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INTRODUCTION AND ACKNOWLEDGEMENTS

It is often the case that it is easier to prove some-
thing is consistent with ZFC than it is to prove it. This
is especially true when it is independent of ZFC.

The focus of this thesis is on subsets of the set of
real numbers and some of their properties. By a real number
we could mean an element of 2“ the Cantor space or w”
the Baire space (topologized as usual by basic open sets
of the form [s] = {fe w’: s € f} where

<w "

S E W = A{wm ). Also a countable structure is a real

number. For example, identify a structure < w,R ™ where

wx
2“*® . Even

R € w? a binary relation with an element of
an ultrafilter on w is just a set of real numbers with
some peculiar property.
Some important notation:
|A| wusually denotes the cardinality of the set A except
sometimes it's used to denote the universe of a model,
the rank of an element in a well-founded tree, or any
two of the above.

Ty = A} = clopen sets of reals.

£ = countable unions of M 1°

~a B<a~B"®
0 4 . . U o0
Ea countable intersections of B<a§8'

= complements of Z&'s.

0 =
Es GGGGG'

P(X) denotes the set of all subsets of X.
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PART I. ON THE LENGTH OF BOREL HIERARCHIES

Introduction.
For any separable metric space X and a with

1 < a<w define the Borel classes I  and 0. Let

~

z? be the class of open sets and for a > 1 Z& is the
class of countable unions of elements of
Uu{nl: g < a} where gg = {X - A: A¢e gg}. Hence

0 =
G, gz Gé!

Note that Z& = H£ = set of all Borel in X subsets of X.
Wy o~

The Baire order of X (ord(X)) is the least a < W, such

gf = open = G, Hg = closed = F, L) = F etc.

that every Borel in X subset of X 1is E& in X. Since
the Borel subsets of X are closed under complementation
we could equally well have defined ord(X) in terms of
E; in X or 9; = g; (\E; in X. Note also that for
X €R (the real numbers) ord(X) is the least a such
that for every Borel set A in R there is a §; in R
set B such that AN X =B N X. Also note that ord(X)
=1 iff X 1is discrete, ord(Q) = 2 where Q is the
space of rationals, and in general for X a countable
metric space ord(X) < 2 since every subset of X is
Eg(Fo) in X.

It is a classical theorem of Lebesgue (see [11})

that for any uncountable Polish (separable and completely




2
metrizable) space ord(X) = w,. The same is true for any
uncountable analytic (g:) space X since X has a per-
fect subspace (see [11]) and Borel hierarchies relativize.

The Baire order problem of Mazurkiewicz (see [19])
is: for what ordinals o does there exist X € R such
that ord(X) = a. Banach conjectured (see [29]) that for
any uncountable X € R the Baire order of X 1is w,. In
§3 we review the classically known results of Sierpinski,
Szpilrajn, and Poprougenko. We show that it is consistent

with ZFC that for each a < w there is an X €R with

1

ord(X) = a. In fact, we prove a theorem of Kunen's that
CH implies this. We also show that Banach's conjecture is
consistent with ZFC.

Given a set X and R a family of subsets of X

(R € P(X)) define for every a < w R, C P(X) as follows,

1

Let R, = R and for each o > 0 if a 1is even (odd) let

Ra be the family of countable intersections (unions) of
elements of U{RB: B < al}. Generalizing Mazurkiewicz's
question Kolmogorov (see [8]) asked: for what ordinals «
does there exist X and R € P(X) such that o is the
least such that Ra = le. Kolmogorov's question can be
generalized by replacing P(X) by an arbitrary o-algebra
(a countably complete boolean algebra). In §2 we prove that

for any o < w, there is a complete boolean algebra with

1
the countable chain condition which is countably generated




in exactly o steps. This answers a question of Tarski
who had noticed that the boolean algebras Borel(2") modulo
the ideal of meager sets and Borel(Zw) modulo the ideal of
measure zero sets are countably generated in exactly one
and two steps respectively (see [4]). Theorem 12 which is
due to Kunen shows that the same answer to Kolmogorov's
problem (every a < w,) follows from the solution of
Tarski's problem.

Let R = {A x B: A,B ©2”}. In §4 we show that for
any a, 2 < a < W, it is consistent with ZFC that «
is the least ordinal such that R, is the set of all sub-
sets of 2¥ x 2“, This answers a question of Mauldin [1].

For a < w, a set X E»Zw is a Q, set iff every

1

subset of X is Borel in X and ord(X) = a. It is shown

that it is consistent with ZFC that for every a < w,

there is a Qa set. In §4 we also show that there are
no Qw sets. However, we do show that it is consistent

1
with ZFC that there is an X g?z“ with ord(X) = w

1
and every X-projective set is Borel in X. This answers
a question of Ulam [31], p. 10.

Also in §4 we show that it is relatively consistent
with ZFC that the universal I; set is not in le
confirming a conjecture of Mansfield [13] who had shown
that the universal E} set is never in the o-algebra

generated by the rectangles with I sides.



Given R & P(X) 1let K(R) (the Kolmogorov number
of R) be the least o such that Ru = Rw . It is an
1
exercise to show that for o = 0,1, or 2 there is an

R € P({0,1}) with K(R) = a.

Proposition 1. Given R &€ P(X) then (a) if R 1is finite

or X 1is countable then K(R)} < 2, and (b) there exists
S € P(Y) such that cardinality of S and Y is < 2)&0
and K(R) = K(S).

v J = N U
(a) Note a<a, B<Bo 'Y<'Y0AG-,B,'Y fiao+Bo a<ag Y<Y0A0l,f(°')s"!

If R 1is finite or X countable then ffﬂ\

can always
ag>Bo y

be taken to be a countable intersection.

{(b) Let Va be the sets of rank less than ao. Choose a

a limit ordinal of uncountable cofinality so that

R,X ¢ Va' Let (M,e) be an elementary substructure of

(V,,e) containing R and X such that M'E€ M and

[ Mj 32N°. Now let Y =XNnM and S = {ANnY: Aec RAM} B
Mazurkiewicz's problem is equivalent to Kolmogorov's

problem for R a countable field of sets (that is closed

under finite intersection and complementation).



Proposition 2. (Sierpinski [23] also in [30]) Given

RC P(X) a countable field of sets there exists Y C 24
such that K(R) = ord(Y). (That is we may reduce to con-
sidering subsets Y of 2Y and relativizing the usual

Borel hierarchy on 2* to Y.)

Proof.
Let R = {An: ne w! and define F: X » 2 by F(x)(n) =1
iff x ¢ An. Put Y = F"X, .

Define K = {B: 2 < B8 < w and there is Xf:‘_mw

uncountable with ord(X) = B}. What can K be?

Proposition 3. K 1is a closed subset of w,

Proof.
Given A C w’ and ne w define nA = {xe w”: x(0) = n
and ﬂy € AVn(x(n + 1) = y(n)) . If X = r}gmnxn, then it

is readily seen that ord(X) = supbrd(ﬁgz newl M

Note that K 1is the same set of ordinals if we
replace w? by R the real numbers or 2%,  This is true
for R because if XS R and R - X 1is not dense then X
contains a nonempty interval, hence ordX) = w, 5 but R - X
dense means we may as well assume X €irrationals = u”.

- In the definition of K(R) = w for R € P(X) we

ignored the possibility that the hierarchy on R might



have exactly w 1levels, i.e. R = U{Rn: n < w} but
1

for all n<w R, # R, - In fact a Borel hierarchy of
1

length less than w must have a top level.

1

Proposition 4. If R € P(X) is a field of sets, » is a

countable limit ordinal, and Rw = U{Ra: a < A} then
1
R L ]

W,

there is a < A such that R,
Using the proof of Proposition 2 ;ve can assume X & 2% for
some « and R = {[s] A X: S: D+ 2 where D &€k is
finite} where [s] = {fe 2% f extends s}. For each

A in R there is T € x countable such that for any

w,

f and g in X if fpT = gpT, then f e A iff g e A.

In this case we say T supports A, Choose T € «

countable so that for any D &€ T finite and s: D » 2

if ord(X AN [s]) = X then for any o < A there is an A € [s]
in Ra+1-' Ra such that T supports A. By

taking an autohomeomorphism of 2" we may assume T = w.
Define L to be {s e 2°%; ord([s] /N X) = A},

Claim. For any s in L there are t and t in L
incompatible extensions of s.

Proof.

Without loss of generality assume s = ¢ and there is

fe 2 such that for every se L s € f, For each n < u



define tn in 2™ by tn(m) = f(m) for m< n and

tn(n) =1 - f(n). Then ([fl U U{[tn]: n <w} is a dis-
joint union covering 2%, If there is a B, < A such that
for all n < w ord([tn] Nn X) < g,, then for all A in
Rml supported by w A is in RBUH' This is because
Anif] =¢ or Xn [f] €A. But this contradicts the
choice of w.

On the other hand, if there is no such bound 8,

c .
choose Zn < [tn] with Zn £ Rujl so that for every

B < A there is n < w with Z, ¢ RB' But then

U{Z : n <w} is not in U{RS: B < A}. This proves the
claim and this last argument also proves the proposition

from the claim. -

Remark. If R &€ P(X) and R, =U{Rn: n < w} and there

1

is n, < @ such that {X - A: A e R} € Rnl then there
7]

is n, < w such that Rn = Rw . Willard [32] shows that
1 1

for any a <w, there are R and X with R € P(X)

such that a is the least ordinal such that

{X - A: Ae R} ER,.



§1. Some basic definitions and lemmas

For Tgwq"’ T is a well founded tree iff T is
a tree (if t€s e T then t e T) and is well founded
(for any f ¢ w® there is an n < w such that fM ¢ T).
For s € T define |s|T (the rank of s in T) by
|sip = sup{|t|T + 1: s€ te T}. Often we drop T and
let |s| = [s{p. T is normal of rank o means that:
(a) T 1is a well founded tree;
(b) |¢j{= o (¢ 1is the empty sequence);
(¢c) (seT .and Is] > 0) » (Vi < w(s”ie T));
B+ 1) » (Vi < w(|s”i] = B8));

{(d) (s € T and |s]|
() (s €T and |s| = X where X 1is a limit ordinal) =~
(Y8 < x{i: |s~i] < g} 1is finite and
Vi <owls i} > 2).
Note that for any n < w the tree 0™ is normal

of rank n. If oL for n < w are strictly increasing

to a (or a, = 8 where o =8 + 1) and for each n < w

T is normal of rank « then T = U{n®s: n < w and

n n’
S € Tn} is normal of rank ao. We often use Ta to denote

some fixed normal tree of rank «.

For any o <w, and YEX & w’ define the partial

1
order iPa(Y,X) (the order is given by inclusion). Fix someT



normal of rank a. pe P_(Y,X) iff p< (T - {6}) x

(Xv ) and (1) through (5) hold.

(1) p is finite.

(2) |s] = 0 implies that if (s,x) € p then x ¢ w W
and if (s,y) e p then x =y. (So if
T* = {s e T: |s| =0} then p P (T* x (Xv u %))
is a function from a finite subset of T* into m<w.)

(3) If |s| >0 and (s,x) € p then x e X

(4) If s and s~i e T and x e X then not both (s,x)
and (s~i,x) are in p, or if |s~i} = 0, not there
exists k ¢ w such that both (s,x) and (s~i,xtk)
are in p.

(5) If s of length one and (s,x) € p then x 1is not

in Y.

Let G be Pa(Y,X) generic. Working in the exten-

sion define for each s e T, G, € w”. For |s] 0, let

GS = {x e w': Jt e Wt € x and {(s,t)}e G}.

For |s| > 0, let G_ = {u"

- . i < .
s GSAl 1 (.0}

Note that for each s ¢ T

0
GS £ II.ISI'

Lemma 5. For each x in X and s in T - {¢} with

Is] > ofx e G, iff {(s,x)}e 6],



10
Proof.
Case 1. |s| = 1. (This is the argument from almost-
disjoint-sets forcing.)

If x¢ Gs then x ¢ Gs‘i for all 1ie w. Hence
for all k and i in w (s~i,xpk) ¢ G. Let
D= {p: (s,x) e p or there exist k and i such that
(s*i,xpk) € p}. D 1is dense since if (s,x) ¢ p if we
let {xl,xz,...,xn} € X be all the elements of ©* men-
tioned in p other than x, we can choose k sufficiently
large so that xFk # x;tk for all i < n. Also we can
choose j sufficiently large so that (s7j) 1is not
mentioned in p and then p M {(s~j,xrk)} e GPQ(Y,X)(\ D).
Since G A D is non-empty and x ¢ Gs”i all 1i; we
conclude that (s,x) e G.

If x¢ Gg then x & Gs“i for some 1i. Hence
there exist k such that (s”i,xPk) ¢ G so (s,x) ¢ G
by clause (4).

Case 2. |s| > 1.

If x ¢ G then x ¢ Gs'i for all i, and hence by
induction (s*i,x) ¢ G for all i. Let D = {p: (s,x) e p
or there exist i such that (s~i,x) ¢ pl. D 1is dense
hence (s,x) £ G.

If x¢ Gs then (s7i,x) ¢ G for some i (by

induction). Hence (s,x) ¢ G by clause (4). wm
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Corollary 6. Gpa X =Y (o>2)
If xe Y then for every n,((n),x) ¢ G (by clause 5).
Hence by Lemma 5 for every n,x ¢ G(n) and so x € G¢.
If x¢ Y then {p: there exists n such that ((n),x) € p}

-is dense hence there exists n such that x ¢ G(n)

(by Lemma 5) so x ¢ Gy B

Remarks:

(1) PO(X,Y) is trivial (the empty set).

(2) PI(X,Y) has nothing to do with X and Y and is
isomorphic as a partial order to the usual Cohen partial
order for adding a map from w to w.

(3).P2(X,Y) is another way of viewing Solovay's "almost-

¢isjoint-sets forcing'" (see [6]).

Lemma 7. PQ(X,Y) has the countable chain condition.

Proof.

Suppose by way of contradiction that there exist F in-
cluded in PQ(X,Y) of cardinality *tl of pairwise incom-
patible conditions. Since there are only countably many
finite subsets of T, we may assume there exist H €T - {¢}
finite so that every pe F  is included in

Hx (Xwv m<w). We may also assume that for every p e F

<w

and qe F and s e H with |s| =0 and t e w that
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{(s,t) e p iff (s,t) € q]. Now let (xg: B < Ny) be
all the elements of X occurring in members of F. For
each p in F 1let p*: Gp + P(H) be defined by
G. = {B: there exists s (s,xB) e p} and for B e G

P
p*(8) = {s: (s,xB) € p}. {p*: pe F} 1is a family of

P

incompatible conditions in the partial order Q, where

Q = {p: domain of p 1is a finite subset of )tl and
range of p is P(H)}, ordered by inclusion. Since it is
well known that Q has the countable chain condition we

have a contradiction. [JJj

Remarks:

1) If P = PG(Y,X) for any a,X, and Y then P 1is ab-
solutely c.c.c. That is to say if P e M| "ZFC" then
M= "P has c.c.c.". It follows that the direct sum of any
combination of the Pa's has the c.c.c. (direct sum of
Q¢ < ¥ is azEana = {p: p: k = agcha’ Ya < xpla) € Q, >

and p(a) = 0 for all but finitely many «a}. p > q iff
Valp(a) > q(a}).
2) We assume the fact that iterated c.c.c. forcing is c.c.c.
(Solovay-Tennenbaum [26]) and occasionally use notation and
facts from [26].

I would like to prove next an heuristic proposition.
Define P a partial order: pe P iff p 1is a finite

consistent set of sentences of the form '"[s] E_Gg,"x ¢ GH'
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or "x € nELGn" (where s e 0¥ and x e w’). Order IP

by inclusion. Any G P-generic determines a Hg set

N
nean'

Proposition. If G is [P-generic over M (transitive

countable model of ZFC) then M[G] |= "VF ¢ Fg(F A M ¥

ngm Gn A M)".

Proof.

Suppose not an& let Cn be closed for ne w and p e G be
such that p ”ﬂnéﬁcn AM= _AG aM. Itis easily seen

that P has c.c.c. (see the proof of Lemma 7). Thus
working in M we can find Q &€ P countable such that for
any 6 P-generic, ne w, and s ¢ w<w, if

M[G] = "[s] A C_ = 8" then 3Jqec Qa G such that

qll- "[s] - C, = #". Since Q is countable,we can find
ze wA M not mentioned in p or any condition in Q.

HI- "z e M C " we can find ne w

Since v {2z
P {z e new n

8
and § > p and not mentioning z so that

pvize ﬂENGn§|F "z ¢ C=", because the only other way to
mention z is "z ¢ G ". By taking m large enough
pvizyd Gﬁ} will be consistent, and since it extends p
it forces "z ¢ CH'" Let G be P-generic with

pwizég Gﬁ} in G. Let ke w and qe G ~Q be so
that ql|]- "[ztk] A C= = g". But pvqe {zce ngGn} is

consistent because q ¢ Q and so doesn't mention z. This
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is a contradiction since q ||- "z ¢ C," and

pvize VGl fkz2e Cq. n

Define for F Eww and pe P = lPu(Y,X),
|p] (F) = max({|s|: there is x ¢ F with (s,x) € p}).

This is called the rank of p over F.

Lemma 8. For all B > 1 and pe P there is pe P
compatible with p and |p|(F) < B + 1 so that for any
qe P with |q|(F) < 8, if p and q are compatible then
p and q are compatible.

First find an extension p;, > p so that for all
(s,x) e p and i <w if |s|] =X 1is a limit ordinal and
| s”i] < B + 1< X (there are only finitely many such s7i),
then there is a j < « such that (s®i*j,x) € p,. Now let
p = {(s,x) ¢ p,: is| <B +1 or xe Fl}. We check that P
has the requisite property. Suppose p and q are in-
compatible, p and gq are compatible, and |q|(F) < B.
Since B > 1 for all (s,x) e p if |s| < 1 then
(s,x) € ﬁ, hence since p and q are compatible there are

W

<m, i<w, and x e w such that (s,x) € p,

s,t & w
(t,x) e q, and s = t"1 or t = s?i.

Case 1, If xe F or |s| <8 + 1 then (s,x) ¢ p and
so p and q are incompatible.

Case 2. If x ¢ F and |s| > 8 + 1 then by definition of
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lq|(F) < 8, |t] < 8., So t =3s*i. If |s| =y + 1 for
some vy then |t| = y > B, contradiction. If |s| = A is
an infinite limit ordinal then by the construction of P,
there is j < w with (t”j,x) € p, and hence (t"j,x) e p

and so q and p are incompatible.

§2 Boolean Algebras

For B a complete boolean algebra, C included in

B, and a > 1 define Ea(C), HQ(C]:

r,(C) = {IS: s €C},
EG(C) = {IS: S E_BELHB(C)} for o > 1, and
Ha(C) = {-a: ac¢ Za(C)}

Define K(B) to be the least ordinal o such that there

exists a countable € included in B with EG(C) = B.

Theorem 9. For each a < w, there exists a complete
boolean algebra B with countable chain condition and
K(B) = a.

Proof.

