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Abstract: It is shown that 2" is the w ,  union of meager sets does not imply 2" is the 
w ,  union of disjoint non-empty closed sets and the latter does not imply CH. 

In HAUSDORFF (1934) he showed that 2" is the w,  union of strictly 
increasing G, sets. It follows that 2" is the w1 union of disjoint non-empty 
F,, sets. FREMLIN and SHELAH (1 980) proved. the following theorem. 

Theorem 1. The following are equivalent. 
(1) 2" is the w, union of strictly increasing F ,  sets. 
(2) 2" is the o, union of meager sets. 
(3) 2" is the o1 union of disjoint non-empty G, sets. 

Proof. 
(3)*(2) see FREMLIN and SHELAH (1980). 
(2)+(1) Every meager set is contained in a meager Fa set. 
(1)*(3) Cover 2" with closed sets Ca for a <a, so that no countable 
subcollection covers. Note that Ca - U {CB: B<a) are disjoint G, sets. 

Theorem 2 (Luzin, see KURATOWSKI (1 958a, p.348)). Every Fa (Gh) set in 
2" can be written as the disjoint countable union of closed (G,) sets. 

Thus the only remaining case of disjoint o, coverings of 2" by Bore1 sets 
is: 

2" is theo, union of non-empty disjoint closed sets. 

Remark. By a theorem of Sierpinski (see Kuratowski (1958b, p.173)) the 
open unit interval cannot be written as the disjoint countable union of 
closed (in the closed unit interval) sets. Nevertheless (C) is equivalent to 
the same statement with 2" replaced by any uncountable Polish space. 
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Theorem 3. 2" can be partitioned into w1 disjoint non-empty closed sets iff 
some uncountable Polish space can be iff all uncountable Polish spaces can 
be. 

Proof: If some uncountable Polish space can be partioned, then w" can be, 
since every such space is the continuous image of a". Suppose ow= 
U { C,: a < a , )  where the C, are nonempty disjoint closed sets. By the 
proof of Lemma 7 we may assume each C, is nowhere dense. It is easy to 
build P w" compact perfect so that 3 C, for n < w such that each C, 
is nowhere dense in P and U { C,: n < a )  is dense in P. P cannot be 
covered by countably many of the C,'s since then P n U { C, : n < w) 
would be a dense meager (in P )  G, set. Hence we conclude 2" can be 
partitioned. Next we show the unit interval [O, 11 can be partitioned. 
Assume 2" = U { C, : a < w, ) where the C, are disjoint nowhere dense 
closed sets. By a back and forth argument it is not hard to show that for 
any two dense countable subsets of 2" there is a homeomorphism of 2" 
taking one to the other. Let E be { x  €2" : 3n Vm >n x(m) = 1 or Vm >n 
x(m) = 0). We may assume that for every a < w, I C, n E ( < 1. Define the 
map F from 2" to [0, 11 by 

Let D, =.F1'C,. Hence by lumping together the distinct pairs of D,'s which 
intersect we partition [0, 11. Now let X be any uncountable Polish space, we 
may assume X has no isolated points. Embed X into [0, l]", and if some 
projection of X contains an interval, then decompose that interval and pull 
the decomposition back to X. Hence we may assume X is zero dimen- 
sional. Thus either X contains a clopen set homeomorphic to 2" or it 
docsn't in which case X is. homeomorphic to w" and in either case we are 
done. 

The following theorem was first proved by J. Baumgartner (unpub- 
lished) and rediscovered by the author and others. 

Theorem 4. (C) + CH. 

Proof. Let M be a model of 1CH.  Construct an w ,  length C.C.C. SOLOVAY 
and TENNENBAUM (1971) extension. For X C2" define the partial order 
P(X). Conditions are finite consistent sets of sentences of the form 
"[sin C,=@" or "x€Cn" where n<w,x€~ , s€2<" .  Then F= U {C,: 
n < o )  will be a meager (in fact measure zero) F, set covering X. (See 
MILLER (1979) for similar arguments.) Iterate o1 times to get Ma for a < o, 
so that Ma+, is gotten by forcing with P(2" - U {F@: P <a)) in Ma 
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creating the Fa set Fa. An easy density argument shows that the Fa's are 
disjoint. By C.C.C. M,,V"'"= U {F@: /3<wl}." Note that in 2" any F,, set 
is the countable union of disjoint closed sets. Since F= U {C,: n < w) 
implies 

it is enough to see this for Fa sets of the form C n G where C is closed and 
G is open, but G is the disjoint union of countably many clopen sets. 

