthogonal complement of any set is closed. Since G~ is
the orthogonal complement of J(Gr) in W@V, Gp+ is closed, and so T* is a closed
operator. Next, suppose that z € W is orthogonal to Dom (7). Then the pair (z,0)
is clearly orthogonal in W & V to every pair (y, T* [y]) where y € Dom(T*). Thus
(2,0) € (Gr+)* = J(G7). Thus (0,2) € Gr, and so z = T(0) = 0. It follows that
Dom(7T*) is dense in H.

Finally, applying the first part of the lemma twice, we have

Gy = J*((Gr+)*) = J*(J(Gr)) = Gr.
It follows that ((T*)*, D(z+)-) = (T,Dom(T)). This completes the proof. O

If (T,Dom(T)) is a closed, densely defined operator from V' to W, the null
space and range are denoted by

N(T) = {:1: € Dom(T) ‘T[x] - o} ;

R(T) = {y eWw ’ (Elx € Dom(T)) (T[x] = y)} .

Note that since (T, Dom(T")) is closed, it follows that N(T) is a closed subspace
of V. There are the usual relationships between the null space and range of an
operator and its adjoint.

PROPOSITION 2.5. Let (T, Dom(T)) be a closed, densely defined operator. Then
R(T): =N(T*)  and R(T*)* =N(T).

PROOF. A vector y € R(T)* if and only if the linear functional on Dom(T)

given by Ly[z] = (T'z,y) is identically zero and hence bounded. But this is equiv-

alent to the condition that y € Dom(7T™*) and T™*[y] = 0. This establishes the first
equality, and the second follows in the same way. O

We shall also need the following result.

LEMMA 2.6. Let T : V — W be a closed, densely defined operator. Then the
following statements are equivalent.

(1) There is a constant C > 0 so that for all x € Dom(T) N N(T)* we have

l]ly < CllT@ [y

(2) The range of T is a closed subspace of W.
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(3) There is a constant C > 0 so that for all y € Dom(T*) N N(T*)* we have
lyllw =l T W]y
(4) The range of T* is a closed subspace of V.

PROOF. Suppose that (1) holds, and let {y,} be a sequence in R(T) which
converges to a point yo € W. For each n there exists x, € Dom(T) N N(T)* with
Yn = T'(x,). Then by hypothesis, H T — T ||V <C H Ym — Yn H, and so {z,} is
a Cauchy sequence in V| which converges to a point g € V. Since T is a closed
operator, yo = T'[zo] € R(T'), which shows that R(T) is closed. Thus (1) implies
(2), and a similar argument shows that (3) implies (4).

Next, suppose that (2) holds, so that R(T) = N(T*)* is a Hilbert space. Let

E= {y € R(T) ‘y € Dom(T*) and || T*(y) ||, < 1} .
Then statement (3) is equivalent to the statement that E is a bounded subset of
R(T). For any z € R(T) we can write z = T'[z], and so if y € E we have
(G ywl =Tl wl =@ T vl < [|= ||, [[T*W], <[l=]],- (23
Let
Vy = {z € R(T) ‘ sup |(z,y)w| < N|| 2 HW}
yeE

Then Vy is closed, and (2.3) shows that z € Vi as soon as Hx HV < NH zHW
Thus R(T) = Ux~; V. By the Baire category theorem, there exists an integer N,
a point zg € Vv, and a constant € > 0 so that H zZ— 29 HW < e implies z € V. But
then if H z HW <eand y € F, both zy and z — zy belong to Vy so we have
[z, y)w| < (20, ¥)w | + (2 = 20,y)w|

SNHZO||W+N||Z_ZOHW

< N([[ 20|y + )
But then if y € F/, we have

19 lly = su {IGzwwl [l =]l <1}

= ¢ sup {|(z7y)W/ ‘ 1= 1w SE}
< e ' N(||z0 [y +€)-

Thus E is bounded, and assertion (3) is established. The proof that assertion (4)
implies assertion (1) is done the same way, and this completes the proof. O

2.2. The spectrum of an operator.

We now suppose that T is a linear transformation which maps a Hilbert space
H to itself.

DEFINITION 2.7. Let (T,Dom(T)) be a closed, densely defined operator on a
Hilbert space H. The spectrum of T, denoted by o(T'), is the complement in C of
the set of numbers A such that the operator T'— A : Dom(T) — H is one-to-one
and onto, and such that the inverse operator (T — X\I)~! is a bounded operator.

REMARK 2.8. It follows from the definition that for all A ¢ o(T), the range of
the bounded operator (T — NI )~! is the domain Dom(T) of the operator T.
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PROPOSITION 2.9. Let (T,Dom(T)) be a closed, densely defined operator on
a Hilbert space H. Suppose that X ¢ o(T). If |u— A < |[(T — AI)~* H_l, then
w ¢ o(T). More generally, if neither A nor p belong to the spectrum of T then

(T = D)™ T - pI)™ = (T — uI) (T — \I)!
(T =AM = (T =pl)™ = =A=p) (T = AT = pI)™}

PrROOF. We have the following identity of linear mappings on the domain

Dom(T):
T—pl =T =\ — (u— NI = [T —(u— (T =)~ (T = AI).

Our hypothesis is that (T — AI) : Dom(T) — H is one-to-one and onto, with

bounded inverse. The operator [I — (1 — A)(T' — AI)7!] is defined on all of H and
is bounded. If this operator is invertible, it follows that T'— ulI : Dom(T) — H

is one-to-one and onto, with inverse (T'— AI) ™! [T — (u — A\)(T — AI)7}] ~' But if
=Xl < || (T—=AD)~? Hfl, it follows in the usual way that [I — (u— A)(T — AI)~]
is invertible, with the inverse given by the Neuman series

o0

[ = (=T = AN = (=N (T = AD7].
§=0
We leave the verification of the two algebraic identities as an exercise. d

COROLLARY 2.10. If (T,Dom(T)) is a closed, densely defined operator on a
Hilbert space H, then the spectrum o(T) is a closed subset of C.

2.3. Self-adjoint operators.

DEFINITION 2.11. A closed, densely defined operator (T, Dom(T)) on the Hilbert
space H is self-adjoint if (T,Dom(T)) = (T*, Dom(T*).

PROPOSITION 2.12. Suppose that (T, Dom(T)) is a closed, densely defined self-
adjoint operator on a Hilbert space H.

(1) If x € Dom(T), it follows that (Tx,x) € R.
(2) The spectrum o(T) C R, and || (T — XI)~" || < Sm[A] L.
(8) If(Tx,x) > /\OH x H2 for allz € Dom(T), then o(T) C [Ag,00). If A < Ao,
1= AD][ £ (o - A
ProoF. If € Dom(T), then (Tz,z) = (x,Tx) because T is self-adjoint. But
(x,Txz) = (Tz, ), which implies that (Tz,z) € R.
Next let A = a+ib with b # 0. To show that A ¢ o(T) is equivalent to showing
that bi ¢ o(T — a). However T — a is another closed, densely defined self-adjoint

operator. Thus in proving (2) it suffices to show that if b # 0 then bi ¢ o(T'). For
x € Dom(T) we have

(T £ b0)[z] || = ((T + bi)[a], (T + bi)[]) = || T[] ||* + 02| | = ||*.

and so

||| <o || (T £ bi)[2] |]. (2.4)
It follows from this inequality that both operators (T =+ bi) are one-to-one and
have closed range. However if y € H is orthogonal to the range of (T — bi),
then by Proposition 2.5 and Remark 2.5 it follows that y is in the null space of
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(T —bi)* = (T*+bi) = (T +bi), which is one-to-one. Hence y = 0, and so the range
of (T — bi) is all of H. But then inequality (1.1) shows that || (T —bi)~* || <b71.

Finally, suppose that (Tx,z) > )\OH T H2 for all z € Dom(T'), and suppose that
A < Ag. Then if z € Dom(T),
(Mo — )\)||x||2 < (Tla],z) = Mz, z) = (T = AD)[z],z) < || (T = AD)[2] || || = ||
It follows that
]| < Qo =27 [T = ADa]
and the proof that (T'— AI) is invertible then proceeds in the same way as the proof
of (2). O

)

PROPOSITION 2.13. Suppose that (T, Dom(T")) is a closed, densely defined self-
adjoint operator on a Hilbert space H. Suppose also that T is one-to-one. Let
Dom(S) = R(T) be the range of T, and let S = T~. Then (S,Dom(S)) is also a
closed, densely define sefl-adjoint linear operator on H.

PROOF. Since Gg = R(Gr), it is clear that (S, Dom(S5)) is closed. Let y € H be
orthogonal to Dom(S) = R(T") Then by Proposition 2.5, y € Null(T*) = Null(T).
Since T is one-to-one, it follows that y = 0. Thus Dom(S) is dense. Finally, by
Lemma 2.4

Gs- = (J(Gs))™ = (J(R(G1)))" = (R(J(Gr-))*
= (R(Gr)")" = R(GF™) = R(Gr) = Gs.
and hence (S, Dom(95)) is self-adjoint. This completes the proof. O

2.4. The spectral theorem for self-adjoint operators. We now state one
version of the spectral theorem for self-adjoint operators on a Hilbert space H.

Denote by B the algebra of all bounded, complex-valued Borel measurable
functions defined on R. It is important to note that the elements of B are functions,
and not equivalence classes of functions which differ only on a set of measure zero.
If f € B, we write

|| f[] = sup|f(z)].
z€R

If {f,} C B is a sequence, then f,, — fo uniformly if lim,, o || fn — fo || = 0. We
also say that a sequence {f,} C B converges monotonically to fo € B if for every
zeR

fal@) < fol@)  and T ful@) = fole).

If H is a Hilbert space with norm || - ||H, let £(H) denote the algebra of
bounded linear transformations from H to H. As usual, if T' € L(H),

T[] = sup {|| Tlal || | 1|2 ]],; <1}

If {T),} C L(H) is a sequence of bounded operators, we say that T, — Tj in norm if
lim, oo | | T,—Tp ‘ ‘ = 0. We say that a sequence {T},} C L(H) converges strongly to
an operator Ty € L(H) for every x € H it follows that lim, . || T, [2] — Ty [2] HH =
0.

THEOREM 2.14. Let (T, Dom(T)) be a closed, densely defined, self-adjoint op-
erator on a Hilbert space H. There is a unique algebra homomorphism from B to
L(H) which we write f — f(T') with the following properties:
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(1) If \ € C—R and if fr(t) = (t =X)L, then f\(T) = (T — XI)~!
(2) If | € B, then J(T) = (f(T))".
(3) If f € B then || f(T) || < || F||.

(4) If {fn} C B is a sequence which converges monotonically to fo € B, then
the sequence of bounded operators {f,(T)} C L(H) converges strongly to

fo(T).
(5) If f € B and if suppt(f) No(T) =0, then f(T) =

3. The initial value problem for the heat operator 0; + L,

We now turn to the first step in the construction and estimation of a funda-
mental solution for £, which is the study of the initial value problem for the heat
operator 9; + L, on R x Q given in equations (1.3) and (1.4). We want to solve this
problem by using the spectral theorem to define the operators {e~**}. In order to

do this, we need to construct a self-adjoint operator (£, D) on the Hilbert space
L%(Q).

3.1. The Friedrich’s construction.

In order to define a self-adjoint operator (£, D), , we begin by restricting our
attention to the dense subspace C§°(Q) C L?(2). Note that for all ¢ € C5°(12), we
have

(el ) = D1 Xslel[|* 2 0.

Using this positivity, we follow an argument of Friedrichs [Fri34] to show that there
is a closed, densely defined self-adjoint extension of the operator (£,C§°(9)).

THEOREM 3.1. There is an extension of the operator (E,Cg"(Q)) to a self-
adjoint operator (E, D) with C°(Y) C Dg. If f € Dg, then L[f] = L[f] in the
sense of distributions. Moreover, if f € D, then:

(1) X;[f] € L*(2) in the sense of distributions for 1 < j < p;

(2) X;[f] € L*(Q) in the strong sense; that is, there is a sequence {@n} C
CO (Q) such that p,, — f and X;[p] — X;[f] in L*(Q);

(3) ( leX

REMARK 3.2. Since L[f] = L[f] in the sense of distributions, we shall usually
simplify notation and write L instead of L unless it is critical to distinguish the two
operators.

PROOF. For ¢, ¢ € C§° (), put

y4

Qe ) = D (X510l X;[00) + (¢, 9) = (Lle] + ¢, 9)

Jj=1
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so that
Qo) =2 I X1 + 11l = (2lel o) + [l o[

Q is a positive-definite Hermitian quadratic form on C§°(2), and hence

llelll = Qp, ¢)

defines a norm, and makes C§°(2) into a pre-Hilbert space. For ¢ € C§°(Q2) we
clearly have

[l < Melll-
Let W be the completion of C§°(2) with respect to the norm ||| - |||, so that
W is a Hilbert space. We will continue to write the norm in W as ||| - |||, and the

inner product as Q( -, -). We show that W can be identified with a subspace of H
which contains C§°(€2).

Let FF € W. Since W is the completion of C§°(2), there exists a sequence
{pn} C C§(Q) so that lim, ¢ |||¢n — F|||> = 0. Thus {¢,} is a Cauchy sequence
with respect to the norm ||| - |||. It follows from the definition that the sequence
{¢n} and each of the sequences {X,[p,]} for 1 < j < p are Cauchy sequences in
L3(Q). Let i[F] = f = lim,—o00 ¢ and gj = limy, 00 X;j[ps] be the limits of these
sequences in L?(Q2). It is easy to check that the functions {i[F| = f,g1,...,9p}
depend only on F' € W and not on the choice of approximating sequence {p,,}.
In particular, we have defined a mapping i : W — L?(), which is clearly linear.
Because we have convergence in L%(Q), if ¢ € C§°(£2) we have

[ o) v@)de = tim_ [ Xjlen)a) via)da
Q Q

But this means that X;[f] = g; in the sense of distributions.

In particular, if {[F] = f = 0 we must have g; = X;[f] = 0 for each j. But
then if {p,} C C§°(Q?) is a sequence which converges to F' in W, we have ¢, — 0
and X;[¢n] — 0 in L*(Q). Thus |||¢s||] — 0. But this means that F' = 0, so the
mapping i : W — L?(Q) is one-to-one. We can thus identify W with its image i[W]
in L?(2). We have shown that C§°(2) C W, and if f € W, then X;[f] € L*(Q)
strongly and in the sense of distributions.

For each g € L?(€), define a linear functional L, : W — C by setting L,[f] =

fQ f(z) g(x) dx. We have

\Lo[A] =L < LI Tgl] <l g I FI-

Thus L, is a bounded linear functional on the Hilbert space W, and by the Riesz
representation theorem there exists a unique element B[g] € W with HB lg] H <
HgH so that for all f € W,

(f,9) = Lglf] = Q(f, Blg))- (3.1)
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Clearly B is linear, and since HB[g] H < H B[g]‘

L?(Q) — W is a bounded linear transformation. Since for any g1, g2 € L?(Q) we
know that Blg;] € W, we can apply (3.1) to get

(Blg1], 92) = Q(Blg1], Blga]) = Q(Blgz], Blg1]) = (Blgal, 91) = (91, Blgz]).

Thus B is a self-adjoint operator. Also (Blg],g) = Q(B]g], B[g]) > 0, so B is non-
negative. Finally, if B[g] = 0, then for all f € W we have 0 = Q(f, Blg]) = ([, 9),
and so g is orthogonal to W. Since W contains C§°(£2) and therefore is dense, it
follows that g = 0. Thus B is one-to-one.

Let Dy C W be the range of B. We show that C5°(2) C D, and that

B[L[) +9] = (3.2)
for ¢ € C§°(2). Put g = L[Y] + . Let v € C5°(2) € W. Then from equation (3.1)

we have

< HgH, it follows that B :

Qe Blgl) = (#,9) = (¢, LY + ¥) = Q. ¥).
Thus Blg] — v is orthonogal in the Hilbert space W to the subspace C§°(Q2). But
since W was the completion of C3°(2), it follows that C§°(€2) is dense in W, and so
Blg] = 1. Thus ¢ € D, and we have verified equation (3.2).

On C5°(Q), the operator £ + I is the same as the operator B~1. Thus the
operator (B~!, D) is an extension of the operator (£ + I,C5°(R)). Since B is self
adjoint, it follows from Proposition 2.13 that (B~!, D.) is self adjoint, and is an
extension of the operator £ + I on the space C3°(f2). It follows that L=B"1-1
is a self-adjoint extension of the operator (L£,C5°(2)).

It remains to show that if f € D, then £[f] = L[f] in the sense of distributions.
Let ¢ € C5°(£2). Then since C§°(Q2) C D and (B~! — I) is self-adjoint and equals
L on C§°(€2) we have

(LU9) = (B~ = DIfl,v) = (f,(B~' = D[¥]) = (f, L))

This then completes the proof. (I

REMARK 3.3. As discussed at the beginning of Section 77, this argument uses
the Riesz representation theorem to produce a solution of the equation T[f] = L[f]+

2

f =g as a consequence of the estimate H <pH2 < H 7 H = (Llel, @) + H <p||2.

The choice of a domain for a differential operator can encode boundary behavior
of the functions in the domain. At least when 2 has smooth boundary, we now

show that smooth elements of D, must vanish at non-characteristic points of 2.
Suppose that p € C*°(R"), that |Vp(x)| = 1 when p(z) = 0, and that

p(z) < 0} .

Suppose that f € C>(Q2) and X € T(Q). (This means that f and the coefficients
of the vector field X are infinitely differentiable in a neighborhood of the closure
of ). Let do denote surface area measure on J€)2 The divergence theorem asserts
that

Q:{xGR”

/Q X[f)(x) do = /a X[l) 70 do ). (3.3)

We say that a point y € 9€ is non-characteristic for the vector field X if X [p](y) # 0.
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LEMMA 3.4. Suppose that f € C°(Q) N Dg. Then f(y) = 0 for every point

y € 02 which is non-characteristic for at least one of the vector fields {X1,...,Xp}.
PrOOF. If f € C*°(Q), then for any g € C>(2) we have

(1), 0) ey = / X (£)(x) 9a) da
= [ %ifa@ e+ [ o) Xl da
= (/. X;[g)) + /a ) X)) 30) do ().

On the other hand, if f € D¢, there exists {¢n} C C5°(Q) with ¢, — f and
Xjlon] — X;[f] for 1 < j < p, with convergence in L?(£2). Thus we have

(X;[f],9)r2() = lim QXj[wn](x)g(x) dx

n—oo

n—00

= lim (pn, X7[g])

n—oo

= (f, X7 lg])-

— i [ [ Xlenal)det [ ono) K@ ds

It follows that

fw) X;lpl(y) g(y) do(y) =0
o0

for every g € C*°(Q2), and hence f(y) = 0 at every point at which X;[p](y) #0. O
COROLLARY 3.5. If f € Dy and L[f] =0, then f =0.

Proor. If L[f] = 0, then since £ is hypoelliptic, it follows that f € C*(Q).
On the other hand, since f € D, it follows that 0 = (L[f], f) = 5.’:1 ||Xj[f] ||2,
and hence X;[f] = 0 for 1 < j < p. Since the vector fields {X1,...,X,} are of
finite type, it follows that 9., [f] = 0f on Q for 1 < k < n, and hence that f is a
constant. But then f € C*°(Q), and so f = 0 at every non-characteristic boundary
point. Since this set is non-empty, it follows that f = 0. (]

3.2. The heat semigroup {e *}.

We can now apply the spectral theorem to the self-adjoint operator (£, D.).
Note that by part (3) of Theorem 3.1, (L[f], f) > 0 for every f € D, and hence by
part (3) of Proposition 2.12, o(£) C [0,00). Thus the spectral theroem (Theorem
2.14) guarantees the existence of a unique algebra homomorphism f — f(£) from
the algebra B = B[0, c0) of bounded Borel functions on the non-negative real axis
to the algebra £(L?(2)) of bounded linear operators on L?(2) with the following
properties:

(1) If A € C—R and if fa(t) = (t — A\)~L, then f\ (L) = (L — NI)~L.

(2) If f € B is complex-valued, then f(L) = (f(E))* In particular, if f € B
is real valued, then f(L) is self-adjoint.

(3) If f € B then || f(£) || < sg%\f(xﬂ
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(4) If {f.} C B is a sequence which converges monotonically to fo € B, then
the sequence of bounded operators {f,(£)} C L(H) converges strongly to

fo(L).

For each t > 0, let e;(x) = e~ ** for > 0. Then each function e; is a bounded
continuous function on [0,00). Let e~** denote the corresponding bounded linear
operator on L?(€2) given by the spectral theorem. The family of operators {e~**} for
t > 0 forms what is known as a strongly continuous semigroup of contractions, called
the heat semigroup for L. The use of the terms “strongly continuous”, “semigroup”,
and “contractions” is justified in the following proposition.

PROPOSITION 3.6. The family of bounded linear operators {e*w}po on L*(Q)

have the following properties:

(1) (Strongly continuous) For each f € L*(R), the mapping t — e *[f] from
[0,00) to L%(Q) is continuous.

(2) (Semigroup) For ti,ty > 0, e""1£ e~ = e=(itt2)L [ particular, the
operator e~ = I is the identity operator.

(3) (Contractions) For each t > 0 and each f € L*(12),

[ U < [11]-

PRrOOF. The functions {e; } converge monotonically to e, as t — to from above.
Similarly, the functions {—e;} converge monotonically to —e;, as t — o from
below. Thus the continuity of ¢ — e~**[f] follows from statement (4) in Theorem
2.14. The semigroup property follows from the fact that the functions {e;} satisfy
€, €1, = €1, +1,, and from the fact that the correspondence e; — e~** given by the
spectral theorem is an algebra homomorphism. Finally the norm estimate follows
from the fact that |e;(z)| <1 and statement (3) in Theorem 2.14. O

Before stating the important properties of the heat semigroup, we introduce the
definition of the domain of the operator £¥ when N > 1. Of course, the domain of
L' = L is the subspace D,. Assuming that we have defined the domain of £V as
a subspace Dy~ C D, the domain of £LV*! is the subspace of elements f € D~
such that L[f] € D~ . It is then easy to check that the domain of £V is the range

of the bounded linear operator [(£ — AI)™!] N for any A ¢ R.

THEOREM 3.7. The heat semigroup {e‘tﬁ}po has the following properties:

(1) For all f € L*(Q),

li —tL —_
Jm e U=
: —tL _
Jim e [f] =0,

with convergence in the norm in L?(Q).
(2) If f € D then
e U0 = Fll gy S LU 2y
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(3) For all t > 0 and all positive integers N, the range of e ** is contained
in the the domain of LN . The operator LN e** is a bounded operator on
L2(Q2) and

o N\Y
Hl: € tﬁ[f]”m(ﬂ)g (6) ' NHf||L2(Q)'

(4) If f € D, then e *“[L[f]] = L[e**[f]].
(5) For f € L*(Q), the mapping t — e '*[f] is differentiable for t > 0, and

% (e7™£[f]) = =L [e ™ [f]]. In other words, if t > 0 and f € L*(%),

lim |17 [em CHELf] — e E[fT] + L[e A || = 0.

PROOF. The first equality in statement (1) follows from Proposition 3.6. Let

eno(z) = 0 ifx>0,
M) ifx=0.

Then the functions {—e;} converge monotonically to —e. as t — 400, so by
strong continuity, for each f € L2(Q), lim;_ 10 e *4[f] = exo(L)[f]. But e (L)
is the orthogonal projection onto the null space of £. This completes the proof of
statement (1).

According to Remark 2.8, the domain of £ is the range of (L—\I)~Lif A ¢ o(L).
Thus if f € D, there exists g € L*(Q) with f = (£ + i)~ ![g], or

Llfl=g—if = (I —i(L+il)~")[g].
We also have
el = f=[eT(L+iD) T = (L+iD) T [g] = (e = D(L+il) " g].

Put
T

Fi(z)=QQ—i(z+i)") = o

T+

Clz) =t (T) .

These are all bounded Borel functions on the spectrum of £, and since F, = GF, it
follows from the spectral theorem that F»(£) = G(L) F1(£). Thus (e ¢ —I)[f] =
G(L)[L[f]]. It follows that

1™ = DUl oy < GO [ L1

But
| G(L) || < sup|Ga)| = ¢,
x>0

and this establishes part (2).

The function e~ = [(z+4) |V [(z+4)Ve~**], and since Fy(z) = (z+i)Ve ™
is a bounded Borel function on [0, 00), it follows that e *¢ = [(L +il) "N Fy(L).
Thus the range of e™** is contained in the range of [(£ + i)'V, which is the
domain of £V.
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The function Gy (z) = zVe~' is a bounded Borel function on [0, 00). We show

by induction that Gy (L) = LNe *4. The case N = 0 is just the definition of e~*~.
Assume that the statement is true for some N > 0. Then we have
G (@) = (@ + 1) Grsa (@) + ile + 1) ()
and hence
LNeTE = (L +4iD) T Gy (L) +i(L+iD) T LN e e,
We can apply (£ + iI) to both sides, and conclude that G y1(L£) = LN FTle 4,
But then

_ N
1%l < g o)1 =

e

N
) N e

This proves statement (3).