For a = 0 take B to be any finite boolean algebra.
For a =1 take B to be (P(w),~,w) (or more ap-
propriately the regular open subsets of w” since this

corresponds to Cohen real forcing).
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For a, 2 < a <w,, B will be the complete boolean algebra
associated with g&-forcing. Let P =P _(#,X). Given a
partial order P there is a canonical way of constructing
a complete boolean algebra B in which P is densely
embedded (see [5]). Let [p]l denote the image of p e P
under this embedding j then if p > q then [p] < [q],
and for every ae¢ B if a # 0 then there is a p e P

such that [p] < a.

Lemma 10. Suppose F & X and C = {[p]: pe P and

{p]| (F) = 0}. For any B >1, pe P, and a in EB(C), if
[p] < a then there is q € P such that |[q|(F) < 8, q
and p are compatible, and [q] < a.

The proof is by induction on 8.

Case 1. B = 1. Suppose a = I{fql: qe T'} for some
rec. If ([p] <a then for qe I', p and q are

compatible.

Case 2. B a limit ordinal. Suppose a = I{b: b e I'} for
some T & U{Za(C): o < B}. Then there is ﬁ > p and

be r\za(C) for some o < B so that [ﬁ] < b. Now
apply the inductive hypothesis to ﬁ.

Case 3. B + 1. Suppose ({[p] < IZ{b: b e I'} for some

I €ng(C). Choose p < p so that for some be T,
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[p] < b. By Lemma 8 of §1, there exists q compatible
with p with |q|(F) < B + 1 and for any r with
|r|(F) < B8, if r and q are compatible then r and p
are compatible. This gq works since if [q] £ b then
there exists q, > q with [qo] < -b. Since -b ¢ ZB(C)
by induction there is q, compatible with gq, with
|q1|(F) <8 and [q,] ¢ -b. But then q, would be conm-
patible with p, contradicting [p] < b.
|

Now if X = ww, for example, the lemma shows that B
cannot be generated by a set of size less than the continuum
in fewer than a steps. For suppose D C€B has cardinality
less than |ww|,then there exists F € w” with X - F # ¢
and De I {[p]: |p|](F) = 0}). Let B <a, ze X - F, and
set - {¢} with |s|T = 8 (where T is the normal
a-tree used in the definition of Pa(¢,X)).
[{(s,2z)}] 1is not in ZB(D). Because if it were it would
be in EB(C) and so by the lemma there exists q with
lq| (F) < B and [q] € [{(s,z)}]. But since |s{T = 8 and
z ¢ F we know (s,z) ¢ q. Thus there are n (and m)
such that q V{(s”n,z)] (q v {(s”n,zpm) in case |s|T = 1)
is in P, but this is a contradiction.

Next we show B 1is countably generated in o steps.

Let C = {[p]: |p|(¢) = O},
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Claim. For all xe X and se T - {¢} if
IslT =g >1 then [{(s,x)}] 1is in RB(E).
Proof.
If |s|T = 1 then [{{(s,x)}] =0{-[{(s*n,xpm)}]: n,me w}.
If |s| > 1 then [{(s,x)}] = 0{-[{{(s*n,x)}]: ne w}. For
Ae B, -A={pe P: [PINA=¢g}. If (s,x) e p then
[p] N [{(5*n,x)}}] = P all n. On the other hand if
[pl1 A [{(s n,x)}] = @ for all n then easily

(s,x) € p. B

Now for any pe P [p} m{({(s,x)}]}: (s,x) £ p}, so
[p] € za(ﬁ). For any Ae B A = I{[p]l: pe Al so

Ae zu(E). Thus K(B)

| A~

o
We are now ready to consider the case of o = w, .
Let P = Pa(ﬂ,mm). Now the complete boolean algebra
associateg<ﬁith IP does take w, steps to close (for
suitable generators), however P 1is not countably generated
So we do as follows: Let (xa: @ < w,) be any set of w,
distinct elements of w®. Let *: 0¥ xu™ > u bea 1-1
map. Let Ta be the normal tree of rank o wused in the
construction of P_ = Pa(ﬂ,“m). Any G which is P -
generic is determined by G N {(s,t) e P_: |s|T = 0 and
te w®. That is amap y from T; = {5 ¢ Ta? ISITu = 0}
<w

to w . Now imagine G P-generic and let Yo T; + o0

be the
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maps determined by G. Let Y = {(*(s,t))“xa: y (s} =t and
a < w }. Form in the generic extension

Pz(ww - Y,mm) = Q (in both cases we mean Qw formed

in the ground model). The partial order we are interested

inis R=P *Q. P * Q= {(p,q): pec P and

pl-"q e Q). (f,8) > (p,q) iff (p>p and 4 > q)

pll-"q € Q" just in case whenever ((n),(*(s,t)”xa) is

in q then (s,t) e p(a). Now let IB be the complete

boolean algebra associated with R, Since R has the

countable chain condition so does 1B.

Claim: B 1is countably generated

Proof.

The idea is that once you know what the real is gotten
by Q you know all the reals gotten by P--and hence
everything. Let C = {[¢¢,q¥]: |q|(¢) = 0}. Then C is

countable and generates IB.

For C E:ww and (p,q) ¢ R define |(p,q)|(C) =

max {|s|T : there exists x ¢ C,(s,x) € p(a) and a < w,!
o

Lemma 11. Given F gww Vpe RV8>1 Jpe R
compatible with p,|B|(F) <8 + 1 and VYq|q|(F) < 8

Gf #f,q compatible then ©p,q are compatible).
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This is proved similarly to Lemma 8. Given
p =<p,,p,> extend each p,(a) < py(a) as in Lemma 8,
then take $ =<§,,,> ,8, = p, , B,(a) = {¢s,x?e p;(a):
|sf <8+ 1 or xe C}. Note that B |- ", e Q"
because requirements in Q are decided by rank zero

condition in .

From this lemma it is easily shown as before that

KB) > w Since B is countably generated and has the

r
countable chain condition we have K(B) < w,, hence
KB) = w,.

This ends the proof of the theorem. B

For any ®&-complete boolean algebra B the Sikorski-Loomis
theorem ([25], p. 93) says that B 1is isomorphic to a
o-field of subsets of some X modulo a o¢-ideal of

subsets of X.

Theorem 12.(Kunen) ¥ a < w, JX, R with R € P(X) such

that K(R) = a.
Proof.
By the Sikorski-Loomis theorem and Theorem 9 we can find

ﬁ,x, and I with R € P(X)/I where I 1is a G -ideal and

~ ~

a 1is the least ordinal such that Ra = Rwl. Define

RCP(X) by (A€ R iff A/I e R). It is easily shown
by induction on B < w, that (Ace RB iff A/I ¢ RB)'

Hence we have K(R) = a. -
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Let By, be the complete boolean algebra Borel((2")
module the ideal of meager sets.

Theorem 13. For any o, 1 < a < w,, there is a countable

19
C E]BM which is closed under finite conjunction and
complementation so that o 1is the least ordinal such that
2,(C) = By.
Proof.

Let x € w” be arbitrary and B be the complete boolean
algebra associated with Pa(¢,{x}). Note that if

|pl(¢) = 0 then -[p) = £{[q] fla}(@) = O and q ia in-
compatible with p}. Let C be the closure of

{[pl: |pl(¢) = 0} = E under finite boolean combinations.
Note that since 6 is closed under finite intersections

and -[p] 1is in Zl(a) for any p 1in E, we have that
1(C) = 26(6) for all 8 > 1. By Lemma 10 « is the least
such that Za(a) = B, Since Pa(¢,{x}) is countable and

separative, B 1is separable and nonatomic and hence

isomorphic to ]BM. B

Remark: The theorem above is false for a = w, since for

any countable C which generates BM, at some countable

stage every clopen set is generated and after one more

step all of ‘BM.
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§3 Countably generated Borel hierarchies

A set XE‘Z“’ is called a Luzin set iff X |is
uncountable and for every meager M, M A X 1is countable.
The analagous definition with measure zero in place of
meager is of a Sierpinski set [30]. For I a o-ideal
in Borel(Z“’) say X is I-Luzin iff [VAe Borel(Z“’)
(|JAn X| < 2,§° iff A e I)]. The following theorem was

first proved by Luzin [12] assuming I is the ideal of

meager sets and CH,

Theorem 14,

(MA) If I 4is an w, saturated o-ideal in Borel(Zw)
containing singletons then there exists an I-Luzin set.
Proof .

Lex «k = |2°|, {A s o< k} = I, and

{Ba: o < «} = Borel(2”) - I each set repeated «-many
times. Choose x, for a < k, so that for every a X,
is in Ba~(U{AB: B < a} U {XB: B < a}). Clearly if this can
be done then X = {x : a < « is I-Luzin. If «k =uw,

then it is trivial, and if MA then this follows from

Lemma 1, p. 158 of Martin-Solovay {14]. ]

The next theorem was proved by Poprougenko [19] and

Sierpinski (see [29]).
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Theorem 15. If X € 2 is a Luzin set then ord{X) = 3.
Proof.
Since every Borel set B has the property of Baire,
B=GA&M where G 1is open and M 1is meager. But
M a~X=F 1is countable hence Fo, so0o BaX= (G &F) nX
showing ord(X)< 3. Now choose s ¢ 2°Y  so that [s] ~ X
is uncountable and dense in [s]. If D € [s] n X is
countable and dense in ([s] then D # G a~ X for all

G ¢ GS’ so ord(X) > 3. |

A modern example of a Luzin set arises when one adds an
uncountable (in M) number of product generic Cohen reals
X to M a countable transitive model of ZFC.

M[X] |- "X 1is a Luzin set'. See also Kunen [{0] for more

on Luzin sets and MA.
In contrast to the boolean algebras Szpilrajn [29] showed:
Theorem 16. If X < 2® is a Siezpinski set then

ord(X) = 2,

Proof.

The proof is similar except note that any measurable set

is the union of an Fc set and a set of measure zero.
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The following theorem generalizes these classical
results using a lemma of Silver (see [14], p. 162) that
assuming MA every X € 2 with |X| < |2¥] is a Q

set, i.e. every subset of X 1is an F in X.

Theorem 17. (MA). There are uncountable X,Y C 2®  such

that ord(X) = 3 and ord(Y)

ZI

Proof.

Let X be 1I-Luzin where 1 1is the ideal of meager Borel
sets. For any meager set M choose F a meager Fc with
M<€F. By Silver's Lemma there exists F, an F_  set
such that FF AN FNAX=MNFNA X =MANX., Thus every
meager set intersected with X is an Fg set intersected

with X and this shows as before ord(X) = 3. For I the

ideal of measure zero sets analagous arguments work. ([}

After I had shown that it is consistent with ZFC
that Va < w, Ix Sww ord(X) = a, Kunen showed that in
fact CH implies Va <w, 3X €uw” ord(X) = a. The

following theorem sharpens his result slightly.

Theorem 18. If there exists a Luzin set, then for any

o such that 2 < a < w there is an X € 2  such that

—_— 1

ord(X) = a.
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Proof.

Let Y be a Luzin set with the property that for every Borel
set ASC2” (ANY is countable iff A is meager). Such
a set always exists if a Luzin set does. By Theorem 13
there is a C € B, countable such that C generates B,
in exactly o steps and C 1is closed under finite Boolean
combinations. Let C = {[Cn]: ne w}l where the C, are
Borel subsets of 2* and [C,] 1is the equivalence class
modulo meager of Cn. For x,y € Y define x ~ y iff

for all n<w (xc¢ Ch iff ye Cn). We claim that for
each x e 2Y the ~ equivalence class of x 1is meager.
Note that any element of the o-algebra generated by

{C,: n <w} 1is a union of ~ -equivalence. If some
equivalence class E is not meager, then there are K; and
K, disjoint nonmeager Borel sets such that E = K, VU K,.
Since {[Cn]: n < w} generates 'BM there are L and L,

in the o-algebra generated by {C,: n < w} such that
(L,1 = [K,] and [L;] = [K,]. For some 1, Li is disjoint
from E, but then L.1 is meager, contradiction. By
shrinking Y if necessary we may assume that for all

x,ye Y (x=y iff x~y). Let R={C N Y:nc« wl,
then R, contains every countable subset of Y. It is

easily seen that K(R) = a, so by Proposition 2, we are

done. -
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Theorem 19. (MA) For any o < w, there is an XC_:_w“’
such that o < ord(X) < a + 2.
For a < W let P& be the partial order Pa(ﬂ,ww). Let
21 be the normal tree of rank o« used in the definition
of P,. T*={se T: |S|Ta =0}. If G is P -generic,
then G 1is completely determined by the real Yg* T; > @Y
defined by yG(s) =t iff {(s,t)} € G. Each condition
pe Pa can be thought of as a statement about Yg- Let
¢, ={ye w’: y codes a map y: T* » w® and p(y) is

true}. It is easily seen that for any pe¢ Pa there is

: 0
R < @ such that Cp is EB'

Lemma 20, If ]Bu is the complete boolean algebra associated
with Pa and X, is w” with the topology generated by
basic open sets {Cp: pe P}, then B, 1is isomorphic to
the boolean algebra of regular open subsets of X, -

Proof .

Given A C X, a regular open set let D, = {pe P,: Cp C A}.

The map A~ D, is an isomorphism. g

A
Define Ia to the o-ideal generated by g& sets of the
form w“ - U{Cp: pe D} where D 1is a maximal antichain in

P_.
a

Lemma 21. a is the least ordinal such that for every Borel

A there is a Z; B such that A A B ¢ I,

-~
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Proof.
Note first that Ia is the ideal of meager subsets of Xa.
If D 1is a maximal antichain in P_, then LJ{Cp: p € D}
is open dense in Xa’ so every element of Ia is meager in
Xa. If C 1is closed nowhere dense in X, then let
Q={peP: Cp(\ C=¢}. Since Q is open dense in P ,
we can pick D € Q a maximal antichain. Thus
ce w? —U{Cp: p € D} and every meager subset of X, is
in Ia'

Since A is Borel in X, there is a regular open
set B in Xa such that (A A B) ¢ Ia' Let
Q={peP,: ¢, € B}. Pick D& Q an antichain which is
maximal with respect to being contained in Q. Since B is
regular open, B =\J{Cp: pe D, so B is £’ in w?. To
see that o 1is minimal note that for s ¢ T, with

w

|sIT = g8 there is no B Zg in w  with
o 4

(C(s,x) A B) € Ic'.' .

Now let X €w“ be I -Luzin. Then ord(X) > a
— a —

since for any A and B Borel in o® ((A A B) € 1, iff

}(A A B X| < |X]). But ord(X) < a + 2 follows from the
fact that for all B in I, there exists C in I A IJ,,

with B € C, just as in the proof of Theorem 17. This

concludes the proof of Theorem 19.
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Remarks:
(1) If V =L, then using the A} well ordering of L n ¥
we can get X € 2% a A! set with ord(X) = a for any
a <w, . If X is THj(or Ei) then X = A A M where A
is g; and Me I, so X cannot be I,-Luzin.
(2) A finer index can be given to a set X Eww by con-
sidering the classical Hausdorff difference hierarchies.
Aset C€uw"” isa B - n, set iff there exists

DY E E& for y < 8 such that the Dy's are decreasing and

DA = Y<RDY for A 1limit and C = U{DY - DY+1: Yy < B
and vy even}. It is a theorem of Hausdorff that
Bgs, = JIB - M2: B < w,} (see p. 417, 448 [11]).

It is also not hard to show,using a universal set argument,
that there exists a properly B8 - H; set for all

a,B < w,. Accordingly define H(X) to be the lexico-

graphical least pair (a,8) € w2 such that for any Borel

set A there exists B a B - H& set such that

~

ApaX=BaX. If X is a Luzin set (Sierpinski set)
then H(X) = (2,2) (H(X) = (2,1)). It is easily shown that

in Theorem 22 N |= "H(X ) = (a + 1,1)". It is not hard

a+1
to see that for C a countable closed set H(C) = (1,a)

where o 1is the Cantor-Bendixson rank of C.
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Theorem 22. It is relatively consistent with ZFC that for

any uncountable X € 2v ord(X) = w This can be

L
generalized to show that for any successor ordinal B8,

such that 2 < B8, < w it is consistent that

1?

{g: 3 X €2 uncountable ord(X) = B} = {B: B, < B < w }.

Remark: It is true in the model obtained that for any
uncountable separable metric space X the Borel hierarchy

on X has length w This is true, since if |X| = w,,

L
then since |[2°| > w, and X can be embedded into R”,

X must be zero dimensional. But any zero dimensional

space can be embedded into 2“.

To prove Theorem 22 let M be a countable transitive
model of IFC + GCH. Choose (“A: A <w,) in M so that
for all B8 < w, {X: a, = g} is unbounded in w,.

Define P for v < w, by induction P° = P, (6,2° " M),
P! = ]PY*QY where QY is a term in the forc;ng language
of P denoting Pa (¢,M[GY]t1 2¥) for any GY PY-
generic over M, andYat limits take the direct limit.

The elements of QY can be thought of as terms
denoting elements of YN M[GYJ via a natural coding.
Choose such a coding which has the property that for any
pP,q € QY (p and q are compatible iff there is n < w

such that p®’n and qPFn are seen to be compatible).

For Q€T and 6 a sentence we say that Q decides 8
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iff {p e P: there is a q e Q such that p > q and
(q [|- "e" or q ||~ "8")} 1is dense in P. For any
H e 2” define |p|(H) and [7|(H,p) for pe P’ and
t a P'Y term for an element of 2“ by induction on .
For pe P° =P, 4,2 A M), |p|l(H) = max{|s|p, : dxd¢H

¢ v}
(s,x) ¢ p}. For
pe P, |p|(H) = max{|p®v|(H),|p(v)| (H,p PY)}. For
P e P* where A is a limit, |p|(H) = max{|pPFvy]: v < A}.
For any 1, |T|(H,p) 1is the least B8 such that for any
ne w {qe¢ PY: q incompatible with p or |[q|(H) < 8}

decides '"n e T".

P*? =P is not a lattice however it does have one

similar property:

Lemma 23, Suppose G is Pa-generic over M and for
i<n<w q; € G and Iqu(H) < B8, then there is a q ¢ G
with |[q[(H) <8 and q < q; for all i < n.

Proof.

The proof is by induction on a, For a =0 ora a a
limit it is easy. So suppose a =8 + 1 and G = GB x GB
where GB is ]PB—generic over M. Find T &€ GB finite so
that for any qe ' with |q|](H) < B and for any i and
j less than n if (s,1) € q;(8) and (s"k,%) ¢ qj(B)



31
(or (s”k,t) ¢ qj(B) where t ¢ 2<w), then there is
r e such that r |- "t # 2(t ¢ 1)". By induction there
is q in Gy such that lq| (H) < 8, for all q e T
q >4, and for all i <n q > q; M 8. Define q(8) to
be equal to U {q;(B): i < n}. B

Lemma 24. Given P a countable subset of P* and Q,
a countable set of P“ terms for elements of Zw, there
exists H countable such that for every p ¢ P, and
te Q, I[p|(H) = |1](H,¢) = 0.

Proof .

This is easy using c.c.c. of P 'l
Let |p| = p (H) and |1t|(p) = || (H,p), for some fixed H.