Note that in the above model 2" is the o, union of measure zero sets. Is 
this implied by (C)? The answer is no by the following theorem of STERN 
(1977), also discovered later but independently by K. Kunen. 

Theorem 5. (C)  holds in any random real extension of a model of CH. 

Proof. Let (IB,p) be any measure algebra in the ground model M. Every 
element of 2" in M" is random with respect to some Borel measure on 2" 
in M. (For any x such that Ex ~ 2 " ]  = 1 consider the Borel measure v(B)= 
p [ x  E B] .) Every Borel measure v on 2" is regular (see ROYDEN (1968, p. 
305)), so for any E c2" Borel, 

v(E) = sup{v(C) : C C E and Cis closed) 

and for any closed.C, 

v(C)=inf{v(D) : C D and Dis clopen). 

Since M models CH there are at most o, Borel measures on 2" in M, so it 
is easy to construct disjoint Fa sets Fa for a <ol so that for every Borel 
measure v in M,3a<w, so that v ( u  {F@: p<a))= 1. 

Theorem 6. 2" is the o, union of meager sets does not imply (C). 

Proof. Any C 2" closed is coded by a tree T ~ 2 < "  whose set of infinite 
branches 

is C. Perfect set forcing (SACKS, 1971) corresponds to forcing with perfect 
trees T ~ 2 < "  (perfects means Vs E T there are incompatible extensions of 
s in T). T 6 S iff T c S. Given Ca : a < o1 disjoint non-empty closed subsets 
of 2", P will be a suborder of perfect set forcing defined as follows: 

T E Piff Tis perfect and for everya <a1, Ca is meager in [ TI.. 

C meager in [TI iff V S E  T 3 t  2 s t E T and [T,]n C=O, where T, = {r'E T: 
r t or t r ) .  This modification is similar to that of Shelah. 
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Lemma 7. P is not empw. 

Proof. For each a < w, choose x, E C,. Let T = {s E 2<": for uncountably 
many a,s ex,). Then T E P. 

Just as in perfect set forcing if G is P-generic, then x = u n G is an 
element of 2" and G= { T  E P : x €[TI). Note that for any a <w,, lt"x@ 
F9' is the closed set in the extension with the same code as C,), because 
V T E P ~ ~ E T [ T , ] ~ C , = @ ,  so [T,] lt"xg~,." 

Starting with M a model of CH an o, iteration with countable support 
(as was done in LAVER (1976)) will be used to obtain a model N, where on 
each step some sequence of disjoint non-empty closed sets will be taken 
care of with the corresponding order P. Provided sufficient care is taken, N 
will then model 7 (C). It will then suffjce to show that Nk "2"- U {C: C 
is closed nowhere dense and coded in M)." For expository purposes we 
first show that the above statement holds when N =  M[G] for G P-generic 
over M. 

Lemma 8. Let T E P and F c [ TI finite. 
(a) If Tlt" Wi<,Oi" where N < w, then 

~ s < T F ~ [ s ] ~ G  C N  [ c a r d ~ = c a r d ~ a n d  ~ l t "  W O;']. 
i EG 

(t) If T1t"r E M", then 3s < T F z[S]  3 G E M countable and S1t"r E 
G". 

Proof. Choose n < w so that for every x,y E F (x #y*x n #y 1 n). For 
X E  F let 

R ,={~ET:  3m>n  t=xrmn(l-x(m))) 

and R =  U {R,: X E F ) : ' C ~ O O S ~ T ' < T  so that R c T '  and for all SER 
3m <N T',lP"',"(for (b) : Vs E R 3xs E M T,'It"r = x," then let S = T' and 
G = {x, :  s E R 1). Since N < w Vx E F3mx < N 3 R: R, infinite so that for - 
allsERi ~lt"O,". Let G={m,: X E F )  andS= U {T;:sE U {R;:xE 
F1 1. 

The stem of T is the unique S E T  such that T,= T a n d s n ( 0 ) , s n ( l ) ~  
T. The nth level of T (Lev, (T)) is defined by induction on n <a. Lev, 
(T)= {stem of T). 

 lev,+,(^)= (stem of T,-,,: s€Lev,(T) andi=O, 1). 

For any s E T define x: to be the lexicographical least element of [T,]. 



Definition. T <"S iff 
(a) T < S and Lev,(T) = Lev,(S). 
(b) v t ~ L e v , ( ~ ) x ? ~ [ T ] .  
(c) v t E Lev,(S) if x? E C, (a is necessarily unique if it exists, since the 
C, are disjoint), then 3s 2 t s E Lev,+ , (T) such that [T,] n C, = 0. 