To establish statement (4), let f € D, and write f = (£ + iI)~![g] with
g € L?(Q2). We have already observed that if if I (z) = x(x+1i)~1, then F}(L)[g] =
L[f]. But then since

) ] = o] [,
we have e~*£ Fy(£) = Le (L +iI)~!, and so
e ELIf)] = e ER(L)lg) = Lem B (L +il) 7 g) = Le ],
Statement (5) follows from the observation that 4 (e~**) = —ze~** and for t #

0 the difference quotients which approximate the derivative converge monotonically
to the derivative. Thus for each f € L?(Q) we have

g &L = e LS
h—0 t

—Le [f].

(]

The heat semigroup gives us a solution to the initial-value problem posed in
equations (1.3) and (1.4).

THEOREM 3.8. For each f € L%*(Q), let u(x,t) = e **[f](x). Then u €
COO((O, 00) X Q), and satisfies the following two properties:

(1) [0y + L] [W(t, ) =0 for t >0 and = € Q;

(2) lim / |u(x,t) — f(z)|* dz = 0.
t—0t Jq
PROOF. Define a distribution ¥; on (0, 00) x  as follows. If 1 € C5°((0, 00) x
Q), set,

(wpoy = [ | [ ettt do| = [ (21115 oo

where 1 (z) = 9(t,z). In fact, both ¢t — e **[f] and t — are differentiable
functions with values in L?(), and so the function ¢t — (e **[f], wt)LQ(Q) is dif-
ferentiable with compact support in (0, 00). If the support of ¥ is contained in the
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set {(¢,x) ’O < a<t< B < oo}, the crude estimate

‘<"I’fﬂ/’>‘ <(B-a) Hf||L2(Q) ailzgﬁHwt HLZ(Q)

shows that this linear functional is continuous. Next, since (e '¢[f],%,) is dif-
ferentiable as a function of ¢ and has compact support in (0,00). Recall that
Ole™[f]] = —L[e **[f]]. Then using the fundamental theorem of calculus and
the product rule, we have for every ¢ € C§° ((07 00) X Q)

o . -
0—— [ Gl B a
- [l a- [ e g a

0

= [T nmmy - [ o a
0 0

((tz:[f]’ (=0 + L,][Yy]) dt

(W, (=00 + L][Y])

Thus [0y + L][¥¢] = 0 in the sense of distributions. However, the operator

Il
S—

P P
Oh+L=0—> XI-> (V-X;)X;

Jj=1 Jj=1

is of the type studied in Chapter A, and is hypoelliptic. It follows that u(t,z) =
e *[f]() is infinitely differentiable, and satisfies the heat equation [0+ L, ][u] = 0
in the classical sense. This establishes conclusion (1). Conclusion (2) is just the
statement that e 7*£[f] — f in L?(2) as t — 0T. This completes the proof. O

4. The heat kernel and heat equation
4.1. The heat kernel.

In this section we prove the existence and study the basic properties of the heat
kernel H € C*°((0,00) x Q x €2) associated to the initial value problem solved in
Section 3.

THEOREM 4.1. There is a function H : (0,00) x Q x Q — C with the following
properties:

(1) For fized (t,x) € (0,00) x 2, the function y — H(t,z,y) belongs to L?(2).
(2) For each f € L*(Q)

e\ \w) = [ F) Hit.o) d. (4.1)
Q

(3) If (t,z,y) € (0,00) X Q x Q), then H(t,z,y) = H(t,y,x).
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(4) H € C>((0,00) x Q x Q), and satisfies the heat equations
O H (t,x,y) + Lo H(t, 2, y) =0,
O H(t,x,y) + LyH(t,z,y) =0,
for (t,x,y) € (0,00) x Q x Q.

The proof of Theorem 4.1 will follow from a succession of lemmas. First, ac-
cording to Theorem 3.8, the mapping (¢, ) — e **[f](z) is infinitely differentiable.
Hence for each integer m > 0 and each 2 € €, the mapping f — L7e **[f](z) is
a linear functional on L2(2). The key fact, which depends on the the subelliptic
estimates for £, is that this functional is bounded.

LEMMA 4.2. Let m > 0 and let K C Q) be a compact set. Choose an integer N
so that Ne > n + 2m. There is an allowable constant C' so that for each t > 0, if
x € K then for all f € L*(9),

L2 @) < O+ [ f]] L2y

PRrROOF. Choose ¢ € C§° () with ((z) =1 for all z € K. Then choose cut-off
functions ¢ < {1 < --- < {y = (’. By the Sobolev imbedding theorem, we have

L e [ f1(@)] = |5 ¢@)e  [fl(@)] < Cl ¢ ™ 1], am-
Using the basic subelliptic estimate, we have

1 €e™ UM |sam < CUIGLET U] + ([ e o]

If we repeat this argument N times we obtain

N
1™ UM pom < O DML U g < CO+EN £ ] 20y

§j=0
which completes the proof. O

An application of the Riesz representation theorem gives the following result.
COROLLARY 4.3. Fort > 0, m a non-negative integer, and x € ), there exists

a unique function Hy »m € L%(Q) so that

£retE{f)(x) = / F(9) Heom(y) dy.
Q

Moreover, if K C Q is compact and if C is the corresponding constant from Lemma
4.2, then if x € K,

/ |Hp o (y)[ dy < C* (1+17Y)2.
Q

For each a we would like to regard Hy , m(y) as a measurable function of three
variables (t,z,y). We proceed as follows. Each element H; , ., is by definition an
equivalence class of measurable, square-integrable functions on 2 which differ only
on sets of measure zero. For each t,x, m, choose one representative of this class,
defined for all y € €2, which we again call Hy, . Then we can define a function
H,,(t,z,y) to be the value of H ; ,, at the point y.

PROPOSITION 4.4. The function H,, is measurable on (0,00) x £ x Q.

PRrROOF. Each function H,, satisfies the following properties:
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(i) For each fixed (t,x) € (0,00) x £, the function y — H,, (¢, z,y) is measur-
able and in L2(Q).

(ii) For each fixed f € L%(Q) the functions ( — Jo [( m(t,z,y)dy is
infinitely differentiable, and hence in partlcular is contlnuous

Choose ¢ € C§°(R™) supported in the unit ball with [, ¢(u) du = 1. For each
positive integer k put p(u) = k"p(ku). Let Qn = {u € Q ‘ B(u, N7') C Q} be

the set of points in € whose distance to the boundary is at least N~!. For each
k > N, consider the function defined on (0,00) x  x Qn by

Hp it z,y) = / or(u—y) Hp(t, z,u) du.
Q

Then H,, is continuous in (¢, z,y), and hence is measurable. Also for each (¢, z),
limy oo Hi k(2. t,y) = Hp(x,t,y) for almost all y. The set of points at which
limy oo Hy i (t, z,y) does not exist is measurable, and it follows that H,, is mea-
surable. [

When m = 0, we shall write Hy(t,x,y) as H(t,x,y). This then establishes
parts (1) and (2) of Theorem 4.1. Next, since the function z — e~%* is real-valued,

it follows from the spectral theorem that the operator e~ ** is self-adjoint. Thus if
©,v € L*(Q) we have

(L7 (o) = / e (] (o) $(@) de = / / P T Hlt.9) dady.

On the other hand,
(Lme™ ), ) = (e7E ], L)) (using integration by parts),
= (p, e tF (L™ []) (since e~ '~ is self-adjoint),
= (o, L™ e [Y]) (since e L™ [Y] = L)),

But
(L7 41 = [ o) T T g = [ ola) V@) o) da

Q

It follows that for each ¢ > 0, we have H,,(¢t,z,y) = H,,(t,y,x) for almost all
(x,y) €  x Q. In particular, for each (¢,y) the function  — H (¢, z,y) belongs to
L?(9). Once we show that H is actually infinitely differentiable, this will establish
part (3).

For every integer m > 0 and every ¢ € C§°(2), we have
[ ) Bty g = 2 fgl(w) = 22 [ ol H..3) d].

If we integrate this against 1 € C3°(2) we get

//QXQSD(Z/)l/J(a:) Hpy(t,x,y) dyde = // oly) L(z) H(t, 2, y) dy dz,

QxQ
and consequently

/Qﬁmzb(ac) txydm—/w txydx—/¢ thm()d
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It follows that for each fixed (¢,y), LI'H (¢, z,y) = Hy ym(x) in the sense of distri-
butions, and since H,(t,z,y) = H(t,y,x), we also have L} H (t,z,y) = Hp(t,,y)
in the sense of distributions.

But since ﬁt,ym € L?(Q), we can now use the basic subelliptic estimate again.
For any s > 0, choose N so that Ne > s. Choose ( < (1 < -+ < (ny = (' € C§°(Q).
Then for fixed (¢,y) we have

a9, < Clll G LHE ) ||+ [ H 0 |,
<C[H<2£2 by || s + [ LH @) (o + [[H ) [])
S ..

| /\

N
ZHCLmH ,5Y) Ho<oo.

It follows that the function x — H (¢, x,y) is infinitely differentiable, and a similar
argument shows that y — H(¢,z,y) is infinitely differentiable.

It follows from Corollary 4.3 that the functions (x,y) — Hp, (¢, z,y) are locally
square integrable on € x €. Thus since all pure x derivatives and all pure y deriva-
tives of H(t,x,y) are square integrable, it follows from classical elliptic theory that
the function (x,y) — H(t,z,y) is infinitely differentiable.

Finally, it follows from Theorem 3.8 that

00 + L] [ [ #s o] =0

for all ¢ € C§°(€2). Integrating against a test function in C5°((0,00) x €2), it follows
that, in the sense of distributions, [0; + L.]H (t,z,y) = 0 for each y € Q. But since
[0¢ + L] is hypoelliptic, it follows that (t,z) — H (¢, z,y) is infinitely differentiable,
and 0" H(t,z,y) = (=)™ LY H(t,x,y) = (1)L H(t, 2, y). It follows that H is
infinitely differentiable on (0, 00) x £ x 2, and satisfies the heat equations specified
in part (4) of Theorem 4.1. This completes the proof of the theorem.

4.2. The heat equation on R x (.

In this section we study the operator 0; + L, on the whole space R x Q2. Extend
the domain of the function H by setting H(t,z,y) = 0 for t < 0, and then define

H((t,z),(s,y)) = H(s — t,2,y). (4.2)
for (t,z),(s,y) € R x Q. If ¢ € C§°(R x Q), set

<K<t,z)’¢>= lim +Oo/QK((Sw”l?),((),y)) v(s,y) dyds

n—0+ n

oo (4.3)
= lim / H(s,xz,y) (s +t,y)dyds.
Q

n—0+ n
LEMMA 4.5. The limit in equation (4.3) exists, and K ) is a distribution on
R x Q. Moreover, [0s + Ly][K 1 2)] = d: ® 6, in the sense of distributions.

PROOF. Set ¢, s(y) = ¢¥(s + t,y). Then ¢ s € C°(2). Choose a positive
integer N so that Ne > . Choose ( < (1 < --- < (v = (' € C§°(Q) with {(z) =1
Then by the Sobolev imbedding theorem and the basic subelliptic estimate applied
N times we have
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/Q H (s, 2.5) (s + 1,9) dy‘ = [¢(e) e C o) (@)]

<C||¢e ™ whsal || o
<C [|| GLle™ s al] | w1y T |1 Cre™ sl [] ]

IN

| /\

N
C 2 I1¢ Lo e el flo
3=0

But since C§°(Q2) C Dy, it follows from Theorem 3.7, part (4), that £7[e %[, 4]] =
e " [LI[1s4]], and hence

N

ST R W S [N w{[PZTRITA

7=0 7=0

This last quantity is uniformly bounded in s, and hence

< Clnp—m supZHE sl o

’jO

m/H (s,z,y) (s +t,y)dyds

This shows that the limit in equation (4.3) exists, and that K, . is a distribution
on R x Q.
Again let ¢ € C§°(R x Q). We have

<K(tz), yw = lim // H(s,z,y) (0:s¢)(s + t,y) dsdx

n—0+

= lim [H(s,x,y)wns(y)
n—0*t Jo

- / 8SH(s,x,y) wt,s(y> d8:| dy
n

~ _ lim [/QH(ﬁaxay)i/’tm(y) dy+/noo/Q£yH(s,x,y)¢t,s(y) dyds}

n—0+

= — lim H(n,x Y) Yeq(y) dy + <K(t@)>£yw>
n—0+

It follows that

(K [=0, + L,J0) = Tim e [y )(@) = b(t,2).

n—0+

This completes the proof. (I

COROLLARY 4.6. The distribution K, is given by a function which is infin-
itely differentiable on R x Q — {(t,z)}. In particular, for every multi-index «, if
x # y it follows that

lim Oy H(t,z,y) = 0. (4.4)

t—0t
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5. Pointwise estimates for H

5.1. Scaling maps.

We begin by recalling the definition and properties of scaling maps. Let
{X1,...,X,} be smooth real vector fields defined in a neighborhood of the clo-
sure of a smoothly bounded open set @ C R™. Let p : Q@ x Q@ — [0,00) be the
control metric generated by these vector fields, and let {B(x,d)} denote the cor-
responding family of control-metric balls. Let B(r) denote the Euclidean ball of
radius r centered at the origin.

LEMMA 5.1. There exists 6o > 0, and for every xg € Q and every 0 < § < dg
there exists a diffeomorphism ® = @, s : B(1) — R™ with the following properties:

(1) Blxo, %5) c @(B(%)) C Blzo,8)  (B(1)).

(2) Let J® denote the absolute value of the Jacobian determinant of the map-
ping ®. There is a constant C so that for all u € B(1) we have
C7'B(z,6)| < J®(u) < C|B(z,9)|.

Let {Z1,...,Z,} be the vector fields on B(1) so that d®[Z;] = 6X;. If

P P
L=- Z X]2 + a; Xj,
j=1 j=1
and if
P
Z==>"7"+6) (ajo®7")Z
j=1 j=1
then

dd(Z2) =6 L.
Moreover, Z satisfies subelliptic estimates which are uniform in x and §. If ( <
¢ € C§°(B(1)), then if u is a distribution on B(1), we have

[ Cullyre = CUIC 2Ll ||, +[[¢"ul]]

where the constant C' can depend on the choice of ¢, (', but is independent of x and
0. The mappings {®4, s} are called the scaling maps.

5.2. A bound for the scaled initial value problem.

Now consider the heat operator

P P P
H:3t+£:8t+ZX;XJ :8t_ZXJ2+ZaJXJ
Jj=1 J=1 Jj=1
For each (z0) € R x Q and 0 < § < dy, define a mapping ¥ = ¥, 5(R x B(1)) —
R x R™ by setting
Uyos(s,u) = (525, @mo’tg(u)).
Then
AV, 5105 + Zu) = 67 [0 + La].

Essentially, we can think of the operator d; + Z, as the normalized heat operator
on R x B(1) which corresponds to the heat operator d; + L, on R x B(zg,?)
under the change of variables given by the mapping V¥, ., s. In particular, the
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operators +0; + Z,, satisfy subelliptic estimates on R x B(1) which are uniform in
the parameters (¢g, xo, ).

We can now pull back the heat kernel H using this same change of variables.
If s > 0 and u,v € B(1), put

W (s, u,v) = Wy, s(s,u,v) = H(528, Dyp.5(u), @mo’g(v)).
It follows from the definition of Z and the chain rule that
[0 + 2] [W](5,u,0) = 0,
[0+ Z,)[W(s.1,0) = 0
For s > 0 and f € C{°(B(1)) define
Wil fl(u) = ” )W(&u,v) fv)dv = /IB( )H(623,<I>(u),<1>(v)) f(v) dv.
1 1

The key point is that we can bound the norm of the operator W, on L? (B(l))

LEMMA 5.2. There is a constant C' which is independent of xg, §, and s > 0
so that

|| Wl f]

< C|B(xo,8)| "

HL2(B(1)) H f HL2(11?>(1))'

PROOF. Let © = ®~L. Then if 2 € B(zo,d), we have

i/fM%M@M@@H@W
B(1)

/QEM&%,x,w(fo@)@)J®@de
— e L [(f00)J0)] ()
52sL

Since the operator e~ is a contraction on L?(), it follows that

/|W ) de < ||( o@)JG)Hiz(m

/u )2 76()? do

_/ £ ()| TO(@(u))? T (w) du
B(1)

C'|B(xzg,08)| 7! w)|? du,
< C|B(w0,9)| Ammn

since JO(®(u)) = J®(u)~!, and J®(u) > C~'|B(o, )| according to Lemma 5.1.
On the other hand, we also have

[ wine@) = [ W] 5o d
B(1)
2071\3(x0,5)|/ W, 1)) du.
B(1)

Putting the two inequalities together, we obtain

L@M%WWMMSCUMmW Amvwrm
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which completes the proof. O

5.3. Pointwise estimates for H.

Let {e‘tﬁ}po be the heat semigroup for the opertor £ = Z?Zl X; X, and let
H : (0,00) x 2 x Q — R be the associated heat kernel so that

e tELf /Htxy (y) dy

for every f € L?(£2). The object of this section is to obtain local estimates for the
function H and certain of its derivatives in terms of ¢ and the control metric p. An
expression X denotes the differential operator given by a product X,, - -+ X,, in
the variable x, and we write || = k. The expression Xyg is defined similarly.

THEOREM 5.3. Let j, k, | be non-negative integers. For every positive integer
N there is a constant Cn = Cn j i, so that if || =k and |B] =1

0] Xo XPH(t,2,y)|

. —1 N .
Cn o) 2 B, p(a)| " (Gabe) i< pley)?,

<
Co =77+ | B(a, V)| if t > plz,y)?,
for all (t,z,y) with |t| + p(x,y) < 1.

PRrROOF. We begin with the case NV = 0. It suffices to establish the estimates
for [t| + p(z,y) < 0o, since estimates for oy < |t| + p(z,y) < 1 then follow by
compactness. Let (to,xo), (t,x2) € R x Q with |t — t0|é + plx,z9) = § < . There
is a unique point (so,v9) € (—1,41) x B(1) so that (t,z) = (to + 6%s0, Pay,s(v0))-
There is an absolute constant 7 > 0 so that |se|2 + |vg| > 7.

For (r,u), (s,v) € (—1,+1) x B(1), put

W#((r, u), (s, v)) = H(6*(s —r), D, 5(u), q)x075(v)).
Note that
[— 0, + Z,)[W#] =0,
[+ 0, + Z,][W#] =0,
and
(0] X2 XOH](5%(s — 1),@0,6 (1), Puy,5(v))
= g2k [8223 A W#] ((r,u), (s,0)).
For f € C5°((—1,+1) x B(1)), put

TH[f](r,u) //RXM1 (), (5,0)) £(s, ) dvds.

Put

1
B ={ | b1+ 1ul < g

1
By = {(S,U) ‘ s — so|? + v — o] < 37'}.
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Then B; N By = (). Choose functions ¢ < ¢’ < ¢"” € C§°(By) with ¢(0,0) = 1, and
n < n' € C§°(Bz) with n(sp,vo) = 1. Then using the Sobolev inequality and the
subelliptic estimate for the operator [9s + Z,], we have

0228 28 W#]((0,0), (s, v0))| = [¢(s0,v0) [0 Z5 Z W#]((0,0), (s0,v0))|

< C|| ¢ W#((TO’UO) ) Hn+1+g+k+l

< C|:H CH a + =t ]W#((O 0) ) ||n+1+]+k+l €

+[] ¢ W (o, >||]
=C||¢"W#((0,0).( >||0

where the last equality follows since [95 + Z,]W#((0,0), (s,v)) = 0 on By which
contains the support of (. We estimate this last norm by duality. We have

1< W#((0,0, () [l
fsup ’//RXB (s,0) W#((0,0), (s,v)) gp(s,v)dvds’

=sup [T7[("p (0,0)|7
©

where the supremum is taken over all ¢ € C§°(B2) with H 0] H < 1. Now use the
Sobolev inequality and a subelliptic estimate again. We have

sup |T#[¢'¢](0,0)| = sup [1(0,0)T#[¢" @] (ro, uo)|

< Csup [nT#[ e ],
< 0w [[| 10, + 2T o + 1 T
= Csup [ T#C4

< Cswp | T#[¢el ||,

<c||

where the equality in the third to last line follows since [0, + Z,|T#[¢'p](r,u) = 0
on B; which includes the support of 1’. Thus we have shown that

0/ X2 XPH (8250, 20, 2)| < C 627 41|| T#| |,

the norm of the operator T# on L?((—1,+1) x B(1)).
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Let f, g € C5°((—1,41) x B(1)), and let f(v) = f(s,v), gr(u) = g(r,u). We
then have

//RXB(l)T# [f)(u,7) g(u,r) dudr

_ //]RXIB(l) //]M(l) W ((r,w), (5,0)) £(5,0) g(u, ) dv ds du dr
_ ////H(éz(sfr),é(u),q)(v)) F(5,0) g(r, u) ds dr du dv
= ////H((SQS,(D(U),‘I)(U)) f(s+7,v)g(r,u)dvdsdrdu

- / / / Wil fur ol (w) g(r, u) duds dr

<c / / . / o el ) 00w duds i

<C //]Rx]R H W[ fotr] ||L2(]B(1)) H gr ||L2(B(1)) dsdr
—1
<C |B($0,5)| //]RXR || fs+r HLz(B(l)) ng HLQ(B(D) ds dr

= C|B($0a5)|71/RH fs ||L2(B(1))d5/R 912y 4
< C|B($0,

O f HLz(RxBu)) 1K HLz(RxBu))'
In the last inequality, we have used the Schwarz inequality and the fact that fs =
gr = 0 unless r,s,€ (—1. 4+ 1). It follows that || T# || < C|B(xo,6)|~", and this
completes the proof in case N = 0.

To deal with the case when N > 0, we use the fact that when x # y, the
infinitely differentiable function ¢ — H(¢,z,y) and all its derivatives vanish when
t = 0. Thus using Taylor’s formula, we have, for example,

m/o 0N H (s, )| (t — )N~ ds

< ool ) Bl plea))| ! [ 0= ds

|H(t,z,y)| <

N
~ oy () 1B pleal ™

T,y
Estimates for other derivatives of H (¢, z,y) are handled in the same way. O

5.4. Action of e~ ** on bump functions.

THEOREM 5.4. For each multi-index « there is an integer N, and a constant
C,, so that if p € CF° (B(m, 5)), then

[ XZe“lgl(x)] < Casup D 07| XPip(y)].
VL |51<N,,



CHAPTER 6

Non-isotropic smoothing operators

Let © C R™ be a connected open set, and let {X1, ..., X} be smooth real vector
fields on 2 which are of finite type m. In this chapter we introduce and study a
class of operators on €2 which stand in the same relationship to a control system of
vector fields {X1,..., X, } as the more classical Calderén-Zygmund operators do to
the standard coordinate vector fields {0,,,...,0., }.

1. Definitions and properties of NIS operators

We begin by recalling some standard notation. Let p : Q x Q — [0, 00) denote
the control metric associated to the family of vector fields {Xi,...,X,}. Let Ij
denote the set of ordered k-tuples of integers (i1, ...,4;) where 1 < i; < p for
1<j<k IfI=(iy,...,i1) € Iy, then X! = X;, --- X;,. The diagonal of Q x
by AQ

1.1. Definition.

DEFINITION 1.1. An operator T : C§°(Q) — D'(Q) is a non-isotropic smoothing
operator (NIS operator) of order m if the following conditions hold:

(1) There is a function Ty € C®°(2 x Q\Aq) so that if p,¢ € CF(Q) have
disjoint supports,

(Tiev) = [[ et vie) Ty da dy (11)

(2) There exist functions T, € C®(Q x Q) for € > 0 so that if we set

Tlpl(x) = /Qso(y) Te(v,y) dy (1.2)
for ¢ € C§°(QY), then for any ¢, € C§° (),
(Tielw) =t [ o) 0@ Tua.) dady, (13)

In other words, lim,_, g+ Tc[¢] = T [p] in the sense of distributions.

(8) For each pair of non-negative integers k,l there is a constant Cy; so that
ifKelg, Lely, (z,y) #0 and € > 0,

’XIKX;Te(xa y)‘ < C/f,l p(x, y)m—k—l V(xv y)_l' (14)

(4) For each positive integer k there is a positive integer Ny and a constant
Cy, so that if ¢ € C§°(B(xo,9)) and K € I,

sup | XX T [o](@)] < Ceo™* sup 3 671 X7 ] 9)]- (1.5)
€N yeN |J|< Nk

185
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(5) Conditions (1) through (4) also hold for the adjoint operator T* which is

defined by the requirement that

(T[], ¥) = (T[¥], ¢) (1.6)
for all p, ¢ € C§°(Q).

We make some preliminary remarks about the various hypotheses in this defi-

nition.

(i)

(i)

(iii)

1.2.
Let

Condition (1) says that the distribution kernel for the operator 7 is given
by integration against the function Ty which is smooth away from the
diagonal. Thus an NIS operator 7 is pseudo-local; the distribution 7 [u]
can only be singular where w is singular. In particular, if ¢ € C§°(2), then
away from the support of ¢, T[p] is a distribution given by the infinitely
differentiable function 7 [¢](z) = [, To(z,y) ¢(y) dy.

Condition (2) guarantees the existence of a regularization of the distri-
bution kernel Ty associated to an NIS operator 7. The important point
is that the size estimates in conditions (3) and (4) are uniform in the
parameter e.