Lemma 25. For each p e P* and B there exists p e P°
compatible with p, |p| < B + 1, and for every q ¢ P® with
lq| < B, if p and q are compatible, then p and q are
compatible.
Proof .
The proof is by induction on o. For a = 0 this is just
Lemma 8 of §81. For o 1limit it is easy. From now on assume
the Lemma is true for a.

Define for x,y ¢ Zw, X <.y iff

InWVm < n(x(m) = y(m) and x(n) < y(n)). This is the
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lexicographical order. For C € Y a nonempty closed set

let Xc be the lexicographically least element of C.

Claim 1. Let € be a term in P% and P, € P% with
|lp,| <8+ 1 such that p,  [|- "C is a nonempty closed
subset of 2Y". Suppose for every G Pa-generic with

p, € G, and s e 2°°(M[G] = "[s] N & = g iff

Jace G, |lql <8, and q |- "[sI]AC = g"). Then
Ixc|(P0) < B + 1.

Proof.
First we show that given any p € P* with P> Pys

if se 2%, p |- "[s]A C# @#" then there exist p ¢ P*

compatible with p, |p| < 8 + 1, and p |- "[sln C # #".

Let p' be as from Lemma 25 for p. By using Lemma 23
obtain p compatible with p,p >p', P > p,, and

|p| < B + 1. I claim p |- "[s]n € # @". Suppose not then
there exists G P%-generic, p ¢ G, and M[G] | "[s] A C

= @'". So there exists qe¢e¢ G, [q| < 8, and

q |- "[s] A € =@¢". But then since q 1is compatible with

p it is compatible with p' and hence with p, contradic-
tion. In order to show |[x.|(p,} < 8 + 1 it suffices to
show for every p > p, and n e w there exist P e r®

n

compatible with p, |[p| < B + 1, and there exists s ¢ 2

such that p |- "x.Pn = s". So given p and n find
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r>p and s e 2™ such that r |- "xctn = s". We have

just shown there exists § compatible with r with

|[r] <8 +1 and f [}- "[s]aA C# 8. Let G be
P%-generic containing r and r. For each t ¢ 2™ with
m+1l<n and for all k <m (t(k) = s(k) and

t(m) < s(m)) choose q, e G with |q.] < B and

dy - "[tlA C = g". (There are only finitely many such

t). Choose q ¢ G with |q| <8+ 1,q2>T, and q > q,

for each such t. (q exists by Lemma 23). Then

qlh'kcrn =s". 1R

For p and q compatible define pw q |- '"8" to mean
that for every r, if r > p and r > q then r |- "e".
For v a P* term for an element of 2° and p € P*,
define C(t,p) a P* term so that for any G which is
Pa-generic (it need not contain p) CG(T,p) = f\{D%: there
exist qe G, [q] < B, |%(@) <8, q |- "te 2°", p and

q are compatible, and pwv q |[|- "T¢€ D~"}. D 1is a uni-
versal N’ subset of 2% x 2 (¥ Ke ny dx e ™K = D, =

{y: (x,y) € D}).

Claim 2. Let p be given by Lemma 25 for p e P® (i.e.
for all q ¢ P* if |q| < B8, then if q and p are

compatible then q and p are compatible). Then p and
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C(t,p) satisfy the hypothesis of Claim 1 for p, and C.
Proof.

Suppose M[G] [ "[s] A C(t,p) = #'". By compactness there
exists n <w, q; ¢ G, 1y for i <n with |q;| <8

and ft;l(q;) <8 so that puaqy | "te DTi" and

M[G] = ”{\{DTi: i<n}AI([s] =9". Let T be a term for an
element of 2* so that D% = f\{DT‘: i<n} and qe G
with q > q; for i <n and |q < 8. (7T can be chosen
so that |7T|(q) < B assuming some nice properties of D).
Since q and p are compatible, q and p are compatible

and qw p |[- "te Dy'. Since M[G] |= "D n[s] = 8" by

compactness there exists m e w so that if ¢t = %gm then

for every x 2 t, x ¢ 2" D, ~ [s] = #. Since

|T](q) < 8 there exists 4 >q an element of G, |q]| < B8,
and qlF "Tpm = t"; hence qJ|F "[s] ~ C(t,p) = #". The
fact that pl} "C(t,p) ¥ #" follows from this since if not
there exists q compatible with p, |q| < 8, and

all- "[#] Ao C(t,p) = #". But then q 1is compatible with

p contradiction,
We now return to the proof of the o+ 1 step of Lemma 25.

Assume p e P! s given with the following

property:
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(*) there exists s_ce 2 for each 1t such that there
exist s with (s,t) € P(a) and |s| > 1. And these
s, have the property that g - "s . © 1" and whenever
(s,1), (5i,T) ¢ p(a) (or

(s i,t) € p(a) where t e 2°%) s. and s are in-

compatible (or S . and t are incompatible).

The set of p's with this property is dense in P!

it is enough to prove the Lemma 25 for them. Let
(s;,1;) for i <n be all (s,1) e p(a) with Is| > 1

and let T = (TgsTysenesTy ) (where

W . .
is some recursive coding). Let

=R
T

(oo )i (2 2
P, be as given from Lemma 25 for p o let
be the lexicographical least element of C(?,pra). By
Claim 1 and 2 |T'|(Pp,) < 8 + 1. Now let

P(a) = {(s,t) e p(a): [s] = 0} v {(s;,7): i < n}

(T* = (15,...,15 1)), since @]l "C(T,p ) is included
in ign[srif: ﬁ is a condition, p and p are compatible,
also |p| < 8 + 1. Now suppose q ¢ P*"' compatible with
p,lal < B, and q and p are not compatible. Let G

be Pa-generic with ﬁra and qra elements of G and
M[G] | "p(a) and q(a) are compatible". If we think

of p(a) as a statement about T i.e. p(a)(T) then

pla) = p(a)(?z). Since p and q are incompatible but

P, and q . are compatible (pr, v qrd)lF "p{(a) and
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q(a) are incompatible". D(T) = "p(a)(t) and q(o) are
incompatible" is a gg statement with parameters from
q(a) about T. Thus we conclude that
M{G] |= "p (@) 7T%) and q(e) are incompatible", contradic-

tion. This concludes the proof of Lemma 25.

From now on let IP = P“2,

Lemma 26. Suppose |t =0, B(v) is a gg predicate,

B > 1, with parameters from M, and p e P is such that
p |[- "B(1)"; then there exists q ¢ [P compatible with p,
lal (H) < 8 and q |- "B(D)".

Proof.

The proof is by induction on 8.

Case 1. B = 1.

Suppose p |- "InR(xrn,tMm)" for R recursive and
xe M. Let G be P-generic with p e G. Choose ne w

T so that M[G]  "R(x*n,TPFn) and tpn = s".

and s g 2
Choose qe G with |q| =0 and q |- "tpPn = s",
Case 2. B8 is a limit ordinal.

If p ||-"dn B(n,7)” then I p>p P |- "B(n,, "
and B(n,,v) g; for y < B8, so apply induction hypothesis
to pP.

Case 3. 8 + 1.

Suppose p ||- "dn B(n,T1)" where B(n,v) is
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gg with parameters from M. Choose r > p and n, € w
so that r ||- "B(n,,Tt)". By Lemma 25 there is q com-
patible with r, |q| < 8 + 1, and for every s, |s| < B,
if q and s are compatible, then r and s are com-
patible. q ||- "B(n,,T)" because if not then there is
qQ' > q such that q' || " B(n ,7)", and so by induction
there is s with |s| < B compatible with q' and
s ||- " B(n ,T)"; but then s 1is compatible with r,
contradiction. B

Now let us prove the first part of Theorem 22. Let
G be P-generic over M. We claim M[G] [= "for every
X S-Zw and o < w, if |X] = w, then ord(X) > a + 1.".

Bur since any such X 1is in some M[GB] for 8 < w,,

we may as well Xeg M, a, = o« + 1, and we must show

0
M[G] = "ord(X) > a + 1". Let G(o) be the E& set
created by G nn)anw,z“’n M). Suppose that M[G] |= "there
is K a gg set such that KA X = G(o)f\ X.", Let =

be a term for the parameter of K. Choose p e G such
that p |- "Yze X (xe K iff z ¢ G(O).". By Lemma 24
there exists H in M countable so that || (H,$) =
p|(H) = 0. Let ze X - H. Define peP by p(0) =
p(0) v {((0),z)} and p(a) = p(a) for & > 0. Since p
says 2z € G(o), p || "z ¢ K'. By Lemma 26 there exists q

compatible with p, |q|(H) < B, and q ||- "z e K". By Lemma
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23 there exists q with |q|(H) < 8, q > q, and q > p.
Since 1(0)|T = a, ((0),2) ¢ q(0), there exists me w
such that r a&efined by r(0) = q(0) v {({(0,m),z)} and
r(a) = q(e) for a > 0 is a condition. But this is a
contradiction since 1 ||- "(z ¢ G(a) iff z e K) and

Now we prove the second sentence of Theorem 22.

Let X = U{X : B, <o <w, and a a successor} where

0

each Xu is a set of w product generic Cohen reals.

1

Let M, = M[X]. Define in M, the partial order P’ for

Yy < w, so that P = lPY*QY where QY is a term

2
denoting:
w
Case 1. ]PBa(¢’M°[GY] N2) or
Case 2. PB(YY’XB V F) where YY is a Borel subset of XB

in Mo[Gy] and F = {xe 2: x eventially zero}.

Case 1 is done cofinally in w, and Case 2 is done in

such a way as to insure:

Mo[q»2]|= "For every successor ordinal 8 with

By < B <w, and Y Borel in XB there is a y such
that Y = YY"' First we show that essentially the same
arguments as before show that Mo[Gw2]|' "For every

X € 2 uncountable ord(X) > B,". This will not use that
the X are made up of Cohen reals, hence any of the

a
intermediate models would serve as the ground model. So
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suppose Case 1 occurs on the first step, Ye M is
uncountable, 8, = vy + 1, and MG[sz] = "Y A G(u) =Y AJd
for some J ¢ §;". Given L €w, define ‘Pi as follows.

For a € L:
Case 1. P%+1 = P% ol PBO(¢,M[G§]{W ¥}  where Gg is Pi-
generic over M, .
ati _ pQ

Case 2. PL L

has the property that when Case 2 happens for a € L then

* ]PB(YOl - F,XB\J F) (where we assume L

Ya is a Borel subset of XB coded by some term Ty in
a
PL) .
For o ¢ L:
Pi+1 = Pi *4 ¢ singleton partial order).
Note that by using c.c.c. of P¥? we can find
L €w, countable, so that the Borel code for the above J

is a P{Z term and L has the property mentioned under

Case 2. For o a limit Pi is the direct limit of

GP%: B <a ).

Lemma 27. If N2 M is a forcing extension and G is
PB(¢,N N f”) generic over N then G A PB(¢,M N Zw) is
PB(¢,M N 2“) generic over M.

Proof.

It is enough to show that for any A € M dense in
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]PB(¢,M ~n 29, {pe ]PB(tp,N A 2%y qQqe A q < pl 1is dense
in Py(¢,N n 2¥y.
Let N be an extension of M via a partial order Q. Given
pP € ]PB(q;,Zw ~ N) (a term in the forcing language of Q)
suppose Jqe Q qllF "Yre A r and p are incompatible™.
View p as being coded wvp in some natural way by a
single real in 2” a N. Then we can find P e ]Ps(cb,zwn M)
so that W' n<w 3q >q qll "pfn = Ptn". Since 4 is
dense I re A r and ﬁ are compatible. But compatibility
is witnessed by plfn for some n < w. Let ¢ > q and
ql)l- "pfn = PPn'",then q|- "p and r are compatible",

contradiction.

Lemma 28. Suppose P ,P, &« M are partial orders and J t

a term in language of P such that Y G ]Pl-generic over

M)TG is lPo-generic over M. Then VG IPl-generic

over M, M[G] 1is a forcing extension of M[TG].

This is easier to prove using the c¢Ba approach to
forcing. Let ]Bifor i = 0,1 be the associated cBa to
P, for i = 0,1 and T a B, term so that VG B, -generic
'%G is B -generic. Define a map j: B~ B, by

jtpy = pe 7 ']]Bl' Then j 1is an isomorphism of B,
onto an M-complete subalgebra of DB, . Otherwise suppose

re¢B,-{¢},T ¢ M and
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e = [ pgrp e T ]Bl > pEPE' pe T lB1 = f

Choose G B -generic with e-fe G. Then pEFp 3 ?G
and pe T p¢ %G. But this means 20 is not
B,-generic over M (see Lemma p. 35 Solovay [27]). But

now by Lemma 5.2.4 of Solovay-Tennenbaum [26] we are

done. [

Given any G PY2-generic let G, be the subset of P
generated by the rank zero conditiom§ in G. The two

preceding lemmas enable us to prove:

Lemma 29. For any a
if Ga is P%-generic over M0 then Gg is Pi—generic
over M .

Proof.

This is proved by induction on a. For a + 1 ¢ L it
is immediate. For o4t1 e L Case 1 is handled by Lemma 27,
Lemma 28, and the product lemma. Case 2 is easy as
-PB(YG - F, XB\J F) 1is the same partial order in either case.

For a 1limit ordinal let A.gLPi be dense, we show

{qe P*: Jpe & p < ql is dense in P*. If q¢ P*
then q ¢ PB for some B < a. Let AB = {p B: p € A}, then

AB is dense in Pi. Hence if G, 1is P°- generic with
q e Ga then since G; is PE-generic it meets AB --say

at pT8. But then gq and p are compatible. [
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Define for H< 2° |p|(H), |t|(H,p) for pe P] and

T a Pi-term for a subset of w by induction on a.

Case 1. P! = p% » ]PBo(d) ,M[Gi] ~ 29
Ipl (H)
a+1 o
Case 2. P =P * ]PB(Ya - F,Xa v F)
|p| (H) 8y rx @ Hes,xre p(a)}
4

tv{(H,p) 1is defined as it was just before Lemma 23.

max{|pfy| (H),[p(v) | (H,pty)} (same as before).

max{|pla| (H)

Lemma 23 is easily proven since in Case 2 we have a lattice.
Lemma 24 is also easily proven if in addition H is

taken with the property that ‘Jx e H Yoe L

{p: |p|(H) = 0} decides "x ¢ Y," whenever Case 2 happens
at stage ao. Lemma 25can be proven for B8 < 8, by the
same argument in Case 1 and by the argument of Theorem 34
in Case 2. Lemma 26 follows and so does the claim that

M[G,,]1 |- "K e {B: B, <8 <w}".

Next we show Mo[sz] = "ord(XB) = B8 for each B successor

B, < B < w,;". If not then again we can reduce to some

0
L€ A, countable;and since each X, is present in M ,
we can relabel L so that for some B < w, and 8, with

_ _ 8
By < B, <uw, Mo[Gﬁ] = "ord(XBl) < g," for Gﬁ Pr-
generic over M,, and on some step before B we force with

IPél(qa,XBlu F). Suppose X = {xa: ¢ <w,} and

M, = M[{(a,xuv: a < w,}]. Given H€w, He M let
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A = {€a,x »: a ¢ H}. Define ]Pf; e M[A] for each a < B.

+ H
Case 1 P?l ! a IPg * ]PBo(¢’M[Ga] n 2¥).

e+l _ 0 ) 0 .
Case 2 IPH ]PH * IPB((YB F} ~ H,()(B A H) v F)

(assuming Yo: is a Borel subset of XB given by the term

T, in forcing language of ]Plo_‘[).

a

Lemma 30. For any a _<_Q if G is Pa-generic over M

0
then G; is ]Pﬁ-generic over M[H].

Proof.

The proof is like Lemma 29 except on o + 1 wunder Case 2.

. a
P, =Pg(Y, - F,Xg v F) in M[X][6%] = M,
P, =P, ((Y, - F)n H,(Xg~ H) v F) in M[H][G;] = M,.
Again suppose A e M, 1is dense in P,, we show
{p e P dqe & q < pl is dense in P . Given pe P,
let p=rwv{/s ,x>:n <N} where x e X - H, N<wt,.egr]}csl
relP,. Let QN be the partial order for adding N Coheny
By the product lemma {xn: n < N} is QN—generic over M,,
and also pe M, {{x : n < N}]. Hence if W qe A p and
q are incompatible in
P,= IPB((YOl -F)an (HV {xn: n < N},('Xsn HWV {xn: n < N}) VU F)
then J p ¢ Qy pll- "Vqe & p and g are incompatible
in P,". Choose Yo € F for n < N so that
Py =T v {4sn,'ynv: n<N}elP, and
bMnm<wdp _>_§ 'Vn < N p'l- "Y b Xt Since

Jqe & p, and q are compatible,then as before p and
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q can be forced compatible by an extension of ﬁ. So p
and q are compatible in P, and hence in P, . 'I
Lemma 31. Given Tt a term in forcing language of Pg if
P E PP pIFPE"B(T)" where B(V) 1is a I]| predicate with
parameters in M[H] then dq ¢ Pg compatible with p
such that q|kP§"B(T)".

Proof.

Let G be PB-generic over M, with p e G. Then by

Lemma 8 G is Pg-generic over M[H]. Since I sentences
are absolute and M [G] }= "B(t)" we have

M[H] [G,] E "B(1)". So dqc¢ Gy q|kPH§"B(t)". But for

any G PB-generic containing gq, M[H][GH] = "B(T)"

whence by absoluteness M, [G] [= "B(t)". We conclude

q”']p’B‘"B(T)"- .

A

Lemma 32. Given H = X - {z} where ze¢ X , ., vy <8
1<8<a,peP’ then 3 pecP)|BlMHI A 2%) <8 + 1
compatible with p and VW q ¢ PY if |q|(M[;{] ~ 2) < g, then
(ﬁ,q compatible = p,q compatible).

Proof.

This is proved by induction on y. For vy 1limit it is
easy, also for vy + 1 in which Case 1 occurs the proof
is the same as Lemma 25. So we only have to do vy + 1 in

Case 2.
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p e PY xp 1(Y - I’,XBl v F). Extend p(y) 1if necessary

Bi 'y
so that ¥ «s,x»> ¢ p(v) Vic<ow if |s| = A infinite
limit |s*i] < B+ 1<) then Jj <w ¢s"i*j,x>e P(Y).
Let ﬁ(y) = {¢<s,x? ¢ p(y): |s| < B +1 or x # z}.

If ﬁ =(ﬁfy,ﬁ(y) > were a condition then just as in Lemma
8, p would have the required properties. To be a
condition we need to know that whenever <<¢n»,x?» ¢ p(y)
plyll- "x ¢ (YY - F)".

