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MAPPING A SET OF REALS ONTO THE REALS
ARNOLD W. MILLER!

Abstract. In this paper we show that it is consistent with ZFC that for any set of
reals of cardinality the continuum, there is a continuous map from that set onto the
closed unit interval. In fact, this holds in the iterated perfect set model. We also show
that in this model every set of reals which is always of first category has cardinality less
than or equal to w,.

§1. Introduction. Sierpinski ([9] and [10, property Cs]) showed that assuming
the continuum hypothesis there exists a set of reals of cardinality the continuum
which cannot be mapped continuously onto the closed unit interval. In fact, he
showed that every continuous image of a Luzin set has measure zero.

The main result of this paper is that it is consistent with ZFC that for every
set of reals of cardinality the continuum there is a continuous map from that set
onto the closed unit interval. This will be proved in §§3 and 4. It holds in the
iterated perfect set model (see Baumgartner and Laver [2]). In this model every
metric space X of cardinality the continuum can be mapped continuously onto the
closed unit interval. To see this, first reduce to the separable case as follows.
Let D = X be a dense set of minimal cardinality. In this model the continuum is
ws, so if the cardinality of D is greater than w;, X contains a closed discrete subset
of cardinality the continuum, and so may be mapped continuously onto the entire
real line. Otherwise let D = {d,: @ < w,} and let X, be the closure of {d;: § < a}.
Then since X = ( J,,, X, it must be that X contains a closed separable subspace
of cardinality ;. So we may assume X is separable. We may also assume X is
zero dimensional, since otherwise the metric on X gives a continuous map whose
image contains an interval. But any separable zero dimensional metric space is
homeomorphic to a set of reals (in fact, a subset of the Cantor set) and we are done.

It should be remarked that one can always find two sets of reals of cardinality
the continuum such that neither can be mapped continuously onto the other.
In fact, Lindenbaum showed that there are always 2¢ sets of reals of cardinality
¢ none of which is a continuous image of another (see Kuratowski [6, §35]).

Isbell [3] showed that if the real line is partitioned into countably many pieces,
then one of the pieces can be mapped continuously onto the closed unit interval.
He notes that since it is consistent that the continuum be &, one cannot in general
improve this result by replacing “‘countably’ by “fewer than continuum.
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576 ARNOLD W. MILLER

THEOREM. It is consistent with any cardindl arithmetic that the real line can be
partitioned into w, pieces none of which can be mapped continuously onto the closed
unit interval.

ProOF. Suppose a Cohen real x is added to a model M ; then for any continuous
map f: R — R coded in M we have that f"(R 1 M) & R 1 M. Now suppose we
let P = {p: dom(p) € [w;]<* and range p = 2}. Let G be P-generic over M and
for @ < w; let X, = R (| M[G | &]. Then in M[G], R = | J,<,,X, and no X, can
be mapped continuously onto the closed unit interval. Wl

In a related paper Isbell [4] showed that assuming the continuum hypothesis
there is a set of reals X such that X cannot be mapped continuously onto the closed
unit interval, but X2 can be. This result can also be proved using Martin’s axiom,
and generalized, for example, to show that there exists a set of reals X such that
X2 cannot be mapped continuously onto the closed unit interval, but X3can be.

§2. Singular spaces. A set of reals X is a Luzin set iff for every first category sub-
set N of the reals N (] X is countable. A set of reals X is a Sierpinski set iff for
every measure zero set M of the reals M (] X is countable. Neither a Luzin set
nor a Sierpinski set can be mapped continuously onto the unit interval. This is
implied by the following easy proposition.

THEOREM. Suppose that 1 is a class of Borel sets with the property that one cannot
find continuum many disjoint Borel sets not in 1. Suppose X is a set of reals which
intersects each element of I in a set of cardinality less than the continuum. Then X
cannot be mapped by any Borel map onto the reals.

PROOF. Any Borel map on X extends to a map with domain R. Suppose f:
R — R is a Borel map. Let {B,: a < c} be a family of disjoint Borel sets each of
cardinality ¢. By hypothesis, for some a < ¢ the set f~1(B,) is in 1. Since X ()
f~Y(B,) has cardinality less than ¢, B, is not included in f"X. W

Assuming the continuum hypothesis there are Luzin sets and Sierpinski sets
of cardinality the continuum (see Kuratowski [6, §40]). By defining generalized
Luzin sets or generalized Sierpinski sets appropriately (see Kunen [5] or Laver
[7]) this result generalizes to Martin’s axiom.