Condiiton (4) encodes the basic cancellation hypothesis needed to prove
that NIS operators of order zero are bounded on L?(Q2). Note that if
m < 0 the function y — p(x,y)™ V(x,y)~! is not locally integrable, and
if 7 is an NIS operator of order m < 0, the integral fQ To(z,y) p(y) dy
need not converge absolutely, even if ¢ € C5°(£2). Condition (4) provides
the required estimates for 7 [].

We shall often say that a function ¢ € C§°(Q) is a bump function (relative
to B(x,0)) if the support of ¢ is contained in B(z,d). We say that ¢ is a

normalized bump function if sup, cq ’ ZIJISN 5\J\XJ[@](y)) < 1. With this
terminology, condition (4) says that if ¢ is a normalized bump function,
then sup,cq ‘XKTe[cp}(z)‘ < Cpomk.

Elementary properties.

L= Z?:l X7Xj, and let e~*£ be the semi-group of operators studied in

Chapter 5. Let H be the corresponding heat kernel, so that

e lpl(x) = / H(t,z,y) ¢(y) dy. (1.7)
Q

PROPOSITION 1.2. The identity operator is an NIS operator smoothing of order

ZETo.

ProoF. If we take Te(x,y) = H(e, x,y), then T, € C*°(2 x ), and Lemma ??
in Chapter 5 shows that the corresponding operators {7; = e~¢*} are a uniformly

bounded family of NIS operators of order zero. Moreover, since lim,_,q+ €

~Llpl =

with convergence in L?(Q) it follows that if ¢ € C§°(Q2), then

lim
e—0

(Thelw) = tim [ e Clell@)vta) do = [ o) v@)do = (Tlel.0).

e—0t Jq

This completes the proof. (Il
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PrOPOSITION 1.3. Let T be an NIS operator smoothing of order k.
(1) If I €1y, then X1 T and T X! are NIS operators smoothing of order k—1.

(2) If m € C>®°(Q) and if M[p](x) = m(z) p(x), then MT and T M are NIS
operators smoothing of order k.

PRrROOF. This is clear from the definition. O

In particular, it follows that the multiplication operator M is an NIS operator
of order zero, and the differential operator X' is an NIS operator of order I. Note
that the distribution kernels of these operators are supported on the diagonal of
Q x Q.

DEFINITION 1.4. The homogeneous dimension of the control system defined by
the vector fields {Xq1,..., Xp} is

M:sup{a>0“B(Jc,26)| 22&\3@;,5)\}. (1.8)
We establish certain estimates for integrals that occur frequently.
PrOPOSITION 1.5. Suppose that for all x € Q and § > 0 we have
|B(x,26)| > 2™ |B(x,5)|
1
|B(, 56)| <27™|B(x,4)|.

Suppose that o, B € R. There is a constant Cq, 3 such that

d
[ pent V) s < Copd B s)” 75 <0 andat M <o,
p(z,y)>d V(z,y)

[ s View) s < Cond®|Bd)|” 520 andatmd >
p(x,y)<d V(Ivy)

PROOF. Let Q; = {y Y] ’ 276 < p(z,y) < 2j+15}. We have
o0
[ s Ve =3 [ o) Vi
p(z,y)>0 j=0"%

~ 06y 2% |B(z,276)|

Jj=0

< C8°|B(,6)7 3 23t MP)
=0

< C§*|B(x,9)|
provided o+ M < 0. A similar argument demonstrates the second inequality. [

Let T; € C*(Q x Q) for j = 1,2. Define 7;, 7;* : C5°(2) — C>°(€2) by setting
Tlel@) = [ Ty oto) do (1.9

I le)@) = /QTj(yv ) p(y) dy. (1.10)

Suppose
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(1) For each K €I, L € I; there is a constant C; 1, so that

XEXLITi(2,y)| < Cjxr p(z, )™V (@) (1.11)

(2) For each K € I}, there is a positive integer Nx and a constant Cj k so
that for all z € Q and all § > 0, if ¢ € C5°(B(x,d)), then

Nk
sup [ X5 Tj)(2)| < Crae 6™ sup [S 87 3 X)), (112)
TEQ € 0 Je

NK )
sup [ X577 [](@)] < Gy 8™ F sup [S0 8 S0 (X[l (113)
zEQ yeN 0 Jel,

LEMMA 1.6. Suppose that mi +mo < M. If x # y the integral
S(z,y) = /QTl(x,z)Tg(z,y) dz. (1.14)
converges absolutely, and
|S(z,y)| < Cpla,y)™ ™2V (@,y) 7" (1.15)

PROOF. Let p(z,y) = 6 > 0. Choose n € C*°((0,00)) such that n(s) = 1 if
0<s<i% andn(s)=0ifs> 1. Put

) =n (452) ou(2) = X1(2) ()
) =n(152) Yul@) = x2(2) T (2, 2)

and

x3(2) =1 =xa1(2) = xa(2).
Note that x; and ¢, are supported in B(z, %6) while y2 and %, are supported in
B(y, 6). Using elementary metric geometry it follows that if z € B(z, 16) then
p(z,y) =~ p(z,y), while if z € B(y, £6), then p(z,z) ~ p(z,y). Also, any derivative
of x1 is supported where p(x,z) = p(x,y) and any derivative of xs is supported

where p(z,y) = p(x,y). Using Lemma ?7? it is easy to check that for each J € I;
there is an admissible constant C; so that

sup [ X7[ip,](2)] < Cp6™277
z€Q

sup | X7 [ih,](2)| < Cyo7™ 9
z€Q

But now

Ti(z,2) Tao(z,9) xa(2) dz = | Ti(x,2) py(2) dz = Ta[py] ()

Ti(z,2) Ta(z,y) x2(2) dz = | T5(y, 2) $a(2) dz = Ty [¢2] (y)

S— 55—
S— 5

Lemma on smooth
distance functions
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It follows from equation (1.12) that

No
Tilp)@)] < o™ sup [ 367 30 [X7 g, (2)]] < otV (@, y) !

=0  Jel,
Ny )
T3 1) < Comsup [ S0 S (X7 [a](2)]] < €tV (a,y)
z€Q -
j=0  Jel;
To complete the proof, we need to estimate fQ T1(z, 2) To(z,y) x3(2) dz. Now
X3(z) # 0 implies that z € £ U Q9 where
1 1
0 = { €2 1ple0) < p(02) < 2ley) and ple) = ol |

4
Q= {z€Q|plz,2) > 2p(z,y)}.

For z € Q; we have p(z, 2) = p(z,y) = p(x,y) =0, and V(z,2) = V(z,y) = V(z,y).
Moreover, the volume of € is bounded by the volume of B(z,26) ~ V(z,y). Then
using equation (1.11), we have

/ Ti(2,2) To(2,) xa(2) d2
(971

<C [ plan )™ ple )™V (w2) IV ()
Q
S 0677L1+7n2 V(.’L y)_l.

For z € Q9 we have p(z, z) = p(z,y) and V(z, z) ~ V(z,y). Thus

/Q Ty (z,2) To(z,y) x3(2)dz| < C p(:r,z)mlp(z,y)mQV(x,z)*lV(z,y)*ldz

Qo
< C/ p(x, 2)™ "2V (1, 2) "% dz
p(@,2)>2p(w,y)

< pla,y)™ 2V (2,y) 7
provided that mq 4+ mq < d. O

LEMMA 1.7. Suppose that T; is an NIS operator of order m; for j =1, 2. Then
if my +mo < d, the operator 1175 is an NIS operator of order my + mo.

PROOF. Let {7} ¢}eso0 be the regularized operators which approximate 7, and
let T} ¢(x,y) be the corresponding distribution kernels. If ¢ € C5°(€2), then

T T [l (2) = / Ty(2,2) Toc o (2) dz

:/Qw(y) [/QTl,E(:az)TQ’E(Z,y) dz} dy

where the interchange of order of integration is justified since the inner integral on
the last line converges uniformly. Thus the distribution kernel of the composition
71,7z, is given by

Ss(xvy):/Tl,s(mvz)TQ,e(Z7y)dz'
Q

Lemma 1.6 shows that S, and its derivatives satisfy the correct size estimates for
an NIS operator of order mq + mo. O
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Finally, we check the action of the operator T} T, on a bump function ¢ sup-
ported in a ball B(x,d). We can write

1= Z 1ﬁk<z)
k=0

with vy is supported in B(z, C 2% §)\ B(x,2% ), C a large constant, and | X 74| <
(2k6)~171. We study the function 1, (2) T2[p](2). Using the bump function condi-
tion, we have

| X7 Tale](2)] S 0™y 6 X K gl oo

when d(z,z) < 26. On the other hand, if d(z,#) > 2¥§ then using only size
estimates we have

| X Tol)(2)] S (2% 8)™2 1M B(x,2% 6)| 7| B(x, 6).
Using Leibniz’ rule, it follows that
X7 (e Tale]) (2)| S (28 8)™= 1B (=, 25 6)| 71| B, 6) Y 8|1 X5 oo

Now T1 Talp] = > pooTh [¢k 15 [(p]] Using the bump function condition, we
have

sup |7 [ Tole]] (2)] 5 (240)™ (240)72 Bz, 2 0)| B, )] 3 6"IX gl

k s\mi+ma |B(z,0)] K K
= (28 o)™~ szs‘ X5 0| so-

If we sum in k we get the correct estimate §™1t™2 37 §IKI|| X K|| .



CHAPTER 7

Algebras

In this chapter we present an account of material on free associative and Lie
algebras that is needed elsewhere. This theory can also be found in many other
places, including Bourbaki [Bou89], Humphreys [Hum72], and Jacobson [Jac62].
Our development is very close to this last reference. We have tried to make this
material as concrete as possible. In particular, we shall only consider algebras over
the field of real numbers R.

1. Associative Algebras

An associative algebra is a vector space A over R with a product operation
written (x,y) — xy which is distributive and associative. Thus if z, y, z € A and
a € R, we have

a(zy) = (ax)y = z(ay),

)
x(y+2) =xy + xz, .
v+ ) = yo + 2z, (1)

(zy)z = (yz).

An element e is an identity element for A if ex = xe = x for all x € A. A subalgebra
of A is a subspace which is closed under the product operation. The algebra A is
commutative if xy = yx for all z,y € A. If A and B are associative algebras, a
linear mapping f : A — B is an algebra homomorphism if for all x,y € A we have

flay) = f(2) f(y)-
1.1. Free Associative Algebras.

If S = {z;}icr is a set of elements, we want to construct the free associative
algebra generated by the elements of S. Intuitively, this should be the smallest
algebra A(S) containing the elements of S in which the only identities in the algebra
follow from the identities in the definition (1.1). Thus the algebra should contain
all finite linear combinations of formal products of finitely many elements of S, and
different formal products should give different elements of A(.S).

Let us be more precise. Define a non-commuting monomial of degree m in the
elements of S to be a symbol x;, z;, - - - z;,,. Two such monomials z;, z;, - - - x;,, and
Zj,Zj, - - - xj, are the same if and only m = n and the ordered m-tuples {i1,...,imn}
and {ji,...,Jm} of elements of the index set I are the same. In particular, if
x; # x; are two different elements of S, then z;z; # z;z;. The free associative
algebra A(S) generated by S is then the real vector space with basis given by the
set of all symbols {z;, x;, -+ x;, } for m > 1, and an extra symbol e which will
act as an identity element. This means that every element of A(S) can be written

191
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uniquely as a finite linear combination of these symbols. The product structure in
the algebra A(S) is defined by first requiring that

(% Tig * - xz) (le Ljp = %) = (3%‘1 Lig =" Liyy Ty Ly * - %‘n)
and
e (Cﬂn Ljy =" l’im) = (fﬂil Ljy * " l’im) €= (sz‘l Tiy * - wim)7

Products of linear combinations of basis elements are then defined by using the
distributive laws in equation 1.1. In other words, A(S) is the space of polynomials
in the non-commuting variables {x;}. The general element of A(S) has the form

P(z) = ape+ Y oii+ Y Qi @i+ D Qi @iy o w, (1.2)
i i1,z i1seerim

where Zil i LixTiy - - T, denotes the sum over all ordered k-tuples of ele-
ments of S, and only finitely many of the coefficients {«;, .. ;, } are non-vanishing.
The degree of a polynomial P(x) is the largest integer m such that oy, .. ;. # 0 for