Note that none of these x's are equal to 2z because

ze X,,, so ¢<n?,z¥e p(y) - lrn»| = a >8 +1 so
<¢énr,zy ¢ f)(y). Let G be ]PY-generic containing pfy, and
pPy. By Lemma 31 Iq ¢ IPl} AG. (So |q|M[H] ~ 2¥) = 0)
qfl- "x ¢ Y, - BV Vv xVn<en» ,x>¢ p(y). By Lemma 23,

dp, 2aq, pfy so that ip,| (M[H] 2¥) <8+ 1. So

¢p,,p(v)y works. [}

Immediate from Lemma 32 we get that: If J 1is any E&H

, and

predicate with parameters (H = X - {z}, z ¢ X,

+1
t 1is in the forcing language of IPH) then' ype P if
pl-"ze J" then JqeP [ql(MHI A 2°) <8, q and p
are compatible, and q |[|- "z ¢ J". So we get our result

ord(XoH_l) =qa + 1 1in Mn[Gwz]. B

Remark: Assuming large amounts of the axiom of determinacy

and therefore getting more absocluteness in inner models
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(see [7]) it is easy to produce an inner model N such

that N [= "For every o < w, there exist X & 2¥  such

that ord(X) = « and for every n < w and A g;

A X 1is Borel in X". Similar improvements for Theorem

43 are possible.
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§4. The o-algebra generated by the abstract rectangles

For any cardinal X let R)l = {A x B: A,B €)}.

If RS (the o-algebra generated by RA) is the set of
1

all subsets of A x A, them ) < |2m[ (see [9], [21]).

Theorem 33. If a, < w, and there is an X Smm such

that |[X| = k> w and every subset of X of cardinality

less than « is E&G in X, then R:O = P(kx &). The

same is true if every subset of X of cardinality 1less
than « is I° in X.

~Qg
Proof.

Consider A € k x ¢ and suppose (a,8) ¢ A implies a < B.

. . K .
It is enough to showsuch sets are in Rao since every

subset of «k x x¥ can be written as the union of a set
above the diagonal and a set below the diagonal. Let T

be a normal a, tree and T* = {s e T: |s|T = 0}, For

w

any y: T* - w® define G; as follows, If s e T*,

G;An: n < wl.

Let X = {xaz a < x} and for each B8 < «k choose B so

then G; = [y(s}], otherwise G; = /){ww -

that for all o ((a¢,B) € A iff Xy € G$ ). For seT
B

define B, © x x x as follows. If s e T*, then

B, = Uifa: t € xa} x {B: yB(s) = t}: te m<“}, otherwise

By = N{lkx K - Boap: D < w}. Clearly B¢ = A and
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B¢ is "H& " in RX, and so every subset of «x x k is
~2o

"H&o" in R". Note that (kx ¥) - (A x B) =

((k-A) x g U (kx (k- B)) and thus if a, 1is even

(odd), then RX is the class of sets "n® " ("z® ") in
Qo ~Qq Qo

R, By passing to complements if necessary we have that

K
Qo

R = P(x x ). The second sentence of the theorem is

proved similarly. @i

Corollary. (Kunen [9]; Rao [21]) 1If there is an

XQZ“’ such that |[X| = w then RY! = Plw, x w,).

1 2
The converse of this corollary is also true. Suppose
R € Pw,) is a countable field of sets and
{(e,B): a < B <w,}le {AxB: A,Be R}w . Since this set
1
is antisymetric we conclude that the map given in Proposi-

tion 2 is a 1-1 embedding of w, into v,

“|  then

Corollary. (Kunen [9]; Silver) (MA) if «x = |2
R, = P(k x K).

If X is 1I-Luzin where I 1is the ideal of meager sets,
then every subset of X of smaller cardinality is §g in

X (see proof of Theorem 17). ]
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XSwm is a Q set iff

For any a < w a

1

ord(X) = a and every subset of X 1is Borel in X.

Theorem 34. If M is countable transitive model of ZFC,

M

1 <, < W, and X =MN mw, then there is a Cohen ex-

tension M[G] such that M[G[}= "X is a set",

Q
U.o+1

Remark: This shows that the Baire order of the con-
strucible reals can be any countable successor ordinal
greater than one., In fact the argument shows that in M[G]

for any uncountable Y € 2” with Ye M Y isa Q
0

set. Thus, for example, if M models V = L, then in

M[G] there are TI! sets. In Theorem 55 we show

1 ch, +1
0

that it is consistent with ZFC that for every a < w,

there is a Q set (in that model the continuum is

N ).

+
(Dll

The proof of Theorem 34:

M[G] 1is gotten by iterated g;o;forcing. Let « = |23Y

Suppose we are given P* for some & < x and Ya a term
in the forcing language of P* for a subset of X

a+1 o
(¢ || "Ya < X"), then let P =P * ]PMH(YQ,X). At
limit ordinals take direct limits. P':may be viewed

as a sub-lower lattice of | Pa°+l(¢,X). We may assume that
K
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for every set B € X in M[G] (GiPK-generic over M)
there exists a such that Ya = B, This is because PX
has c¢.c.c.. It follows from Corollary 6 that M[G] |=
"ord(X) < a, + 1 and every subset of X is Borel in X'".
We assume P° = Pa°+1(¢,X). Let G(o) be one of
the g&o set determined by G A P°. We want to show that
M[G] |= "For every K in §&°, KnX¢# G(o)r\ X". To this
end we make the following definition: For H e ",
|pi (H) = max{|s|: there exists x ¢ H (s,x) ¢ p(a) for
some o < k} Let supp(p) = {a < x: p(a) # #}. Given =
a term in the forcing language of i denoting a subset of
w, we can find H included in w“ and K included in «
with the following properties:
(a) H and K are countable,.
(b) for each ne w {p ¢ P supp(p) € K, |[p|(H) = 0},
decides '"n e 1",
(c) Vxe H Vae K {p e P~ supp{(p) € K, |[p|(H) = 0}
decides '"x e Ya"'

H and K can be found by repeatedly using the c.c.c.

of PX

Lemma 35. If H and K have property (c) then for any
p e P and B8 with 1 < B <a,, there exists ﬁ e P¥

compatible with p, lpl (H) < 8 + 1, supp (p) < K, and for
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any qe P if |q|(H) < 8 and supp(q) € K then
[if ﬁ and q are compatible, then p and q are
compatible].
The proof of this is like Lemma 8.
Let G be PK-generic over M with p e G. Choose
' € G finite with theproperties:
(1) ¥qe r(lq|(H) = 0 and supp(q) € K).
(2) If ((n),x) € p(a) for some n < w, a £ K, and

xeH (so ppa |- "x¢ Y "), then there is
qe I nP* such that q |- "x ¢ Y,
(3) If (s,x) e p(a), a e K, and |s| = X 1is an infinite

limit ordinal, and |s®i| < B + 1 < X then there
is a j e w such that {(s"i*j,x)} e T.
Now let p e P* be defined by
p(a) = Yir(a): re T} U{(s,x) e p(a): |s] <B + 1 or
x ¢ H when a e K and p(a) = ¢ for o ¢ K.
Note if ((n),x) € p(a) then x € H since

|(n)| = a, > B + 1. By choice of T p is a condition

and also |p|(H) < B + 1 and is compatible with
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p since B, pe G. It is easily checked as in Lemma

8 that ﬁ has the required property.

Lemma 36. Let H and K have properties (b) and (c)

for 1. Let B(v) be a gg (1 < B < a,) predicate

with parameters from M and p e P® such that pH-‘B(tf.

Then there exists q ¢ P® compatible with p, |q|(H) < 8,
all-"B(1)", and supp(q) €K.

The proof is by induction on 8.

B = 1.

p!l- " n R(n,tfn, xtn)", x e M, and R primitive recursive.
Let G be P-generic over M with p e G. There exist
new and s e 2% such that M[G] = "R(n,tfn,xfn) and
T f n=s", By property (b) there exists q € G such that

qil- "tfn = s", supp(q) € K, and [q|(H) = 0. q does it.

B limit:

pll- "dn B,(1)", B ¢ gg .8, < 8. Choose r > p such that
n

rl|- "B (1)" for some n. By induction there exist q such

that qIF‘Bn(Tf: q is compatible with r (and hence with

p), and |[q|(H) < B,supp(q) € K. q does it.

B + 1:

If prla'n Bn(r)n we could extend p to force B (1) for some
particular n. So we may as well assume pl|- "B(t)" where

B(v) is g; with parameter in M. Since 1 < B < a, by
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Lemma 35 there is p compatible with p, |p|(H) < 8 + 1,
etc. Then p ||- "B(1)" because otherwise there is
p, > b such that p, || 'HB(T)", and so by induction
there is q compatible with p  (hence with ﬁ)
|q) (H) < 8, supp(q) € K, and q |]- "4B(1)". By our

assumption on ﬁ, since p and q are compatible, p and

q are compatible, but p ||- "B(D". (]

We now use Lemma 36 to show that for any G PX-
generic over M, M[G] |= "For every L a 530 set

(LAX 4 G(0)11 X)}" where G(o) is one of the 1 sets

0
~do
determined by G r|Pao+l(¢,X). Suppose not; then let =
be a term in forcing language of P' L a §&0 set with
parameter t, and p & G such that p ||- "for every x € X
xe L iff xe G(o)". Choose H and K with properties
(a), (b), and (c) with respect to 1t and also so that
supp(p) € K and |[p|(H) = 0. Since H 1is countable there

p V{(0,((0),x))} (so

exists xe¢ X - H, Let r
r ||- xe G(o)). Since r ||- "x ¢ L", by Lemma 36 there
exists q compatible with r, |q|(H) < a,, and

q |- "x e L". Since |q|(H) < a,, ((0),x) ¢ q(0). Let q
be defined by:
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p(a) v q(a) if o > 0.
a(a) =
p(0) v q(0) v {((0,m),x)} otherwise (m suf-
ficiently large so that
a(O) is a condition).
q |- "x e L and x ¢ Goy and (xe L iff xe G 30",
This a contradiction and concludes the proof of Theorem 34.

Theorem 37. For any a, a successor ordinal such that
2 ¢a, <w,, it is relatively consistent with ZFC that

|2%] = w, and a  is the least ordinal such that

R‘;z = Plw, X w,).

Remark: In Theorem 52 we remove the restriction that a,

is a successor (but the continuum in that model is

X

w+1)' In [1] it is shown that «a cannot be w,.

Proof.

Let M be a countable transitive model of "ZFC +

2% = 12“Y] = w,". Let X = w’ N M and define P% for

@ <w, so that P! - p% a P, (Y ,X) where Y, isa

P* term for a subset of X, and at limits take the direct

limit. Dovetail so that in M[Gw ] for every Y & X such
2

that |Y| < w, there are w, many a < w, such that

2

W
Ya = Y. By Theorem 33 Raz = Plw, % w,).
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Now comes the difficulty: we must show some subset

of w, xw, 1s not in R‘:z__l. For the remainder of the

and (B.: s ¢ m<‘”) be fixed

<w
)
s

proof let (As: S £ w

terms in the forcing language of P“? such that for every
sew® ¢l "A, €X and B, Cw,"”. For pe PY? define
supp(p) = {a < w,: p(a) # ¢} and trace(p) = {x e X:

Joa Ft(t,x) € p(a)}. By using the c.c.c. of PY? choose
for each x ¢ X countable sets I, € X and J, CSw, so
that:

(1) for each s e w ™ {p e P“?: trace(p) €I,  and
supp(p) € J,} decides "x e A ", and

(2) for each y e I, and ae J, {pce¢ P¥2: trace(p) clI

and supp(p) € J,} decides "y e Y ".

Similarly for o < w, we can pick countable sets I €X

2

and Ja € w, having properties (1) and (2) with

“’Bs’Ia’Ia in place of x,As,Ix,Ix.
For x e X and a <w, let
L(x,a) = (I, x J ) v (Ia x Ja) and define for p e PY?,
Ipl(x,a) = max{|s|y : (s,u) e p(v) and (u,y) ¢ L(x,0)}.
a

Lemma 38. Fix xe X and o <w, and let |p| = |[p|(x,a).
For any B > 1 and p e PY’there is a p e P’? with
Iﬁi < B +1, f) compatible with p, and for any q ¢ pY'2

if |q] < B and p and q are compatible, then p and
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qQ are compatible.
The proof of this is like that of Lemma 35. Let p, > p
so that if (s,x) e p(y) with ls| = X a limit ordinal
greater than B8 and |s?i| < B + 1, then there is j < w
so that (s”i*j,x) ¢ po(y). Let G be P“?-generic with

P, € G. Choose T € G finite so that if

((m),u) e p,(v) (so p, by [-"ud Y ") and
(u,y) ¢ L(x,a), then there is a q € I such that
q |- "u¢ Y,". Define p by B(v) = Ula(n:aqe Iy

{(s,w) e p,(V): |s| <B+1 or (u,y) e Lix,a)}. B

For any well founded tree T define Cs(f) for
s e T as follows. If |5|f = 0 then CS(T) = A x Bs’
otherwise CS(T) = Lj{(x X w,) - Cs,i(T): i<wl,
Lemma 39. If xe¢ X, a ¢ w,, TeM is a well founded
tree, s e T with |s|4 =8 where 1 <8 <a, -1, and
p e P’* such that p |- "(x,a) ¢ C (T)", then there exist
q compatible with p, |ql(x,a) < 8, and
q Il "(x,a) ¢ C(T)".
Proof.

The proof is by induction on 8.
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Case 1. B = 1:

Suppose p [|- "(x,a) € ; % Boag)". So there exists

i, e w and p and q elements of P°? so that

(pvp Vq) ¢ P°? and using (1) above

(t,u) ¢ ﬁ(y) + (u,y) € Ix X Jx and

(t,u) € q(y) > (u,y) ¢ I, x J, and

pll- "xe Asﬁio", q ll- "y e Bs“ion' So pwq=gq does the
job.

Case 2. B8 a limit ordinal:

Suppose p ||- "(x,a) € i%LCs‘i(T) where ls|T = B.A Find
qQ>p and i, e w such that q [|- "(x,y) € Ceay (T). Let
U]

T, = {te T: s*i, et or tes~il. Then

|5|T0 = |s”i|F + 1 <8 and C(T)) = (X x w,) - Cs‘iocT)’
hence q |- "(x,a) & C (T,)" where lslTo < B; so by in-
duction hypothesis there exists r compatible with q
(and hence with p), |r|(x,a) < 8, and

T ||- "(x,0) € Csﬁio(T)". r does the trick.

Case 3. B8 + 1:

Since B + 1 < a,, let q be as from Lemma 38. B

Define DE€X xw, by D= {(x,a): x¢ GO(‘O)

where G%o) is one of the n° sets created on the

~Q . =1
th ¢

a " step. D is 17 in the rectangles on X x w,. We

-1

want to show it is not z; ., in the rectangles on
0

X x w, in M[Gw 1.
2
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Define: (x,a) 1is free (with respect to

(Ag: s e w™), (Bg: s ¢ w®y)) iff [x ¢ I, and o ¢ J.].

s
Lemma 40. If T € w ™ is well founded and Te M, s ¢ T
with ls]T <a, =1, (x,a) is free, and Y = ¢; then for
every ©P € P“?  such that lp| (x,a) = 0 it is not the case
that p |- "(x,a) e D iff (x,a) ¢ C_(T)".

Proof.

Let p > p by defining p(y) = p(y) for y # o and

pla) = p(a) V {((0),x)}. Then p | "(x,a) € D" so by
Lemma 39 there exists q compatible with P,

fqf (x,02) < a,, and q [[- "(x,a) ¢ Cs(T)". But  (x,a) free
implies that (x,a) ¢ L(x,a)} so q does not say

"X € Gi?)". Thus for a sufficiently large m < w T
defined by r(y) = p(yY) W q(y) for ¥y # a and

r(a) = p(a) v q(a) v {((0,m),x)} is a member of P“2,

But r |- "(x,e) ¢ D and (x,a) ¢ (M-, a contradiction
since r extends p. [ ]

<w)

S € w<m) and (B.: s € w

Since the terms (A_: s

s.
were arbitrary to start with it will complete the proof of

the theorem to find lots of (x,a) free.

The next lemma generalizes Kunen [9], p. 74.
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Lemma 41. Given |Ia| < k for & < kK, there exists
G & ' with |G| = « and there is S with |[S] < K so
that for any a,8 e G if o #8 then I nIgcSs.

Proof.

+

We can assume [ € « .

R + + .
Define MysZ, < K for a < x nondecreasing so that:

(1) Wy = sup{ua: a < A} for X limit;
(2) za's are strictly increasing;
(3) for a a successor and for distinct 8,y < a

Iz N Iz Sua;

y
(4) if > p, then for any z > z

a+l o

Mo ? Izn U{IZB: 8 < o} and U{IZB: B < a} S Uy
Let G = {za: a < K+} and S = sup{ua: a < K+}.

To see that S < «  note that for any a < <
[{8: Mgy, > Hg and B < a}| < k. This is because

Iza f\(uB+l - uB) # ¢ for all B < a such that

e+ ’ Hge [

Lemma 42. There exists I € X and I € w, with

|2, = |2, = w,, for every ae I, Y = ¢, and for every

(x,a) ¢ T, x L (x,a) 1is free,

1

Proof.
By Lemma 41 there exists I € X and S<C€w, with

IEOI =y and |S] <w, so that for every distinct

2 2
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X,y € I, fo\JYES. Since {J, - S: xe I} is a

disjoint family, we can cut down L, (maintaining

£,] =w,) and find I €w, so that [I | =uw,, for

every a e I, Ya = ¢, and for every x e I, an L, = 6.

Applying Lemma 41 again find £ € I with |I | = w
pp ] - 1 1 2

and TE€ X with |T| < w, so that for every distinct

2

a,ge I, I NI, <T. Since {I - T: ae I} are dis-

B

joint by cutting down I (maintaining I | = “’z) we can

1 1 I

assume L defined to be equal to

N

g, - (TV U{Ia: a e I,}) has cardinality w,. I, and

Z, do the job. .

Lemma 42 finishes the proof of Theorem 37.

Remark: There is nothing special about w, in the above

theorem; we could have replaced it by any larger cardinal

. <
k with k5 = k.
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Now we turn to a slightly different problem. For X a
topological space a set A< xX* s projective 1iff it is
in the smallest class containing the Borel sets (in the product
topology on X™  for any me w) and closed under complementa-
m+1

tion and projection (B € X" is the projection of C € X

iff (ye B iff Jxe X xy e C)).

Theorem 43. If M is a countable transitive model of
ZFC then there exists N a c.c.c. Cohen extension of M
such that if M w” = X then N [= "Every projective set
in X 1is Borel and the Borel hierarchy of X has w,
distinct levels (ord(X) = w )".

This shows the relative consistency of an affirmative answer
to a question of Ulam ([34], p. 10). Note that since X x X
is homeomorphic to X (take any recursive coding function),
if for every B &€ X x X Borel ({x: dy(x,y) € B} is Borel
in X, then every projective set in X is Borel in X.

The proof is slightly simpler if we assume that CH

holds in M. We give the proof in that case and then later
indicate the necessary modifications. In any case

120 -2,

Construct a sequence M = M, €M € ... Mw1 = N, by

iterated forcing so that My+r is obtained from M_ by

II;“-forcing. On the ath stage we are presented with a
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term T, in the forcing language of P denoting a real.
Then letting Ya be the projective set (over X) deter-

a+1

. X .
mined by T, we let P = P & Pa+l(Ya,X). What is

being done is that at stage a we make Y a H&+1 set
intersected with X. The reason this will work is that

after the ath stage our forcing will not interfere with

the Borel hierarchy on X up to the ath level. Since

this is c.c.c. forcing we can imagine that each X-projective
set in N 1is eventually caught by some Ty for a < w,.
So it is clear that N | "Every X-projective set is Borel

in X", for any N = M[G], where G 1is IP“?-generic over M.
Define for H<€ X and p e P,|p|(H) = max{lslT : there

a+1
exist o < w and x ¢ H (s,x) € p(a)}. Given T a term

1

in the forcing language of p’ denoting a subset of w
(y < w,), there exists H € X such that:
(a) H 1is countable.
®) Vnew

{peP': |p|(H) = 0} decides ™ e 1".
() B <y and xe¢ H

{peP’ |p|[(H) =0} decides '"x ¢ Yo'
Lemma 44. (write [p| = |p|(H)).
"Exactly statement of Lemma 38" for P,

Proof.