In contrast to the last theorem, we have the following result.

THEOREM. Assuming the continuum hypothesis, there exists an uncountable set of
reals X such that every uncountable subset of X can be mapped continuously onto
the entire real line.

Proor. By a well-known theorem of Sierpinski (see Sierpinski [10, p. 12] or
Bagemihl and Sprinkle [1]), there are countably many functions f,: w; — w; such
that for every Y € [w;]*! there is an n < o (in fact, for all but finitely many # < w)
such that f1Y = w;. Let R = {x,: a« < w1} and D = {E,: n < w} be a family
of subsets of w; such that for every interval with rational endpoints / and n < w,
the set /' {a: x, € I} is in D. Define the map f: w; = 2¢ by fla)(n) = 0 iff a € E,.
It is easy to show that X = f"w, has the desired property. W

Kunen remarks that if we let X = {y,: @ < w1}  R* be defined by (y,), =
X}, then X has the property that for all ¥ e [X] all but finitely many projections
of Y are onto R.

Assuming Martin’s axiom plus the continuum is a successor cardinal, we can
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show that there is a set of reals X of cardinality the continuum such that every
subset of X of cardinality the continuum can be mapped onto R by a Borel map.
If ¢ carries a c-saturated c-ideal, then there can be no such X as above. The next
theorem implies that there can be no such X in the Cohen or random real models.
It is probably a known result, but it has not been published.

THEOREM. If wy Cohen reals are added to a model of CH, then in the extension
every set of reals of cardinality w, contains a subset of cardinality w, which is the
continuous image of a Luzin set. The analogous statement is true when “Cohen
reals” and “Luzin set” are replaced by ““random reals” and ““Sierpinski set™.

LEMMA. Suppose M is a model of ZFC and x € 2¢ is either a Cohen real or a random
real over M. Then for any y € M[x] (| 2¢ there exists a continuous function f coded
in M such that f(x) = y.

Proor. First assume x is a Cohen real. This means that x is obtained by forcing
with P = {p|dom(p) € [w]<® and range(p) = 2}. For each n < w choose D, =
D? |J D! a maximal antichain in P so that for each p e D, p |- “y(n) = i”’. For
p € Plet[p] = 2¢ be defined to be the set of z € 2% such that z | dom(p) = p. Let
H < 2¢ be the set of all z € 2% such that for all n < o there exist p € D, such that
z € [p). Define f: H — 22 by f(z)(n) = iiff there exists p € D? such that z € [p].

Now suppose that x is random over M. This means that x is obtained by forcing
with Borel subsets of 2¢ of positive measure. For each » < w let B, be a Borel set
such that B, |- “y(n) = 0” and (2® — B,) |- “y(n) = 1. Define f: 2¢ — 2¢ by
f(z)(n) = 0iff ze B,. By Luzin’s theorem (see Royden [8, p. 72]) for any Borel set
of positive measure B, there exists a closed set of positive measure C < B such that
. f 1 Ciscontinuous. B

We say that G: Y — 2 is Cohen over a model M if G is P-generic over M where
P is the set of p: E — 2 for E e [3]<v. Similarly G: Y — 2 is random over M if
it is obtained by forcing with Borel subsets of 2 of positive measure which are
coded in M.

We will assume, without proof, the following three facts. Suppose M is a model
of ZFC, 2 € M,and G: 2 — 2is Cohen over M (respectively, random over M).

(A) If 2 = 2y U 2 is a partition of J in M, then G | X, is Cohen (random)
over M and G | 2 is Cohen (random) over M[G | 2]

(B) If x is a Cohen real (random real) over M, then x is not in any first category
Borel set (measure zero Borel set) coded in M.

(C) Working in M, if x is a term for an element of 2, then one can find, uni-
formly in x, a countable set 4 = X such that x is realized in M[G | A).