some coefficient of P. If P is given as in (1.2), the sum

Poe)= D iy, i
i1

~~~~~ ik

Q.

is the component of P which is homogeneous of degree k. Every polynomial is thus
a sum of homogeneous components.

The absence of extraneous identities in A(S) should mean that if B is any as-
sociative algebra, and if b; € B for ¢ € I, then there should not be any obstruction
to the existence of an algebra homomorphism ® : A(S) — B such that ®(x;) = b;.
Rather than rely on an explicit construction as we have just done, it is often con-
venient to define the free associative algebra by a corresponding universal mapping
property. Thus we make the following formal definition.

DEFINITION 1.1. A(S) is a free associative algebra generated by S if
(a) S C A(S);
(b) For every associative algebra B and every mapping ¢ : S — B, there is a
unique algebra homomorphism ® : A(S) — B such that ®(x) = ¢(z) for
every x € S.

We can also consider the real vector space V' with basis S. Then any map ¢ : S — B
extends to a unique linear mapping ¢ : V. — B. Thus we say that A(V) is the free
associative algebra generated by a vector space V if
() VCAV);
(V') For every associative algebra B and every linear mapping ¢ : V. — B,
there is a unique algebra homomorphism ® : A(V) — B such that ®(v) =
p(v) for everyv e V.

It is easy to see that if they exist, objects defined by this kind of universal mapping
property are unique up to isomorphism. This is explored in the exercises.

An alternate description of an example of the free associative algebra A(S) is
given in terms of tensor products. Let S = {x;};cr be a set, and let V = V(5)
denote the real vector space with basis 5. We set V? =R, V! =V, and for k > 2,
VF=V®V..-®V, the tensor product of k copies of V. A basis for V* is provided
by the set of all symbols {z;, ® --- ® z;, }.
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The tensor algebra over V is then
oo
TV)=PVvF=RoveV’e --oV'ae- .. (1.3)
k=0

It is understood that every element in this direct sum has only finitely many non-
vanishing components. Thus an element of y € T(V) can be written as a finite
sum

Y=00®Y 0T ® Y (0, ®2,) @@ >y, (T, @@,

i€l i1,i0€1 01yeeyim €l

We can make T(V') into an algebra A(S) as follows. The product of a basis element
of V¥ with a basis element of V! is defined by setting

(‘Til®...®xik)(le®-..®le):(‘ril @ - BTy, BTy, ®'”®sz) evk-l-l.

This extends to a bilinear mapping V* x V! — Vk+! We then define the product
of two elements of T(V) by requiring that the product be distributive in each entry.
The identity element e of T'(V') is then identified with 1 € R. It should be clear
that the algebra T'(V') is the same (or is isomorphic to) the algebra A(S) of non-
commuting polynomials we considered earlier.

LEMMA 1.2. Let S = {x;}icr, and let V' be the real vector space with basis S.
Let B be any associative algebra, and let p : S — B. Then there is a unique algebra
homomorphism ® : T(V) — B such that ®(x;) = ¢(x;) for all i € 1. Thus the
algebra T(V') is a free associative algebra generated by the set S.

PROOF. Let p(x;) =b; € B. Then define
@(ao ® Zaimi b Z ailaiz(xh ®33i2) @ - )

icl i1,in€l
=g+ Zai b; + Z Qiyinbiy biy + 0.
i€l i1,i2€1
It is clear that ® is the unique algebra homomorphism extending ¢. O

1.2. Algebras of formal series.

In addition to considering polynomials in a set S of non-commuting variables
{z;}ier, it is often necessary to consider formal infinite series as well. Thus let A(S)
denote the set of all formal infinite series

U=+ Zaiwi + Z Qi iaTi Tig + -+ Z Qi iy Tiq 7 Ty, 00
i i1,02 i1 yeenrim

As before, Zih___% Q... i Tiy - - Ty, 15 a sum over all ordered k-tuples of elements
of S with at most finitely many non-vanishing terms. However, the sum defining u
is no longer finite. We allow terms with arbitrarily large homogeneity. Note that
there is no requirement of convergence; the element u can be regarded simply as
a collection of real numbers {e, ... ;,, } indexed by m > 0 and the collection of all
finite ordered subsets of m elements of S. The real number « is called the constant
term of u. The order of u is the smallest integer m > 0 such that there exists a
coefficient «;, .. 4, # 0.
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We shall also write T(V') for this set if V is the real vector space with basis S.
Then T(V) = A(S) is a real vector space. If u is given as above and

v =0+ E Biwi + E BiyisTiy Tiy + 7+ + E Birovosim T *** Ty 700
% 01,12 T1yeesbm

then

utv=(a0+00) +-+ D (Vi + Binsi)Tiy T+

11,0y tm

and if A e R

m

Au=Aag+---+ Z Ay i Ty T

1yeeytm

K(S ) is also an algebra where the product is given by formal multiplication of series.
Thus uv = w where

w =" + Z’Yﬂ?i + Z Vir, iz Tiy Tiy + 00+ Z VityeousimTiy = Ty + o

el i1,i0€1 i1yeeeyim €L
and
m—1
Virrooime = 00 Bir i + Ui i B+ D Wi iy B (1.4)
i=1

ProrosiTION 1.3.

(1) If u,v € A(S) = T(V), then order(uv) = order(u) + order(v).
(2) An element u € A(S) = T(V) is invertible if and only if the constant term
of u is non-zero.

ProOF. If order(u) = m and order(v) = n, let oy, .. ;,, and B, ;, be corre-
sponding non-vanishing coefficients. Then (1.4) show that that vi, . 1.5, =
iy,....imBj1,....jn 7 0, so the order of wv is at most m + n. On the other hand,
equation (1.4) also shows that all lower order coefficients are zero, since in each
product, one factor must be zero. This establishes (1).

To prove (2), suppose that u(z) = ag +u1(x) where o # 0 and w4 is of order at
least 1. We show by induction on N that there is a non-commutative homogeneous
polynomial Py (z) of degree N so that so that u (Z;ICV:O Py(z)) — 1 is of order at
least N + 1. It will then follow that Y r- , P(z) is a right inverse for u. A similar
argument gives a left inverse, which then must be the same as the right inverse.

We let Py(z) = a~'. Then u(z) Py(z)—1 = ag "ui(z) is of order at least 1. Sup-
pose we have constructed homogeneous non-commuting polynomials {Py,..., Py}
so that

u(@) (Y Pul@)) =1 = Qus1(2) + R ()
k=0
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where each Qn11(z) is a non-commuting polynomial of degree N +1 and Ry2(x)
has order at least N + 2. Put Pyy1(z) = —ay ' Qn1(x). Then

N+1 N
2) (Y Pl@) =1 =u(@) (D Pule)) = 1+ u(@) Py ()
k=0 k=0
= Qn+1(7) + Rypa(z) — ag ' (a0 + ui(2)) Qny1(2)
= Ryi2(z) — w1 (2) Qn4a ().
This has order at least NV + 2, which completes the proof. O

Note that if v(z) € A(S) = T(V) has order at least 1, then v(z)™ has order at
least n. If w(y) = Y o, axy” is a formal infinite series in a single variable y, then

the composition
wou(a) =3 axlv(a)]
k=0

is an element of A(S) We shall be particularly concerned with two formal series
which define the exponential and the logarithm. Thus if y is an indeterminate, we
set

exp(y )—1—|—y—|-2|y +- Zy
If z is an indeterminate, we se
L, 13 o (=™t
log(1+z)=z—§z —|—§z —--.:mz::lTZ _

Note that exp(xz) — 1 has order 1 so it makes sense to consider the composition
log (exp(m)), and log(1+ z) has order 1, so it makes sense to consider the composi-
tion exp (log(l + z)) The following result then follows from standard calculations.

PROPOSITION 1.4. If S = {«}, then in the algebra E(S) of formal power series
in x we have

log (exp(z)) =«
exp (log(1+z))=1+z
If S = {x,y} and if x and y commute (so that vy = yx) then
exp(z + y) = exp(z) exp(y)
log(1 + z) + log(1+y) =log (1 +z)(1+y))

2. Lie Algebras

A Lie algebra £ is a vector space over R with a product operator written
(x,y) — [z, y] satisfying the following conditions. First, if z, y, z € £, the analogues
of the first three identities in (1.1) hold:

Oé[l’,y} = [O‘xvy] = [‘T7O‘y]
[2,y + 2] = [2,9] + [z, 2] (2.1)
[y + 22| = [y, 2] + [z, 7]



2. LIE ALGEBRAS 196

In addition, the associative property is replaced by the following identities for all
z,y,z € L

0=[z,y] +[y,z]
0=z, ly, 2]] + [y, [2, z]] + [7, [z, ¥]] -

The second of these is called the Jacobi identity. As with associate algebras, a
subspace of £ which is closed under the bracket operation is a subalgebra. We say
that a Lie algbera £ is generated by a subset S if there is no proper Lie subalgebra
of £ which contains S. If £ and 9T are Lie algebras, a linear mapping g : £ — 9
is a Lie algebra homomorphism if for all z,y € £ we have g([z,y]) = [g(z), 9(y)].

An important class of examples of Lie algebras arises as follows. If A is any
associative algebra, we define

(2.2)

[z, y] = zy — yz.

Then the vector space A with this new product is a Lie algebra, which we write
Ap. Tt is clear that [z, y] = —[y, z], and the Jacobi identity follows from the
computation

[z, [y, 2l + [y, [z, 2]] + [2, [z, y]]
=aly, 2l =y, 2w +ylz 2] = [z 2ly + 2 [z, y) = [2, 4] 2
= TYz — XY — YT + 2Yyx
+yzx —yrz — zxy + T2Y
+ 22y — zyr —ryz + yrz = 0.

For example, if V' is a vector space and L£(V) denotes the space of linear map-
ping from V to itself, then £(V) is an associative algebra where the product is
composition of mappings. £(V')y, is then the corresponding Lie algebra.

If £ is a Lie algebra, then for every x € £ we define a linear mapping ad, € L£(£)
by settng

ad ;(z) = [z, 2]. (2.3)
Note that
ad [z,y] (Z) = [[Ia y]7 Z]
= [IE, [y’ Z]] - [yv [ZL', Z]]

(ad yad , — ad yad ;)(2)
= [ad ;,ad ] (2).
Thus ad is a Lie algebra homomorphism of £ into the Lie algebra £(£)y..

2.1. Iterated Commutators.

In analogy with the associative situation, we want to construct a free Lie algebra
generated by a set of elements S = {x;};c;. This should be a Lie algebra £(5)
containing the set S with the property that if 90t is any Lie algebra with a; € I,
there is a unique Lie algebra homomorphism ¢ : £(5) — M with ¢(z;) = a;
for all ¢ € I. The construction of £(S) is more delicate that the construction of
A(S) because multiplication is not associative, and it is considerably more difficult
to decide whether or not a particular relation between formal Lie products is a
consequence of the Jacobi identity.
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We begin by observing that the failure of associativity means that an ordered
sequence of elements can be multiplied in many different ways. Thus if {z,y, z}
is an ordered triple of elements in a Lie algebra £, we can construct two possibly
different products

[z, [y, 2]]  and [z, 4], 2],
while if {z,y, z,w} is an ordered 4-tuple, we can construct five a priori different
products:

[z, y, [z Wl (2 (lys 2], wl] -l 9l 2 w]] (2, [y, 201 w] o (2, 9] 2], w)

In order to deal with this plethora of products, we define certain special one. Thus
the iterated commutator of length m of the elements {z1,...,2,} C £ is the
element

[Ilv [x27 [IBa ) [‘rm—hzm} v H]

PROPOSITION 2.1. Let {x1,...,Zm,Y1,---,Yn} C L. Then the product of two

iterated commutators
[[’1,‘17 [%2, [2133, ) [‘Tm—hxm] o }H ) [yla [yQa [y3a ) [yn—la yn] o HH
can be written as a linear combination of iterated commutators.

PROOF. We argue first by induction on m + n and then by induction on n. If
m+n =2, then m =n =1 and [z,y] is an iterated commutator. Thus suppose
the assertion is true for any product with m +n — 1 terms, and consider a product
of an iterated commutator of length m with one of length n. If n = 1 we write

H-Tlv [372, [553; T a[$m+n727 mernfl] e ]]] 7?/1]
= - I:yla [‘T"17 ['/EQa [x?)a R} [xm-‘rn—Z,mm-Q—n—l] o H]

which is an iterated commutator of length m + n.

Thus suppose the assertion is true for every product of an iterated commutator
of length m + 1 with an iterated commutator of length n — 1. Using the Jacobi
identity, we write

Hxla [1’2, [1'3, T [:L'mfl,.’tm] o H] ) [ylv [y27 [y37 T [ynflvyn} o ]H]
= —[vr, [P, Q]] = [P, [@, ]
where P = [y27 [y37 Tty [yn—hyn} T ]] and Q = [131, [va [‘T37 ) [33m_1,$m] o ]]]

But [P, Q] can be written as a linear combination of iterated commutators by the
induction hypothesis on m + n, and so the same is true of the term [yh [P, QH
On the other hand

[P, [Q.y1]] = [[v1, @], P,

and this last term can be written as a linear combination of iterated commutators
by the induction hypothesis on n. ([l

COROLLARY 2.2. If a Lie algebra is generated by a set S = {x;}icr, then
every element of £ can be written as a linear combination of iterated commutators
[xi17 [xiZ’ R [xiwn—l7a:i7n} o ]]7 1 S m.

Even with this simplification, it is not immediately clear how to give a precise
description of the free Lie algebra generated by elements {x;};c;. Consider the
problem of describing a basis for the free Lie algebra generated by two elements
x and y. There is only one linearly independent iterated commutator of length 2



3. UNIVERSAL ENVELOPING ALGEBRAS 198

since [z,z] = [y,y] = 0 and [z,y] = —[y,z]. There are two linearly independent
iterated commutators of length 3. One choice is the set {[:c, [z, 4], [y, [z, y]]} It is
then clear that the set of four iterated commutators of length four given by

{lz. .l ], [ ), [ s s [y [y ool

spans the set of all commutators of length four. However, these four are not linearly
independent, since

[ya [:C’ [l',y”} = 7[1'7 [[l‘vyLy]] - [[‘Tvy]’ [l‘,y” = 7[%, [[zvy]ayﬂ +0= [l‘, [y7 [‘Tay]”

We will return to the problem of describing a basis for a free Lie algebra below in
Section 6, after we have given a precise definition of this concept. And in order to
do this, we first study the problem of imbedding Lie algebras into the Lie algebra
structure of an associative algebra.

3. Universal Enveloping Algebras

Let £ be a Lie algebra.

DEFINITION 3.1. A universal enveloping algebra for £ is an associative algebra
(L) and a Lie algebra homomorphism i : £ — (L), with the following universal
property. If A is any associative algebra, and if ¢ : £ — Ap is a Lie algebra
homomorphism, then there exists a unique associative algebra homomorphism ® :
(L) — A so that Doi = .

As with all universal definitions, if a universal enveloping algebra for £ exists,
it is unique up to associative algebra isomorphism.

3.1. Construction of $4(£).

To construct an enveloping algebra for an arbitrary Lie algebra £, consider the
tensor algebra T'(£) over the vector space £ given by

T¢)=Rot'et’e .otk

This is just the free associative algebra generated by £, and there is the standard
inclusion ¢ : £ — T(£) which identifies £ with £'. Let Z denote the two-sided
ideal in T'(£) generated by all elements of the form z ® y — y ®  — [x,y] where
x,y, [x,y] € £ Thus v € T if and only if v = z(m QY—yRQr — [z,y])w where
xz,y € £ and z,w € T(£). In particular, ZNR = (.

Let (L) = T(£)/Z be the quotient algebra, and let 7 : T(£) — (L) be the
standard quotient map. Define ¢ = woi: £ — HU(L). Since zRy—yQx —[x,y] € Z,
it follows that qb([x,y]) = [(b(x), qb(y)], so ¢ is a Lie algebra homomorphism of £
into H(E)L

Now let A be any associative algebra and let ¢ : £ — Ay be a Lie algebra
homomorphism. By the universal property of the free algebra T'(£) given in Lemma
1.2, there is a unique associative algebra homomorphism F : T(£) — A so that
F=¢pon £l If 2,y € £ we have

Flz@y—y®u—[z,y]) = F(z) Fly) - Fy) F(x) - F([z,y))
[p(@), o(y)] 4 — o(l2,y]) =0

since ¢ is a Lie algebra homomorphism. Thus we have shown
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LEMMA 3.2. The associative algebra $4(L) is a universal enveloping algebra for
the Lie algebra L.

3.2. The Poincaré-Birkhoff-Witt Theorem.

Although the construction of the universal enveloping algebra $1(£) is not dif-
ficult, several important questions remain open. In particular, it remains to prove
that the mapping ¢ is one-to-one so that £ can be regarded as a subspace of L(£).
This fact is a consequence of the Poincaré-Birkhoff-Witt theorem, which describes
a basis for the algebra (L) as a real vector space.

We begin by choosing a basis S = {z;}ies for the real vector space £. For
k > 1, the real vector space T%(£) has a basis over R consisting of the “monomials”
{zi, ® -+ ® x;, }. The projection 7 : T(L£) — (L) is surjective, so the images
{m(z;, ® - ®@u;,)}, together with e = w[1], certainly span the universal enveloping
algebra.

To find a linearly independent subset of these elements, we give the index set
I a total order. Then by definition, the monomial {z;, ® --- ® z;, } is standard if
i1 <y < --- < 4. More generally, if i,5 € I, set

~fo i<y,
T i <

Define the index of any monomial z;, ® --- ® z;, to be

Ind('r’il Q- ® Ilk) = Znipil'
i<i
The index measures the number of pairs of indices {j,/} at which the monomial
i, ® - ® x;, fails to be standard.

LEMMA 3.3. The set consisting of e and the images {7‘((501'1 R ® :clk)} of all
standard monomials spans U(L).

Proor. It suffices to prove that the image of every monomial z;, ® -+ ® x;,
is a linear combination of the images of standard monomials. We prove this by
induction on the length k£ of the monomial, and then by induction on the index of
monomials of length k.

Observe that every monomial of length 1 is standard, so the case k = 1 is easy.
Thus suppose that £ > 1 and that the image of every monomial of length at most
k — 1 is a linear combination of images of standard monomials. Let 2;, ® - - - ® x;,
be a monomial of length k. If this monomial has index zero, then it is standard,
and again there is nothing to prove. Thus assume that Ind(z;, ® - -®x;, ) = € > 1,
and that the image of every monomial of length at most k and index at most ¢ —1
is a linear combination of images of standard monomials.

Since Ind(z;, ® -+ - ®@x;,) > 1, there is at least one integer j with 1 < j <k—1
so that ¢;41 < 4;. Then in T'(£) we have the identity

Ty @ QTi; @iy, - BTy,
=z ®"'®‘rij+1®xij R @y,
+Tiy @ ® [Tiy, Tij ] ® - © Ty,
2, @ @ [, ® iy, — Tiyy, O Ty — [30,75,,,]] @ @ 1y,
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The first of the three terms on the right hand side has index less than ¢. The
second term on the right hand side can be written as a linear combination of
monomials of length k — 1. The third term on the right hand side belong to the
ideal Z. Applying the mapping 7 and using the induction hypotheses, we see that
the image of z;, ® -+ ®x;, ®;,,, ®---@x;, can be written as a linear combination
of images of standard monomials. O

THEOREM 3.4 (Poincaré-Birkhoft-Witt). The images under m of 1 € R and the
standard monomials are linearly independent, and hence form a basis for U(L).

ProoF. Following Jacobson [Jac62], we construct a linear mapping L : T/(£) —J}
T(£) with the following properties:
(1) L(1) =1.
(2) L(zy® - @) = T, ®- - -®x;, for every standard monomial z;, ®- - -Qx;,, .
(3) If z;, ®--- @, is not standard, and if 4;,1 < 4; then

L(xil®”'®xij®xij+1®"'®xik)
:L($11®®xl]+l®xlj®®xlk)
+L(xi1®"'®[$ijvxi_j+1]®"'®"’®xik)

Suppose we can show that such a linear transformation exists. It follows from (3)
that L maps every element of the ideal Z to 0, since every element of the ideal is a
linear combination of elements of the form

Tip ® - @ (xij Q Tijyy — Tijyy O Tiy — [xij’xij+l]) Q- @ @i,

It follows from (1) and (2) that L is the identity on the subspace W C T'(£) spanned
by 1 and the standard monomials. Thus it follows that W NZ = (0). Hence the
projection 7 is one-to-one on the space W, and hence the images of 1 and the
standard monomials are linearly independent, since they are linearly independent
in T(£). Thus to prove the theorem it suffices to construct L.

Since T(£) =R ® £! @ - - -, and since we know that 1 and the standard mono-
mials do span T'(£), it suffices to show that for every positive integer m there is a
linear mapping

T-Resletle - afm-2letle...pLm

which satisfies conditions (1), (2), and (3). We proceed by induction on m. When
m =1, we can let T be the identity since each x; is a standard monomial, and the
hypotheses of condition (3) are never satisfied in this case.

Now suppose that we have constructed the mapping L on RG L' L@ - -.pLm—!
where m > 1. In order to extend Lto R® £ @ £2 & --- @ £™, it suffices to define
L on each monomial of length m. We proceed by induction on the index of the
monomial. Of course, we let L be the identity on any standard monomial. Suppose
that we have defined L on all monomials of length m and index less than ¢ > 1,
and suppose that z;, ® -+ ® z;,, is a monomial of index ¢. We can then find an
integer j so that i;41 < ¢;. We then try to define L on z;, ® --- ® z;,, by setting

L(fil ®"'®$ij ®xij+1 ®"'®$ik)
=Lz ® @i, @i, @ - @ Ty,) (3.1)
+L<$i1®"'®[xij;$ij+1]®"'®"'®$ik>
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The two terms on the right hand side are defined since the first monomial has index
less than ¢, and the product in the second term is a linear combination of monomials
of length m — 1. Thus if the tentative definition given in (3.1) is unambiguous, the
extended L does satisfy conditions (1), (2), and (3).

The difficulty with (3.1) is that there may be two integers j and ! so that
ij41 < 1; and 941 < 7;. Without loss of generality, we may assume the j < [.

There are two cases to consider. The easier possibility is that 7 +1 < . We
then need to see whether

L($i1®"'®1’ij+1®$ij ®...®xil®xil+1®..-®‘rik)
+L(J3i1®"'®[$ij7xij+1]®"'®xiz ®xil+1®"'®xik):
Lz;y® @2 @Ti;,, @ QTy,, OTy @ @ xy,)
_|_L(xl.1 ®"'®$i_7 ®xij+1 ®...®[xl.“xilﬂ]@...@xik).

Since we are dealing with elements of smaller length or index, we can use condition
(3) to evaluate each side. Let us write z;, = a, z;,,, = b, z;, = ¢, and z;,,, = d.
Then we have

L ®b®a® - ®@c®d®--)+ L ®[al]® - 0cod®---)
=L(--®b®a®---®dRc®---)
+L(®b®a® - ®c,d @---)
L(--®ab®  ®doce---)
L(-®[a,b]@--@[c,d @)
=L(--®b®a®---®dRc®---)
+L(®[a,b® - ®doc®---)
+L(®bRa®--@e,d@---)
+L(®[a,b]@ - @e,d @)
=L(--®a3b®--®dRc® )+ L(--®a®b®---Qc,d| ®---).

The more complicated case occurs when 5 + 1 = [. In this case we need to
check that

L(xi1®...®l'ij+l ®$ij®$ij+2®"‘®$ik)
+ Lz, ® - Q[Ti,, iy | @ Tiy 0y ® - Q@ y,,) =
L(xi, ®  ®@Ti; @ Tij, @Ti;, @ @ Ty,)
FL(15, @+ Ty, ® [Ty 1, Tiy ] @ @ Ty,).
Let us write x;, = a, ®;,,, = b, x;, , = c¢. Then
L(---®b®a®@c®---)+L(--®[a,b]@c®---)
=L ®b®cRa®---)
+L(--®bRa, @)
+L(-®a,b)@c®---)
=L(--®c®b®a®---)
+ L @b d®a®--)
+L(--®bRa, @)
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+L(---®[a,b®c---).
On the other hand

L(---®a®c@b® )+ L(--®a® b @)
=L(-®cRaxb®---)
+L(-®a, ] @b®---)
+L(---®a®[bd@--)
=L(--®c®b®a®---)
+L(--®c®[a,b]®@--)
+L(-®a, ] @b®---)
+L(-®a®[bc]®--).

Thus we need to show that

L(---®bd®a®- )+ L(---®@b®a,c]®@--- )+ L(---®[a,b] @c®---)
=L(-®ca,b® )+ L ®a,d@b® )+ L(--®@a b, ).

But
L('~~®[b,c]®a®~~)
L ®b®[a,d]®@--)
L(-®[a,b)®@c®--)

L ®a®[bc®@ )= L(---®a,]
L ®a,®b®---)—L(--® [b,[c,a]] @ - -+ );
L ®c®[a,b]®@ )= L(--® ¢, [a,b]] @ - - -).

Thus the identity we seek follows from the Jacobi identity
[a’v [bv C]] + [b7 [C7 a]] + [Cv [av b]] =0,
and this completes the proof. (I

4. Free Lie Algebras

Having constructed the universal enveloping algebra of a Lie algebra, we now
turn to the problem of construction free Lie algebras.

4.1. The construction.

DEFINITION 4.1. Let S = {z;}icr be a set of elements. A Lie algebra F(S) is
the free Lie algebra generated by S if

(a) S can be identified with a subset of F(S);

(b) If £ is any Lie algebra and if ¢ : S — £ is any mapping, then there is a
unique Lie algebra homomorphism @ : F(S) — £ such that (z;) = p(z;)
foralliel.

FEquivalently, we can consider the vector space V' spanned by the elements of S.
F(V) is the free Lie algebra generated by V if

(/) V CF(V) is a subspace;
(V') If £ is any Lie algebra and if ¢ : V — £ is any linear map, there exists a

unique Lie algebra homomorphism ® : F(V) — £ so that ®(v) = p(v) for
allveV.
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We can construct the free Lie algebra generated by V as follows. Let T'(V) =
R@V!® V2@ - be the tensor algebra generated by V. T(V) is an associative
algebra which can therefore be given a Lie algebra structure 7'(V);, by using the
bracket product [z,y] = xy — yz. We then let F(V') denote the smallest Lie subal-
gebra of T'(V')r, which contains V. We clearly have V C F(V). It remains to check
