Last revised: May 9, 2014

A.Miller Spring 2014

Borel hierarchies

Theorem 1 (Lebesgue 1905 see [14] Thm 2.5) For every α with $1 \leq \alpha < \omega_1$

$$\sum_{\alpha}^{0}(2^{\omega})\neq \prod_{\alpha}^{0}(2^{\omega}).$$

Theorem 2 (Bing, Bledsoe, Mauldin see [14] Thm 3.2) Suppose $F \subseteq P(2^{\omega})$ is a countable family such that $Borel(2^{\omega}) \subseteq Borel(F)$. Then $ord(F) = \omega_1$.

Theorem 3 (Rectaw see see [14] Thm 3.5 [13] Thm 17) If X is a second countable space and X can be mapped continuously onto the unit interval, [0,1], then $\operatorname{ord}(X) = \omega_1$.

Define the levels of the ω_1 -Borel hierarchy of subsets of 2^{ω} as follows:

- 1. $\Sigma_0^* = \Pi_0^* = \text{clopen subsets of } 2^{\omega}$
- 2. $\Sigma_{\alpha}^* = \{ \bigcup_{\beta < \omega_1} A_{\beta} : (A_{\beta} : \beta < \omega_1) \in (\Pi_{<\alpha}^*)^{\omega_1} \}$
- 3. $\Pi_{\alpha}^* = \{2^{\omega} \setminus A : A \in \Sigma_{\alpha}^*\}$
- 4. $\Pi_{<\alpha}^* = \bigcup_{\beta < \alpha} \Pi_{\beta}^* \qquad \Sigma_{<\alpha}^* = \bigcup_{\beta < \alpha} \Sigma_{\beta}^*$

The length of this hierarchy is the smallest $\alpha \geq 1$ such that

$$\Pi_{\alpha}^* = \Sigma_{\alpha}^*$$
.

Theorem 4 (Miller [16]) (MA $_{\omega_1}$) $\Pi_{\alpha}^* \neq \Sigma_{\alpha}^*$ for every $\alpha < \omega_2$.

Theorem 5 (Miller [9] Thm 22) It is relatively consistent with ZFC that $ord(X) = \omega_1$ for all uncountable $X \subseteq 2^{\omega}$.

Theorem 6 (Rao [20], Kunen [8]) Assume the continuum hypothesis. Then every subset of the plane is in the σ -algebra generated by the abstract rectangles. In fact, at level two.

Theorem 7 (Kunen [8]) Assume Martin's axiom, then every subset of the plane is in the σ -algebra generated by the abstract rectangles at level two. In the Cohen real model or the random real model the well-ordering on the continuum is not in the σ -algebra generated by the abstract rectangles.

Theorem 8 (Rothberger [21] 1952) Suppose that $2^{\omega} = \omega_2$ and $2^{\omega_1} = \omega_{\omega_2}$ then the σ -algebra generated by the abstract rectangles in the plane is not the power set of the plane.

Theorem 9 (Bing, Bledsoe, Mauldin [2]) If every subset of the plane is in the σ -algebra generated by the abstract rectangles, then for some countable α every subset of the plane is in the σ -algebra generated by the abstract rectangles by level α .

Theorem 10 (Miller [9]) If every subset of a separable metric space X is Borel in X, then for some countable α every subset of X is Σ^0_{α} in X.

Theorem 11 ([9]) For any countable α it is consistent to have a separable metric space X in which every subsets is Borel and the order of X is α .

Theorem 12 ([9]) For any countable $\alpha \geq 2$ it is consistent that every subset of the plane is in the σ -algebra generated by the abstract rectangles at level α but for every $\beta < \alpha$ not every subset is at level β .

Theorem 13 (Larson, Miller, Steprans, Weiss [18]) Suppose $2^{<\mathfrak{c}} = \mathfrak{c}$ then the following are equivalent:

- (1) There is a Borel universal function, i.e, a Borel function $F: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ such that for every abstract $G:: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ there are $h: 2^{\omega} \to 2^{\omega}$ and $k: 2^{\omega} \to 2^{\omega}$ such that for every $x, y \in 2^{\omega}$ G(x, y) = F(h(x), k(y)).
- (2) Every subset of the plane is in the σ -algebra generated by the abstract rectangles.