Finally, let us prove the theorem. Suppose that M is a model of CH and G:
w; — 2 is either Cohen (or random) over M. Suppose that |- “{x,: a < w,} = 2
are distinct”. Working in M, by property C, find 4, € [w,]= for ¢ < w, such that
for each a < wp, X, is realized in M[G | A,]. Since M is a model of CH, by the
A-system lemma, there is a X € [wp]*? and a B < w, such that for every two dis-
tinct o, § €2 we have that 4, 1 45 = B. Let M’ = M|[G ! B]. Since Bis count-
able it is easy to see that M’ is a model of CH. By property 4 we may assume
without loss of generality that M = M’ and B = . Working in M for each
« € 2 choose a bijection F,: w — A, and define z, € 2¢ by z, = G o F,. By using
all three properties it is easy to prove that each z, is Cohen over M (random over
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M) and {z,: a €3} is a Luzin set (Sierpinski set). We also know that for each
a € 2, x, is realized in M[z,]. By the lemma, there is a continuous function f,
coded in M such that f,(z,) = x,. Since there are only w; continuous functions
coded in M, one of them is used by wy of thewin 5. |l

Most of the following definitions and results can be found in §40 of Kuratowski
[6].

A set of reals X is always of first category iff it is first category relative to every
perfect set. A set of reals X is a A-set (equivalently is rarefied) iff every countable
subset of X is a Gj relative to X. A A-set is always of first category. Luzin showed
that A-sets of cardinality «; always exist. Note that continuous image of a Luzin
set cannot be a A-set unless it is countable. To see this just note that we can assume
that it is a one-to-one image, but the one-to-one preimage of a A-set is a A-set.
Luzin also showed that there is a one-to-one continuous function which maps every
Luzin set onto a set which is always of first category. Therefore in the Cohen model
there is a set of reals of cardinality w, which is always of first category. Note also
that a Sierpinski set is a A-set.

A set of reals X has universal measure zero iff 4(X) = 0 for all nonatomic Borel
measures g on X. Hausdorff showed that there exists a universal measure zero set
of cardinality w; (see Laver [7] for the proof). Laver showed that in the random
real model, or when Sacks reals are added (this probably means the iterated per-
fect set model), there are no universal measure zero sets of cardinality w, (this is
reported in Laver [7]). This extended an unpublished result of Baumgartner on
strong measure zero sets. For random reals, this follows from the above theorem
since any uncountable continuous image of a Sierpinski set cannot have universal
measure zero. Note also that a Luzin set has universal measure zero.

In §5 we show that in the iterated perfect set model every set of reals which is
always of first category has cardinality less than or equal to w;.

§3. Some technical lemmas. We will use the same notation and definitions
as Baumgartner and Laver [2]. In addition we make the following definition. For
p an (F, n)-determined element of P, and g € P, we say that (g, n) > (p, n) iff
g = p and every ¢g: F — 27 consistent with p is consistent with g. This says that ¢
retains the splitting that p already has as far as (F, n) is concerned. The following
lemma allows us to extend p|o while retaining the splitting we already have.

LEMMA 1. Given p € P, which is (F, n)-determined, o: F — 27 consistent with p,
and r = plo, there exists q € P, such that (q, n) = (p, n) and qlo = r.

Proor. Define the term g(B) as follows. If (p | f)lo | (F () p) is false, then
9(8) = p(B). If (p 1 Plo 1 (F 1 B) is true and B¢ F, then ¢(§) = r(d). If (p I Pl
o I (F ) p)is true and e F, then ¢(p) is a term such that ¢(B), = p(p), for all
s€2* — {o(f)} and ¢(B), 5 = r(). M

One thing we know about a set of reals of cardinality w, is that lots of its elements
are not in V.

LEMMA 2. Suppose p |- ““c ¢ V and 7 € 22" and p is (F, n)-determined. Then for
any finite Y < 2¢ there exists a finite set X < 2¢ disjoint from Y, such that for any
k < w there is a q such that (q, n) =p(p, n) and q I+ “IxeX ¢k = x k.

PROOF. Let {0,;: i < N} be all maps from F into 2~ consistent with p. Begin by
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constructing p,,; for i < N so that (p,;1, n) =y (p;, n) where p, = p, as follows.
Given p; choose r = p;o, so that there exists ¢ € 2<¢ such that r |- “7 < 7"’ and
for all y € Y, y does not extend ¢. This can be done since p |- “c ¢ Y. Applying
Lemma I, let p,;; be such that p,.ilo; = r and (p,.1, n) = (p;, n). Let gy = py
and build an infinite chain ¢; for i < w and x; for i < N so that (¢;,1, n) =5
(g;, n) and for each i < N there are infinitely many £ < w such that g,lo; - “%; |
k=tlk”. Let X={x:i<N}. R

LEMMA 3. Suppose p |- “‘c ¢ V and 7 € 29" and p is (F, n)-determined. Then there
exist q such that (q, n) =p (p, n) and a family of disioint clopen sets {C: se

p(0) N 27} such that for each s e q(0) N 27, q, I “z € C,”. (g, is abusive notation
for qlo where domain of ¢ is {0} and ¢(0) = s.)