the universal mapping property.

LEMMA 4.2. Let £ be a Lie algebra, and let o : V — £ be a linear map. Then
there exists a unique Lie algebra homomorphism ® : F(V) — £ so that ®(v) = ¢(v)
for everyv e V.

ProOF. Let $(£) be the universal enveloping algebra of £. By the Poincaré-
Birkhoff-Witt theorem, (Theorem 3.4), we can regard £ as a subspace of {(£), and
so we can think of ¢ as a linear mapping from V to L(£), an associative algebra.
Since T'(V) is the free associative algebra generated by V, there is a unique algebra
homomorphism ® : T(V) — (L) such that ®(v) = ¢(v) for v € V. It follows
that ® : T(V)r — (L)L is also Lie algebra homomorphism of the associated
Lie algebras T'(V) and Y(£)r. In particular, we can restrict ® to F(V), the Lie
subalgebra of T'(V), generated by V.

Thus we have constructed a Lie algebra homomorphism @ : F(V) — (L), such
that ®(v) = ¢(v) for all v € V. The algebra £ is a subspace of 4(£), and so we
can study W = {w € F(V) | ®(w) € £}. Since £ is a Lie algebra, and since ® is a
Lie algebra homomorphism, it follows that W is also a Lie algebra. But V" C W, so
W is a Lie subalgebra of T(V), containing V. Since §(V) is the algebra generated
by V it follows that (V) C W. This shows that ® : F(V) — £ is a Lie algebra
homomorphism.

If  : (V) — £ is another Lie algebra homomorphism such that ®(v) = ¢(v)
forallv € V, theset W = {w € (V)| d(w) = ®(w)} is a Lie subalgebra containing
V', and hence is all of F(V'). Thus the mapping ® is unique, and this completes the
proof. O

DEFINITION 4.3. An element w € T(V) is a Lie element if w € F(V).

An element of the algebra T'(V') is homogeneous of degree m if it is a sum of
monomials of degree m. Equivalently, an element is homogeneous of degree m if
it belongs to V™. Clearly, every element w € T(V) can be written uniquely as
a linear combination of homogeneous elements. We call these the homogeneous
components of w.

PROPOSITION 4.4. An element w € T(V) is a Lie element if and only if its
homogeneous components are Lie elements.

PrOOF. Every iterated commutator [z;,, [©i,, -, [, _,, %, ] -]] is homoge-
neous of degree m. Since every element of §(5) is a linear combination of iterated
commutators, it follows that every element of the free Lie algebra §(S) is a sum of
homogeneous elements which are Lie elements. The proof follows from the unique-
ness of the decomposition. ([

Thus we see that the free Lie algebra (V') can be written
V)=FVhed(V)e@- - &FV)me - (4.1)

where §(V),, is the subspace of Lie elements which are homogeneous of degree m.
Since every element of V' is certainly a Lie element, we have V = §(V);.
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LEMMA 4.5. Let V be a vector space, and let F(V) C T(V) be the free Lie
algebra generated by V' and the tensor algebra over V.. Then T(V) is the universal
enveloping algebra of F(V).

PROOF. Let A be an associative algebra, and let ¢ : §(V) — Ar be a Lie
algebra homomorphism. Then ¢ restricts to a linear map of V to A. Since T'(V)
is the free associative algebra generated by V', there is a unique associative algebra
homomorphism ¥ : T(V) — A such that ¥(v) = ¢(v) for all v € V. Thus ¥ is a
Lie algebra homomorphism of T'(V')z to Af.

Let W = {w € F(V) | ¥(w) = ¢(w)}. Since ¥ and ¢ are Lie algebra homomor-
phisms, it follows that W is a Lie algebra containing V. Since £(V) is generated
by V, it follows that W = £(V'). Thus ¥ is an algebra homomorphism from T'(V)
to Az, and ¥(w) = ¢(w) for all w € F(V), and we have noted that it is the unique
mapping with these properties. This completes the proof. (I

COROLLARY 4.6. Let {wy}r>1 be a basis for the real vector space (V). Then
the elements {w]"™ wy™? - - w"™* } with k > 0 and m; > 0 form a basis for T(V).

PROOF. We can give the basis for §(V') a total order by declaring that w; < wy,
if and only if j < k. It follows from the Poincaré-Birkhoff-Witt theorem that the
standard monomials in the {w;} form a basis for the universal enveloping algebra
of F(V). The corollary thus follows from Lemma 4.5. O

In addition to the algebra T'(V') which can be identified with the space of all
non-commuting polynomials in the elements of .S, we have also defined the algebra
T(V) which is the space of all formal series in the elements of S. Then T(V)y is a
Lie algebra containing 7'(V'), which in turn contains §(V).

Now define F(V) as follows.

F(v) = {P(:c) =Y Pu(2) eT(V) | Pu(x) € 5(V)m}. (4.2)

m=0
4.2. Characterizations of Lie elements.

Let S = {z;}icr be a set and let V be the vector space with basis S. Let
F(S) = (V) be the free Lie algebra generated by S or V. Then F(S) can be
realized as a Lie subalgebra of T'(V'), the algebra of all non-commuting polynomials
in the {x;}. How can one recognize whether an element of T'(V) is a Lie element?
It is clear that x;x; — x;x; is a Lie element, but it is perhaps not so clear that
the element z;z;x; — zjz;z; (for example) is not a Lie element. The object of this
section is to provide characterizations of such elements. In addition to its intrinsic
interest, these will be needed later in the proof of the Campbell-Baker-Hausdorff
theorem.

Recall from equation (2.3) that ad is a Lie algebra homomorphism of a Lie
algebra £ into the Lie algebra of linear mapping from £ to itself. In particular if
£ = F(9) is the free Lie algebra generated by S, the mapping ad extends to an
associative algebra mapping 6 of T'(S) to the linear mappings of §(S) to itself.

Now let S be a set, and define a linear map o : T(S) — F(S) by setting
o(x;) =x; for i € I, and

O—(wil‘riz T Iim,—lxi7n) =ad Tiq ad Tip " ad T 1 (xlm)



4. FREE LIE ALGEBRAS 205

This is well-defined since the monomials form a basis for T(S), and the image
clearly belongs to the Lie subalgebra of T'(S) [, generated by S. Moreover, we have

g(mil B TR TR R xim) = ad Tiy " ad Ti; ad Ty, ad xim_lx’im)

=ad,, - adg, (a(ajml . xlm))

= 9(1}“ e SIJiZ) (O’(l’il_H . l’lm))
Let a,b € T(S). It follows that

o(ab) = 0(a)o(b).
Then if a,b € F(S5)
o([a,b]) = o(ab — ba)
= 0(a)o(b) — 0(b)o(a)
=ad,(c(b)) —ady(o(a))
= [a,0(b)] + [o(a), b].
THEOREM 4.7 (Dynkin-Specht-Wever). Lety € T(S) be homogeneous of degree
m. Then y € F(S) if and only if o(y) = my.
PROOF. If o(y) = my, then y = m~'o(y) € F(S). To prove the con-
verse, we argue by induction on m. Every element of F(S) is a linear combi-
nation of iterated commutators, and it suffices to see that o(y) = my if y =

(@i [y (i @i, ]+ )] Let 2 =[xy, [24,,_,, 24,,] -+ -], SO that z is an iter-
ated commutator of length m — 1. By the last identity, we have

o(y) = o([xiy, [Tiy, - [T _ys 70, ] ]]) = 0 ([, 2])
= [a(wil),z] + [mil,a(z)]
= [xil,z] + [xil, (m — 1)2} m[x z]
=my
as asserted. [l

Let S = {x;}ier be aset and let A(S) = T'(S) be the free algebra generated by
S. We regard elements of T'(.S) as non-commuting polynomials in the variables {z;}.
Then T'(S) ® T(S) is also an associative algebra. An element of w € T(S) ® T(S)
can be written as w = 37", Pj(z) ® Qj(z) where P; and Q; are non-commuting
polynomials in the elements of S. The product of two elements is given by

(in( ) ® Q;(x )(ZRz ) ® Si(x ) ZZ ) @ Q;(2)Si(x)).

j=11=1

In the same way, we can define an algebra structure on T(S) ® T(S).

Define 0 : S — T(S) x T(S) by setting 6(x;) = (x;,1) + (1, ;) for i € I. By
the universal property of free algebras, there is a unique algebra homomorphism
D :T(S)— T(S) x T(S) such that D(z;) = 6(x;). It is clear that the mapping D
extends to a mapping D : T(S) — T(S) x T(S).

Note that if w € T'(S), the elements w® 1 and 1 ® w commute in T(S) @ T(.5),

and hence
m m' )
(wl+lew)™ = 7uﬂ®w =7,
;]'(” 7)!
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THEOREM 4.8 (Friedrichs). An element w € T'(S) is a Lie element if and only
fDw)=wel+lew.

PROOF. We first observe that the set {a € T(S)|D(a) = (a® 1)+ (1®a)}
is a Lie subalgebra of T'(S). containing S, and hence containing §(S). In fact, if
D(a)=(a®1)+ (1®a) and D(b) = (b® 1) + (1 ®b), then

D([a,b]) = D(ab — ba)

D(a)D(b) — D(b)D(a)
:((a@l) (1®a)((be1)+(1xb)
- (e +0e

))((@@1)+(1ea)
=(ab®1)+(a®b)+ (b®a)+ (1®ab) — (ba® 1) — (b® a)
—(a®b) — (1®ba)
= ([a,0] ® 1) + (1 ® [a, b]).
Let {y1,92, ...} be a basis for §(S). We have just seen that for each j, D(y;) =
(y; ®14+1®y;). We order this basis so that y; < y; if and only if j < {. The tensor
algebra T'(S) is the universal enveloping algebra of §(S), and by the Poincaré-
Birkhoff-Witt theorem, the monomials {y}"* y5** - - -y, } for k > 0 and m; > 0 are
a basis for T'(S) as a real vector space. Hence the products
{" o @yt Yy
are a basis for T'(S) ® T(S). Since D is an algebra homomorphism,
D(yi™ y5' - yi™)
= D(y1)™ D(y3") - - - D(yx)™*
= (y1®1+1®y1)M1(y2®1+1®y2)m2"'(yk®1+1®yk)
=yMys? oyt @ L+ 1@y ys? -y + By cyrE)

mg,

where

B oy o) = |
ri+sj=m; j=1
Z?:lqﬂj>1
E?:lsj>1

T ,,T2 81,,52

}yl Yo' Yt @yt yst eyt

.::]w

Note that

(1) If k> 1 then E(y™ y5'*---y;™*) # 0.

(2) If k =1 and my > 1 then E(y" y5"2 - - y**) #0.

(3) The elements {E(y" y5* -+ yp**) } for which k > 1 or k=1 and my > 1
are linearly independent since the involve different elements of the basis
of T(S)®T(S).

Now suppose w =Y Q. Y1 Yo 2 - yp ¥ € T(S) and D(w) =w®1+1®
w. It follows that >, 1 Cny,ooom E(y7 9572 -y ) = 0, and hence oy, .. n,, =0
whenever k> 1 or k =1 and m; > 1. Thus w = }_, a;y; is a linear combination
of basis elements of §(S), and hence w is a Lie element, as required. O

Since the property of being a Lie element depends only on whether or not each
homogeneous component is a Lie element, we have
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COROLLARY 4.9. Ifw € T(S) and if D(w) =w ® 1 + 1 ® w, then each homo-
geneous component of w is a Lie element.

5. The Campbell-Baker-Hausdorff formula

We observed in Proposition 1.4 that if x and y are indeterminates which com-
mute, then

exp(z) exp(y) = exp(z +y),
log ((1+2)(1+y)) =log(1+ ) +log(1l +y).
If x and y do not commute, we look for a formal power series
z(x,y) =x+y+ Pa(z,y) + P3(z,y) + -+ (5.2)

where P;(z,y) is a non-commuting polynomial in z and y such that

(5.1)

exp(x) exp(y) = exp (z(x, y)) (5.3)

The series for z(z,y) is given by the Campbell-Baker-Hausdorff formula. It is a
remarkable fact that that the polynomials P;(x,y) are actually Lie elements; that
is, they are linear combinations of iteraged commutators of = and y.

THEOREM 5.1 (Campbell-Baker-Hausdorfl). As formal series we have

exp(z) exp(y) = exp (z(,y))
where
(o]
2z,y)=x+y+ Y Pu(z,y)
n=2
where each Py is a homogeneous non-commutative polynomial in x and y of degree
N which can also be written as the Lie element

1 N 1 k (_1)k+1
Py(z,y) = NZEZ Z ady;"ady' - ad}™ ad,".
k=1 j

mql---mglng!- - nyg!
T o™ k11 k
> (mj+ng)=N

mi ni mg Nk
Here ad ;" ad,* - - - ad, " ad,* means

ady" ady’ ~-~ad§f’“ad$’“71[y] if ng > 1,

ad;™ adyt - ad;"’“*lad;”"_l[x] if ng, = 0.

mi ni mpg NE __
ady,'ad,' - ady, " ad, —{

ProoOF. We work in the free associative algebra and free Lie algebra generated
by a set S consisting of two elements x and y. We begin with an elementary
computation that gives

z(z,y) = log (exp(z) exp(y))
as a formal series of non-commuting polynomials in = and y. We have

1

oo

exp(z) exp(y) = ) ey
m,m=0 o
and so )
exp(z) exp(y) —1 = Z o z™y".
m,n>0 o

m+n>1
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Hence, as a formal series

z(z,y) = log (exp(z) exp(y))

k
> k+1
= E - Ty
k m!n!
k=1 m+n>1
& _1\k+1
— E E - ' ( 1)' ' 'xmlynl .. .xmkynk
— 1<k mi: Mg mni: ng:
m]‘Jr’anl

Note that the component of this sum which is homogeneous of degree N is

N Kk k+1
¥y % ™ e
kEmq!---mglng!- - ng!

k=1 j=1 mj;+n;>1
> (mj+n;)=N

If we can prove that the homogeneous polynomial Py (z,y) is a Lie element in T'(S),
we can then use Theorem 4.7 write it explicitly as a Lie element, and this is the
statement of the Theorem.

To prove that the homogeneous components of log (exp(z) exp(y)) are Lie
elements, we use the criterion given in Theorem 4.8 and Corollary 4.9. Note that
since the elements (z ® 1) and (1 ® ) commute, we have

exp(z®14+1®z) =exp(z®1) exp(l ® z)
= (exp(z) ® 1) (1 ® exp(x)).

We have

D(exp(m) exp(y )—exp(D )exp( (y))
—exp(x®1—|—1®x)exp(y®1+1®y)
(

=exp(r® ) exp (1®m) exp(y@l) (1®y)
= (exp(z) ®1) (1@ exp(2)) (exp(y) ® 1) (1® exp(y))
= (exp(z) exp(y) ® 1) (1 ® exp(z) exp(y))
Thus
D(log (exp(z) exp(y))) = log D(GXp exp(y)))

(exp(z) exp(y) ® 1) (1 @ exp(x) exp(y)))
exp(z) exp(y) ® 1) + log (1 ® exp(z) exp(y)))
= log (exp(z) exp(y)) ® 1 + 1 @ log (exp(z) exp(y)).

= log

(
= log (
(
(

Thus log (exp(m) exp(y)) is a Lie element in T(S’), and this completes the proof. [

6. Hall Bases for Free Lie Algebras

We now turn to the problem of giving an explicit description of a basis for a free
Lie algebra. Let S = {x1,...,2,} be a finite set, let F(S) be the free Lie algebra
generated by S, and let §(5),, be the elements in F(S) which are homogeneous of
degree m.
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6.1. Hall Sets.

We define an ordered set H of homogeneous monomials in §(S )7 called Hall
monomials’. The definition of H is given recursively. Thus let Hk denote the
elements of H which are homogeneous of exactly degree k, and let Hy, = HyU---UH,
be the subset of elements which are homogeneous of degree at most k. We define
PAIn inductively as follows.

(1) The subset Hy = Hy are exactly the generators {a1, ..., zn}.

(2) We give the set H; a total order (for example by requiring that z; < xj
if and only if j < k).

(3) Suppose that we have constructed the elements of H,_; which are ho-
mogeneous of degree less than n where n > 1. Suppose also that the

elements are given a total order in such a way that if u € H and v € Hk
with 7 < k, then u < v.

(4) The elements of H,, is the set of all elements of the form y = [u, v] (called
a standard form of y) where

(a) ueﬁr,veﬁ[‘g,andTJrs:n.
(b) u <w.
(¢) If v = [a,b] is a standard form of v, then a < w.
(5) The order on H,,_; is extended to H,, in such a way that if u € H,,_; and
v E ﬁn, then u < v.
A set H =], H, is called a Hall set in §(S).

THEOREM 6.1 (Hall). If H C §(S) is a Hall set, then the elements of H form
a basis for F(S).

6.2. Two Examples.

Before giving the proof of Theorem 6.1, we calculate some low order terms in
Hall set for the free Lie algebra generated by two elements x and y, and for the
free Lie algebra generated by three elements x,y, z, We order these generators by
requiring r < y < 2.

Example 1 In the free Lie algebra £(x,y) we have
ﬁl = {»’va}
Hy = {[z,y]}
H; = {[z, [z, 9], [y, [z.9]]}
Hy = {[e, [, [, 9], [y: [z, [2, 1], v, [y, [, )]}

Note that [y, [z, [r,y]] is eliminated bycasue of condition (4c). Also since there
is only one element in Hy there are no elements in Hy of the form [A, B] where
A = [ug,v1] and B = [ug,v1]. The set Hs consists of six elements. The first four
come from taking brackets of elements of H 1 and elements of FAI4

Hso = {[, [w, [, [e. )], [y [, [, (2, 9]0, (s by [, (2,000, (s Ly Ly, Lo I}

n his paper [Hal50], Marshall Hall calls these standard monomials, but we have already
used this term in the proof of the Poincaré-Birkhoff-Witt theorem.
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The next two come from taking brackets of elements of H, with elements of H. 3
Hsy = {[[z,9), [e. [e. 1] ([, 9], Iy, [, 9] }-

Example 2 1In the free Lie algebra £(x,y, z) we have

Hy = {z,y,2}

Hy = {[z,9). [, 2], [y, 21}

Hy = {[z, [z, y]], [z, [2,2]], [y, [2.9]], [y, [, 210, [, [y, 2], [ [y, 211}

Hy = {[z, [z, [z,9]]], [z, [z, [z, 2]}, [z, [y, [z, 9], [2. [y, [z, 2]]], (=, [y, [y, 1)),
[ ]

[z, [2, 1y, 21}, [y [y, [x yH] [, [y, [, 2111, [y, [y [y 21); 2, [z [ 2]])

[[x,y }, [ ) Hx7z]a[y7z]]}

6.3. Proof of Theorem 6.1.

Let S = {z1,...,2,}, let V be the real vector space spanned by S, and let
H=U,", H, be a Hall set for the free Lie algebra §(S). Let w € H,. We say
that an equation w = ), aphy gives a Hall expansion for the element w if oy, € R,
and each hy € H. If we can prove that every element w € F(S) has has a Hall
expansion, and that such an expansion is unique, then we will have proved Theorem
6.1.

LEMMA 6.2. Every element w € F(S) which is homogeneous of degree n has a
Hall expansion w =), aphy, where each hy, € H,,.

PROOF. We argue by induction on n. Every element of F(.5) which is homoge-
neous of degree 1 belongs to V', and since H 1 consists of a basis for V', this finishes
the case n = 1.

Now suppose that the assertion of the Lemma is true for every element of §(5)
which is homogeneous of degree less than n, and let w € F(S) be homogeneous of
degree n > 1. Then we can write w = }_, a;lu;j,v;] where a; € R, and uj,v; €
F(S) are elements which are homogeneous of degree strictly less than n. (This
representation need not be unique.) We give an algorithm which replaces this
expansion for w by an expansion which is a Hall expansion. Moreover, we will
see that if we start with a Hall expansion, the algorithm does not change the
expansion. The algorithm consists of four steps, which are then repeated, and after
a finite number of iterations yields the desired Hall expansion.

Step 1:  Since the degree of u; and v; are less than n, our induction hypothesis
means that we can write u; = Y, B rujr and v; = >, v vj; where {u;} and
{v;,1} are Hall elements. If either u; and v; are Hall elements to begin with, we do
not replace them with different sums. Then w = Zj,k,l o B k5.0 [ujyk, ij].

Step 2: For each term [uj’k,vj,l], write
0 if Uj k = Uy,

[uj,k,vﬂ] = [uj,k,vjyl} if ujp <wvjy,

—[ujrsvia] i vjn < ug



6. HALL BASES FOR FREE LIE ALGEBRAS 211

With this change, we have written w = Y, ;8 x7j.1[ujk, vj1] where each of
the terms u; x, v;; € H and u;, < vj;. Also if our original expansion was a Hall
expansion, we have not changed it.

Step 3:  Consider each pair of elements {u;,v;,}.
(1) If the degree of v;; is 1, then since u;; < v;;, the degree of u;j is also 1,
and it follows that [u;x,v;,] is a Hall element. In this case we stop.
(2) If the degree of v;; is greater than 1, we can write v;; = [a;;,b;,;] where
aji, b;1 € H and a;; < bj;. Write

[wj g, [aj, bjl] if aj; < ujp,
[ujak’/ujvl} =

g [k, 0j0l] = [0y, [wjks, azal] i wje < aji

(a) If aj; < wjp, then [ujy,[aj,bj,]] is a Hall element, and we stop.

(b) Suppose that w; < a;;. If [u;;,b;,] is a Hall element, it follows
that [a;j, [ujk, bji]] is a Hall element since ujj < aji. If [ujy, a;j]
is a Hall element, then [bﬂ, [w) k) aNH is a Hall element since u; j <
aj; < bj;. In either of these two cases, we stop.

Step 4: Ifeither [u;,b;] or [u;;, a;,] is not a Hall element, then we return to Step
1 with the expressions [u;,b;;] and [u;;, a;,;], write them as a linear combination
of Hall elements, we repeat the process.

To see that this procedure eventually stops, we argue as follows. If the degree
of u;; and the degree of v;; are both greater than %n then the degree of v;; is
less that 2n. But then when we write v;; = [a;,, bj], we must have the degree of
aj; less than than or equal to one half of the degree of v;;, so the degree of a;; is
at most 32n = in, which is less than the degree of u; ;. It follows that a;; < w;,
and so in Step 3, we are in situation (2a), and the process stops.

If we do not stop at Step 3, then we go back to Step 1 with u; ; replaced by a;,
or bj;, and v;; replaced by [u; 1, b;] or [u;,a;,;]. However, since they are products,
the degree of [u;,b;;] or [u;,a;,] is strictly greater than the degree of w;;. Also
uj r < aj;. Thus we have replaced [uj,;g, vj,l] by a commutator where the first term
appears later than u;; in the total order of the Hall elements, and the degree of
the second term is strictly larger than the degree of u;. If we run through this
process enough times, it follows that eventually the degrees of both terms will be
greater than %n, and so the process will stop. This completes the proof. O



CHAPTER 8

The 9 and 9-Neumann Problems

1. Differential forms and the d and d-operators

Let © C R™ be an open set. Recall that £(Q2) denotes the space of infinitely
differentiable real-valued differentiable functions on €, T'(2) denotes the space of
infinitely differentiable real vector fields on 2, and for each = € 2, T, denotes the
tangent space at x. We can identify T, with the set of values of real vector fields
at .

1.1. Real differential forms.
We begin with the definition of differential forms and wedge product.

DEFINITION 1.1.

(1) Form >0, A" denotes the space of alternating m-linear mappings of the
tangent space Ty, to R. In particular, we identify A with R, and AL is
the dual space T, which is sometimes called the real cotangent space at
x. An element w € A' is called an m-form at x.

(2) If « € Al and B € A¥, the wedge product o A B € AP is defined by the

equation
oz/\ﬁ(vl,...,vj+k)
G j k)! Ue%ik(_l)aa(”o(l)a V() BUai1) - Vo (iah))
where vi,...,Vj4k € Ty, G i is the group of permutations of the set

{1,...54+k}, and (—1)7 is the sign of the permutation o.!
(8) A™(Q) is the space of mappings w: Q — |J, .o AT such that:
(a) w(z) =w, € AT*;
(b) if X1,...,Xm € T(Q), then the mapping x — wy ((X1)as- -, (Xim)a)
is an infinitely differentiable function.
In particular, we identify the space A°(Q) with £(Y). Elements of A™(Q)
are called smooth m-forms on .2
(4) If w € A (Q) and n € A¥(Q), set (W AN)y = we Ane. In particular, if
f €A, (fw)e = f(x)w, € A¥(Q). This makes AF(Q) into an £(N)-
module.

zEQ

It X € A9 = R and B € A%, it is traditional to write A3 instead of A A B since scalar
multiplication gives the same value as the wedge product in this case.

2We are really considering smooth sections of the bundle A™ of alternating m-forms over 2.
However we will not develop the machinery of vector bundles here.

212
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PROPOSITION 1.2. If o € AJ and 8 € A%, then
aAB=(-1)*pAa.
In particular, if j=k=1, aNG=—-0A«.
PRroOF. Define 7 € &4 by
(. gi AL k) =G+, i+ k).
Then (—1)" = (—1)7*. We have
Y (D75, () B(Vo(e1)s - Val)

’ O’GG]'+)¢

alfp=

= ( . k)' Z (_1)UQ(UUT(k+1)a ceey UUT(k-‘y—j)) 6(”07‘(1)3 v UUT(k))

’ 066j+k

= (] n k)' Z (—1)0Tﬂ(1}07(1), v Uar(k)) a(vo'r(k+1)7 s UaT(k+j))

= (_1)Jkﬂ A a,
which completes the proof. (I

0€S 1k

1.2. Notation.

It is an unfortunate fact of life that the anti-commutativity established in
Proposition 1.2 leads to unpleasant calculations with differential forms. The fol-
lowing notation, although at first sight excessive, actually helps to preserve sanity.
To begin with, we fix the underlying dimension n, and define certain index sets:

(i) L, denotes the set of all ordered m-tuples K = (k1,...,k,) with 1 <
ki <nforl<j<m.

(ii) I denotes the subset of I,,, consisting of those m-tuples K = (k1, ..., k)
such that k; # k; for i # j. Thus I# is the set of m-tuples with distinct
elements.

(iii) I, denotes the subset of I7 consisting of those g-tuples K = (ki, ..., k)
such that 1 <k < ko < < k1 <k < n.

(iv) If K € I, then {K} denotes the unordered set of indices belonging to the
ordered m-tuple K.

(v) If K €I, then [K] € I, be the m-tuple consisting of the elements of { K}
rearranged in (weakly) increasing order.

(vi) If J = (j1,...,J4r) €L and K = (k1,...,ks) € L5, then
(JvK) = (j17~-~7jrak17---7ks) S Hr+s~

Next, we introduce notation that reflects that anti-commutativity of quantities
indexed by these sets. Thus if J = (j1,...,7-), K = (k1,..., k) € L. set
0 if either J ¢ I or K ¢ I,
€l =140 if J€I#, K eT# and {J} # {K},

(-1 ifJel# Kel#, {J}={K}, and o(j1,...,5r) = (k1,..., k).
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For example,

(2,1,3,5) _

€ _ (3,1,2,5) _ (4,1,3,5) (5,1,3,5)
(1,2,3,5) —

Lo eiams) =+ €uass) =00 €uhis) =0

In particular, if K = (k1,...,ky) €1, L= (l1,...,l441) € Ig41, and 1 < k < n, we
have

0 if (k) U{K) # (L},

6(Lk,K) _

(—=1)7 if {k}U{K} = {L} and o(k, k1, ..., kg) = (1, ..., lg41)-

1.3. Differential forms with coordinates.

We now construct a basis for A'. Let eq,...,e, be any basis of T,, and let