Extend p < p, as before. Let G be Pw?generic with
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p, € G. Choose T &€ G finite so that:
(1) ae T > |qf(H) = 0;
(2)if¢enr,x>e p (a) (so pt - "x ¢ Y4"') then

JqeT aP* such that ql}- "x ¢ Y,
Define p(a) = Uir(a): re '} v {<¢s,x%e p,(a):
|slp <8+ 1 or xe HI. p is a condition because if

a
<<n¥»,x» ¢ p(a) and |<111>|T0‘+l < 8 + 1, then f"‘u > pr
(so ﬁqlﬂ- "x ¢ Y," as required).
The r e T' take care of such requirements about x e H.

The rest of the proof is the same. [}

Lemma 45. If <t,H,y are as above, B(v) 1is a §a predicate

for some 8 > 1 with parameter from M, and p ¢ PY such

that p |- "B(t)'", then there is a q ¢ P’ compatible with
p, |q/(H) < 8 and q |- "B(T)".
Proof.

The proof is the same as before. [JJi

We can assume that for unboundedly many a < w, Ya = #.

Let G, (G%o)) be one of the LI& sets determined by

GAaP (9,X) where Y, = ¢.

o+l

Claim: M[G]  "for any Le Il (LAX# G, A X)".
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Proof.
Otherwise let 1t be a term for a real in the forcing
language PY for some ¥ < w, such that for some L a
E; set with parameter 1 and some pe PV
pll-"LAX= G, N X". Choose H with properties (a),
(b), and (c) with respect to 1, and also |p|{(H) = 0. Let
x e X - H., Define r(a) = p(a) WU {((0),x)} and for

B8 #a r(B) = p(B). Note that r ||- "x ¢ G," hence
r ||- "x e L". By Lemma 45 there exists q ¢ P’ compatible
with r, |q](H) < R, and q ||- "x & L". Since x ¢ H we

know ((0),x) ¢ q(a). Define g e P*! by

a(8) = p(8) U q(8) for 8 #a and G(a) = pla) UV qa(a) v
{((0,n),x)} where n 1is picked sufficiently large so
q(a) is a condition. But then qll-"xe L and x ¢ G,
and (x e L 1iff x e Ga)" and this is a contradiction.

This concludes the proof of Theorem 43. (|

When the continuum hypothesis does not hold in M the

construction of N still has w steps but at each step

1

we must take care of all reals in the ground model. That

is POY! - p% Q, where Q is a term denoting

o]

Z{Pa (Hx,X): xe A M[Ga]} for G Pa-generic over

+1

M. This works since all reals in N = M[G] for G

Pml-generic over M are caught at some countable stage.
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Remark: It is easy to see that if V = L there is an
X € " uncountable M} set such that X e L and X x X
is homeomorphic to X. Also by absoluteness it is possible

to make sure that for every A L) in w?

, AnX 1is Borel
in X. This family of sets includes those obtained by

the Souslin operation from Borel sets in X.

Theorem 46. (MA) J X €2 ord(X) = w, and VAce ! in
2 3B Borel (2Y) ANX=BnNX.

Proof.

Let B be the c.c.c. countably generated boolean algebra
of Theorem 9 with X(B) = W, .
B = Borel(Zw)/J for some J and w,-saturated o¢-ideal in

the Borel sets.

Lemma 47. If I 1is an ml-saturated c-ideal in Borel(zw)

then B, = {A¢€ 2“: JB Borel JCe I (A A B) €C} is

1
closed under the Souslin operation.
For a proof the reader is referred to [11], page 95.
By Theorem 14 MA implies there is X C ¥ a
J-Luzin set. For any o < w, there is A g& so that for
every B I, (A AB) ¢ J, hence |(AaB)N X| = 12,

so ANX#¥BANn X, and thus ord(X) = w If A is

ll

L} then by Lemma 47 there is B Borel and C in J with
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AABcC. Since |Ca X| <] by MA JFD e Borel(2")
(AAB)aAX=DpaX. So AA X = (B *D)n X. |

This suggests the following question:

Can you have X €2 such that every subset of X is Borel
in X and the Borel hierarchy on X has w, distinct

levels? The answer is no.

Theorem 48. If X ¢ 2 and every subset of X 1is Borel
in X then ord(X) < w, .

Proof.

Let X = {xa: a < « and X = {xB: B < al

Lemma 49, If |X| <«, every subset of X is Borel in X, and
RIC
W
Proof.

= P(x x k), then ord(X) < w, .

Since every rectangle in X x X is Borel in X x X and

RK

01 = P(k x K}, every subset of X x X 1is Borel in X x X.

Suppose for contradiction Voc<o 3 Haq_ X not {I; in

1

= U 3 0
X. Let H a<w1{xa} x H,. For some a <w, ,H is I/
in X x X. But then every cross section of H Iis g;

in X contradiction. l.

The proof of the theorem is by induction on [X| = «.
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For «x = w, it follows from Lemma 49 since
R‘:l = Plw, xw,).
For cof(x) = w it is trivial.

For cof(k) > w,

Wa < x choose B, minimal < w, so that every subset

of Xa is Hg in X (we can do this since Xa is g%
[ ]
in X some B8 < w,). Since cof(x) > w, there exists

CI°< w,

K
K, Ba a - By Theorem 33 le

such that for a final segment of ordinal less than
= P(k x Kk} s0O by Lemma 49
ord(X) < w,.

For cof(k) = w,

Let n, * « for o < w, be an increasing continuous

cofinal sequence.

- o -
Lemma 50. 380<w1 V“‘“’; Xnu is EBo in X.

Proof.

If G< k x «x is the graph of a partial function then

. where
Ge R; (Rao [21]). This is because if f: D+ «k D € «
then viewing X € irrational real numbers we have:
(f(a) = B) iff (@ e D and ¥Wre Q(r < X£ (o) iff r < xB))
where Q 1is the set of rational numbers.

Then D = {(a,B): a < w A B < na} is the complement in

w, *x ¢ of a countable union of graphs from « into w,.
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Hence the set U {x } x X is Borel in X x X. Say
n
a<w o

T .0 : 0
it is gBo' It follows that each Xn is I_}Bo. a

For all A < w, let B(A) be minimal so that every
subset of X is 1m? in X. 1If the hypothesis of
ny ~B(A)

Theorem 33 fails, then Jf: w, - w, increasing so that

1
for all A < w, B(f(x)}) < B(f(x + 1)}. So for all

A <w, there is some H, € X which is not
: _ . NE(+1) .
EB(f(?\)) in X Since every subset of an(B) is

0 s o - .
EB(f(B)) in X we can assume H, & (anu”) an(”) Let
H= U HJ\' Then H is 1° in X for some a, < w,.

A<wy ~Qo
But for each 2, H, = HAN (X - X ), so each H
o o . e+ - EQD
is gmax(ao,sﬁl) in X, contradiction.

This ends the proof of Theorem 48. e
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Remark: Kunen has noted that Theorem 48 may be generalized
to nonseparable metric spaces. Let ‘B be a o-discrete
basis for X and assume that every subset of X 1is Borel
in X. By using g-discreteness it is easily seen that

I < B J 8 <w, so that ‘B -4 is countable and
VUeA ord(U) <. But Y ={xe X: YUEB (xec U~
Ud ) is separable and hence by the theorem ord(Y)

ord(Y) < w,, and so ord(X) < w,.
As a partial converse of Theorem 33 we have:

Theorem 51. If « = [2], ¥ = ¢, and R: = P(k x k),
0

then there is X € 2 with |X] = « and every subset of

X of cardinality less than « is H; in X.
Yo

Proof.

Let Za for o < x be all the subsets of «k of

cardinality less than k. Put Z = J{K{a} x Z, and

W= {(a,B) : &« < B < k}. Let {An: n < w} be closed under

finite boolean combinations and Z,We {A; x A : n,m < w}“o.

The map F: «+ 2 defined by (F(a)(n) =1 iff a ¢ Ay)

is 1-1 and the set X = F"x has the required property. .
For any cardinal « 1let R(kx) be the least

if no such B8

B < uw, such that RS = P(k x k) or w,

B
exists.
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Theorem 52. It is relatively consistent with ZFC that

|2°] = Wy py o for every n <w R(w,) = 1 + n, and

R(w ) = w. This can be generalized to show that for any
+1

W

A< w, a limit ordinal it is consistent with ZFC that

R(|2°]) = A.

Proof.

Let Mp "ZFC + MA + |2Y| = w,4," be countable and
transitive. Let «=w ., and define P for « < kK so
that P%*' = p® » Pz+8+1(xa’Ya) where Y € 2°, Y, €M,

Y | = Wgy,» and ¢ - "X, € Y,". At limits take the
direct limit. By dovetailing arrange that for any G

P -generic over M, M[G] = "If YC 2, Y e M, and

Y| = Woy, for some B < w, then every subset of Y is
Rluger in Y7

As in the proof of Theorem 34 given any 7t a term
for a subset of w, find in M, HC Zw, K € « so that:

(1) |H| < w K| < w

g,* |kl Lwy
0 Bo
Let {Q = p e P“: supp(p) € K, |p|(H) = 0}

(2) Ynew Q decides '"me T".

(3) VBe K Wxe H Q decides "x € Xg"-

(4) If ae K and (Y| 5w80 then Y < H.
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Lemma 53. If H,K have property (3), (4) above then for
any pe:]PK and B8 with 1 <8 < 2 + B8, there is ﬁ
compatible with p, |p|(H) < 8 + 1, supp(p) <K, and for
any q if |q|(H) < B, supp(q) € H, and p and q are
compatible, then p and q are compatible.
Proof.
The proof of this is just like the proof of Lemma 35. To
check that the P gotten there is an element of PX, note
that if ((n),x) ¢ p(a) then x ¢ H. Because if x ¢ H

and a ¢ K, then IYalz_m because of (4). Say

B°+1
o+ ¢]
lYal Wy so PP = P *]P“YH(XG,YG) and
(n) - .
| ITZ"Y"'I 2 + vy > 2 +8, 28+ 1, but then it was

thrown out, contradiction. .

Lemma 54. Suppose H and K have properties (2), (3),
and (4) for 1€ w. Suppose 1 < B <2 + 8, and B(v)

is a I? predicate with parameters from M, p ¢ P and

~B
P ||- "B(t)". Then Hqe P* compatible with p,
|a| (H) < 8, supp(q) € K and q |- "B(1)".
Proof

This follows from Lemma 53 just as in Theorem 34. [
From Lemma 54 we have that:
(A) For any Y€ 2" with Ye M and n with 1 <n <w

(Y| =w, iff Y is a Q,,,-set). We claim that:



72

(B) For any n < w there are X,Y C 2 with

IX| = |Y| = wo,, S0 that if U is the usual Hﬁ+z set
universal for §;+2 sets, then U A (X x Y) is not

0 -
Ine, iR the abstract rectangles on X x Y.

To prove (B) just generalize the argument of
Theorem 37, for n = 0 the argument is the same. Let

XC_:Z‘” be in M with |X| = Choose K € «,

wn+2.

|K| = w.,,» and K e M, so that for any ae K Y =X

and ¢ []- "X = ¢". Let Y = {y : ae K} where y  is
0 . o

the Tres code (with respect to U) for G(o). To

generalize the argument allow I_,J_,I Ja to have

X?Wx?* a)

cardinality < Wy and also whenever Y ¢ Jx(y £ Ja) and
]YYl < wp then YYE Ix (ng Ia)'
In M[G] for any n < w R(wn) = 1 +n. To see

this, let Y€ 2¥ with Ye M and |[Y| = If

wn+1.

X€Y and |X| <w_, then there is Z e M with |Z| < w

n’
and X €. Because M= "MA" Z is N} in Y and since

- o » » o »
X is I, . in Zw by (A), we have X is I, . in Y.

By Theorem 33 R n+i

nez - P(w X W

n+s n+1). By (B) n+ 2 |1is

the least which will do.

Thus R(”m) = 4, To see that R(x) = w let
Y € 2 with Ye M |Y] = «, and every subset 2 € Y
such that |Z| < x and Ze M is I; in Y (see

(Theorem 17). In M[G] every Z€ Y with |[Z| < « 1is
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E:) in Y, soby Theorem 33 R: = P(k x K). s
Remark: It is easy to generalize Theorem 54 to show that
for any A < w, a limit ordinal and x> w of cofinality

w, it is consistent that |2w| = ¥ and R(K+) = ],

Theorem 55. It is relatively consistent with ZFC that
1]

(a) |27} = Oy 417

(b) for any o < w, there is a Qa set.

(c) R(mn) =n+1 for n<ow,

(d) R(wk) = A for A < w, a limit ordinal,

(e) R(“A+n+1) = X +n for A <w, alimit ordinal and
n < w.

The proof of this is an easy generlization of

Theorem 54 and is left to the reader.

Aset UC 2% x 2% is universal for the Borel sets
iff for every B E_Zw there exists x e 2° such that

B=0U, = {y: (y,x) e U}.

Theorem 56. It is relatively consistent with ZFC that
no set universal for the Borel sets is in the o-algebra

generated by the abstract rectangles in 2¥ x 29,




Proof.

Let M= "ZFC + qCH" and let

Q= 7 (Z{Pa(¢,2“f\ M: o <w,;}). Let G be Q-generic
B<w
2

over M, then in M[G] there is no set U universal for
the Borel sets in the o¢-algebra generated by the
rectangles. Suppose G 1is given by

O3 Thy + 2 a o, e 8 cuy) where T, i

the normal o + 1 tree used in the definition of Pa+1

and G(;) are the 1) sets determined by yg. Then as
y ~
before &e can easily get for each a < w, that

v = {(x,B): x ¢ G(&)}is not §; in the abstract
g
rectangles on (2m X w,). Now suppose such a U existed

and were I° 1in the abstract rectangles on 29 x 2W,

~

Choose F: w, =+ 2% (necessarily 1-1) so that

Vs <w, ¥xe 2 ((x,8) e V* «» (x,£(8)) e U).

If U is §° in {An x B :n < w} then V% is §; in
-1 . .

{An x £ (Bn): n < w}, contradiction. 'I

Remarks:

(1) In [9] Kunen shows that if one adds w, Cohen reals

to a model of GCH then no well ordering of w, is in

()
RZ
Wi

(2) In [1] it is shown that if G 1is a countable field

L]

of sets with Borel(z"’) < Gm , the order of G is w

1 1

74
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In the model of Theorem 56 for any countable G and
o < w, Borel(Z“) is not included in Gu. This can be
seen as follows. Let G = {An: n <w} and let

{sn: ne<w})=T* where T 3is a normal o tree. Define

for any vy e w’ and s e T the set G; as follows.
= S = \ S =

For s Sn let Gy Ay(n)’ otherwise Gy

Ni* - G; encwl, If U= {(x,¥): X¢ G$} then U

is "H&" in the abstract rectangles and universal for

all Borel sets, contradicting Theorem 56.

§S Problems
Show:
(1) 1f |X| = w, then X 1is not a Q  set.
(2) 1f R)? = P(w, x w,) then there is n <w with
Rﬁz = P(m2 X w,).
(3) If there exists a Qw set then there exists a Q, set
for some n < w.
(4) If R)? = Pw, x w,) and 2| = w, then
|29 = w,.
(5)* If there is a Q, set of size w, then every subset
of 2° of size w, is a Q, set.

(6) If X 1is a Qa set and Y 1is a QB set, then

2 <a< B implies |X| < |Y].
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Show consistency of:
(7) {a: ). 52“’ ord(X) = a} = {1} V {a < w,: a 1is even}.

(8) |2¥| = w, and for any X € 2 if |X| = w  then

3 1

X is a Q, set, if [X| =w, then X is a

2

Q.+, S€t, and if |X| = w, then ord(X) = u,.

(9) For any o < w, there is a N} X with ord(X) = u,.

(10) For any X € 2 if |X| > w, then there is an

X-projective set not Borel in X,

(11) There is no G countable with I} € G, - (This is
: ~0 1

a problem of Ulam, see Fund. Math. 30 (1938), 365.)

*Answered by William Fleissner in the negative (to appear).
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PART II. VAUGHT'S CONJECTURE FOR THEORIES OF
ONE UNARY FUNCTION
Vaught's conjecture [1] is that for any countable first
‘

order theory T, w(T) <_:\(“u or w(T) = Z~° where, w (T)
is the number of nonisomorphic countable models of T.
Let Ol = (A’Rn)n<w where each R, is k_-ary relation.

n
Define for x,y e A:

S(x,y) iff x#y o dn<uw 3x1,...,xkn e A(R (X, ,...Xyp)

gy’j(x =X;AY = xj)). (A,S) 1is the associated graph of
g (S is a symmetric, irreflexive binary relation). Define
a metric 6(x,y) on A as follows:

§{a,b) = 1least n gxo,...,x (xg=aAX =D

» if no such n exists.
Define:
(1) a 1is connected to b iff &(a,b) = n some n < w.
(2) C<¢ A is a component if it is a maximal connected
subset.
(3) A loop is a set of points {x ,...,x } with n>1
such that iTn S(xj,%;, ) A S(X X ) A 1”\#] x; # X; -
(4) w{(671) = number of nonisomorphic elementary sub-

structures of O7.

Theorem A. If Ol = (AR ., 1is a countable structure,

G = (A,S) the associated graph, and every component of G
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contains only finitely many loops then w(O1) < %ﬁ, or

w(O1) = 2 &%.

Examples of 7 satisfying the hypothesis are:

(1) O = (A,R) where R is a binary relation which is a
partial function on A,

(2) o1 = (A,R)

on A and for each n and m, R, is equal to Rm on

n<, Wnere each R, is a partial function
their common domain.
(3) If O1 satisfies the hypothesis then so does any ex-
tension of O1 by a countable number of unary

predicates.

Theorem B. If T 1is a complete countable theory such that
every countable model of T has the property that every
component of its associated graph contains only finitely
many loops then w(T) = 1, )50 or 2*?°.
Theorem B was proved by myself and Leo Marcus [2] indepen-
dently. Later M, Rubin pointed out that the fact that
(w(T) > 1+ w(T) > )Q%) can be obtained as a corollary of
a theorem of Lachlan [3] since every such theory is super-
stable. The author of this fact is unknown to me. Note

that if M < N @ T then for any a,be N - M if

¢ e M is the '"closest'" element of M to a,b then
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<N,a,c? =<¢N,b,c»== <N,a,c ::eM = <N,b,c ’c':eM'

(This is easily shown by using Lemma 1 and Ehrenfeucht
N
°- M

games.) But this shows there are at most 2
1-types over .M, Similar argument works for n-types.
Note that if a countable theory T fails to have an
w-saturated countable model then w(T) = 2)§°, hence the
rest of Theorem B follows from Theorem A by determining
w(d) for @1 countable w-saturated. It is also not
hard to show that the number of non-isomorphic elementary
extensions of a model satisfying the hypothesis of

Theorem A is 1, N\o, 2’%.