PrOOF. We may as well assume O € F. Let {s;:i < N} = p(0) () 2~. By induction
oni < Nand Lemma 2, find disjoint finite sets X, for i < N so thatforeachi < N
and k < o there exists a g such that (g, n) = (p,, n) and g |- “Ixe X; 7 1 k =
x [ k. Choose k < w such that if C; = {ye2: Ixe X; x | k < y}, then the
C, are disjoint. For each i < N choose g, such that (g;, n) > (p;,.n)and g; |- “z €
C.”. Now let g be defined by ¢(0),, = ¢,(0) and q(B) = q(p) if ¢, (0) for § > 0. W

By the standard fusion argument, we now get ¢ to completely determine the
first Sacks real.

LEMMA 4. Suppose p |- “c ¢ V and v €29, then there exists q > p such that
for arbitrarily large n < w there is a family of disjoint clopen sets {C,: s € q(0)
27} such that for every s € q(0) N 27, ¢, - “r e C,".

Proor. Construct a sequence (p,11, k,41) >F, (Ps k,) With po = p, k, < w
strictly increasing, F, increasing with p,.; (F,, k,)-determined, and ( J,<,F, =
(Uncw dom(p,), as follows. Given p,, k,, and F, find ¢ and m < @ such that
(¢, m) >, (p, k,) and q is (F,, k,)-determined, using Lemma 2.3 of Baumgartner
and Laver [2]. Using Lemma 3 find r such that (, k,) 2, (p,, k,) and disjoint
clopen sets {C,: s € r(0) ] 2%} such that for every s e r(0) (| 2%, r I+ “ze C,".
Apply Lemma 2.3 again to find p,,; and k,,; such that p,,; is (F,, k,)-determined
and (p,41, k41) >F, (r, k,). Now just let g be the fusion of the p,. W

Lemma 4 is all that will be needed for §4. To get the result of §5 a little more
work will be needed. The next lemma allows 7 to continuously determine which
nlo is in the generic filter.

LEMMA 5. Suppose p € P, and t is a P, term such that p |- “v € 2% and V§ < «
r ¢ V[Gy]”. Suppose p is (F, n)-determined and 3 = {o: F — 2*|¢ is consistent
with p}. Then there exist q € P, and a family of disjoint clopen sets {C,: o€ 3}
such that (q, n) = (p, n) and for every o€ 2, qlo - “c€C,”.

PROOF. The proof is by induction on the cardinality of F and the minimum
:lement of F, for every a and over every ground model. Note that if F is empty,

he lemma is trivial since X is vacuous. If 0 ¢ F, then let § be the minimal element
of F. Note that if we take V[Gg] as our ground model with p I 8 € G, then the
1ypothesis of the lemma is true for Pg,. By relabeling Py, as some P, in V[G]
ind F as some F’, we have that 0 € F’. Consequently the lemma holds and we
an find g € Pgsuch thatg > p I B, disjoint clopen sets {C,: g € X} in V, and a term
suchthatq |- “re Pg,, (r,n) 2p(p 1 [B, @), n),and foralloe S rlo - ‘2 C".
Now just put ¢ and r together to get a condition with the required property.
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Now suppose 0 € F. Apply Lemma 3 to get ¢ such that (g, n) = (p, n) and
disjoint clopen sets {C;: s € ¢(0) () 27} such that for each s € ¢(0) N 27, ¢, I+ “z €
C,”. Let Fy = F — {0} and for each seq(0) N 27 let 3, = {7 e 3: ¢(0) = s}.
Since F is smaller than F, by induction, for each s € ¢(0) () 2~ there exist g* € P,
and disjoint clopen sets {C,: ¢ € 2} such that (¢5, n) = (q,, n) and for each
ocel, ¢lol-“reC,”. Clearly we may assume that C, = C,,. Now define
g € P, by §(0), = ¢%(0) for each seq(0) N 27 and §(B) = q%(B) if ¢%(0), for
5>0. N

