Department of Mathematics, University of Wisconsin-Madison Math 567 — Final Exam — Spring 2025

NAME :

(as it appears on Canvas)

EMAIL:

@wisc.edu

PROFESSOR: Mikhail Ivanov

INSTRUCTIONS:

Time: 120 minutes

- This exam contains 9 questions some with multiple parts, 9 pages (including the cover) for the total of 60 points. Read the problems carefully and budget your time wisely.
- **NO CALCULATORS** or other electronic devices are to be used. Turn off your phone so as to not disturb others.
- Please present your solutions in a clear manner. Cross out any writing that you do not wish to be graded.
- Justify your steps.
- If you use an additional page for a particular problem, be sure to **CLEARLY** indicate this on the problem's page so I know to look further.
- Please write your name on every page.
- You can safely assume that all unknown quantities in this exam, e.g. a, b, c, n, x, y, are always the integers.

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	5	5	5	5	5	5	8	5	17	60
Score:										

1. (5 points) Solve the system of congruences

$$\begin{cases} x \equiv 24 \pmod{30} \\ x \equiv 20 \pmod{48} \end{cases}$$

2. (5 points) Alice and Bob establish Diffie–Hellman key exchange with p = 29 and g = 2. Alice generate number 7 and receive number 5 from Bob. Which number Alice should send to Bob and what is their joint secret key?

First Name:	

3. (5 points) How many zeroes are there at the end of the decimal representation of 2025!?

4. (5 points) Express number $(-\sqrt{5})$ as a continuous fraction.

5. (5 points) Find all primes p such that $p^4 - 606$ is prime.

6. (5 points) Which numbers of the form 6^k , $k \in \mathbb{Z}$ are congruence numbers?

First Name: _____

Last Name: _____

7. Given an elliptic curve E over \mathbb{Z}_{29} and the base point P = (8, 10):

$$E: \quad y^2 = x^3 + 4x + 20 \bmod 29.$$

The order of this curve is known to be |E| = 37. Furthermore, an additional point $Q = 15 \cdot P = (14, 23)$ on this curve is given. **How to determine** the result of the following point additions/multiplications by using as few group operations as possible, i.e., make smart use of the known point Q?

(a) (2 points) $16 \cdot P$

(b) (2 points) $38 \cdot P$

(c) (2 points) $14 \cdot P + 4 \cdot Q$

(d) (2 points) $4 \cdot P + 9 \cdot Q$

8. (5 points) Let k and r be integers, k > 1, r > 1. Show that there is a prime number whose representation in base r has exactly k digits.

- 9. Consider equation $y^2 = x^3 4$.
 - (a) (5 points) Find all integer solutions with $|x| \le 6$ by brute force.

First Name: _____

(b) (6 points) Find all integer solutions with odd x.

(c) (6 points) Find all integer solutions with even x.

SCRATCH PAPER - DO NOT REMOVE FROM YOUR EXAM. SCRATCH WORK WILL NOT BE GRADED