Theorem C. There is a g a PC(Lw m) sentence in one
1

unary operation such that w(6) = )51.
This disproves the main result of Stanley Burris [4] by
showing that the quantifier ranks of Scott sentences of a
countable unary operation are arbitrarily high. John Steel

[5] has proved Vaught's conjecture for L = sentences in
1

one unary operation.

Matatyahu Rubin proved Vaught's conjecture for theories of
a linear order [8] and more recently for Lwlw sentences
of a linear order [9]. In my abstract [11] T mistakenly
stated Theorem C for PC(me).

Question: Does there exist a PC(me) sentence 8 in



83

one unary operation with w(6) = >‘?l?

For any (L,¢) a linear order define the following unary
operation (UL,FL)
U = {(@,,.+5a )i n<uw  6>&> ...>a . Yic<n

a; ¢ L}
FL(‘,) = <7
FL((ao,...,an>) =f<a ,...,a,_ 7

Claim: If L =1 + L and T = El + Ez are countable

2
linear orders, L1 and El are isomorphic well orders, and
either L2 and fz are both empty or they are both non-
empty and have no least element then (UL,FL) is isomorphic
to (UE’FI)'

Thus 6 = {(U,F): 4 L countable linear order < U.F k4

= UF } is PC(L, ) and w(e) = N,.

1

We only prove Theorem A for Ol = (A,R,a) where R is
binary,symmetric,irreflexive;and a is finitely many
constants,ésince it is easy to generalize.

Definition : (1) for Ol having a distinguished constant

0 let O] = {a e A: 6(a,0) < n}.

n
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2y 41 Enb’ iff Player II has a winning strategy in
the Ehrenfeucht game of length n ({6].

Our main lemma is the following, its proof is on p.88.

Lemma 1. If Ol and ﬁ are connected with distinguished
constants then (V¥n < w a,z L)=— 0a:=p.

Lemma 2. If ¥ € component of Ol countable structure
@@ < X, or w(@) = 2™y, then w(ar) < N, or
war) = 2%,

Proof:

Note that from Lemma 1 if g < 01, then the components
of J{» are elementary substructures of the corresponding

h
components of 01 . If w(g) = ZN" some § a component

of Ol then using Ehrenfeucht games we see w{(O0() = ZQ".
Otherwise let {fn: n < w} be pairwise nonisomorphic so
that ¥V 0¥ < { a component of d n 6n =X? . For

ki w»+w+1 let O’k be a structure (obtained con-
tinuously from k) with exactly k(n) copies of Cn for
each n and universe subset of w,.

X = {k ¢ (w+1)": O'L can be elementarily embedded into O7 }

X is a §: set and |X| = w(®) so by a classical theorem

of descriptive set theory [7] w(@l) < N, or

w(O7) = 270, B
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Note: (Vae Aw(«d,a) < N) = w(o) < N, |
(Jaec Aw(<cn,a») = 2»") =+ por) = Z,é".
If O1 is connected and Y € A is finite and contains all
of Ol's loops then define (l{y} for ye Y
Aly} = {a e A: a 1is connected to y by a path which only
intersects Y at y}. By Lemma 1 note that for X < O
(<R y2ey € €Oy v iff Dyl s Ol{y) for ye Y.
Hence it is enough to count the number of elementary sub-

structures of a tree. Define @] is a tree iff countable,

connected, has no loops, and has a distinguished constant

0. From now on all structures are trees until p. 9.
Examples:
I) Let T, = m n<uw

~ = Ao "
Consider T = m. .
S, 'S, '3,
where for each n,m < w infinitely many of the S,
are Tn,m. w(T) = 2M° is shown by Lemma 3.

II) Let § = AN w(s) = N
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Each of these has 2 % nonisomorphic elementary

substructures.
III) To illustrate Lemma 6:

Extend < on w to w v {®} by n<® ¥n <yw and

w < o, Let U = {(ao,...,an_l): n<uw,

a >»>a_ > ... >a € w v {o}}, If F is the

0 1 n-1’ al
projection function on U (F((a ,...,a ))

] n+1
(a,,...,a,)) then w(F) = Aéo.

Definitions:

(1) a is below b iff b 1lies on the unique shortest path
connecting a to 0.

(2) 01(a) 1is the tree with universe {be A: b 1is below a}
and distinguished constant a.

€3) P(a1) = {ae A: §(a,0) = 1} and for ac A
P(a) = P(01(a)).

(4) for X € P(a) Ol[X] 1is the tree with universe O and

elements of A below things in X and with
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distinguished constant 0.

(5) for X, € P() and y e P(01)¢ X, Y iff X, # Xn
for n#m and t (x,,01) ~ typ(y,01), i.e. V y(v)
first order J NV¥n >N (O |=w(xn) iff Q= v (y))y.

Lemma 3. If X UY = P(ogl) are disjoint and Vye Y
3<xn: nye X° Xp > Y then O7(x] < 01.

It is easy to find Xy = {xz: n<owl €X for ye Y dis-
joint so that * x’ -y for each y ¢ Y.
Claim: Vn <w VYye Y %n[xy]i mno[xyv {y}]

Let XY = 07n° and XY = {x,: n <w}. Clearly * holds
for XY in place of O7 , hence we know from the basic
lemma on Ehrenfeucht games [6] that VYn<wdN<uw
¥m>N R(xm) Enli(y). Given a g_b’[Xy] and n, < w,
choose N sufficiently large so that a < 0[{xn: n < N}]
and for m > N £9(xp) n, 19 (yv). Now patch together

appropriate strategies for Player II as follows:

LI )

111
o IRy Xy *un
' A
AR XY

Y
T S
/m

X, ™ *u Xuhy  Xnn
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From Lemma 1 and Claim, O [XY] < 01[Xy v {y}] for each

y € Y, hence by an easy Ehrenfeucht game argument

aixl1 <o-.- N

Definition: O is simple iff Wae A only finitely

many nonprincipal types in Th(Ol(a)) are realized in
P(a).

Note: By using Lemma 3 if O is not simple then
w(q) = 2»".

Definition: Given (ﬂa: a e A) such that ,Z?a < Ol(a)

for each a the fusion of (Pa: ae A) is the tree £
s

=-9_°1 and universe {b: for all a between O

and b,b e Il?all.

with O

Lemma 4. Given (ﬁa: ae A) with ﬂaial(a) all a
and £’ the fusion then £’ 4 Of.

proef:

By Lemma 1 we may assume Of = °7n for some n < w.

Now pro've it by induction on n. Thus A (b) < 01 (b) for
all b e P(o1), hence Z? (b) iﬁo(b) Vb e P(ﬁo) and
by an easy Ehrenfeucht game argume_nt L < [}o _<_—a1. ]

Definition: If O 1is s1mp1e let Z? Pr = Ol(a) [{x:

tp(x, d(a)) 1is principal}] for each a ¢ A, and a Pr.
P
be the fusion of <% ar: ae AY. By Lemma 3 l? < Ol(a)
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p
and by Lemma 4 01 T & 0].

P
Lemma 5. If Ol " = Ol then w(d]) = 1.

The proof is straightforward and ieft to the reader. -

Definitions:

N(a) = {x e P(O1(a)): tp(x,01(a)) 1is nonprincipal}
L = {aec A: N(a) # ¢}
T = {b€A: dJae L b 1lies on the unique shortest

path connecting a to O0}.

Lemma 6. If L = {a :n<w} and ¥ n N(a ) = {bn} and
a_,, £ Ol(b) then w(al) < N.

Broof:

Let for each n <w K = Ol - O (b,) then these are all

the nonisomorphic elementary substructures of O] . -

Definition: (1) [T] 4is the set of infinite branches of T.
(2) ae A isolates f e [T] iff Ol(a) is
as in the hypothesis of Lemma 6 with

ace f.

Lemma 7. If Ol is simple and 4 f € [T] such that no

a e A isolates f then w(Ot) = ZR".
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Proof:
Choose a € L and bn € N(an) for n <w as follows:
Having chosen them for m < n, let c¢ be any element of
f lower than any of the ay and bm for m < n., Since

¢ does not isolate f ian e O(c)m L an € N(an)(bn £ £

: Let B = {c: ¢ 1is strictly between
some b~ and 0}
Py
For a ¢ B let ,‘tfa = (01(a))
bn for ae B let X = o1 (a) [Xa] where

[« B

c Xan = {x: tp(x, dl(an)) is principall
Kwry v {b }
b\m Xd = {x: tp(x,d1(c)}) 1is principal}l
N v {(P(O1(c)) ~ B} if d # a, any

n-<uw.

1f L is the fusion of the X .'s then I <o1. For any
n < w note that at most two x € C such that
§(x,0) =6(an,9_) and N(x)r # §. For any X< w let
S L be gotten by fusion so that V n < wb e |E_|
iff n e X).
arx— L #0050 W
§ V)
Lemma 8. If W ae P(01) w(o1(a)) < N, or w(Ol(a)) =2 °
then w(0]) < N, or w(O) = 2 o,
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The proof of this is similar to the proof of Lemma 2. [}

Lemma 9. If O is a tree then () < }\‘o or

w(d) = 2”“.

Preof:

N
If 01 is not simple then w(0]) = 2\°

by using Lemma 3.
Define D(T) = {xe T: x does not isolate any f e ([T]}.
By Lemma 7 if D(T) 1is not well founded ([D(T)] # £)
then w(M) = 2‘é°. If D(T) = @ then by Lemma S or 6
w(g1) < MN,. Hence we may assume D(T) is well-founded
and then the Lemma is proved by induction on the rank of

D(T) by using Lemma 3. [}

It remains only to prove Lemma 1. We no longer consider

just trees.

Lemma 10. If Ol is connected with distinguished constant
then Vn<w Vo(x,y) IN>n N<w 4T finite
VicO -0, de*H er VBe O (01 ¢(3,B) iff
dly = ¢*(B)).

Proof:

The proof is by induction on the logical complexity of
¢(§Z?). For the atomic case put N = n + 2 and

r = {T,F,x, = x,,R(x,,x,)}. On the induction step 1, 4

are both easy.
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9z ¢(X,2,7)
By induction 3!‘1 JNI > n such that Yaace O- mN;
Jo er, ¥be O (O1F ¢@@,a,B) iff dly |k o(b).
Also by induction J T, IN, > N such that
Vic al-a1y, 3tz e, Vbbbl
(61 + ¢(3,b,5) iff O 1(b,b)). Let N =N, and
r = {O\Z’FGN‘(F) vdz e d‘lNlr(zi): Fer ,tel,}. These
work since given ace a - o1 N, let
F={o( er,:Jaca-ay Vbe d (aF ¢@,a,b)
«+ 07N1 [= o(P)} and 1(z,¥) so
Vb be le(q = ¢(2,b,B) < aJNz I t(b,B)). Let

68 () = YoM FT v Jzeoly 1), I

Remark: Lemma 10 was motivated by the main lemma in

Feferman-Vaught [19].

Lemma 11. If O1 is connected with distinguished constant
then V ¢(x,y) Vn<w IN<wVbe O  if

Ol I= 3 x¢(x,5) then Jacec dy all ¢(a,b).

Proof:

Let N , T be from Lemma 10 for ¢(x,y) and n. Define:

¢*(¥) ¢ I is a testing formula for ae O - O'IN if
1

VBeol, (O ¢(a,B) «» Oy I ¢*(B)). Choose N2 N,,
N <w so that VYV ac¢e O'I-O‘IN1 if ¢®(y) e T 1is a

testing formula for a then there exists da'e OTN so that
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+*()7) is a testing formula for a. This N works because
01]’ ‘(3,5‘) - le !’ #*(E) «> a1 |’ ¢(a',g) some

al eOTN with same testing formula ¢*(y) as a. [

Lemma 12. If O] is connected with a distinguished

constant and O = 17 then ngmﬂn < 2.

Proof:

If b ¢ ,Un and ¢(x,y) are given then taking N < w

from Lemma 11, Ol = " V?ed‘ln(]xtb(x,?) - JXE:OTN
0(x,¥))". So if AP | I x¢(x,b) then Jbie X’ Ak o(b,b).

By Tarski's criterion we are done. [

Let (HC,e) & M such that mM is nonstandard,

We assume O, ¢ HC. Let O1* be the structure determined
3 x = U *

by M corresponding to O1 and Of3, n<wmn' Let

n* ¢ wM -w and M| "s is a strategy for player II in the

Ehrenfeucht game of length n* played between 01;* and

» ;*". Since n* 1is nonstandard the strategy s gives

a back and forth property to show ;tE ﬁ;t (if player

I plays a ¢ d] *. then s must respond with be Q).

By Lemma 12 o %, 5 61* and y &4 S¢ S * and also

N<a* and PL* so orzz. B
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PART III. THERE ARE NO Q-POINTS IN LAVER'S MODEL
FOR THE BOREL CONJECTURE

All ultrafilters are assumed nonprincipal and on w.
Define:
(1) U q-point (also called rare [C]) 1iff V (Pn: n<uw
a partition of w into finite sets J Ac UanA.Pnl < 1
(2) U p-point iff \J(Pn: n < w) partition of w either
dnp e U or JAac UVn|lAeP | finite.
(3) U 1is Selective (also called Ramsey) 1iff V(Pn: n<uw)
partition of w either dn p,eU or
JAce UanAnPnl < 1.
(4) U 1is semiselective iff Given An e Udfe ¥
v n f(n) e A, and f'w e U.
() U is semi q-point (also called rapid [C])} iff
Vf e w” ﬂg e w’ V¥n f(n) < g(n) and g'w e U.
It is easily seen:
Selective = p-pt + q-pt
semiSelective = p-pt + semi q-pt
Define: £ < g iff InVm > n(f(m) < g(m))
3 gw“ is dominant family iff Ve w Jg € 1 f < g.

Theorem (1) (Ketonen [Ke]) If Vj dominant |]] = Zﬂ:’
then 3 a p-pt.

(2) (Mathias, Taylor) If 4 % dominant |$| = R’,
then J a q-pt.
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Kunen [Kul] showed that adding )tz random reals to a model
of ZIFC + GCH gives a model with no semiselective ultra-
filters. More recently he showed [Ku2] that if you first
add )ez Cohen reals (then the random reals) then the re-
sulting model has a p-pt. In either case one has a dominant

family of size )t, so there is a q-pt.

The following are equivalent:
(1) U is semi q-pt.
@) N (P: n <w)(¥n P finite) > A€ UVnlAsP | < n.
() 3he V(P :n<w)(VYnP finite) » JAc U
¥V n|AsP | < h(n).
Proof.

1) = 2) Let f(n) = sup(mtgnpm) + 1. Suppose g(n) > f(n)
all nthen Paghu & {g(O;, ... g(n-1)1}.

3) =+ 1) Assume f increasing. Choose n, < n, < n, <
so that h(k+1) < n . Let Pk = f(nk) and let Y e U be
so that |Y a P, | < h(k). Then for each m > n,
|Y a £(m)]| < m, since if ne <m<n,, then
1Y A f(nk+1)| < h(k+l) < ny < m. Hence if ge w”

enumerates Y - f(n,+1) in increasing order then

Mnfm <gmn). B

Define U x V = {A€w x w: {n: {m: (n,m) € A} e V} e U}.

Whilst U x V is never a p-pt. or a q-pt. nevertheless:
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Ux V is semi gq-pt. iff V is semi q-pt.

Proof.
g
v | .
upper diagonal in U x V
(%)
7
(=)

Given P, €w finite let P = {¢n,m>: me P A n < ml.
Choose Ze Ux V so that Vk|ZaP§| < k. Let ne w
so that Y = {m > n: (n,m) € Z} € V then Vk|YnPk|<_ k.
(More generally f‘U =V and U semi-q-pt. andf finite
to one then V semi q-pt.)

(=)

Given Py €w x w finite choose n, increasing so that
Pkgnf{. Let Ye V so that VklnknYI < k. Let

2= Mkl x {m: me Y am>n}) then

ZaP <la ni < k x (ng ~ Y) which has cardinality

< (k + 1)%,

Theorem. In Laver's model N for the Borel conjecture [L]
there are no semi g-pt's.

Proof.

Some definitions from [L]:
<w

(1) Te 3 iff T subtree of w with the property that
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3 sp e T (called the stem of T) so that Vte T

t €sp or spct and for all t > sp(t ¢ T)= there
are infinitely many te T immediately below t (t 1is
immediately below s = (k ,...,k) iff Jk_,

t = (ko,...,kn,kn“)) T>T iff T 1is a subtree of T.
(2) T, ={teT:s &t vt <sl.

(3) T°> T iff T > T and they have the same stem.

Lemma 1. Given T ¢ j and for each s e T - (@}
) = {x: k

s = (kg,oook,k ) (F

F, € [kn’k < x < kn+ }  where

1
c0,n]) and ¥se TIN <oVt

n+1 n

immediately below s in T lFtl < N. Then letting
H.’l‘. = g.i‘. Fs for any ”?‘ > T, we can find TO,T1°3_ T so that

HTDn HT1 is finite.

Proof.

We may as well assume stem of T 1is @.

Given Q any infinite family of sets of cardinality

< N < w there exists G ,|G| < N,la € Q infinite so that
WF ,Fe Q (F a 1;)5 G. Now trim T to obtain 'f‘_>_T

and Vs ¢ TI6, € [k ,o] Finite (s = (k,,...,k;)) and
for all t, t immediately below s in ’.I\‘,(Ft ~ F3) <€ Gg.
Build two sequences of finite subtrees of "?‘:

Tg < T coe

-— n*l
1 ¢ 1
Tn -Tn+1 L I
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so that [ To(F JG)]A [ Tl(F VG)}CG¢

Ui=i T i =
and n<an T > T for i 0,1

This is done as follows: Suppose we have T¢

0 T; and

we're presented with s ¢ T;- and asked to add an immediate

extension of s to Tg. Then since

{F, - Gy: t immediately below s in T} is a
family of disjoint sets and Gt f_[kn,m] where t =

(k kn) we can find infinitely many t immediately

o,nio’

below s in T so that

[(F-65) v 6] n [Hi(Fg v 61 = ¢

The above is a double fusion argument.

Some more definitions from [L]:

(1) Fix a natural w-ordering of " “ and for any Te ¥
transfer it to {t: t @s; ot e T} in a canonical
fashion. %nl T means the first n elements in this

order on {t: t 2 Sp - te T} are still in T.

(2) The p.o. sz is the w,; iteration of ? with
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" MIG_ 1.
countable support (pf |- "p(a) ed " a all a and
support (p) = {a : p(a) # 0¥ is countable).
(3) For K finite and n < w

Py>a iff [p>aVae Kpp,l- "pla) "> q(a)"].

Lemma 2. Let f be a term denoting the first Laver real

and T any term. If pe Isz‘pH- "re WA VN f(n) <

1(n) A T increasing" then ]ZO,Z1 , 2, n 2, finite,
g;%,pl >p and p.l- "t e Z;" for i = 0,l.