We say that g € P, is determined iff for every H € [dom(g)]<® and k& < @ there
are m > n > k and F 2 H with F € [dom(q)]<® such that ¢ is (F, n)-determined
and (q, m) > (g, n). Note that the fusion of a sequence is determined. We will
say that g € P, is canonical for 7 iff ¢ is determined and for arbitrarily large (F, n),
q is (F, n)-determined and if 3 = {¢: F — 27| ¢ is consistent with g}, then there
is a family of disjoint clopen sets {C,: ¢ € 2} such that for all g € 2, q|o |- “z €
C,”, and in addition, for each ¢ € Y there exists s € 2# such that for all xe C,,
s € x (i.e. g|o decides 7 | n).

LEMMA 6. Suppose p € P, and p |- “ct €2 and V3 < a v ¢ V[Gg]". Then there
exists q =2 p, q € P, such that q is canonical for <.

Proor. The proof is similar to Lemma 4. Use Lemma 2.3 of Baumgartner and
Laver [2] together with our Lemma 5 and then take the fusion. Deciding 7 | n
along the way may be done as in Theorem 3.3 of the above paper. W

REmMARK. If g€ P, is canonical for z and 8 < @, then ¢ B “g ! [3, ) is
canonical for 7.

REMARK. If p is canonical for 7 and x, for @ € dom(p) is the ath Sacks real,
then itis easy to see that x, € V[z]. If ¢ I- “z €22, 7 € V[G,],and VB < y 7 € V[Gg]”,
then for every 8 < 7 q |- *“xz € V[z]”. To see this just find 7 a V[G,] term and
g = g such that g |~ “‘z = 7. Then for any 8 < 7 one can find r > g such that
r|y is canonical for 7 and § € dom(r). It is easy to see from this remark that the
degrees of constructibility of reals in V[G,,] if ¥ = L have order type w,.

§4. The main theorem. In this section we prove the main theorem.

THEOREM. In the iterated perfect set model every set of reals of cardinality w,
can be mapped continuously onto the closed unit interval.

Proor. We may reduce to the case X = 2 and we are trying to map X continu-
ously onto 2¢. We will actually find a continuous map f: 2¢ — 2¢ such that
f"X = 2%, Suppose, for contradiction, for each continuous f one can find F(f) e
2« such that F(f) ¢ f"X. By a kind of Lowenheim-Skolem argument, like the proof
of Theorem 4.5 of Baumgartner and Laver [2], one can find 3 < w, such that
F restricted to the continuous functions coded in V[Gg] is an element of V[G].
Replacing V' by V[Gg], which we may do without loss of generality by Theorem
2.5 of the above paper, we claim that X < V. Suppose that p |- “z € 2¢ and
¢ V.

From Lemma 4 of §3 find ¢ > p, X an infinite subset of w, and for each n e X
a family of disjoint clopen sets {C,: s € ¢(0) (| 27} such that for each s € ¢(0)
2%, g, I ““z € C,”. Clearly we may assume that if s < ¢ (and C, and C, are defined),
then C, = C,. Now let P be the fusion of the family of C,’s, i.e.
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P = C,.
nQX sEEI-(}O)ﬂZ” :

Let E = {xe2%: Vn x neq(0)} and let f*: P — E be defined by
FHx) = J{s: xeCy}.

It is easily checked that f* is continuous, and since P is perfect, by the Tietze
extension theorem, there is a continuous f: 2¢ — F such that f | P = f*.

In effect, f maps ¢ continuously to the first Sacks real. Construct g: E — 2¢
by first mapping £ homeomorphically to 2¢ x 2¢ and then projecting onto the
first coordinate, and let 4 = gof.

Suppose that x € 2¢, then g~!(x) is a perfect subset of £, and consequently there
is an r € P with r > ¢(0) such that g-1(x) = {y €2%: Vn y | ner}. If we define
G by §(0) = r and 4(B) = q(p) for 3 > 0, then § |- “A(z) = x”.

Therefore, if x = F(h), then § |- “z ¢ X”’. Since 7 and p were arbitrary, we
have that X < V.