ai,...,a, be the dual basis of AL = T, so that

1 itj=1,
ajled =050 =14 i £

Let J = (j1,.-sJm), K = (k1,...,kn) € I,. It follows from Definition 1.1, (2)
that

(m)a; A ANay, (€k1 ey ekm) = Z (—1)7 aj, [ekam] . [ekd(m)]
ceES,,

e ifJ, K el#

0 otherwise.

On the other hand, an element o € A" is determined by its action on all m-tuples
(€kys---s€k, ). If we write alep,,...,€k,) = Qky,...k, € R, it follows from the
anti-symmetry of o that

Qky,ke = (_1)0akd(l))'*-7ka(m)'

Thus we can write

o= E 0€hyy vyl ) Oy Ao A,
(k1y--eskm) €Ly

since both sides have the same value when applied to (ej,,...,e;, ). Because of the
anti-commutativity of the wedge products and the coefficients, we can write

— , , A A
a=m! E alej, ... €5, )0 N ANay, s
(J1yeeesdm) €LY,

and the elements {o; = aj, A--- A, } with J = (j1,...,jm) € I, are a basis for
AT

Now suppose that X1,..., X, € T(2) are vector fields such that for each z € Q
the vectors {(X1)z,...,(Xn)z} form a basis for for T},. Define w; € A*(Q2) by

w;i[Xg] = 6; -

The above discussion establishes the following result.
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PROPOSITION 1.3. The space A™(Q) is generated as a module over E£(QQ) by the
differential forms

Wy =wj N ANwj, 1< < <Jr <n.

The number of generators is (n) Every n € A™(Q) can be written uniquely as
m

n= Z nywy

Jerz,

where each n; € £(Q).

As a consequence of the notation we introduced, note that if J € I¥ and

1 < j <n, we have
wj Nwy = Z e(Lj"])wL.

Lel[:n{»l

In later formulas, it will be convenient to consider the coefficients wy of a m-form
w € A™(Q) for multi-indices J which are not in I,. Thus for any J € L,,,, set

0 if J ¢ T#

wy =
6[{]] Wi if J e Hﬁ.

In particular, we have
(4,7) oy
€15, YIGD] = Y3G,J)-
Since Q C R™, we can always choose a basis for the vector fields by choosing

X; = . In this case we write the corresponding elements of A as {dx1, ..., dx,},

0z;

and every element w € A" () can be written

w:ZdexJ with wy € £(Q)
Jelz,

where, if J = (j1,...,Jm) We write

dZEJ :d.le /\~-~/\dzjm.

1.4. The exterior derivative d.

The exterior derivative d maps m-forms to (m+ 1)-forms and is usually defined
in terms of coordinates:

n 8f ) 0
df:ZT%dxj lffGA(Q),
j=1
n 8CUJ . m
T L PR B
Jelx, j=1 Jely,

However, it will be important to know that this operator has an intrinsic meaning.
Thus we begin with a coordinate free definition.
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DEFINITION 1.4. The exterior derivative d : A™(2) — A™TH(Q) is defined as
follows:

(1) Form =0, if f € £(Q) = A%(Q) and if X € T(Q2), then

(2) Form>1,ifwe A™(Q) and if X1,..., Xpmi1 € T(Q), then

(m + 1) d(.d(Xl, . 7AX’m_._l)
m—+1 .
= Z DX [w( X, e, Xy, X))

+Z VIR0 ([X, Xon] s Xty ooy Xjyeoos Xiy ooy Xong1)
i<k

For example, when m = 1, if n € A1(Q2) and X,Y € T(R), then
2dn(X,Y) = X [n[Y]] = YV [n[X]] - n[[X, Y]].

PRrROPOSITION 1.5. The exterior derivative d has the following properties:
(1) Ifw e A (Q) and n € A*(Q), then

dwAn) =doAn+ (=1)wAdn.
(2) If w € AI(Q) then d*(w) = 0.

(3) In terms of coordinates,

(a) If f € E(Q) then
- Of _
df = ]Ezl —8% dx;.

(b) If w= z wydxy, then

K€l
8(4)]
dw = ZdWJ/\de— ZZ—dm‘]/\de
Jer Jely j=1

Let 2 C R™ be an open set (or more generally a real manifold of dimension n).
The operator d gives us the following sequence of mappings:

£(9) = A°(Q) %, AL(Q) 28 A2(Q) 22 .. T A,
Since d? = 0, at each point the image of one mapping is contained in the null space
of the next. This sequence is called the deRham complex for 2. The quotient
groups
H™(Q,R) = Kernel(d,, ) /Image(d,,—1)
are the deRham cohomology groups of €.

GIVE PROOF
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1.5. Complex coordinates and holomorphic functions.

We now turn to a discussion of differential forms in complex spaces. We denote
points of C" by z = (21,...,2,), where z; = x; + iy;. With these coordinates we
can identify C" with R?" via the mapping

cr 92:(217"'7'2”) — (xlvyla"'axnvyn) ERQn'

However, complex analysis is not just real analysis in twice as many variables.
The key point is that for open sets in 2 C C™ there is a distinguished class of
complex-valued smooth functions O(Q) called holomorphic functions. There are
many equivalent characterizations of this class. We shall define them as the solu-
tions of a system of complex first order partial differential operators.
We proceed as follows. In addition to the usual real vector fields
0 0

X, =— d Y= —
J O0x; a J 0y;

for 1 < j < n, we introduce certain special complez-valued vector fields:

0 1[8 .3}:1[&,@-3@] and

1= 95, " 2las, eyl T2 -
—~ 90 1rao .0 1 . '
It follows that
X, = Z-+7-,
= (4 +Z) ",

Y; =i(Z; - Z;).

DEFINITION 1.6. Let Q@ C C™ be open. A complex-valued function f € Ec(Q)
is holomorphic if it satisfies Z;[f](z) = 0 for all z € Q and all 1 < j < n. These
equations,

of . of . of .
@(@-gj(@*‘lﬂ(z)—o’ for 1<j<n,

are called the (homogeneous) Cauchy-Riemann equations.

The property of being holomorphic is independent of the choice of a coordinate
system. In fact, we have the following result which follows easily from the chain
rule.

PROPOSITION 1.7. Let 21 C C™ and Qo C C™ be open sets, and let F' =
(fi,---s fm) + 1 — Qo be a mapping such that each component function f; is
holomorphic on €.

(1) If h : Q3 — C is a holomorphic function, then H(z) = h(F(z)) is a

holomorphic function on €.

(2) If m =n and F is a diffeomorphism (so that F is one-to-one, onto, and
has a smooth inverse F~1), then the components of F~1 : Qy — Qy are
holomorphic functions.
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1.6. Splitting the complexified tangent space.

The existence of the class of holomorphic functions on an open set 2 C C"
leads to a natural splitting of the complexified tangent space. Recall that for any
point z € C”, the real tangent space T, is a real 2n-dimensional vector space over
R. T, is spanned by the real vector fields {X;,Y3,...,X,,Y,}. If Q C C™ is an
open set, T'(2) is the space of smooth, real-valued vector fields on Q, and if z € ,
T, is just the restriction to the point z of elements of T'(2).

The complexified tangent space T, ® C is obtained by taking all complex linear
combinations of {X1,Y7,...,X,,Y,}. This space has complex dimension 2n, is
denoted by CT,, and is called the complex tangent space at z. The real tangent
space T, is a subspace of CT,, but it is not closed under multiplication by 7 and
hence is not a complex subspace. It is clear from equations (1.1) and (1.2) that the
set of real vector fields {X1,Y7,...,X,,Y,} and the set of complex vector fields
{Z1,...,Zn,Z1,...,Zy} are both bases for the vector space CT, over C.

DEFINITION 1.8. The complex structure mapping J is the real-linear transfor-
mation J : T, — T, uniquely determined by setting

JX) =Y,  and J[Y))=-X,

for 1 < j <mn. It follows that J> = —1I, so the eigenvalues of J are +i. J extends
to the complex vector space CT, as a complex-linear mapping. Let

J] = +iv} ,
Jv] = —iv}

be the subspaces of corresponding eigenvectors.

T = {v € CT,

TO1 = {v € CT,

It follows that we have the following decomposition of the complexified tangent
space:
CT, =T} ¢ T (1.3)
Note that we have
J1Z;) = T[(X; —iY;)] = J[X;] = iJ[Y;] = Y +iX; = (+0)(X; — 1Y)
J[Z;) = J[(X; +iY;)] = J[X;] + iJ[Vj] = V) — iX; = (=i)(X; +iY)).
Thus {Z1,...,Z,} are a basis for T}? and {Z1,...,Z,} are a basis for T:!.
DEFINITION 1.9. A complez-valued vector field X on 2 is of type (1,0) (respec-
tively, of type (0,1)) if for every z € Q we have X, € T}O (respectively X, € T!).

PROPOSITION 1.10. If Z,W are complex vector fields of type (1,0) then [Z, W]
is again a complex vector field of type (1,0). If Z,W are complex vector fields of
type (0,1) then W, m is again a complex vector field of type (0,1).

PROOF. If Z, W are vector fields of type (1,0), we can write Z = Z?:1 a; Z;
and W = ZZ:I bk Zk. Then

12, W] =Y (Zla;] = W(by)) Z;

j=1

is again of type (1,0). A similar calculation works for vector fields of type (0,1). O
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It is not immediately clear from Definition 1.8 that the mapping J is indepen-
dent of the choice of holomorphic coordinates. However, the following result shows
that there is an intrinsic characterization of J in terms of the class of holomorphic
functions.

PROPOSITION 1.11. Let z € C™ and let v € T,. Then J[v] € T, is the unique
vector such that [v + iJ[vH [f] = 0 for every function f which is holomorphic in a
neighborhood of z.

PrROOF. Write v = ZZ:I (Oéka ~+ B Yk) Then J[’U] = ZZ:l (Ozk-Yk — g Xk),

and so
n

U—F’L'J[U] ZZ(Ozk—iﬁkxXk-f—ZYk 22 ak—zﬁk
k=1 k=1

Since Z[f] = 0 for every holomorphic function f, the same is true for v +iJ[v]. To

prove uniqueness, observe that if w € T, and (v +iw)[f] = 0 for every holomorphic

function f, then (w—J[v])[f] = 0 for all holomorphic functions. However w—J[v] €

T. so we can write w — J[v] = >_7_, (a; X; + b;Y;) with a;,b; € R. If we apply this

to z; = x; + 1y;, it follows that a; +ib; = 0, so w = J[v]. O

1.7. Complex differential forms.

We now study the complexifications of the spaces A7J*. Thus CAT = A7'®C
is the space of alternating complex-valued m-linear mappings of C7, to C. In
particular, when m = 1, the space CA!l is just the (complex) dual space of the
(complex) vector space CT, and is sometimes called the complex cotangent space.
This space also has a natural decomposition as the direct sum of two subspaces.

DEFINITION 1.12. Let

ALO — {w € (CT)*

wlv] =0 for allv € Tzo’l} = (Tzo’l)l

AL = {w € (CT,)*

wlv] =0 for allv € Tzl’o} = (T}9*

It then follows from equation (1.3) that
CAL =A@ A% (1.4)

There is a second way of obtaining this decomposition. The dual of the struc-
ture map J : CT, — CT, is a complex linear mapping J* : CAl — CA!, and it is
easy to check that

J*dx;] = dy; and J*dy;] = —dz;,
since {dz1,...,dx,,dy1, ..., dyy,} is the dual basis to { X1, ..., X, Y1,..., Y, }. Now
since J? = —1, it follows that (J*)? = —I. Thus the space CA! is the direct sum

of the two subspaces which are the eigenspaces of J* corresponding to eigenvalues
+i and —i.

PROPOSITION 1.13. For z € C", ALC is the subspace of CAL consisting of
eigenvectors for J* with eigenvalue +i, and A%' is the subspace of CAL consisting
of eigenvectors for J* with eigenvalue —i.
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PROOF. We have already observed that Z1, ..., Z,, € CT} are eigenvectors of .J

with eigenvalues +i, and Z1,...,Z, € CT, are eigenvectors of .J with eigenvalues
—i. The dual basis of CAl are the elements

dzj = dx; +idy; and dz; = dx; —idy;,

with 1 < j < n. We have J*[dz;] = idz; and J*[dZ;] = —idZz;. Thus the space of
eigenvectors of J* with eigenvalue +i is spanned by {dz1,...,dz,}, and the space
of eigenvectors of J* with eigenvalue —i is spanned by {dZi,...,dz,}. It is now
easy to check that these are, respectively, the spaces (T}:%)+ and (T2:!)*. (]

The decomposition (1.3) of CT, also leads to a decomposition of the spaces
CA7 for m > 1.

DEFINITION 1.14. Let p+ q=m. Then
AP — {w € CA™

Wy, ) =0
ifvr, .0 €ETHY vjg1, .o, v € TO! and j #p}
It is not hard to check that
CAI'= P Are, (1.5)
pt+g=m
and AZ-9 is spanned by the set of all forms dz; A dZx where
dzy =dzj; N+ Ndzj,,
dzg = dZg, N+ NdZzy,,

andJEH;,KEH,isothatlgjl<-~-<jp§nand1§k1<--~<k:q§n.

If Q C C™ is open, we let CA™(Q) denote the space of complex valued m-forms
on 2, amd AP4(Q)) denote the subspace of complex valued (p+ ¢)-forms whose value
at z lies in A2¢. We have

CA™(Q) = P A»1(Q). (1.6)
ptg=m
An element w € CAP?(2) can be written
w = Z wrr dzg NdZg
Jer;, Kel;

where wj g is now a complez-valued infinitely differentiable function on 2.

1.8. The O-operator.

The exterior derivative extends to a mapping on complex-valued differential
forms d : CA™(Q) — CA™*1(Q) with the properties established in Proposition 1.5.
Moreover, the decomposition given in (1.6) leads to a decomposition of the opertor
d into the sum of two operators @ and 9. The following is the key relationship
between d and the decomposition given in (1.6).

PROPOSITION 1.15. Let w € AP4(Q). Then dw € APTH9(Q) @ APIFTL(Q).
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PROOF. Let p+ g =m, let w € AP2(Q), and let {X,..., X;+1} be complex
vector fields with X1,..., X, of type (1,0) and X;44,..., X1 of type (0,1). We
need to show that dw(X1,...,X,ny1) =01if 5 ¢ {p,p+ 1}.

There are two kinds of terms in the definition of dw. The first arise the sum

m—+1
S )X [wX, . X X))
r=1
Since w € AP9(Q2), we have w(X1,... ,)/(\T, .oy Xm+1) = 0 unless there are p vectors

of type (1,0) and ¢ vectors of type (0,1) in the set {Xq,.. X oy Xmy1}. But
since X, is itself either of type (1,0) or (0,1), this would imply that j € {p,p+1}.
Hence all these terms must vanish.

The other kind of terms arise in the sum

ST w([X X)L Xy X X Xg).

r<s
Suppose that X, and X, are both of type (1,0). Then according to Proposition
1.10, [X,, X] is also of type (1,0). If
w([Xra Xs]aX17'",E7"',z’"'aXm+l) 7& 07

it follows that the set {[X,, X, X1, .. ,)/(\T, ... ,)/(\s, ...y Xmy1} contains p vectors
of type (1,0). It follows that j = p + 1. Similarly, if X,. and X, are both of type
(0,1), it follows that j = p.

Finally if the vectors X, and X, are of different type, we can write [X,., X;| =
U +V where U is of type (1,0) and V is of tyep (0,1). But if

WU, X1, Xy, Xy ooy Xoni1) #0,
it follows that the set {U, X, ..., )/(\T, ce, )/(\57 ...y Xny1} must contain p vectors of
type (0,1), in which case j =p+ 1. If

WV, X1, Xy ooy Xy oy X)) # 0,
it follows that the set {V, X1,..., )/(\T, R )/(\S, ..oy Ximy1} must contain p vectors of

type (0,1), in which case j = p. Thus all these terms must vanish as well, and this
completes the proof. ([

DEFINITION 1.16. Let m, , be the projection from CAPT1(2) to AP9(Q). Then
d: AP9(Q) — APTLI(Q) and 0 : AP9(Q) — APITL(Q)
are defined by 0 = mp11.4d and 0 = 7, 441 d.
It follows from Proposition 1.15 that d = 9 + 0. Since d? = 0, it follows that
2+ 00+00+9 =0. But if w € AP(Q), then 92[w] € AP+24, (99 + 99)|w] €

—2
APTLAtLand 97w € AP9+2. Since these spaces intersect only at (0), it follows
that

2=0, 00+090=0 O =0. (1.7)
The other basic properties of the operators d and d now follow from Proposition
1.5.
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PROPOSITION 1.17.
(1) For any differential forms w € CAY(Q) and n € CA™(2), we have

IwAn) =0wAn+ (—1'wAdn,
OwAn) =0dwAn+(=1)wAdn.

(2) In local coordinates,

(a) if f € Ec(Q) then
of = Z dzj and  Of = Z dzj,

(b) If w=7>" c1e ke Wik dzg NdZx € AP1(Q), then
p? q

Ow = Z Olw]ANdzy Ndzg = Z Z&g‘]’K dzp Ndzg N\ dzZg,

« . « . “l
JEl KeT; JETy, K€y 1=1

— 5]
dw= > 0w AdzsAdix > Z u)‘]Kdzl/\d,z‘;/\de.
Jely, Kely Jely Kely 1=1

1.9. The O-problem.

In analogy with the real situation, we see that if @ C C™ is an open set (or more
generally a complex manifold of dimension n), then for each integer 0 < p < n, the
operator O gives us the following sequence of mappings:

APO(Q) 9o, AP () 9, AP2(Q) B2, Ong AP™(Q).

Since Ox,10, = 0, at each point the image of one mapping is contained in the
null space of the next. This is called the Dolbeault-complex. The corresponding
quotients

H?(Q,C) = Kernel(d,)/Image(d,—1)

are called the Dolbeault cohomology groups. See, for example [GR65].

Note that a function u € A%%(€2) is holomorphic if and only if d[u] = 0, and
these are the homogeneous Cauchy-Riemann equations. For many reasons, it is
also important to consider the inhomogeneous version

Olu] =g

where g € A®1(Q) is a given (0,1)-form. Since 7 = 0, a necessary condition for
finding a solution for the unknown function u is that d[g] = 0. The J-problem can
be stated rather vaguely as follows:

Determine if the equation d[u] = g has a solution u when g is a
given (p, ¢ + 1)-form such that d[g] = 0. If a solution does exist,
find a solution u4 with good regularity properties that reflect the
regularity of g.
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2. The 9-Neumann problem

Part of the difficulty of the d-problem is that a solution to d[u] = g, if it exists,
is not unique. Thus if u is a function, then d[u+ h] = d[u] for any function h which
is holomorphic. We now turn to one classical approach to the lack of uniqueness,
which is to choose the particular solution which is orthogonal, in an appropriate
sense, to the null space of 0.

From an algebraic point of view, we are given linear transformations gq,l and
5(1 between certain vector spaces of differential forms, with 5q5q_1 = 0. We want
to know if the range of 5(1_1 is equal to the null space of Eq. In order to talk about
orthogonality, we need to give a Hilbert space structure to the vector spaces of
forms, and find a way of establishing the existence of solutions. We start with an
easy finite dimensional analogue of this problem. This shows that the existence of
a certain estimate (equation (2.1) below) implies that solutions exist. We will later
attempt to imitate this procedure in the infinite dimensional situation.

2.1. A finite dimensional analogue.

PROPOSITION 2.1. Suppose U, V.W are finite dimensional Hilbert spaces, and
that S : U -V and T : V — W are linear maps with T'S = 0. Let S* : V — U
and T* : W — V be the adjoint mappings. Put®

L=SS"+T*T:V - V.

(1) If L is invertible with inverse N, and if v € V with T[v] = 0, then
u=S*N[v] € U is the (unique) solution to S[u] = v which is orthogonal
to the null space of S.

(2) The following statements are equivalent:
(a) There is a constant C' > 0 so that for everyv € V,

o]y < IS Wl + 1 TEl 5] (2.1)
(b) The mapping L is one-to-one and onto.
(¢) The range of the mapping S equals the null space N(T) of the map-
ping T'.
PrOOF. If T[v] = 0 and N is the inverse of L it follows that
v=(SS*+T*T)[N[v]].
Applying T to both sides we get
0 = T[] = TSS*N[v] + TT*TN[v] = TT*TN][v]
since T'S = 0. Thus TT*TN[v] = 0, and so
0= (TT*TN[],TN))w = (T*TN[v], T*TN[v])y = || T*T'Nv
It follows that T*T'N[v] = 0. But then
v=S5N[v] + T*TN[v] = S[S*Nv]].

Hly-

3n our later examples, the operator L will be the Laplace operator acting on components
of a differential form. The inverse which satisfies the required boundary conditions is called the
Neumann operator.
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Thus v = S*N[v] is a solution to S[u] = v. Moreover, the range of S* is always
orthogonal to the null space N(S) of S, so we have established the first assertion.
Next, suppose that assertion (a) is true. If v € V with L[v] = 0, we have

0= (L[v],v)v = (SS*[v],v)v + (T*T[v],v)v
= (S*], $* [ + (T[], Tlow = || S0 |2 + || T |
But then
[vlly < c2 [l s @l + | Thl 5] =o.

so v = 0, and hence L is one-to-one. Since V is finite dimensional, this implies that
L is onto, and hence assertion (b) is true. (Note that we will need a more involved
argument in the infinite dimensional case).

Now if assertion (b) is true, then assertion (1) shows that the range of S equals
the null space of T, so assertion (c) is true. Finally, if (c) holds, then since orthog-
onal complement of the null space of S* is the (closure of the) range of S, it follows
that V' = N(T)® N(S*). Thus if v € V we can write v = vy + vy where v; € N(T)
and vy € N(S*). We have HUH?/ = Hvl Hf/ + va Hf/ Now S* restricted to
N(S5*)*+ = N(T) is one-to-one, and hence || vy HV < C||§*[v1] HU =C||S*[v] HU
Similarly, we have || vz Hv < C||Tvo HU =C || T[v] HU, and this establishes as-
sertion (a). O

2.2. Hilbert spaces.

In trying to develop an analogue of Proposition 2.1 for use in the d-problem,
there are several difficulties. After putting a Hilbert space structure on the space
of differential forms £(€2)y?, we need to establish the analogue of the inequality in
equation (2.1), and we also must deal with the fact that differential operators like
5,] are not bounded operators on L2-spaces. We defer the first problem, which is
specific to the O-problem, to Section 2.5. In this section we continue to work more
abstractly, and develop an analogue of Proposition 2.1 for closed, densely defined
operators in infinite dimensional Hilbert spaces.

Thus suppose that U, V, and W are Hilbert spaces and S : U — V and
T :V — W are closed, densely defined linear mappings. It follows that the Hilbert
space adjoints S* : V — U and T* : W — V are also closed and densely defined.
(See Chapter 5, Section 2 for background information on unbounded operators).
Thus as before, we have

vv-Low,

but of course S and T are now not defined on all of U and V. Let N(S) and N(T)
denote the null spaces of S and T', and let R(S) and R(T) denote the ranges of
these operators. Let

H = Dom(T) N Dom(8*) V.
For hy, hy € H, put
Q(h1, he) = (5%[ha], S*[he])u + (T[ha], T[h2])w-
Put
Dom(L) = {u eV ’ v € H, §*[v] € Dom(S), and T[v] € Dom(T*)} :
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and for v € Dom(L), put
Liv] = S S*[v] +T* .T[v].
We make three basic assumptions:
(i) R(S) C N(T) so that TS = 0.
(ii) H is dense in V.
(iii) There is a constant C' so that for all h € H
10115 < 2 || TWl |5 + 1151 5] (2.1)

Then the main result is the following:

LEMMA 2.2. The range of S equals the null space of T. In addition, there is a
unique bounded linear operator N : V. — H C V with the following properties:

(1) If C is the constant from inequality (2.1), then || N[v] Hv < C?|v HV
forallveV.

(2) For any h € H and v € V we have (h,v) = Q(h, N[v]).

(8) N:V — Dom(L) C H. Moreover, N : N(T') — Hy = N(T) N Dom(S*)
and N : N(S*) — Hy = N(S*) N Dom(T).

(4) N is one-to-one on V and L is one-to-one on Dom(L).
(5) N is the inverse of L in the following sense:
L[N[v]] =v for everyv €V,
N[LP]] =v for every v € Dom(L),
(6) The operator N is self adjoint, and the operator L is closed, densely de-
fined, and self-adjoint.
(7) If v € V.1 Dom(T) with T[v] = 0, then u = S*N[v] € U is the unique
solution to S[u] = v which is orthogonal to the null space of S.
The proof will requires several preliminary steps. We first establish the follow-

ing facts. Part (4) is the first statement of Lemma 2.2.

ProrosITION 2.3.

(1) R(S) = N(T)

(2) R(S*) = {u c v‘ (3v € Dom(S*) N N(T)) (u = 5*@])}.

(8) R(S*) is closed.

(4) R(S) is closed, and hence R(S) = N(T).

(5) R(T) = {w ew ] (3v € Dom(T) N N(S*)) (w = §* [v])}.
(

T) is closed, and hence R(T™*) is closed.
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PROOF OF (1): We have R(S) C N(T). If these closed subspaces are not
equal, there is a non-zero vector v € N(T') N R(S)L. Then for every u € Dom(S5)
we have |(S[u],v)| =0=0-||u HU Hence v € Dom(S*) and S*[v] = 0. But then

[lolly < Ul TRy + 1187w [[5] =0, s0 v =0.
PROOF OF (2): We certainly have

R(s*) > {ue V‘ (3v € Dom(87) N N(T)) (u=5"[e]) }
On the other hand, since N(S*)* = R(S), we also have
V=N(S")® R(S)=N(S")® N(T)
by (1). Thus if v € Dom(S*), we can write v = v; + vy with v; € N(S*) and
vy € Dom(S*) N N(T'). But then S*[v] = S*[v1] + S*[ve] = S*[vz]. Thus

R(S*) C {u € V‘ (3v € Dom(S*) N N(T)) (u = S*[v])} .

PrOOF OF (3): For every v € Dom(S*) N N(T) C Dom(S*) N Dom(T), it
follows from the estimate in equation (2.1) that ||v HV < C|| S*[v] HU Let {un}
be a sequence in the range of S* which converges to an element ug € U. By (2),
we can find v, € Dom(S*) N N(T) so that u,, = S*[v,], and hence

||Um_U"HV SC’||S*[vm—vn]HU:C’Hum—unHU.

Since {u,} is a Cauchy sequence, it follows that {v,} is also a Cauchy sequence,
and hence converges to a vector vg € V. But then since S* is a closed operator, it
follows that vy € S* and ug = S*[vg] € R(S*). Thus R(S™*) is closed.

PROOF OF (4): We saw in Chapter 5, Lemma 2.6, that if T : V' — W is any
closed, densely defined linear operator, then the range of 7' is closed if and only if
the range of T* is closed.

PRrROOF OF (5): This follows in the same way as (2). If v € Dom(T") we can
write v = vy + vg with vy € N(5*) and v € N(T'). Then T'(v) = T(v1).