Proof.

0

n ikn P,+, SO that

Construct a sequence p i&u P

= U
A{wxn neggSupport(p ). 0e K.

Having gotten P, let s = (ku,...,km) be the nth

member
of {te pn(O): t ¢ the stem of pn(O)} (s = pn(O) <nv
in Laver's notation).

Fix t = (kn""’km’km+1) in pn(O). Then for each
i<m+1
~ . W N b
Py = CPn(0) " prlle,) Ik (D) 2k, v W T ) =
m+
Hence by applying Lemma 6 of [LIm+ 2 many times we can

. n
find q, kni p, and F & [k ,k . | such that
IFtl < (m+ 2)(n + l)lKnI and

qell "tw o~ [k, koL ) < FLU.

m+1

(Note ptll- "Wi>m+ 1 1(i) > k_, "),

Let p,,, (0) = (p,(0) - pn(O)S)\J U{qt(O): t immediately

m+1

below s in pn(O)}.
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Let [1,w,) be a term denoting

pn+1

Qe Fll,0,) if q,(0)
Pnf[l'“z) if pn(O) - {t: s ¢ t}

n
> .
S0 Pps, K, - Pn

Now let ﬁ be the fusion of the sequence of P, (see
Lemma 5 [L]).

Then for each t e p(0) if t =<k ,m,k ,k [ 7AL 2
stem p(0) then

< p(0) S pril,uw,)>| "t"w [k ,k ;) < F.".
For te p(0)A t§ stemp(0) let F_ =k .
Applying Lemma 1 obtain T,,T, > p(0) Z,,Z, ,Z, »~ Z, finite
«TSpfllw,) > | "twez,m i=0,1. B

Proof of the Theorem:

Suppose M[sz] = "U is a semi q-pt."

Applying an argument of Kunen's we get o < w,

UnM[Ga] E H[Ga].

(M[GB] B"CH" all B8 < w so construct using w,=C.C.

2

<w, A<w, so that Vxce M[G%] A decides

4]
A 0")\4-1

"x ¢ U', Let a = sup ay . Note

w o W .  J
M[Ga] A2 é{ol“’\[GB] n 2 since ‘\, is not collapsed.)
By Lemma 11 [L] we may assume Ua M e M. But Lemma 2

clearly implies that for any V ult. in M, M[Gw ] ¥ "o
2

extension of V is a q-pt". [}
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Remarks:

1) A similar argument shows that in model gotten by w,
iteration of Mathias forcing with countable support there
are no  semi-q-pt's.

2) In [M] Mathias shows (v + (W)*)=> (no rare filters or
non-principal ultrafilters).

3) In neither the Laver or Mathias models are there small
dominant families so by Ketenon [Ke] J p-pt's. Also it

is easily shown no ultrafilter is generated by fewer than

,(,_ sets.

Conjecture: Borel conjecture &> 4 Jsemi q-point in

BN-N.
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PART IV. MISCELLANEOUS

§1. Universal clopen sets, Wadge degrees, and

w-Boolean operations

Given B € w? x w® define B, = {y: (x,y) e B}. B is

said to be universal for clopen sets (Ag) iff

WV x B e A} and WAe o] Fx(A=B)
What is the simplest B universal for clopen sets? The
reader is obliged to guess before reading on. (For example
good choices seem like: open, difference of closed sets,
Fs(gg), etc.)

The complement of a set universal for clopen sets is also.

Here is a N! definition. Let A €w” x o

be open and
universal for open sets.
(x,v) e B iff Wz((z ¢ Ay, ** 2 4 Ay A Y E Ag,)

((x)i recursive uncodings).

Theorem 1. On the other hand no Borel set is universal for
clopen sets.

For C < 4" and sew® (se Fr(c) iff dvy,z

y,22 s{ye CaAaz ¢ Q).

A= (T ftuq°: IxYs e T (sc¢ Fr(Bx)) and T closed under
subseq.l. If B were Borel and universal for clopen sets
then A would be a §: set of well founded trees of ar-

bitrarily high rank, contradicting the boundedness

theorem. [}
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I don't know the answer for sets universal for é; sets

2 < o < w, . Harrington has proved Theorem 1 for 4; sets.
Similar questions are settled by C.A. Rogers [1] and
Kechris-Martin [2].

Define: A S B for Ac¢ X, BCSY X,Y topological spaces
(Wadge [3]) iff 3 f: X + Y continuous and £ '(B) = A.
Given T ¢ 2% (truth table) define the w-boolean operation
Pp: (P(XNY » P(X) for any X by

(x € FT((An: n <w)) iff {n: xc¢ An} e T

where we identify ¥ with Plw).

Some examples of w-boolean operations are countable union,
operation H , R-operations of Kolmogorov [5], and the Borel
game operations of Burgess ([6].

Define CT = {A ¢ Y. J(Bn: n < w) each B, clopen and

r Bn: n<uw)=A4a,

7(

w W,
Theorem 2. For any T € 2° ¢ = {A €2°: A< Tl
Proof.
()
Define A <€ 2Y by ae A iff a(n) = 1. The A 's are

clopen. Suppose B S T via continuous function f: 2= -+ 2

-1
and Bn = f

(An). Then each Bn is clopen and
(Be Tp <B :n<u >)«>({n: B e By} e T)«>({n: £(B) € A} € T)

++(£(B) € T)«>(8 = B}, hence B e og.
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(<€)
Let (Bn: n <w) be an w sequence of clopen sets. We must
use the following fact due to Wadge:
Fact: for A,B ¢ Zw, A <, B 1iff player II has a winning
strategy in G(A,B). G(A,B) 1is the game where player 1
and player II alternatingly write down 0 or 1 creating
two maps a: w - 2 and B: w » 2 Trespectively. On his
moves player II may elect to pass but he must play
infinitely often if I does. Player Il wins a particular
play (a,8) iff (o c A iff B e B).
Claim: II wins G(PT(Bn: n <w), T).
I II IT waits until either ([ufn] < B, or
[afn] A~ B, = ¢ then plays 1 or 0

accordingly. Since B, 1is clopen he

. . will not have to wait indefinitely.

. If he continues to play in this
a(n) fashion he produces a play B8 € 2
so that

a1 € B iff B8(n) =1, thus

a € FT <’Bn: n<uw»+« {n: oo ¢ Bn} e T+«+ Be T

This theorem was proved by myself and Lon Radon. Other
similar questions for w®  in place of 2¥ and open in

place of clopen are answered by Steel [8] and Van Wesep [9].
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The next question I consider is whether or not there is a
W

natural hierarchy for the 4A; subsets of w”. The only
results known are negative, for example Moschovakis [10].
Note that if {T} o {A : n < w} €4; then

I‘T(An: n<uw)e Q; In general for (5 P(cow) let C*
be the least contdining ¢ and if (T} v {A: n <w} €E*
then IT(An: n <w) el*. (Note ((Q‘l’)* = é‘l’,(g‘l’)* = é:)

Using the method of Kunugie [11}] we prove:

- . 1
Theorem 3. Suppose {5 = {A. A v B} where B e A} then

JCea; g*clAr Ay, Cl.
pf

w

Define U Swm X W by (x,y) e U iff fv(x) e B.

fy: w® + w® is the continuous function A: coded by vy.

Then U is é;, and VAel Iy ¢ w® Uy = A.
Define x = (T,f) 1is a code iff T < ©w® is a well-founded
normal tree and f: {s e T: |s|; = 0} = w?.

Define Cx for O¢ T as follows:

]GiT = 0 then C_ =Uf(c)
G"iH:

< .
x i w )

o}
|6|T >0 then C rcxo"'o( C,
Define P(x,y) iff '"x 1is a code and Yy ¢ Ci". Clearly
< (A A 5w P}, and it is not hard to show that P is

L

-~
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§2 Wadge degrees of orbits

Let ©1 be a countable structure. Define
[o1] = {(w,Rn: n <w): Ol is isomorphic to
(wyRy: n <w)l., [O1] is called the orbit of ¢l . Scott's
Theorem [15] says that for any O countable [o1] 1is
Borel. Recall § the metric defined in Part II. For
any ae A let Cl(n,a) = {be A: §(a,b) < n}. a1 has
finite valency (]14]) iff for any ac A and n < w

Ol(n,a) is finite.
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Theorem 4. For every O1 finite valency, countable

[01] ¢ 1°

Proof.
For ae A let

P, (v) = ﬁm[ax xjn eﬁ(v,xl,...xjn) A

- 3 Xy oo Xy Jy(en(v,xl,...xj JAS(VL,Y) snavEY A
n n
Xs # vy)] where O7(a,n) = {a’b1""bj } and
n
eg(a,bl,...b. )} is the conjunction of all atomic sentences
n

and negations of atomic sentences involving a,bl,... ’bj
n

and some Ry for m < n or equality.

Lemma 1. \f A? countable (not necessarily of finite valency)
Ybe | 19, P (b) «» Ql(w,a) = J¢ (w,b).
Clearly A F P o(b) implies there are isomorphisms

F: ¢0l(n,a),R > =+ <4 (n,b),Rn” m«n each sending a to b,

n m’m<n
Define a back and forth property ¥  by:

*

((a,b) 51 +> infinitely many n FnlE\= b).

(a,b) ¢ ¥ so }r is not empty. Suppose (a,b) ¢ ¥ A

c e Ofl(w,a). Choose N < w so that Of(N,a) contains
(ajc), then since |Q(N,a)|,|A (N,b)| are finite

Jd e |[#(N,b)| such that infinitely many of the F_
sending a into b send ¢ into d. (Same argument for

other direction of the back and forth.) -
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Choose a, for n < N <w so that VC a component

(maximally connected) of 7 .an <N [ =01 (w,an).
Define g: N+ o + 1, g(n) = number of components of 7
isomorphic to O (w,a,).

Let o(v,w) = 2 5(v,u) > n.

n<m

Let ¥ =¥ x ¥ P CDA (Y nfmny T xese - X (590x,%5) A
Penfa VR gnd w3 3er 0% () j’,”i‘<gcni9 (x;%5) s
n<N i#3
2P )

Since o is N} and P_(v) is T; we have that v is

0
1.  Theorem 4 [
We show this is best possible:

Theorem 5. If O = (w,R) R € w? 1is the graph of the 1-1
function whose components consist of infinitely many copies
of (w,Sc) and infinitely many copies of (Z,Sc)

(Sc(x) = x + 1) then [q) ¢ :,.::
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C. | c. 4

O ~vo—%0—>06

| O —»oO

.,0-0’ o
P

Play the following game of Solitary: On the nth move you

are presented with the nth row of zero's and one's (seemingly
at random) in w columns Cm m < w. You (eventually to
write down a structure <w,R> R < w?) write down an

extension 91 of O7__ <€ O] with universe contained in

 §

w. Let O1-= ngwo]n' In order to win this game you must

arrange that the universe of 07 is w and either

01 = 070 f\(:-COpies of <w,Sc>

or

A=, =1- copy of <Z,5c»+ O.

In addition you must guarantee:

A - 07l iff (one of the columns C_  has
infinitely many one's in it.)
It might be easier for the reader to find his or her own
argument. Any finite structure isomorphic to <n,Sc >

n <w will be called a string. Here is a rough description

of a winning strategy:
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After n moves of the game, O7

n will consist of finitely

~

many strings labeled C, ,Cm and the rest of the
»

strings will all be labeled G (for garbage). The first

thing we do is push each string forward, i.e. given:

1 2 3 1 2 3 4
0~ 0+ 0 we add another element making 0 + 0 -~ 0 + 0,

and we also create a new string O0-+»0 and label it G.

th

Next we look to see if a 1 apears in the n row in any

column. If none appears we'vre done with this move.

Otherwise let k°<¢o be the least k with 1 appearing

th column Ck and nth row. We move the string
1 2 3

labeled Cko back: 1i.e. Cko =0~ 00 becomes

4 1 2 3 ~

0> 0-+0-+0. And we take all strings labeled Ck for

in the k

~

k > k, and relabel them G (injured priorities). This is
a winning strategy because if none of the columns have
infinintely many one's in them,then no copy of «1,Sc¥» is
ever made. So O = q1,.

If k, 1is the least k such that Ck has infinintely many
one's in it then at some stage n_ < w none of the columns
Cy for k < k, ever get a one in them, After this point
the string labeled Eko is made into < Z,Sc > and each

Ek makes into < w,Sc » for k < kn as do things in G.

So Q- al, . III

“ o, P(w) continuous so that

If He M} then JcC: 2
Vx(x ¢ Heae C(x) infinite). Hence for any G ¢ Eg
;'(Gn: n < w?Y cont, so that (x ¢ G «= d n Gn(x)

infinite).
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Let A G be any I’ set G e Ij and

W Xw
2

. w .
Then using above game we have maps fn: 27 - continuous

so that (x e G )« (f (x) = 071)++(fn(x) # 070). So easily
we have a continuous map g: PAE N A V X

(x e G )«+(g(x) =0T, showing [O1] 1is complete [I: B

Remark: Given ¢ v,E¥ a countable graph

(E € [v}? = {{a,b} € v: a % b}) define O1 =<vuE,e? by
(@ae b)>(ae VA be Eab=1{a;,a,} A(a=awva=a)).
Then £ on the universe of @1 is a relation with disjoint
domain and range (hence a partial order). Furthermore
w(Th(o1)) = w(Th<{v,E»). Theorem 4 shows that O has
i,\(‘.or Z'\“ non-isomorphic substructures. The proof is

as follows.

Case 1. There are infinitely many x e V of infinite
valency (|{y: xEy}| = )i"). Build a distinct sequence

x, €V, Y, €V infinite for n <« so that

\/ n‘Jy £ Yn({xn,y} e E) and ¥ n #nm (Ynn Y, = ¢). Looking
at substructures of Ol allows us in effect not only to
drop out vertices (elements of v) but also edges (elements
of E). Hence we may 'drop" all edges except those

connecting each x, to the elements of Yo and easily

X, . .
show Ol has 2 ® non-isomorphic substructures.
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Case 2. There are only finitely many x e v of infinite
valency. By an easy generalization of Theorem 4 the
orbit of every substructure of OV is gg, hence we conclude
that the class of substructures of (1 (note that it is
PC(Lwlw)) obeys Vaught's conjecture.

Next we characterize the Wadge degrees of well

orderings.

Theorem 6. If B8 = A + m where X 1is a limit ordinal and
B

m<w and y = wB-n + 8§ where n <w and § < w~, then

if n =1 then [(Y,<)] is 17 . properly and if
n>1 then [(Y,<)] is 2 - §£+2mt1 properly.
Proof.

The computation of the upper bound on the complexity will
be left to the reader. Now we show that the orbits are

properly of the given complexity.

Define C'IEGG iff 1 and A model the same II&

sentences. (| <, A is defined similarly.

Lemma 2. If 8 = X +n where XA 1is a limit ordinal and

n < w, then (wB,<) ix+zn(“8‘5’<) for any & > 0.
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Proof.
This is essentially what Ehrenfeucht shows in Theorem 12
of {12], except he does not go into transfinite levels,

and in his game Hn’ player I gets to choose which model he
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wants to play in each turn.
Instead we should play the following game Ka(tﬂ,if).
Player I begins by picking OT or A on his ISt move and
playing a finite sequence from the model he picks, from then
on he must alternate between O1 and 4 , on eacﬁr;; plays
an ordinal Bn with Bn+1 < Bn' The game is over when

I plays zero.

It can be shown that if Player II has winning strategy in

K &Ol,ﬂ), then 015“;(,) . o

Now consider B > 0, 0 < n < w, § < wB, B = A + m. By

the Lemma

<wPrs, ey 2 cufnvs,ar X <ufnel) 5, <
o1, o, o1,

thus for any £§+2m+1 sentence 6:

* if q] =© then C?‘!1 l= 6

** if O] =@ then 9 |= 8

thus [<wB + §,¢>»] 1is not E;+2m+1 by *

Suppose

[(w& n+ §<c>] were co(2 - E§+2m+1))

then [(mB n + §,¢»] would be union of a H;+2m+1 and

L}42ps: hence would be [} .. contradicting * or
0 dicti .

I3 ,,me, Contradicting . B



117
Lemma 3. 1f O £ 4 ,0(# A’ then orbit of 01 is not
Lot1 and orbit of A’ is not 10, . Now we give some
examples of other orbits.
Define 1i,j < w of, & p-structures then i 01 + j- A
is the following p v {~} structure.
|ie01 + j+3?| = i copies of |0l|v j copies of |&?]
x vy iff x , y are in same copy of |[O0]]| or |A’]

Rx iff X are in same copy of |Ol| or |A?| and RXx

holds there.

Lemma 4., If 07%51-’ then i+ Ol + we A’ g+l(i+1)-07+ we A

Proof.

Easy playing game.

L4
Lemma 5. If [Oﬂ,[ﬂ} 22 A, then w+ & is A
1:01 + w- X is 2-T]

Proof.

8, Scott sent for ot

8 Scott sent for A7

1
For any Xx,vy, ¢* the formula obtained by relativizing

the quantifier of ¢ to {y: y ~ x}.

Let wn = (a) REP\{!(Rx +-1f%xl xj)/\

(b) ~ equivalence relation A
(c) Max
(d) Vx o¥

Xn lfj(x % x ) A
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ll.lo is a Scott sentence for we &7

Let y, =(a) A(0) AL) A
(e)V x(6) v8l) A
() ¥ X,y x4y =q(e5~ 08))A
() 3 x o7,
¢ is 2-10 Scott sentence for I-o +uwi

If 01, »# p-structures L,L' 1linear orders, then define

oL + AL’ the P v {<}-structure as follows.
Let mﬂ,’b)k be copies of O1, A for each 2 ¢ L, ke L'
CRRE A I AR L A TN
x <y iff [Jedk (x,y e o1,) or (x,ye#k) or
(xeml/\yeﬁk) or (2 < ka xc€ C"IZAyeo'?k) or
(2 <hpxe X?QA}'sl?k)].

RX «+[x in one copy of @l or A’ and Rx holds
there].
Lemma 6. If Of § &° then A2 +n + 0en 2 &.q +01(14m).
Easy using games--the extra copies of {1 on left corres-
pond to some J]_ s e n on left. [

s

Lemma 7 (o > 2). If (ﬂ],[’@] € A" then

~Q
[ﬁ-n + o) ] e Losr o
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Proof.

Define x ~y iff x <y Ay £ x, Let
6a Scott sentence for Ol and
8, Scott sentence for A% . Then the conjunction of
(a) </~ has order type n
M .
(b) Repr -"/i"’.‘_,xi VX
() XxV¥y(ey » 6] = x > y)
@) Vx(og v o])
(e) 3x8?~Vy<x B)(

is a E;” Scott sentence for A'n + d]-(1+n). |

~

-

Theorem 7. For each o« , 0 < o < N‘l there are orbits which

are properly:

0 . 7o 0 .o 0
El’ 2 El' Ea’ 2 §a+1’ and §a+2'
Proof.
. . 0 .70
The ordinals give examples of My ean+r Y 2 Ek+zn+1

orbits for (A > 0 1limit 0 < n<w) or

A

(A 0 Ai <n<w), For X a limit»e choose oy Fo.