Lemma 9. If for each n < w Tn+ <"Tn, then n { T,: n < w )  = T E P. 

Proof. Since VnVm[m >n+Levn(Tm)=Lev,(T)], T is perfect. Suppose for 
some a < a, and s E T, [T,] c C,. Choose n < w so that s C t ELev,(T). By 
@) X?"E[T], so X ~ E  c,. But by (c) 3 r € L e v , + , ( ~ " + ~ ) = L e v , + , ( ~ )  such 
that [T:+ '1 n C, = 0 ,  contradiction. 

Lemma 10. Let T E P and n <a. 
(a) If TII-" Wi<N@i" where N < w, then 3 S <"T 3 G N card G < 2"+ 
and SIk" WiEGOi". 
(b) If TI t"7 M  is countable", then 3 S <"T 3 G E M  countable and S It "7 

c G". 

Proof. (a) Let F = {x:: s E Lev, + ,( T)) . Applying Lemma 8(a) get R < T 
with F C[R],G  card^< 2"+l, RII-" w~,,@~". Since F G[R] Lev,(R)= 
Lev,(T). Let D = U {C,: F n C,#0). Since this is a finite union D is 
nowhere dense in [R]. Vs €Lev,(R) find t, E R such that t 2 s n ( l )  and 
[tln D = 0 .  Let S.= U {Rs-<o>,R,:sELev,(R)). 

(b) Let To= T. Using Lemma 8(b) and the argument above, build a 
sequence Tm+ <" Tm, Gm E M  countable for m < w such that Tmlt" the r n ~  

element of 7 is in G,." Then by Lemma 9 S= n ,<"TmEP and 
Slt"~ C U G,". If in addition Vi  <n T,+ , <" T,, then S 9" T. 

m<" 

Let X= { f ~ w " :  Vn f(n)<2"}. Suppose TIt"rEX", then using Lemma 
10(a) build a sequence Tn+ <" Tn, TO = T, Gn c w with card Gn < 2"+ ', and 
Tn+ llI-"~(n) E G,". Let S= n ,," Tn, so S E P by Lemma 9, and S 
II-"Vn.r(n)EG,". But C= { f EX: Vn f(n)EGn} is closed nowhere 
dense in X. Thus if G is P-generic over M, then \ 

M [  GI V"' = u { C: C closed nowhere dense in X and coded in M 1". 
But X is homeomorphic to 2", so 

M [  G] I F ' T  = u { C: C closed nowhere dense in 2" and coded in M  ) ." 
We will do a Laver style iteration argument (LAVER, 1976). Assume for 

each a <a, we have a partial order Pa and a term (C;: P < w , )  so that 
Ita6'(C;: B < w , )  are disjoint nowhere dense closed subsets of 2"". Then 
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for each a < w, [p E Pa iff V p  <a prPlt6'p(/3)E P((c!: y < a,))" and for 
all but countably many y (called the support of p) p(y) is a canonical term 
for 2<". Lemma 5 thru Lemma 10 of LAVER (1976) are proved in this case 
mutatis mutandis. (Change Lemma 6(i) to read: If k < o and pll-" Wj<k@i', 
then there is an IC{O,I, ..., k-I)  with card1<2("+~)' and a p' such that 
p' <%p and p'll-" WjE,@j.'7 Also < is reversed in LAVER (1976).) 

In particular for any G Pw;generic over M,MIG)k"VxEoW if Vn 
x(n) < 2"., then 3g  E M Vn cardg(n) < 2n3 and Vn x(n) Eg(n)". Hence as 
above M[g]k"2" is the o, union of meager sets'.'. Also there is a sequence 
( Wg: B < w2) in M such that for each p, WP is dense in Pg and 
card( Wg/ =) < 8, .  So by a bookkeeping argument we can insure that 
M[G]k6'For every sequence C,: a <a, of closed disjoint nowhere dense 
subsets of 2",38<o2(ca: a<o,)=<~!: a<ol)." 

Remark. It easily follows from arguments similar to those above that no 
real in M[G] is random over M, so M[G]ka2" is the o, union of measure 
zero sets7.' (see MILLER (1980)). 

Tall remarks that Booth (1968, unpublished) proved that MA implies the 
closed unit interval is not the union of less than 12?1 disjoint nonempty 
closed sets, and Weiss (1972, unpublished) rediscovered this and proved, 
for example, that MA implies no compact perfectly normal space is the 
union of K many disjoint closed sets for any K with o < K  < 12"l. 
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