Final Exam

Name: Email:

@wisc.edu

- Read the problems carefully and budget your time wisely.
- No calculators or other electronic devices, please. Turn off your phone.
- Please present your solutions in a clear manner. Justify your steps. A numerical answer without explanation cannot get credit. Cross out the writing that you do not wish to be graded on.

Problem	Points
1	/12
2	/12
3	/12
4	/12
5	/16
6	/12
7	/12
8	/12
Total	/100

1. Recall that the Gergonne point of a triangle is the point of intersection of the three segments joining the vertices of the triangle with points of tangency of the incircle with the opposite side. Let T be the Gergonne point of $\triangle ABC$. Show that if T coincides with the **incenter** of $\triangle ABC$, then the triangle must be equilateral.

2. In quadrilateral ABCD, suppose that $AB \parallel CD$ and $\angle B = \angle D$. Show that ABCD is a parallelogram.

3. Find angle between vectors \vec{a} and \vec{b} if $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $(\vec{a} - \vec{b})^2 + (2\vec{a} - \vec{b})^2 = 56$.

4. Show that cevians bisecting perimeter of the triangle are concurrent.

5. Let M be a point outside of circle ω with center O. The line OM intersects circle ω at points A and B with MA = a, MB = b. Tangent line from M touch ω at point C. Point H is the projection of point C on AB. Perpendicular line from O to AB intersects ω at P. Find lengths MO, MP, MC and MH.

6. Let ω be a circle, having an arm of right angled triangle as a diameter. The circle cut the hypotenuse at ratio 1 : 3. Find angles of the right angled triangle.

7. Given two equilateral triangles $\triangle ABC$ and $\triangle DEF$ and points M, N, P: MA = MD, NB = NE and PC = PF. Prove that $\triangle MNP$ is an equilateral triangle.

8. In the triangle ABC, let D, E and F are points on sides BC, AC, and AB, respectively. Let AF/FB = r, BD/DC = s, and CE/EA = t. Let X be the intersection of AD and BE, Y be the intersection of BE and CF, and Z be the intersection of CF and AD. Show, that

$$\frac{\mathcal{A}_{XYZ}}{\mathcal{A}_{ABC}} = \frac{(rst-1)^2}{(rs+r+1)(st+s+1)(tr+t+1)}.$$

(This page was intentionally left blank.)