REMARK. By using a 4-system argument, one can prove that in V[G,,] for every
X e[2¢]ez there is a continuous map f: 2¢ — 2¢ coded in V such that f"X = 2,

REMARK. It is not hard to show that the theorem fails if Sacks reals are added
side-by-side.

Question. Can one show that if [2¢| > s, then there exists X < 2¢, [X]| = |2¢|,
which cannot be mapped continuously onto 2¢?

§5. Sets always of first category. In this section we prove the following theorem.

THEOREM. In the iterated perfect set model every set of reals which is always of
first category has cardinality less than or equal to w,.

Recall that we say that p € P, is determined iff for arbitrarily large (F, n), p
is (F, n)-determined and there is m > n such that (p, m) > (p, n). Given a deter-
mined p, say with domain 4, we associate with it a perfect subset E, < (2¢)4 as
follows. Let E, be the set of all {xz: § € A such that for all (F, n) if p is (F, n)-
determined, then there is ¢: F — 27 consistent with p such that for all 8e F ¢(8) <
xg. We are going to show that given any determined p € P, and C < E, first
category relative to £,, there exists a determined ¢ > p in P, such that E, | C =
.
Let us see that this will prove the theorem. Proceeding as in the last section
we may assume X € 2¢ has the property that for any perfect set P coded in V,
one can find (working in V) a set C of first category relative to P such that X )
P = C. It must be that X = V. To see this note that given any p and 7 such that
7 - “ze2¢ and 7 ¢ V'’ one can extend p and find ¢ < w; and 7 a P, -term so
hatp |- “c = 7and V3 < a 7 ¢ V[Gg]”, and p = p | ais canonical for 7. Define
1 function f: E; — 2¢ by requiring that for any s € 2<¢, 5 < f(x) iff there is some
7: F — 2» which extends x (i.e. Ve F o(B) < x4) such that plo |- “s = 7.
Since p is canonical for 7, the map f'is continuous, one-to-one, and for any deter-
mined ¢ > p one has that g |- “z e f"E,”.

Let P = f"E; and suppose X (| P = C where C is first category in P. Then
f-1(C) is first category in Ej. Therefore, there exists ¢ > p such that E, () f~1C =
@. Thusany r = pwithr | @ = gqforces “z ¢ X,
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For p € P the set E, is equal to {x € 2*: Vn x | ne p}. If C is nowhere dense in
E,, in general, it is not true that for any ¢ > p, C is nowhere dense in E,, in fact,
maybe E, = C. However, if there exists n < w such that forallse g N 2* g, = p,,
then it will remain true that C is nowhere dense in £,. This motivates the following
definition for any p, g € P,:

g =¥ p iff ¢ = p, dom(g) = dom(p), and there exists (F, n) such that p and ¢
are (F, n)-determined and for any ¢: F — 2» which is consistent with g we have
that glo = plo.

We say that (F, n) witnesses that ¢ =% p.

LemMA 1. Let p, q, and r be elements of P,,.

(A) If p =% q is witnessed by (Fy, ng), F 2 Fy, n > ny, and q is (F, n)-determined,
then p is (F, n)-determined and (F, n) witnesses that p > q. If, in addition, (q, m) > ¢
(q’ I’l), then (P, m) >F (P’ n)~

(B) If p =" q and q is determined, then p is determined.

O Ifp =z¥ q,q9 =¥ r, and r is determined, thenp =" r.

PrOOF. (A) The proof of this is by induction on «. For ¢ a limit it is easy. So
assume « = 8 + 1, and note that p } 3 =¥ ¢ | § is witnessed by (Fy [ 3, np).
By induction, we have thatp | Bis (F ) 8, n)-determined, (p I 8, m) > pns(p | §8,1),
and p 1 8 =¥ g | B is witnessed by (F [\ 8, n). Suppose ¢g: F — 27 is such that
o I (F () p) is consistent with p | 8. Let gy: Fy — 2™ be defined by requiring that
oo(7) € o(y) for each y e F,. We have that (p|o) I 8 = (q]0) I B and, since ¢
is (F, n)-determined, (glo) I B forces “o(B) € g(B)” or it forces “o(f) ¢ g(B)”.
Also (qlag) t (Fo N B 1 8 forces “q(B)oys) = P(Boys” if Be€Fy or it forces
“q(B) = p(B)” if B ¢ Fy. It follows that p is (F, n)-determined and (F, n) witnesses
p =% q. To see that (p, m) > (p, n), just note that it is enough to see that for
every g: (F () B) — 27 consistent with p | 3 we have that

(P1B) o I=“(p(B), m) > (p(B), n)”.