It is easy to see that the orbit

[(mA,<,p>] where p = {a_: n < w} is 0% and not I?
n ~A ~A

Now let U‘ls(u“n,<7 A‘ WMz Y s g,

+211

By Lemma 4 (w- &) 4;”“1“0.-0\ + m-l))"‘“m“Q-d’! + w &),
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- a »
Since O1,A have th*_z orbits by Lemma 5
welr is M., and .01+ we X is Z-ML .

They are properly so by Lemma 2.

Thus we have examples of proper T° 2-1%, a > 3 orbits.
- ~¢ - that

In fact Yo ,2 <a < W, we have structures Ol £, & such/

orb(M ), orb(i) are é;”. By Lemma 6

#en + Olen & 2 en + 01(L4n).
Hence by Lemma 3 k’-n + Ol (1+n) 1is not g;H.
By Lemma 7 [ en + A1(1+1)] is §&+3'

Now let GI,Io’ be the following structures in one relation
symbol .

~ equivalence relation one equivalence class.

n equivalence relation two equivalence classes, one of
which has size 1.
It is easy to see that [(f] is LI‘:,

A [’JI is Z-g‘l’.

Since (] 907‘? we have [If-n + Gl(1+n)] is §g
Now let M=«<¥,Sc? ,1.?=¢Z+Z',S¢>,
then o1 is gg - 2L is 2-[[2, and O‘Iizr‘ so by
above A +en + O1(l+n) is L)
This gives examples of all orbits promised except for
g;’“z A limit A > 0; which we now provide: (keep t::LQ gl)lnd
the strucutre <Q’Cna‘ » where C, are strictly increasing/
Suppose we have p-structures O'In, and O, then J is the
following p v {<}-structure.
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|#] = {Kr,av: re @ ,ae |01 | if r =c  for some n < w
ae |01 otherwisel}.
(¢r,a% < ¢s5,bYj+=>(r < s).
Rx «~(dr «x = {fr,a> Cr,a,»,..., ¢‘r,a > and

Ra ,...,a holds in appropriate structure).

ﬂ} = A - {¢0,av: a e |ot1]|}.

«
Lemma 8. Suppose a_ f ) 07n ianm then A . X7

Proof.

Easy using game criterion.

. : 13
Lemma 9. Orbit of x? is EA+2'

Proof.

Just write it all down.

o~
Note: If a th then (u ",<) £ w",<).
n

This concludes proof of Theorem 7. [}

Remark: An immediate corollary of D, Miller's invariant

difference hierarchy theorem {13] is that if

0 : : 0
{A] e Baer then there are invariant 1 sets A
and -8 .. . so that [o01] = Aa~B. Also a

theorem of Vaught [19] says that a 1) set B is invariant
iff B 1is the set of countable models of some g& sentence

of Lmlw. Thus if [@1] € B where B is an invariant
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g; set then [o{] €« B' € B where B' 1is an invariant
Hﬁ set some n < w. The following diagram summerizes
the content of these remarks and Theorems 7 and 8. The only

open question is: Are there any §§+1 orbits for X > 0

a limit?
0 0
Yes 1] 5 No
Z-Eg Yes
0 0
Yes Bz gz No
0
2-@2 Yes
0 0
Yes gs 53 Yes
Yes TIi° r? No
~ ~ {0
2-1° No
~W
0 0
Yes £m+1 §w+1 ?
[}
2-gw+1 Yes
0 0
Yes Bw+2 Em+2 Yes
]
Z-Ew+2 Yes
In {13] D. Miller proves that in the topology generated

by first order formulas there are no I, orbits. Next

~~

we show in the wvsval topology that such orbits are

impossible.
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Theorem 8. Proper E: orbits are impossible.

Proof.

Suppose ©Ot1 = ¢A,Ry, ||A|l = h'; , R countable similarity
type containing only relation symbols. Suppose

8, = gxa,...,xn_l A wm(xo,...,x

m<w n-i
St

where wm(f) H‘l’ formula of 1 order logic.

Suppose
YRR = (K =01 RF ).

Lemma 10. J1 is w-saturated (in fact Tk(m) is
H‘o -categorized).

Proof.

O] is weakly saturated. To see this let L be a type
consistent with '1'L(o1), Let A » 01 be countable
realizing I. Since # [ 3, W =01, So 01 is weakly
saturated. Thus 7h () has only countably many n-types
each n. So there exists A’ countable w-saturated
model of ¥ (01). Since 014""«3'j 2’ | 8, so
0. &

. = A
Define e(xu,. ) %]

WM
fen! m<wwm(xf(o)----‘)‘;(n_”) where

S S (xi*xj)/\

n! is the symmetric group on n.
Thus 89 = {x ¢ [A]n: ol |= 6(x)} partitions the n-element

subset of A ([A]™).
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By Ramsey's theorem 3 v €A inf. so that

[v]n fem or [\r]n < [A]n - e“ (= ~ 9“).

If the first happens then we have <v,R>}= ¥ X 6(X) and

hence by * MX 6(Xx) is a n? Scott sentence for d7
So we assume [V]n € 6.
Choose B e 87 and throw out of v any part of B.

By repeatedly applying Ramsey's theorem we obtain ? € v
infinite so that

n -
VEeB either (a) YGe (vI®IFIl Fuge o

or () ¥Ge [v]PHEI

F vG ¢ 8

Choose F € B of minimal cardinality so that (a) happens
(it always exists since F = B will do).

Let F = A | Al = n,.

Note by # (A, V v,K>= 07 so we assume A,V T = A,

Lemma 11. VB e [A]"°[B = A, «» ¥ C e [A-B}"7

B wvwC(Ce e‘"].

+ By definition of Ao.

« Suppose B # A. Choose Ce [A - (Bw Ao)]n'n".
Since B n A < A, has smaller cardinality (b) happens,
and hence BV C =

(A, ~ B) v [(B-A)vCle ~o”,
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Lemma 12. ¥ B € Vv infinite there is an isomorphism

F: <B + A, JRY > <V o AO,R'7 = 01 which sends A, into A;.

Proof.
The fact that there is an isomorphism follows from *

that it sends A, into Ao is immediate from Lemma 11. [

Recall
0(x) = Xixy #x; (M, My (£().

igj~i j fen! m<w
This is equivalent to

M(Mxi # X5

m<w

" fs«;u X B (f(x)). 7 ft‘\“ G, (%)

Define Vk < w

T (Xyseeesxy ) F f;\J X; # X - gg‘k(ﬁ‘jxi f x5 > 0 (X))
<Ny <n

T ()

Thus each -rkn"l’ formula and
N B (gl =R (=01 «» Ixe BIMZE 1(x)))
Vxe [A](0TF t(X) <> % = A,).

(X)

Lemma 13. g N <w (N> 3n,) VHe [A]N there is at
most one B e [H]™® such that ¢ H,R7l= Ty (B)
Proof.

Let T be the following theory:

(a)Jxo, X ﬁ\j xi#xj for k < w;
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(b) Tk({bo""'b LB for k< w;

Ny
{c) tkﬂ{c',h..,cno-l}) for k < w; and
()b, b, _,} # {c, cno_'}.
This theory must be inconsistent thus

d N <w as required. ]

Define 3.5 ¢ A", @~ B iff Vi,j(a; = aj; «» by = by)
A = {¢(x): ¢ is quantifier free formula with parameters

from Ao}.

Lemma 14. ‘;I is a A-indisc set over A° in m.(that
is VYoe avb,ae VP

an~b > (8(3) «+ 8(h))

Proof.

Consider Tk((al,aJ'aer) = T for any linear order
<X,¢?, ||X]| = ¥ . There exists AR = T,X ¢ |&7]

| %] = )f; ,<X,&” <-indiscernible over A’ .

Let A¢ =(;Pu,ba>aEAo, by *, k’o = @1 it is clear that
{ba}

Let <X < have order type w + w,

aEAu = Ao )

X,= {by: i <w + w}.
Claim: Ve e A Vi <i, <...<i <k<2<j <j,

<.'l<jm2

e(b:,...b. ,by,b,,b. b. ) ++ ¢6(b~, b,,by,br)
lmlk 2 JiseeeTdp, i 2 k"3
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Proof.

Suppose not and define
M

A\
iem,® * Py~ i

p(x) «» [} x #a- o

x ¢ bw+k]

v (x,y) ‘-*[e(bn'..‘bml-l’x’y’bw' ’bw+(m2-1))/\ p(x)A

PYIA X £ Y]

Let B, = {bi: i< w + (mz-l)} by Lemma 12,
A =(B, UAO,P:rz o1 sending A into A .
But by indiscernibility

<p¥ y %>

14

n”

‘w, < >\contradicting @-saturation of 4T .,

or =~ <w*,«¥) proves Claim.
Define P C Sh by
UEP"“’V@EAVXI<X <...<xmeX

[e(xl,xz, ...,xm) «+ e(xc(l),xo(z),...,xc(m))].

(o,t € P+ ocetr e P) and P contains all 2-cycles
of the form (i,i+1) by Claim. But these generate m!
so P = m!

Now since <A, M X;R7= 07 the lemma follows. ||

Lemma 15. Let Q be any bijection of V into itself.
Then the map FQ defined on A V V by the identity on
Ao and Q on V is an automorphism of <A, % ‘\7,1?7.

Proof.

This is immediate from Lemma 14. |
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Lemma 16. (For N in claim 4) Y He [A]V
VB e [H]" @H,R¥ "1y (B)"«> B = A )
(«) 1is obvious since a1|="'rN(A,)" and 1y is m
() 1f B # A, suppose <.H,K7|="TN(B)T. Let C =3B - A.
Let De [H - (AO\J B)]IK|L Define Q: G > % so that
Q exchanges C and D and is the identity everywhere
else. By lemma 15 FQ is an automorphism of o1 , and
since FQ maps H into H it is an automorphism of H.
Hence we have <'H,F7l=“TN(FQ(B))"'FQ(B) # B contradicting
Lemma 13. [}

To prove the theorem just note that 22 sentence

JHe [A1NIB e [H)™ "eH,R>}= 1 (B)" together with the

(=

sentence:
VHe [AINVB e [H]MOC Ry 1y (B)") » 1(B)

is a Scott sentence for ¥] . Theorem 8 [Jj

It also is not hard to show that ¥Yf e 0¥ [¢w,f>] ¢ gg
implies [<w,f?] ¢ Ag. But the most general statement

remains open.
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§3. Reduction of Vaught's Conjecture to T}

sentences in one binary relation

Theorem 9. d a map ‘¢ + o* (effective) from first

order sentences to §2 sentences in one binary relation
such that \J k > w k(o) = x(o*) («(p) = number of non-
isomorphic models of ¢ of size «}. Using same procedure
it is easily shown that Vaught's conjecture for sentences
of Lmlw reduces to gg sentences in one binary relation.
Description of map:

First replace ¢ by one having only relation symbols.

Next reduce o to W) as follows: for each subformula

of o add a relation symbol and add axioms:

VIR R T 3 Regy W

V i.(R-.B(x) (x) +» 1Re (x) (x))
¥ xR e @ @ 7 Ry ~ Ry X

Ro

Thus we obtain o, Eg containing only relation symbols

and VK k(a) = k(o

Next: let Ri(xi - X, ),1i <n be the relation symbol
i

of g,-
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] VEJ?M(Ri, R;) where
M positive boolean. Let R,U,Pi,Qi be new symbols.

g

R Dbinary relation

U unary relation

Pi i<n j < k, unary relations

i
j e “ - (%)
Q3
We next construct g, in this new
language o  is n! and k(o) = x(0,) V«k2w.

o, will be conjunction of (1) » (7)
(1) R is symmetric A irreflexive.

(2) U, P's, Q's are all disjoint and everything is
in one of them.
(3) M Vx,y (Sx A Sy)> 1 Rxy:
J ad. ; C oo
S e {U,Pi,Qi. i<n, j< xi}.
Now we describe an interpretation

Ys, . .. P,

- - P|
% R AU
® for R(x,,x,,X,)
X, U0 v

x& Xa
eRi(i) = IV (My; £ vy~ PG ~ A RExLyy)
Mi R(Yigyi.”))

o.r (x) = same except Q's in place of P's.
i
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Write 0, () 37 ¥ (X,7) for short.
1 1

) V217 MR /65 , R /6, ).
1 1

(5) MY X(8g () +> =8, (X))
1 1

s N
(6) %n j<|<i . = Y)

Vy P{(Y) ~ 3 %3 .V(wRi(f,)T) A Y;

Vy do) » 4535 GH . vy = v)
1

This says everything not in U 1is being used to code.

1) NV RVF VIR R7) » v (K, D))~ 7 = 71 and

i<n

<
0
|

VXVFVI[ (59« &> ¥

This says codes are unique.
Thus o, is Rﬁ in language with one binary relation

and finite number of unary predicates and

Yk>w (ko) = «(o,)).

Relabel the language of o so that it is

{s,P i n < N} S binary, P, unary. Then let

o, = Vi’ﬂ)’f &(S,Pn,1Pn) where

ﬁ position boolean in (Pn,1Pn).

Now we describe o, in language R binary and

U unary.



X
%4

For n < ZN let

t(x) = U)o Fx ok Axg Foxg 0 AU

A /X\{R(xi,xj): 123 +1 mod(n)}

P ﬁ&{1R(xi,xj): i #j +1 mod(n)}
R(x,x }].

X v, (x,%)

*

T (%)
8(x,y) = U(x) » U(y) » R(x,y)
o, conjunction of 1) +' §)

(1) R is symmetric and irreflexive.

(2) ¥ X 37 M(S/6, Pi/1y, TP /1y, 1)

(3) ie{ﬁ Vx U(x) ~» [Ti(x) ““*1‘I'N+i(x)].
(4) Wz(qU(z) » [ \xg Ix x wn(x,f). (1<°iu<nxi = z])
n<ZeN iz
(Saufs everything not in U 1is being used to code).

(5) MWx X FL(0 (,X) & 0 (X, 7)) =T = F]
To get o* wuse reflexitivity of R to code U,
U = {x: R(x,2} and

2U = {x: 9R(x,¥}. W

Remark: Vaught's conjecture for \;{jafn /r’nAVV 6  where

“TIM wiw

quuantifier free reduces to univeral theories,since we

132
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can reduce to

m — - —-— —_
Y Ynon® Tnen'Sn ) ©p, Constants.

William Hanf [16] shows Vaught's conjecture for any
countable first order theory reduces to complete first-
order theories in the language of one binary relation.
Combined with above it easily reduces it to W, axiomati-

zable complete theories in one binary relation.

§4. The number of countable rigid models and the

Barwise compactness theorem.

In the author's abstract [18] two theorems were claimed.

Unfortunately there was a mistake in the proof (pointed

out by S. Shelah). Here 13 what remalins:

Theorem B (9CH). For « = Nf' if L= "L, is I, -compact

(L is f‘-compact)" then ¥ 6 ¢ L a L (8 first order

K wilw

sentence) if 6 has exactly *ﬁ-rigid models then 6 has
an uncountable rigid model.

L is the constructible sets of Gddel. An admissable set
M is I, -compact if for every T a I, definable subset
of Lm!w(\ M, if every A e M included in T has a

model then T has a model. I, means I without

parameters.
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Lemma 3. Suppose A is I, over (HC,e) (the heredi-

tarily countable sets)with constructible parameter. 1If

A-L#6 then |A|=2)é'.
=S =* for o an ordinal
’
03 (%) for ae |o1]¥

Sr(d1) Scott rank of O1

are defined in Barwise [20], p. 297-303.

Definition: 0l is «-rigid iff Va,b elot]

(¢ot,a” z, m<01,b‘f + a =>b). Note that a1 w-rigid =
Ol is rigid and vice versa if Ol is countable. They are
not equivalent since AC allows us to find a dense A<C R

such that (A,<} 1is rigid.

Definition: Ta(m) for o an ordinal.

T,(e1) = {(2,B): (3,B) ¢ r\l{wA“ « A" and a;, » b, isa
partial isomorphism}.
T .. (01) = {(3,B) ¢ T (61): Va3b <a-a,b"b7 € T (01)
Vb3da <a~a,b b~ €T, (90}

T, (01) = A Tg(et) for o 1limit.
Lemma 4. Suppose Sr(07) = a then the following are
equivalent:

(1) Ol is =-rigid.

@) Ya,be |01 ((O] o (b)) iff a =b)
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(3) Va,be (01| a,b> e T (o) iff a = b)
(1) iff (2) 1is just 6.3 of Barwise [20], p. 298 and the
definition of Sr(ol).
(1) iff (3) 1is proved by showing by induction on B that
Va5 o3> 5,¢0,5> iff ¢5,5vc T (aM)

4
since ¢O1,3>»=" {a1,b> iff <of,arz_ <O,p>

the result follows. A

The idea behind the proof of the next lemma was suggested
to me by Charles Gray.

,\é

Lemma 5. If 2 9> 7‘(“ and 9 has exactly '\‘; rigid
that
models all of which are countable then 301& o < ’\‘1 , such/

Al e L |0 | =2
a ) )
than Nsl and Y a 01a is an =-rigid model of &.

a ,Aa's are strictly increasing and less
pf

For Ol «-rigid define £ (d1) the canonical model
isomorphic to Ol. Let a = Sr(et)

| B (o = (o (v,): ac |ot]}.

R¥ (1) (o2 ()5 e000g (v))) + R (a,,...,a.).

Note that by Lemma 4, part 2) for O1 =-rigid &(a) = X
and ¥V O1' w-rigid (or = o iff # (o) = &(0r)).
Define A = {&: (HC,e) |= " Jo1 0t "O'A Ol =-rigid A
=)', A is a L, HC set without parameters and
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has the same cardinality as the number of countable rigid
N

models of 6. Since 2 * > Aﬁ. by Lemma 3 every member

of A 1is constructible. The existence of the sequence

described is immediate since |A| = ’{‘1. B

We now write a theory T I, over (LK,e) without
parameters.
Let R be the similarity type of 8, then the language of
T is: e, c, for ae L, R, A (new individual constant),
T will say the following:

1) "ZFC "

2) for each a e ];K "\/x Xe ¢, + bg%x = ch”

3) "X is an ordinal"” and for each a < x "X > Ca"

4) "(O0,R) 8"

5) "(A,R) 1is  w-rigid".
Note that (LK,E) is essentially uncountable from the view
point of L, thus by I, compactness and Lemma 5 and
Theorem 9.5, p. 359 of Barwise [20] T has a well-founded
model M. ‘Since M| ZFC , a = Sr((x,R))e M and so is

(TB(A,ﬁ): B < a); hence we get an uncountable w=-rigid model

of 8. Theorem B -

Remarks:
a) Using the fact that there are only countably many first

order formulas it's easy to see that there are regular I,
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compact cardinals less than Néml. However « I 6 -compact

implies that « 1is inaccessible, limit of inaccessibles,

etc., see Barwise [20].

Questions:

(a) If V =L does there exist T complete first order

such that {a e OR:¢L_,e? L T} 1is an unbounded subset

of ml?

" .
(b) Does L f LM' L, -compact a 2 ® > A imply that

every H} sentence with exactly *él countable models has

an uncountable model?
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