ProoOF OF (6): The proof that R(T') is closed follows in the same way as
(3). If {wy,} is a sequence in R(T") which converges to wg € W, we can write
wy, = T(vy) with v, € Dom(T) N N(S*). Then || vy — vy Hv < C||wm — wy HW,
and so {v,, } converges to an element vy € V. Since T is a closed operator, it follows
that wg = T'[vg] € R(T), so R(T) is closed. Then, as in (4), this implies that R(T™)
is closed. This completes the proof. ([

In preparation for the definition of the operator N, we observe the following.

PROPOSITION 2.4. The quadratic form Q is an inner product on H which makes
H into a Hilbert space with norm denoted by H . HQ, and

||UHV SCHUHQ
for all v € H. Moreover,
H=(NT)NnH)& (N(S*)NH) =H, & H,,

where Hy = (N(T) N H) and Hy = (N(S*) N H) are closed subspaces of H with
respect to the norm { - }qg
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PROOF. The basic inequality (2.1) shows that || & Hv <C||n| |Q forallh € H.

Let {h,} be a sequence in H which is Cauchy with respect to the norm || . HQ
Then

CM | B = | [y, = || Tlan] = Tlon] |3y + || $* o] = S* ] | [, =[] om = P[]

so {h,} is Cauchy in V, {T'[h,]} is Cauchy in W, and {S*[h,]} is Cauchy in U.
Suppose h,, — hg in V|, T[h,] — wo in W, and S*[h,] — ug in U. Since T and S*
are closed operators, it follows that hg € H. Thus H is complete, and hence is a
Hilbert space under the norm H . H o

Next, since V = N(T)®N(S*), it follows that if h € H, we can write h = v;+vq
where v; € N(T') and v € N(S*). In particular, v; € Dom(T) and v € Dom(S*).
It follows that v1 = h—wve € Dom(S*) and v = h—v; € Dom(T'). Thus vy,vs € H,
and so we H = (N(T)NH) + (N(S*) N H). These two spaces are orthogonal with
respect to the inner product @), and hence they are both closed. This completes
the proof. |

PRrROOF OF LEMMA 2.2. We begin with the construction of the operator N.
This is done by defining N on the two complementary subspaces N(T') and N(S*).
For any v; € N(T), define a linear functional L, on Hy by setting Ly, [h] = (h,v1)v.
Then

[Los[Wl] = [(hovdv | < o[l ([ 2]y < Cl[oc [y ([P 1]
and so L,, is bounded on H;. By the Riesz representation theorem, there exists a
unique g1 € Hy; = (N(T)OH) with ||91 HQ < CHU1 HV, so that for all h € H; we
have

(h,v1) = Q(h, g1) = (S*[h], 8% [g1]); + (T[] T(g1]])yy, = (S¥[R), S™[gn]) s
since T'[h] = T'[g1] = 0. If we write g1 = N1[v1], it follows that Ny : N(T') — H; C
V is a linear transformation, and

|| Ni[wi] ||y, < C| N[vd] ||, < C?| v ||y

o
Thus Ny : N(T') — H is bounded, with norm bounded by C, and Ny : N(T) - V
with norm bounded by C?.

Similarly, for any ve € N(S*), define a linear functional M, on Hs by setting
M., [h] = (h,v2)y. Then

[ Moo B = |(hyv2)v | < [0z [ [[R ]y < Cllee]]y [[]lq)

and so M, is bounded on H,. By the Riesz representation theorem, there exists
a unique g € H| = (N(S*) ﬂH) with Hgg HQ < Cva ||v so that for all h € Hy
we have

(hvv2) = Q(haQQ) = (S*[h}’S*[QQ])U + (T[h]aT[QQH)W = (T[h]vT[QQH)W
since S*[h] = S*[g2] = 0. If we write go = Nz[vg], it follows that No : N(T) —
H, C V is a linear transformation, and

|| Nafva] ||, < C[| Nva] ||, < €[ 02 ],

Thus N» : N(T') — H is bounded, with norm bounded by C, and Ny : N(T) - V
with norm bounded by C?.
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We can now put the two operators together. For v € V| write v = vy 4+ vo with
vy € N(T) and vy € N(S*). Define
N(’U) = Nl(Ul) + NQ(’UQ) € H+ Hy,=H.

Then N : V — H C V is a linear mapping. Since H; and Hs are orthogonal, we
have

I N@) Iy = [ Nilor] [[5 + || Ml 1[5, < €2 [[| Mafoa] |5 + || Nafea] |7
<O [[ur]ly, + e [[y] =Ml
and so
IN[I ||, < C*|v]

which establishes statement (1) of Lemma 2.2.

v

Let h=hy+hy € HH+Hy=H and v=v1 + vy € N(T)+ N(S*) =V. Then
since S*[hy] =0 € U and T[h1] =0 € W, we have

(h,v)v = (h1,v1)v + (h2, v2)0
= (5[], S*[Ni[v1]])u + (T[he], T[N2[v2])w
= (S*[], S*[N])u + (T[h], T[N[v])w (2.2)
= Q(h, N[n]).
This establishes statement (2).
We next show that if v € V, we have S*[N[v]] € Dom(S) and T[N[v]] €

Dom(T™). Since (5*)* = S, it follows that in order to show S*[N[v]] € Dom(S),
we need to show that for every h € Dom(S *) we have

(7[R, S* INTlDw| < C [ A]]y-

If h € Dom(S*) C V, write h = hy+hge where hy € N(T') and hy € N(5*). It follows
that hy € N(T) N Dom(S*) C H. Thus S*[h] = S*[h1] + S*[ho] = S*[h1]. Next,
write N[v] = Ny[v1] + Na[vg] where Ni[vi] € Hy = N(T) N H and Nafvg] € N(S*).
Thus S*[N[v]] = S*[N1[v1]]. But then we have

|(S*[h), S*IN[W])w = |(S*[P], S* N1 [oa]))ur| = |(Ba, v1)v |
<[[mafly o[y <Cll Ay [Jor]lg < IRl Tor [l

The proof that T[N[v]] € Dom(T™) is similar. Let h € Dom(T), and write h =
hi1 + hs as before. It follows that hy € N(S*) NDom(T) C H. Then T[h] = T[hs],
and if we decompose N[v] = Ni[v1]+ Na[vs] as before, we have T[N [v]] = T[Na[v2]].
Thus

(T[R), TIN ] = [(Tlha], T[N2[v2])u | = |(ha, v2)v ]
<|lh2lly [lozlly < CllR2lly [z llg < ClIR Il [0z [lo-
Thus we have shown that N[v] € Dom(L), and this is assertion (3).

If v € V and N[v] = 0, it follows from assertion (2) that
(h’v)V = Q(h’N['UD = Q(h,()) =0
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for all h € H. Since H is dense in V, this implies that v = 0, so the operator N is
one-to-one. Suppose that v € Dom(L) and L[v] = 0. Then

0= (v, L[v])y = (v, S S [v])v + (v, T* T))v
* * * 2 2
= (§"[v], 8*[W))u + (T[], Tlol)w = || S*[v] || + || TTo] |[ -
It follows follows from the basic inequality that H v HV = 0, so the operator L is
also one-to-one. This establishes assertion (4).

Now returning to equation (2.3), it now follows from (3) that if v € V' then
(hyv)v = (SR}, STIN[v]])u + (T[R], T[N [v]])w
= (h LNTe]])
for every h € H. Since H is dense in V, it follows that L[N[v]] =v for all v € V.
Finally, if v € Dom(L), then L[v] € V, and so N [L[v]] € dom(L). But then
L[N[L[v]]} = L[].

Since L is one-to-one, it follows that v = N [L[UH, and this establishes assertion

(5).
Now let v1,v2 € V. Then vy = L[N[UQ]]> so we have
(N[va], v2), = (N[en, L[Neal]),,
— (8" [N[ou]], " [N[ea]])
= (L[N[w]], N[va])v
= (vlaN[UQ])V'

Thus N is self-adjoint. Moreover, since N is one-to-one, N has dense range. Since
L is the inverse to N, it follows that L is densely defined and is self-adjoint. This
establishes (6).

gt (T[N[vlﬂ,T[N[ngW

If v € N(T), the same argument as in Proposition 2.1 shows that u = S*Nv]
is the unique solution to S[u] = v. This completes the proof. O

2.3. Notation.

If we try to imitate the finite dimensional situation, we want to replace the
operator S by the mapping 9,1 and the operator T’ by the mapping 9,. We also
want to replace U, V, and W by certain Hilbert spaces of differential forms. Thus
let 2 C C" be a domain with C?-boundary. Thus we assume there is an open
neighborhood U of the boundary 9Q and a function p : U — R of class C? such
that

QﬂUz{zeU‘p(z)<O}
and |Vp(z)| # 0 for all z € U. In fact, we shall assume that
|Vp(2)| =1
for all z € 0Q.
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We let dm denote Lebesgue measure on (2. It will be important to consider
certain weighted spaces. Thus if ¢ : £ — R is continuous, we let L, denote the
space of (equivalence classes) of complex-valued measurable functions f such that

|/ ||2¢ = /Q |£(2)]? e ?® dm(2) < cc.

L, is a Hilbert space with inner product

(f.9) = /Q £(2)5(2) e=#) dm(z).

In order to put a Hilbert space norm on differential forms, we need to introduce
a metric on the complexified tangent space. We shall use the Riemannian metric
on ) C C™ = R?", in which

1 1 1 1
—Opyyevey—=02,,—=0y,...,—=0y,

is an orthonormal basis for T, and the dual basis
{\/idxl, N 2dzn, N 2dyn, . \/idyn}

is an orthonormal basis for T = Al. If we extend this metric to an Hermitian
metric < -, - > on CAl, we have
< dzj,dz, > =< dx; + idy;, dzy, + idyr >=<dz;,dzy > + < dy;, dyr >= ;1
< dzj,dz > =< dxj — idy;, dxy, — idyr, >=<dzxj,dry > + < dy;,dyr >= 5]-,;6
< dzj,dz, > =< dz; + idy;, dzy, — idyr >=<dz;,dzy > — < dy;,dyr >=0
Thus the elements
{dZ1, ceydzp,dzy, . .., dzn}

form an orthonormal basis for CAl. This metric then naturally extends to the
spaces A7, so that the elements {dz; A dZx} for J € I} and K € I form an
orthonormal basis. In particular, if w = Y wy k dzy A dZg € A7, then

fwlli=(ww).= 3 o
Jely Kel;

The inner product on AJ* allows us to introduce the notion of contraction of
two differential forms. This is the dual of the wedge product. Given o € CA* and
B € CAJ with j < k, we define a vV 3 € CA*=7 by requiring that

(aVvB7), = (BA7), (2.3)
for all v € CA*=J. Suppose that

a= ZodeZk, ﬂ:ZﬁJdZJ, and v = Z v, dZf,.

Kelx Jer Lely;_,
Then
_ (J,L) a =
(@ BAY), =D >0 D e axByL
JET: Kely LeTy_,
Thus

BV a= Z [Z Zeg‘{]’L)aKBJ}dBL.

Lely_, ~Jel; Kelj
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In particular, if p is a real valued function and if w =} . wi dZK € A%4, then
q

_ r n ) o
OpVw= Z Z ZG%J) %WK} dz;
JEl:_, Kel; j=1 &
n
_ N~ G Op _
= > Ze[fj,m gw[u,m} dz; (2.4)
Jely_, j=1 J
_n a B
= > | TSWU,J)} dz;.
Jel;_, j=1 7

We shall use the following general notation. If B is a space of functions or
distributions on 2 or its closure 2, we let BP*? denote the space of (p, ¢)-forms with
coefficients in B. In particular:

(1) D(Q2)P? denotes the space of (p, ¢)-forms with coefficients which are infin-
itely differentiable and compactly supported in ;

(2) £(Q)P1 denotes the space of forms which are infinitely differentiable on
Q.

)

(3) E(Q)P denotes the space of forms which are restrictions to Q of smooth
forms on C™;

(4) £(Q)h? denotes the space of forms on 2 which are restrictions of forms
compactly supported in C™ (but not necessarily compactly supported in

Q. Note that if Q is bounded, then £(Q)P7 = £(Q)59.

(5) LE4(S2) denotes the space of (p,q)-forms with coefficients in L, and is
itself a Hilbert space. If w,n € LE:(Q) with

w = Z wrijdZJ/\dZK, and n= Z ﬂijdZ']/\dZK,
Jely, Kely Jels, Kel:
then
o= Y [ i@ mxEe v dn(e)
Jely Kely 7

If ¢ =0, we will simply write LP9(Q) instead of L5 (Q) for the space of
(p, q)-forms with coefficients which are square integrable on .

We will also need to consider inner products taken on the boundary 9 of €2.
Let o denote surface area measure. If w,n € £(Q)5? with

w = E WJJ(dZ‘]/\dZK, and n= E T]JJ(dZJ/\dZK,
JGHZ,KGH; JGH;,KGH;

we put

wl,= X[ w@) ma e dota).

JeLy, Kely
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2.4. Computation of 0 and its formal adjoint.

From now on, we will take p = 0, since it plays no role for domains in C”.
Recall that if K € I; and 1 < k < n, we have 2 A dzx = Yy € dzi.
q

Thus we have the following formulae for d[w].

PROPOSITION 2.5. If w = Z wrdzZg € E(Q)O’q then
Kel;

ZEED 3D SE-TENVETD SN DID SE LS

Kel; k=1 Lel;,, Kelj k=1

The operator 0 has a formal adjoint, obtained by formal integration by parts.
We compute this, using the following consequence of the divergence theorem.

PROPOSITION 2.6. Suppose § has a defining function p which is of class C?
such that |Vp(2)| =1 for z € 0Q. If f € £()o, we have

87']025 mi\z) = Z@Z gz
[ Gr@ime) = [ 1) 5L () dolz)

Ifn e E(Q)&q_l and w € £(Q)7, we shall want to integrate by parts in the

inner product (9q—1[n],w)y, and move the differentiation from 1 to w. This will
lead to a differential operator on €.

DEFINITION 2.7. The formal adjoint of 8,1 is the mapping 9, : £(Q)%4 —
E(Q)%171 given by

ﬁq[ Z WK dZK} = — Z [ Z ie%"j) e? i‘[eﬂ/’wK]] dzy
K€ Jer:_, Kely j=1 9z
- n ) 8 _ B
== > Zef@,{))} ¢ 92, [e ww[(mJ)]H dz;
Jer_, j=1 Zj
n
r 0
=- > [ oz [ W(M)H dzs
Jelr . j=1

q—1

The last equality follows from our notation so that ef(]j‘{]))] W[(,0)] = W(G,T)-

Integration by parts also leads to a boundary integral, which in our case will
involve dp V w. Recall from equation (2.3) that we can write

IpVw= Z [ @(z)w(jﬁl)(z) dzj.

2
Jel* 9z

q—1 J=1

PRrROPOSITION 2.8. Let p be the defining function of the domain Q, and assume
that |Vp(z)| =1 for z € 99.

(1) Ifn e EQ)Y*" and w € EQ)Y?. Then
(Dg-1[l,w),, = (. 9q[]), + [1.9pV ] -
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(2) If n € D(Q) ™" (so n has compact support in Q), and w € E(Q)F? (so
there is no assumption about the behavior of w at the boundary), then

(8q—1[77]7w)w = (7% 7-911[“)]),\'
(3) If w € E(Q)Y? then (gq_l[n],w)w = (n,0pVw), for everyn e E(Q Q) !
if and only if for all z € OQ we have dp V w(z) = 0.
PrOOF. We have
J 577J TN L —U(z
W)y = Z Z Z G.7) (z)wi (z) e Y3 dm(z).
Kely Jel;_, j=1
Integration by parts shows that this equals

— Z Z Z e%"]) /Q ns(z) e 88,27 [e=? wk](2) e M2 dm(z)

JEl;_ Kely j=1

n Z/ (2 Z (J, J) wic (2 )e*’”(z)dA(z)

Ker; JE]I* L j=1

= (77, ﬁq[w])/\ + [n, Op Vv w} .
This gives assertion (1), and assertions (2) and (3) then follow easily. O

2.5. The basic identity.

Ifw=>3 e Wi dZi € 5(5)8"1, we want to compute the quadratic form
= 2 2
Qqfw,w) = || 9glu] ||, + [[a e ][
We first consider the case when A = ¢ = .

THEOREM 2.9. Suppose that A = ¢ = ¢ and w € E(N )O 4 IfOpVw =0 on 09,
then

|[9qlw] [, + || 9qlw] [,
-y 3|15
Kely k=1 9%k 118
+ > / Y Wi (@) wn( ) 5,05 () dm(2)
Jely j,k=1 k
* Z i/ Wi, (2) Wik, (2) >p (2)do(2)
Jelr_, j k=109 ’ 020z,

If the weights are not all the same, we do not have such a nice identity, but if
2¢ = ¢ + A we do have an inequality. Define
n

Bq[ Z WK dZK} = Z [Z W(J7‘]):| dzy.

Kely JEl_, j=1

Thus B, : A%9(Q) — A%971(Q) is a multiplication operator.
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THEOREM 2.10. Suppose that 2¢ = ¢ + X and w € 5(@)8"’. If OpVw =0 on
09, then

> e Z/wa) ww<>636%<z>e—w<z>dm<>

Kely k=1 Q5%
9,
+J§ﬂ; ];1 / W) (2) Wik, (2) )azj o (2) e ¢®) do(2).
< [[ gl [[7, +2/] 0] Hi
+ 2 / Z (],J)(z)fe—v(ﬂ dm(z)

Jely_y

The proofs of these results is a long and ingenious calculation, which probably
should not be attempted in public. We begin with an identity for the term | ’ [y | |i

PROPOSITION 2.11. Let w =) cr. Wi dZx . Then
q

_ Owg n 80‘}(/6271/) aw(kl’L)
1901 151 - )
fé; 0z LEH*71k1,k2— ( 02k 02k, )“’
PRrROOF. We have 8 Z Z Z (k, 5 &uK . Thus

Lely , Kely k=1

aelz= > | Xy “““%“;fui

Lel;,, Kel; k=1

-y ¥ zn: €<k1,K1>€(kQ,K2><5wm 30%)
L L 82k1 ’ 82k2 Lp.

Lel;,, K1,K2€l; ki ka=1

(k1,K1) (k27

If the product € K2) # 0, there are two possibilities.

(a) We can have ky = ko = k, K1 = Ko = K, and k ¢ K. In this case

ki1,K1 _ ka2, Ko k1,K1 k27K2 _
€5, =€y SO €5 €5 =1.

(b) We can have k1 # k2 and K1 = [(k2, J)], K2 = [(k1, J)] for some J € I} _;.

(k1 ) _ (ol D] g (kaika) _ (haolka, )

In this case €} , 80

(hulkand]) (kalkr,d) _ (kid) (ko)
ep e T = e €l k)

The terms for which possibility (a) holds gives rise to the sum

3P [=3

K€l k¢ K
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The terms for which possibility (b) hold give the sum
S Y ) e (3W[(j2>J>] 8w[(j1,J)J)
1G] LG 0z, ' 0z, o

JEL; | ji1#j2
Ji,je2¢J

_ Z Z (8“’(1‘27J) 3w(j1,J)>
JEL:_, 1742 0z, 0% S
J1,92¢J
We rearrange the inner sum as follows:
_ Z (6W(j2,J) 8W(J‘1,J))
Py 0% e
J1.92¢&J

- 0w(ja,1) OW(jy,0)
= —_ + + + + ( 727 , 717 ) .
( _21 _Z: Z Z Z) 0z;, 9zj, /¢
J1,J2= ji=j2&J  ji,j2€J g1€J  je€J
Jegd  g1¢J

Now if j; € J then w(;, sy = 0, and if jo € J then w(;, sy = 0, so the last three
summations are zero. Thus we have

8&)(’2”]) 6w( j1,J)
DI ( a;jl ’ agh )@

JEI; | 12

J1.J2¢J
3 En: (500(]2 ) aw(mJ)) Z H Ok H
JEI; 1 j1,J2=1 82’] 0z
Putting cases (a) and (b) together, we obtain the stated equality. O

We next turn to the term ||, [w] ||/\ Define an operator Dy, by setting

af Oy
2 _J _ T
f] 6Zk 8zk

0

Dylf] = e 6zk[

PROPOSITION 2.12.

af o
(Dj[f]’Dk[g])<p (azjl 85]) +(f82j5’;k7g)gp

[f— Delgl] -1 52 gg]

PROOF. Integration by parts shows that

(Dj[f]ag)w = (f,gz_gj)%—i- [f gzpj’gL; and

(1:0l), = (529) +[r5209]
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Thus
(D11, Dilgl), = —(f’ ag[Dk[g]])w + {f&,Dk[Q]}

©

—~(1Dulg2), + (1 5z e ), + 12 Dl

~(Gas),+ 0[5 o ),

+ [fgfj,Dk[g]L— 72, gi}

But it is easy to check that

[8 Dk} 9] = ?% g

0z’ 0z;0z, 7’
and this completes the proof. O
Now
o _ _ e — )
ALY (oY ] — (A=)
S golen? 1] =0 [Dilf)+ FE ]

and so we can write

=y {ZZEI;{JG’\— ]]dz,

Jel;_, Kel; k=1

— (A=) Z [ Z zn:el;’(’J Dk[WK]} dzy

JEL;_,  KeI} k=1

O 5[5 e K] s

Jer:_, Kel: k=1

= e A [w] 4 PV B, [w].

There are two cases of particular interest. The first is when A = ¢ = ¢, in
which case By[w] = 0. The second is if 2¢) = A + ¢, in which case we have

1272 ALl [, = [ Aall ],
He(k_w) Bylw] H)\ = || Bylw] H¢~
Thus we have
|| Aqlw] Hi = || 9q[w] Hi in the first case, and
|| Aglw] ||i < 2|| g [w] Hi +2|| Bylw] ||i in the second case.

Now we have

A= > > Z ) ez D (Djilwk. ], Diplwic)

JEH Kl Kzeﬂk J1,J2=1

Gid) o)
=) Z e el (DGl Dilwigam]) -

Jelp_ j1,j2=1
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But efjll‘]ﬂ f; g = 0 unless ji,j> € J and [j1, J] = [j1, J] and [j2, J] = [j2, J]. Thus
this sum is
() (k. J)
|| Aglw] Hgo Z Z J] N €Lk, )] (D [w [JJ)]] Dk[w[(k J)]])
JEI; _y j,k=1
S Z i) r) (8w[(jv7)] &U[(k,-f)])
2 J 5 ’ 5.
JEL:_, k=1 ! Oz, 0z; ®
2
(God) (k) ¢
+ Z Z €G] (k D] (W[(J,J)] 92,0% [(k,J)])@
JEel; 4 j k=1
+ 2 [ [J,J)] 32 w[(z N> Z €[k, J) klwi, J)]]}
Jer_, =1 ¥

S [Ze o S (k) &U[(km}
[(5.)] “UGD] 2 €Lk, ) Oz 0z o

Jer:_, j=1 k=1

Suppose now that dpV w = 0. Then for every J € I, and all z € 92 we have

= J - dp
ZE ‘(7']’ ) [(] J)]( ) Zu)(]"]) 872;](2) = O7 (25)

j=1 j=1
and this means that the third sum equals zero. Also, this means that the operator

NG 9
Ly =) €l €G] 9

j=1

annihilates p along 012, and hence is tangential. But

gy Op 0wk, >

<Z€[(3,J)] () Z €D By 0z,

G.)) (k) Op 0w,
€15, “IG:) ; Uk D) Dy 0z,

M:

Jj=1

G,J) (k K) dp
6[(; 1) 19MG.D] 357 0z, {Z €[tk [(ka)]aiZk

M:

j=1

Gd) () %p
€10, 9)] €1k, W16 D) W[(k,EK)] 67; EEA

7 1

|
3 V\TME

B (K dp
= LJ{ €1k, K] LIk, J)]aj,k]

3

9?p
jZl [, J)] [(k J)] WG YR 5 a7, 92,07,
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Thus we have shown

= 2 2
| 9q[] Hg, + [ Aglw] ng
S )
Kel: k=1 0z Vo
[ G () — P
+ > > b an e () i (z) 5705, ) dm(z)
JEl*_, jk=1"% Juek
L) (kd —— P
+ Z Z €16, €1(k, J)]w[(J,J)]( z)w Wi(k,J)] ( )az 0z (2)do(2).
JEL:_, jk=1 195k

2.6. Further estimates.

We now want to derive some consequences of Theorem 2.10. We shall assume
that the domain 2 is pseudo-convex, so that

>
2 azjaz 26620

J,k=1

for every z € 9§ and every & = (&1,...,&,) € C™ such that

Z gj (“)zj -

According to equation (2.4), for each J € I
this condition. It follows that

Z Z/ W(j,7) Dk, 7) € () do(z2) > 0.

JEL;_, jk=1

7—1, the vector (w(1,7), - - ., W(n, ) satisfies

We also set ) = 0 so that A = —p. This means that

{ZdezK]—e“’ Z [Zaw(jJ)}de

Kel Jer:_, j=1

is the formal adjoint of d in the unweighted case, multiplied by e®. In this situation,
Theroem 2.10 gives

ZZH%ZH 2 / Z% (2) @, (2) af;;’; (=) e #) dm(2)

KeT; k=1 Jely_ k
— 2 2 2
<N1Fafed I} + 2/l ool |2, +2 3 /\zaz @) € dm(z)
Jer;_
Following Catlin [Cat84], we let :% A. Then

S ol - 5 5 o
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and

n B2 - 9%\
Z Wi, (2) Wi, (2) azjoi'ik e Z W5, (2) Wik ( )87; 0z,

j,k=1 j,k=1
— O\ 2
A
5| X w0
j=1""

Thus it follows that
D

awK - —_— — o) (2
K%*I; H (92}6 H J%l/g -;1 w(j,J)(z) w(kJ)(z) 8Zj82k (z) 6()‘ w)( )dm(z)
52, |2 et (¢ —ge) ety

Jely_

< Hé’q[w] 15 + 21 9]

Now if 0 < A < 1, we have

Q]
T
A}

v

®
€
IN
N s W

a
A
IA
('b‘
IA

Thus we have established

THEOREM 2.13. Suppose that A € C2(Q), with 0 < A < 1. Ifw € EQ)I? and
if OpV w =0 on 09, then
92\

G+ XS [ wontesnn) st int)

Kelz k=1 JeEL:_, jk=1

<C {13 aq + 11911 |12

where C is an absolute constant.

2.7. Hilbert spaces.

Let {), ¢, ¢} be three real valued functions defined on Q. When we try to
imitate the finite dimensional model, we replace the sequence

vvLow
by the sequence
0,a—1,0y\ Qa-1 10, 9, i

Ly (Q) = qu(Q) -4 quH(Q).

These differential operators are not defined on the whole Hilbert space. Instead,
we turn again to the theory of unbounded operators and be satisfied with linear
transformations which are closed and densely defined. We focus on the operator
0q; the operator d,—; is handled similarly.
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We need to specify a domain for d,. Let us temporarily distinguish between
the operator 9, defined on £%%(Q) and the unbounded Hilbert space operator D,
we wish to define. Let

Dom(D,) = {w € Lz’q(Q) ‘g[w] € LY in the sense of distributions} .
Precisely, this means that w € L?p’q(ﬂ) belongs to the domain of D, if and only if

there exists a form 7 € L9 (2) such that for every form o € D*4%1(€2) (smooth
forms with compact support in ), we have

(77,0()@ = (w,ﬁqﬂ[a})w. (2.6)
If it exists, the form 7 is uniquely determined since the space D%471(Q) is dense in
LY%7T1(Q), and we write Dglw] = 7.

The operator (ﬁq,Dom(Eq)) is closed, densely defined, and is a natural ex-
tension of the differential operator 9,. Thus if w € £(2)% N L?p’q(Q) and if
Oglw] € LYTTH(Q), then 1 = J,[w] satisfies equation (2.6), and so w € Dom(D,)
with Dy[w] = 94[w]. The operator D, is densely defined since the space D%?((2)
is certainly dense in L?/;Q(Q) and D%(2) C Dom(D,). Finally, (Dg,Dom(Dy)) is
closed since if w,, € Dom(D,) and if w,, — wp in L?b’q and Dglwn] — no € LYTT(Q),
then for any o € D%4+1(Q) we have

(10, a)(p = nllm (ﬁq[wn],a)@ = nlin;o (wn,ﬁqi_l[a])w = (wo, 19q+1[oz])w.

Thus wy € Dom(D,) and D,,[wo] = no.

In fact, we can say more about the domain of Dj.

LEMMA 2.14. The space Si’q(Q)o is dense in Dom(D,) in the graph norm
|| w Hw + || Dglw] Hw' Precisely, given w € Dom(Dy), there is a sequence {wy} in
E%4(Q)g so that

lim Hw—wnszo, and

n—oo

nh_{r;o ||§q[wi _gq[wni H%, =0

Since the Hilbert space operator (Eq, Dom(ﬁq)) is closed and densely defined,
it follows that it has a closed, densely defined adjoint ﬁ;. Recall that

Dom(ﬁZ) = {77 € L%‘H’l(ﬂ) “(Eq[w],n)A <Cy||w ||¢ for all w € Dom(ﬁq)} )

—_— —%

and that for w € Dom(D,) and 7 € Dom(D,,
(w.Dylm),, = (Dylwl.n),.- 2.7)

) we have

It is easy to calculate the action of ﬁ; on forms which are smooth on €2, and to

characterize the elements of the domain of 5; which are smooth up to the boundary.
LEMMA 2.15.
(1) Ifn € E%FL(Q) N Dom(ﬁz), then EZ ] = Yg41(n)-

(2) If n € EQ) (), then n € Dom(EZ) if and only if Op V n(z) = 0 for
all z € 0Q.

GIVE PROOF
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PROOF. Let n € £%411(Q) N Dom(D, ) Since D*4(2) C Dom(D,), for every
w € D%4(Q) we have

@), = Dyl ), = (D),
But according to (2) in Proposition 2.8, we also have

(5(1 [w]v 77)(/, = (wv 7~9q+1[77])w'
Since D%9(Q) is dense, it follows that ﬁ; ] = Yg41[n]-

Next, suppose n € E(Q)T7(Q)N Dom(ﬁz). Then for every w € £(Q)99(Q) C
Dom(D,), we have

= —_ *

(aq{w]vn)go = (Dq[w]ﬂ?)w = (wvﬁq[n])w = (wvﬁq+1[77])¢'

Then according to (3) in Proposition 2.8 we have dp V 1 = 0 on 9.
Conversely, if n € £(Q)74(Q) and dp V7 = 0 on N, then according to (1) in
Proposition 2.8, for every w € £(Q)79(2) we have

(Eq[w]vn)y, = (gq[w]vn)g, = (wvﬁq-ﬁ-l[n])wv

Now let wy € Dom(D,), and let {w,} C £(Q )0 ! be an approximating sequence as
in Lemma 2.14. Then

|(Dylw]m) | = lim [(Dylwn],n),|
= lim |(Wm19¢1+1[77])¢’
= |(w0719q+1[77})¢|

< |[Farall I, [[wo |-

It follows that 7 € Dom(ﬁZ), with Dy[n] = 9441[n], and this completes the proof.
(I

We give a special name to the smooth functions which satisfy this boundary
condition.

DEFINITION 2.16.  N%9(Q) = {w € &N )8p/\w z) =0 forall z € 8(2}

THEOREM 2.17 The space N4 is dense in Dom(ﬁq)ﬂDom(ﬁ* 1) in the graph

norm ||w Hw"‘” H +||Dq 1w ]H)\ Precisely, if w € Dom(D, )ﬂDom(Dq 1)
there exists a sequence {wn} in NO4(Q) such that
nli_)n;on—wnHw:O, and

lim Hﬁ w _gq[wn]H@:O

lim HDq 1w] — Yqlw

n— 00 ||)‘
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2.8. The Neumann operator.

As a corollary of the density established in Theorem 2.17, we have

THEOREM 2.18. Suppose that € is a bounded psiudo—convezriuith C?-boundary.
Suppose the diameter of Q is D. Then if w € Dom(Dg,) N DOm(DZ_l), we have

]2y < 4D%a7 [13afed 32 ) + 119401 (-

PrROOF. We can assume that € lies in the Euclidean ball in C™ centered at 0