This is true since the (p|8) |0 form a maximal antichain beneath p | 3.

(B) This is immediate from (A).

(C) Suppose (Fy, ny) witnesses ¢ =* r and (F), n;) witnesses p >%q. Let F 2
Fy, U F; and n = ny, n; be such that r is (F, n)-determined. Then by (A) (F, n)
witnesses bothp =% gand g >* r. It follows that for all g: F — 27if ¢ is consistent
with p, thenplo = qlo =r|oc. R

Weak extension was defined exactly to make the following lemma true.

LeMMA 2. Suppose p is determined and C is nowhere dense in E,. If ¢ =" p, then
C is nowhere dense in E,.

ProoF. By Lemma 1, ¢ is determined. Let (F, n) witness ¢ =¥ p, and let 5 =
{o: F - 2#|0 is consistent with ¢}. Then E, = () {E,,: 0 € 3}. But C is nowhere
dense in each E,,, = E,,, and so Cis nowhere dense in £,. W

The next lemma is analogous to Lemma 1 of §3 and proved the same way.

LeMMA 3. If p is determined, (F, n)-determined, o: F — 27 is consistent with p,
andr =" p|o, then there exists q such that (q, n) =%y (p, n)and glo = r.

PrOOF. Let g(f) be a term denoting the following. If (p 1 8) | o I (F (1 ) does
not hold, then ¢(8) = p(8). If (p1 B ol (F B) does hold and (¢ F, then
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q(8) = r(B). Otherwise ¢(38) denotes the term such that q(B)s = p(B);forall s € 27 —
{o(B)} and q(B), s = r(B). As before (g, n) > (p, n) and we need only verify that
g =" p. Let (Fy, ny) witness r >% p|g. Choose (F;, n;) such that Fi=2F F,
ny 2 n, n, and p is (Fy, ny)-determined. By Lemma 1, since p|o is (Fy, ny)-deter-
mined, it follows that (Fy, n;) witnesses that r >* p|g. I claim that (F1, ny) witnesses
that ¢ >* p. It is not hard to prove by induction on ¢ that (F1 N a, np) witnesses
gltazplta. M

LeEMMA 4. Suppose p is determined and C is nowhere dense in E » Then there exists
q =*psuchthat E, (| C = @.

ProOF. Find (F, n) such that p is (F, n)-determined and ¢: F — 27 consistent with
p such that E,, ) C = @. This is possible since such E,, form a basis for E,.
Nowletg = plo. R

LEMMA 5. If p is determined, (F, n)-determined, and C is nowhere dense in E .
then there exists q such that (q, n) >“5 (p, n) and ENC=g.

PrOOF. Let {g1: i < N} be all maps from F into 2~ consistent with p. Build a
chain (p,y1, n) ¥ (p;, n) using Lemmas 3 and 4, so that p, = p and Ey o, N
C= g .Nowletg=py. R

As we have indicated at the beginning of this section, the theorem is proved
once we have the next lemma.

LEMMA 6. Suppose p is determined and C is first category in E »> then there exists
a determined q > p suchthat E,(\ C = @.

ProoF. Let C = (J{C,: n < w} where each C, is nowhere dense in E,. Con-
struct a sequence p,, F,, and k,, for n < @ such that:

(M po = p;

(2) k,, are increasing;

(3) F, are increasing and ( J{F,: n < w} = dom(p);

(4) (pn+1’ kn+1) >I;’-{n (pn’ kn)9

(5) p, is (F,, k,)-determined;

(6) Ep,,,“ ﬂ Cn = @

The condition ¢ will be the fusion of this sequence. Suppose p,, F,, and k, have
already been found. Since p, > p, p, is determined, has the same domain as Ds
and C, is nowhere dense in £, . By Lemma 4 let p,,,; be such that

(Pn+1’ kn) Z%,, (Pm kn)
and E, | C, = @. Since p,; is determined, one can find arbitrarily large
(Fn-l-l’ kn+l) such that DPut1 is (Fn+l9 kn+l)'determined and
(pn+1’ kn+1) >?‘,,+1 (pn-l—la kn)
It follows that
(pn+19 kn+1) >?‘n (pm kn) .
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