with radius D/2. Then take A\(z) = 4 D72|z|2. In this case A = 4D~2, and this
completes the proof. (Il

Now it follows from our discussion in Section 2.2 that we have the following
solution to the 9-Neumann problem. Let D, be the Hilbert space extension of the
operator 9,. Put

DOI(Q) = {w e LO9(Q) ‘w € Dom(D,) N Dom(b;_l)}
Dom(0,) = yw € DY) ‘Eq [w] € Dom(ﬁZ) and ﬁ;fl[w] € Dom(Dq,l)}
Oglw] = Dgo1 D,_y[w] + D, Dylw] for w € Dom(d,).

THEOREM 2.19. Let Q C C" be a bounded pseudo-convex domain with C2-
boundary. Let1 < q < n. Then the ranges of the operators D,_1 and Dz are closed
subspaces of L%, and

R(qul) = N(Dg) = ]\[(ﬁ;ﬂ—l)l
R(D,) = N(Dy_1) = N(Dy)*
L*9(Q) = N(D,) & N(D,_,).
There is a bounded, self-adjoint operator Ny : L%9(Q) — L%9(Q2) which is one-to-
one, and which has the following properties:

N, : L*? — Dom(O,) (a

—_— — —%

)

Ny : N(Dy) — N(Dy) N Dom(D,_), (2.8)
N,:N(D,_,) — N(D,_,) N Dom(D,); (2.9)

O, [Nyw]] = w for all w € L™, (2.10)

Ny [Ow]] = w for all w € Dom(0OJ); (2.11)

|| Ny [w] ||L2(Q) <4D*q ! |w ||L2(Q)' (2.12)



CHAPTER 9

Appendix on background material

In this chapter we gather together a summary of material that we use in the
rest of the book.

1. Distributions, Fourier transforms, and Fundamental Solutions

The purpose of this section is to establish some standard terminology that will
be used in the rest of the book, and to recall the definitions and basic properties
of the spaces D(U) and E(U) of infinitely differentiable functions defined on open
subsets U C R™. We also briefly discuss the properties of the dual spaces D'(U)
and &' (U), which are spaces of distributions. We give the definition of the Fourier
transform, and then use this to define the scale of Sobolev spaces H*(R™). Fi-
nally, we discuss the concepts of fundamental solution and parametriz for a partial
differential operator.

1.1. Notation.

If X is a topological space and if E C X is a subset, we denote by E, E°, and
OF the closure, the interior, and the boundary of E. If U C X is open, a subset
E C U is relatively compact if E C U and if E is compact. A subset Q C R" is
a domain if it is open and connected. We say that a domain  has C™-smooth
boundary if there is an open neighborhood U of 92 and an m-times continuously
differentiable function p: U — R so that

(a) QNU = {ZEEU‘,O(Z‘) <O};
(b) The gradient Vp(z) #0 for all z € U.

The function p is called a defining function. If p is infinitely differentiable, we
sometimes say that (2 has smooth boundary.

We shall use standard multi-index notation. Let Z; = {0, 1, ...} be the set of
non-negaitve integers. A multi-index a on R™ is an n-tuple o = (a1, ..., a,) € Z7.
If x = (z1,...,2,) € R™ and if « is an n-tuple,

|Oé|:OZ1+"'+O£n

al =agl- !

% =it adn (1.1)
9 — ololp _ ot tam

w Ox> Oz ---Oxp”

1.2. Spaces of smooth functions.

Let U C R™ be open. The space C™(U) is the space of m-times continuously
differentiable functions on U and C*°(U) is the space of infinitely differentiable

243
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functions on U. When we need to distinguish between real- and (possibly) complex-
valued functions on U, we write CR°(U) or C&°(U). For every m € Z,, C™(U) C
CmTHU) D C*°(U). We focus primarily on the space C>°(U).

If K C U is a compact set, m € Z, and f € C*(U), let

| = sup sup |95 (x) (1.2)
’ €K

lal<m =

Then ‘ | . | |K ., 1s a semi-norm on the space C*>(U). We can define a topology on this

space so that a sequence {f,} C C*°(U) converges to a limit function fy € C*(U)
if and only if lim,—oo || fo — fu|] xm = 0 for every compact subset K C Q and
for every non-negative integer m. The space C*°(U) equipped with this topology
is denoted by £(U). It is easy to check that if {f,} C £(U) is a sequence which
is Cauchy in every semi-norm H . , then the sequence converges to a limit
foe&U).

If f € C*(U), the support of f is the closure of the set of points x € U
such that f(z) # 0. The support of f is denoted by suppt(f). Then C§°(U) is
the subspace of C*°(U) consisting of functions with compact support. There is a
topology on C§°(U) such that a sequence {f1, fn,--, fn,...} C C°(U) converges
to a limit function fy € C3°(U) if and only there is a compact set K C U so that
suppt(f,) C K for all n > 0 and lim,,_, H fo—1n ||K ., = 0 for every non-negative
integer m. The space C5°(U) with this topology is denoted by D(U). It should be
noted that this topology is not the same as the topology that C§°(U) naturally
inherits as a subspace of £(U). However, with the given topologies on the two
spaces, the inclusion map D(U) — £(U) is continuous. Note that if x € C§°(U),
then the mapping R, : £(U) — D(U) given by R, [f] = x f is continuous.

||K,m

1.3. Spaces of distributions.

The space of distributions on U is the dual space D'(U) of continuous real-
or complex-valued continuous linear functionals on D(U). The pairing between a
distribution 7' € D’(U) and a smooth, compactly supported function ¢ € D(U) is
denoted by (T, ). Of course, if f € L}, (U), then f induces a distribution T whose
action is given by (T, ¢) = [, f(x) ¢() dz. Abusing notation, we shall frequently
denote the distribution T simply by f. We shall also engage in another, perhaps
more serious abuse by sometimes writing the action of a distribution v € D'(U) on
a function ¢ € D(U) by [, u(x) () dz.

The space D(U) is closed under the operation of multiplication by a smooth
function in £(U), and also under differentiation. By duality, this allows us to define
the product of a distribution and a smooth function, and to define the derivative
of a distribution. Thus let T' € D'(U) be a distribution. If a € £(U) is a smooth
function, the product aT is the distribution defined by the requirement that

(aT, @) = (T, ap). (1.3)
For every multi-index o € Z" , the distribution 9*T' is defined by the requirement
that
(0°T, ) = (—1)lNT, 0%). (1.4)
In particular, if

Plpl(@) = ) aa(2)d7[e](x) (1.5)

lal<M
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is a linear partial differential operator of order M with coefficients {an} C E(U)
and if v € D'(U) is a distribution, then P[u] is also a distribution on U whose
action on a test function ¢ € £(U) is given by

<P[’LLLQO> = <U, Z a?[aagop' (16)
la|<M
Note that the operator
Plel() = > 0 [aa](x) (1.7)
|| <M

is also a linear partial differential operator of order M. It is called the formal
adjoint of P. Thus equation (1.6) is equivalent to the statement

(Plul, ) = (u, P*[¢]). (1.6)
If T € D'(U), the support of T is the smallest closed set E C U such that if
¢ € C5°(U—E), then (T, ¢) = 0. We again denote the support of a distribution T by
suppt(T"). The dual space &'(U) is the space of continuous real- or complex-valued
linear functionals on £(U). Since the inclusion map D(U) — £(U) is continuous,
every continuous linear functional on £(U) restricts to a continuous linear functional
on D(U), so there is an induced mapping £&'(U) — D’(U). It is not hard to see that
this mapping is one-to-one, so £'(U) is a subspace of distributions on U. In fact,
E'(U) is exactly the space of distributions on U with compact support.
The Schwartz space S(R™) is the space of complex-valued infinitely differen-
tiable functions ¢ defined on R™ such that for every multi-index o and every positive
integer N it follows that for all z € R"”

|02 p(x)] < Cap(1+ |2])~. (1.8)
The collection of semi-norms

1ol = su @+ le) V02 f ()] (1.9)

allows us to put a topology on S(R™) so that a sequence {p,} C S(R™) converges
to a limit ¢g if and only if lim, || Yo — ¥n = 0 for every a and N. It is

easy to see that S(R™) C L'(R").

a,N

1.4. The Fourier Transform.

We briefly recall some basic facts about the Fourier transform. This material
can be found in many places, such as [SWT71]. For f € L'(R"), the Fourier

transform F[f] = J?is defined by the absolutely convergent integral

FUNQ = Fie) = [ e fla) d, (1.10)
where x - £ = 2161 + -+ + 2,&,. The inverse Fourier transform F~1[f] = fV is
FUA@ = @) = [ @ ds (111

If ¢ € S(R™), one can show that F[p] € S(R™), and the Fourier transform is a
continuous and invertible linear mapping of S(R™) to itself. The inversion formula
asserts that

ola) = FFlel)(e) = [ () . (112)
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If p,1 € S(R™), Fubini’s theorem shows that

[ e@b@de= [ p) i) i (1.13)

Also, if ¢ € S(R™), the Plancherel formula asserts that

2 ~ 12
ellL@n = /R |o(2)|* d = /R 217 d = || 8] 2n): (1.14)
and it follows that the Fourier transform extends by continuity to an isometry of

L?(R™).
For ¢ € S(R™), define

M?[p)(z) = (1 + 4n°|a]*) Ep(2). (1.15)

Then it is easy to check that M*® maps the space S(R™) to itself, and is continuous
and invertible with inverse M ~*°. Hence we can define a mapping A® : S(R") —
S(R™) by setting A* = F~1M*F, or explicitly

Ao[g)(6) = (14 47%I€1) % @(¢) (1.16)

The space of tempered distributions S'(R™) is the space of continuous real- or
complex-valued linear functionals on S(R™). It is clear that every f € L2(R") de-
fines a tempered distribution by setting (T, ¢) = [5. f(z) () dz for ¢ € S(R™).
Since the Fourier transform is continuous and invertible on S(R™), it is possible to
extend the defintion of the Fourier transform to the space of tempered distributions
by setting

(T, o) =(T,$) (1.17)

for T € §'(R™) and ¢ € S(R™). We can also extend the mapping A® to the space
S’(R™) by setting

(AT, ) = (T, \°p). (1.18)
We then have AST = M*T since
(AT, ) = (AT, 3) = (T, A*B) = (T, (A*P)") = (T, M*p) = (M°T, ). (1.19)

For every s € R", the Sobolev space H*(R™) is the subspace of tempered dis-
tributions 7' € S’(R™) such that AT € L?(R™). This means that 7' is given by a
locally integrable function and

2 U S
1712 = [ TP +an?lef) de < . (1.20)
In particular. H°(R") = L?(R"), and we often write the norm of f € L*(R") as

17112 ey = 11 71l

1.5. Fundamental solutions and parametrices.

We can now define the concept of a fundamental solution or a parametrix for
a partial differential operator P given in equation (1.5).
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DEFINITION 1.1.

(1) A distribution K € D'(Q x Q) is a fundamental solution for P if for all
©, % € D(Q) we have

(K, ® Plo]) = (K, P*[¢] ® o) = /Q (@) (z) dz.

Equivalently, a continuous linear mappping K : D(Q) — D'(Q) is a fun-
damental solution for the differential operator P if
PIK[¢l] = K[Plpl] = ¢
for all p € D(Q).
(2) A continuous linear mapping S : D(Q2) — D’(Q) is infinitely smoothing if
the Schwartz kernel S € C*(2 x Q).

(3) A distribution K € D'(Q x Q) is a parametrix for P if for all p,1 € D(Q)
we have

(K, ® Plg]) = / o@ (@) e+ [ (@) ely) Si(e.y) dedy, and
Q QxQ

(K P e) = [ p@)v@ide+ [ ula) o) Sale.) dedy
X
where S1,S2 € C*(Q x Q). FEquivalenty, a continuous linear mappping
K :D(Q) — D'(Q) is a parametrix for the differential operator P if

PIKlgl] = o+ Silp]l and K[Plg]] = o+ Saly]

for all ¢ € D(QY), where S1,Sa are infinitely smoothing operators. Equiv-
alently,

Note that K € D'(Q x Q) is a fundamental solution for P if and only if
P, @IK]=1®Pj[K]=0
where § is the distribution on Q x Q given by

<5790®1/)>:/Qg0(z)¢(:r)dx.

Here P, ®1I or I® P indicates that the operator P or P is applied in the z-variables
with y fixed, or in the y-variables with x fixed. In particular, a fundamental solution
is not unique. For example, one can add to a given fundamental solution K once
can add any distribution L such that P, ® I[L] = I ® P;[L] = 0.

As we will see, properties of fundamental solutions or parametrices for P, if they
exist, can provide information about the existence and the regularity of solutions
u to the equation Plu] = g. In particular, an explicit knowledge of the distribution
K, or even estimates on the size of K and its derivatives away from its singularities,
can be used to prove estimates for solution in a variety of function spaces.



CHAPTER 10

Pseudodifferential operators

We recall the definitions and basic properties of standard pseudodifferential
operators on R"™. Most of this material can be found in [Ste93], Chapter VI.

Throughout this chapter we will use the following notation. If £ C R™, the
closure of E is denoted by E, the interior of E is denoted by E° or int(E), and the
boundary of E is denoted by 0F. A subset 2 C R"™ is a domain if it is open and
connected. If U C R™ is open, a subset E C U is relatively compact if E C U and
if E is compact. This is written E € U.

We shall also use standard multi-index notation. Z; = {0, 1, ...} is the set of
non-negaitve integers. A multi-index a on R™ is an n-tuple o = (a1, ..., a,) € Z7.
We write

ol =a1 + -+ ay

al=oq! - ay!
x® =aftxin (0.21)
oot tan
o L4

(p = —-—
Ozt -+ - Oxpn

1. Functions, distributions, and Fourier transforms

In this section we recall the definitions and basic properties of the spaces D(U)
and E(U) of infinitely differentiable functions defined on open subsets U C R™. We
also discuss the properties of the dual spaces D/(U) and &£’ (U), which are spaces of
distributions. We give the definition of the Fourier transform, and then use this to
define the scale of Sobolev spaces H*(R™).

1.1. Spaces of smooth functions. Let U C R™ be open. The space C*°(U)
is the space of infinitely differentiable functions on U. When we need to distinguish
between real- and (possibly) complex-valued functions on U, we write Cg°(U) or
C&(U). If K C U is a compact set and m € Z, let

[l = sup sup |95 ¢(x)| (1.1)
’ €K

lo|<m @

Then ‘ | . | |K7m is a semi-norm on the space C*(U). We can define a topology on this
space so that a sequence {f,} C C*(U) converges to a limit function fy € C*(U)
if and only if lim, oo || fo — fu|] xm = 0 for every compact subset K C Q and
for every non-negative integer m. The space C*°(U) equipped with this topology
is denoted by £(U). It is easy to check that if {f,} C £(U) is a sequence which
is Cauchy in every semi-norm H . , then the sequence converges to a limit

fo € E(U).

HK,m

248
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If f € £(U), the support of f is the closure of the set of points x € U such that
f(z) # 0. The support of f is denoted by suppt(f). Then C5°(U) is the subspace of
E(U) consisting of functions with compact support. There is a topology on C§°(U)
such that a sequence {f1, fn,..-, fn,...} C Cg°(U) converges to a limit function
fo € C§°(U) if and only there is a compact set K C U so that suppt(f,) C K
for all n > 0 and limy oo || fo — fn || xm = 0 for every non-negative integer m.
The space C3°(U) with this topology is denoted by D(U). It should be noted that
this topology is not the same as the topology that C§°(U) naturally inherits as
a subspace of £(U). However, with the given topologies on the two spaces, the
inclusion map D(U) — &£(U) is continuous. Note that if x € C§°(U), then the
mapping R, : E(U) — D(U) given by R, [f] = x f is continuous.

1.2. Spaces of distributions. The space of distributions on U is the dual
space D'(U) of continuous real- or complex-valued continuous linear functionals on
D(U). The pairing between a distribution T' € D'(U) and a smooth, compactly
supported function ¢ € D(U) is denoted by (T, ¢). Of course, if f € LlOC(U) then
f induces a distribution Ty whose action is given by <Tf g0> fU x) d.
Abusing notation, we shall frequently denote the distribution T slmply by f We
shall also engage in another, perhaps more serious abuse by sometimes writing the
action of a distribution u € D’(U) on a function ¢ € D(U) by [, u(z) p(z) dx.

The space D(U) is closed under the operation of multiplication by a smooth
function in £(U), and also under differentiation. By duality, this allows us to define
the product of a distribution and a smooth function, and to define the derivative
of a distribution. Thus let T' € D'(U) be a distribution. If a € £(U) is a smooth
function, the product a7 is the distribution defined by the requirement that

(aT, ) = (T, ap). (1.2)

For every multi-index o € Z, the distribution 9°7 is defined by the requirement
that

(0°T, ) = (-1)*NT,0%p). (1.3)

In particular, if P = E|a\§ M @a0% is a linear partial differential operator of order
M with coefficients {a,} C £(U) and if u € D'(U) is a distribution, then P[u] is
also a distribution on U.

If T € D'(U), the support of T is the smallest closed set E C U such that if
v € CP(U - E), then <T, <p> = (0. We again denote the support of a distribution T’
by suppt(T).

The dual space &'(U) is the space of continuous real- or complex-valued linear
functionals on £(U). Since the inclusion map D(U) — £(U) is continuous, every
continuous linear functional on £(U) restricts to a continuous linear functional on
D(U), so there is an induced mapping £'(U) — D'(U). It is not hard to see that
this mapping is one-to-one, so £'(U) is a subspace of distributions on U. In fact,
E'(U) is exactly the space of distributions on U with compact support.

The Schwartz space S(R™) is the space of complex-valued infinitely differen-
tiable functions ¢ defined on R™ such that for every multi-index o and every positive
integer N it follows that for all x € R"

|02 ¢(2)] < Cap(l+]al)™ (1.4)
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The collection of semi-norms
1 1la,w = 80 |1+ |02 f ()] (1.5)

allows us to put a topology on S(R™) so that a sequence {p,} C S(R™) converges
to a limit ¢g if and only if lim, || Yo — ¥n = 0 for every o and N. It is
easy to see that S(R™) C L'(R").

For f € L'*(R"), the Fourier transform F|f] is defined by the absolutely con-
vergent integral

a,N

FUNQ =Fle) = [ < fa)da, (1.6

where < x,& >= x1& 4+ -+ 1p&n. If ¢ € S(R™), one can show that Flg] € S(R™),
and the Fourier transform is a continuous and invertible linear mapping of S(R™) to
itself. The inverse to the Fourier transform is given for ¢ € S(R™) by the inversion
formula

o(z) = F@l(x) = / STIHE 5(e) de. (L.7)

n

If p,¢ € S(R™), Fubini’s theorem shows that

[ e@i@de= [ awvwan (1.9

Also, if ¢ € S(R™), the Plancherel formula asserts that

e o = [ lo@Pde= [ 15OP & =10 10g, (0

and it follows that the Fourier transform extends by continuity to an isometry of
L2(R™).

Define M*[p)(x) = (1 + 4n2[x|?)2 if ¢ € S(R™). Then it is easy to check
that M* maps the space S(R™) to itself, and is continuous and invertible with
inverse M~°. Hence we can define a mapping A® : S(R”) — S(R™) by setting
A® = F~1M*F, or explicitly

KS[R1(6) = (1 +47%1E%)% @(¢) (1.10)

The space of tempered distributions S'(R™) is the space of continuous real- or
complex-valued linear functionals on S(R™). It is clear that every f € L2(R™) de-
fines a tempered distribution by setting (T, ¢) = [o. f(z) () dz for ¢ € S(R™).
Since the Fourier transform is continuous and invertible on S(R™), it is possible to
extend the defintion of the Fourier transform to the space of tempered distributions
by setting

(T,0) = (T,) (1.11)
for T € S'(R™) and ¢ € S(R™). We can also extend the mapping A® to the space
S'(R™) by setting

(AT, ) = (T, \°p). (1.12)
Note that we then have

(AT, ) = (AT, 3) = (T, A*3) = (1.13)
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For every s € R™, the Sobolev space H*(R™) is the subspace of tempered dis-
tributions 7' € S’(R™) such that AT € L?(R™). This means that 7' is given by a
locally integrable function and

1712 = [ BP0 +an?lef) de < . (1.14)

In particular. H°(R") = L?(R"), and we often write the norm of f € L?(R") as
1/ 12y = 11 o

2. Pseudodifferential Operators

The space S™ of standard symbols of order m € R on R" is the space of
functions a € C°>°(R™) with the property that for every pair of multi-indices o and
3 there is a constant C,, g so that for all (x,£) € R® x R",

|0g0%a(z,€)| < Cays(1+ [l 100, (2.1)
The collection of norms

Papla) = sup  (1+[¢) " |0g0 a(x, &) (2.2)
(z,£)ER™ X R"
make S™ into a Fréchet space.
If a € 8™, the pseudodifferential operator a(x, D) with symbol a defined on
the Schwartz space S(R™) is given by

alw D)f)w) = [ ala,) Fe) . (23)
This integral converges absolutely since f € S implies that the Fourier transform
fe S(R™) and thus has rapid decay. It is easy to check that a(z, D)[f] is infinitely
differentiable and all derivatives have rapid decay. Thus a(z, D) : S(R™) — S(R"™).
By duality, a(z, D) defines a mapping S'(R") — S’(R™), and so a(x, D) is defined
on the space of tempered distributions.

We denote the space of pseudodifferential operators of order m by OP™(R"),
and we set

OPR") = | J oP™(R™), (2.4)
meR
and
OP™@(R") = (] OP™R™). (2.5)
meR

If A€ OP(R"™), we write o(A) for the order of the operator A.
Let a € S™. For each € > 0, set

Kilwy) = [ em< v an,) e (26)
The integral is absolutely convergent. If x € C(R™ x R™), then the expression

(K,x) = lim K§(z,y) x(x,y) dz dy (2.7)
e—0 R™ xR"”
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exists, and defines a distribution K, on R™ x R™, which is the Schwartz kernel for
the operator a(z, D). That is, if ¢, € C§°(R™),

/n a(z, D)[¢](z) ¥(z) de = lim Ko (x,y)o(y) () dedy = <Ka,<p®1p>.

=0 J Jrn xR
We define a family of symbols A\* € S° by

A"(x,€) = (1+4m?[¢*)5. (2.8)
The corresponding pseudodifferential operator is denoted by A®, and we have
A[f1(€) = (1 +4n[¢%)% J(€) (2.9)

for each f € S(R™). When s is a positive even integer s = 2m, the Fourier inversion
formula shows that

AP f] = (1= Dg)™[f]- (2.10)
For any s € R we define the Sobolev space H*(R™) to be the subspace of tempered
distributions u € &'(R™) such that A®[u] € L?(R™). For u € H*(R"), set

lulls = || A°[u || A%fu (2.11)

||y = (A0 |lo-

2.1. Results.
2.1.1. The symbolic calculus.

The space OP(R™) is an algebra under composition, and is closed under taking
adjoints.

THEOREM 2.1. Let a; € S™ for j =1,2. Then there is a symbol b € S™m1+m2
so that

a1(xz, D) o as(x, D) = b(x, D). (2.12)
Moreover, the symbol b has an asymptotic expansion so that
1 8‘1a1 Baag _
b— € gmitma=N, 2.13
Z (2mi)lel ol 9> Dz (2.13)

o] <N
COROLLARY 2.2. Ifa; € S™ for j =1,2, the commutator
[a1(z, D), as(x, D)] = a1(x, D) o ag(x, D) — az(x, D) o a1 (x, D) (2.14)
is a pseudodifferential operator of order mi +mo — 1.

THEOREM 2.3. Let a € S™. Then there is a symbol b € S™ so that

a(xz,D)* = b(z, D). (2.15)
More precisely, if f,g € S(R™),
| apin@ @ = [ f@ieDE@ . (210)
Moreover, the symbol b has an asymptotic expansion so that
I pp— 0*a_  gm-w (2.17)

e (2mi)lel ol OExdz
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2.1.2. Continuity on Sobolev spaces.

Pseudodifferential operators induce bounded operators between appropriate
Sobolev spaces.

THEOREM 2.4. Let a € S°. Then a(x,D) : L*(R") — L*(R" is a bounded
operator, with norm Ha(:mD) ||0 depending on finitely many of the semi-norms

{Pap(a)}-

It follows from Theorem 2.1 that if a € S™, then the pseudodifferential op-
erators A®a(x, D) and a(x, D) A® are pseudodifferential operators of order m + s.
Combining this with the definition of the Sobolev spaces H*(R™) and Theorem 2.3,
we have

COROLLARY 2.5. Let b € S™. Then for every s € R the operator b(x, D) is a
bounded operator from H*(R™) to H*~™(R™). The norm of this operator depends
on s, m, and on finitely many of the semi-norms pq,g(b).

2.1.3. Pseudolocality.

THEOREM 2.6. If a € 8™, the Schwartz kernel K, for the operator a(x, D) is
of class C*™ away from the diagonal of R™ x R™. Moreover, for all multi-indices «
and B and every N > 0 with m+n + |a| + |6+ N >0, if v # y,

|050) Ko(w,y)| < Cagn & —y| 7m0 182N, (2.18)

DEFINITION 2.7. Let a € S™. The operator a(x, D) is properly supported if
for every p € C§°(R™), the functions K.(x,y) ¢(y) and K, (z,y) ¢(x) have compact
support in R™ x R™. The space of properly supported pseudodifferential operators is
denoted by OP,(R™).

PRrROPOSITION 2.8. If ai(z, D) and as(x, D) are properly supported pseudodif-
ferential operators, then so are ai(x, D) o as(x,D) and aj(z,D)*. If a € S™, there
exists a € S™ so that a(x, D) is properly supported and a —a € OP~*°(R").
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