Furthermore the universal function has level α iff every subset of the plane is in the σ -algebra generated by the abstract rectangles at level α .

Theorem 14 ([18]) If $2^{<\kappa} = \kappa$, then there is an abstract universal function $F : \kappa \times \kappa \to \kappa$.

Theorem 15 ([18]) It is relatively consistent with ZFC, that there is no abstract universal function $F: \mathfrak{c} \times \mathfrak{c} \to \mathfrak{c}$.

Theorem 16 ([18]) There does not exist a Borel function $F: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ such that for every Borel $G: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ there are $h, k: 2^{\omega} \to 2^{\omega}$ such that k is Borel and for every $x, y \in 2^{\omega}$

$$G(x,y) = F(h(x), k(y))$$

Theorem 17 (Miller [19]) The answer to question 4.6 [18] is no. If we drop the condition that k above is Borel in Theorem 16 it is consistent that there be no such F Borel.

Theorem 18 ([18]) Universal functions F of higher dimensions reduce to countably many cases where the only thing that matters is the arity of the parameter functions, e.g.

$$G(x,y,z) = F(h(x),k(y),l(z))$$

$$G(x,y,z) = F(h(x,y),k(y,z),l(x,z))$$

$$G(x_1,x_2,x_3,x_4) = F(h(x_2,x_3,x_4),k(x_1,x_3,x_4),l(x_1,x_2,x_4),i(x_1,x_2,x_3))$$

Theorem 19 ([18]) In the Cohen real model for every $n \geq 1$ there is a universal function on ω_n where the parameter functions have arity n+1 but no universal function where the parameters functions have arity n.

Theorem 20 (Miller [19]) The answer to question 7.13 [18] is yes. If there is a Borel Sierpinski universal and $2^{<\mathfrak{c}} = \mathfrak{c}$, then there is a Borel map H such that for every cardinal $\kappa < \mathfrak{c}$ for every $G : \kappa \times \kappa \to \kappa$ there are $x_{\alpha} \in 2^{\omega}$ for $\alpha < \kappa$ such that for $\alpha, \beta, \gamma < \kappa$

$$G(\alpha, \beta) = \gamma \text{ iff } H(x_{\alpha}, x_{\beta}) = x_{\gamma}$$

Theorem 21 (Galvin, Mycielski, Solovay [5]) (a) X is countable iff Black has a winning strategy in G(X). (b) X does not have strong measure zero iff White has a winning strategy in the game G(X).

Theorem 22 ([5]) X has strong measure zero iff for any dense G_{δ} set D there exists z such that $z + X \subseteq D$.

Theorem 23 (Cancino, Guzmán, Miller [3]) $\mathfrak{d} \leq \mathfrak{s}_{mm}$. Any irredundant family $\mathcal{A} \subseteq [\omega]^{\omega}$ with $|\mathcal{A}| < \mathfrak{d}$ is not maximal. Irredundant means no element of \mathcal{A} is covered mod finite by a finite union of other elements of \mathcal{A} .

Theorem 24 ([3]) It is consistent with the continuum arbitrarily large to have maximal irredundant families of size ω_1 .

Theorem 25 (Marczewski see Miller[15]) If I is a ccc σ -ideal in the Borel sets then the family of I-measurable sets is closed under the Souslin operation.

Theorem 26 ([14]) (CH) For any α with $2 \leq \alpha \leq \omega_1$ there is exists an uncountable $X \subseteq 2^{\omega}$ such that $\operatorname{ord}(X) = \alpha$ and every Souslin set in X is Borel in X.

Theorem 27 (Miller [10]) It is consistent to have $X \subseteq 2^{\omega}$ such that every subset of X is Souslin in X and the Borel order of X is ω_1 .

Theorem 28 ([10]) It is relatively consistent with ZFC that for every subset $A \subseteq 2^{\omega} \times 2^{\omega}$ there are abstract rectangles $B_s \times C_s$ with

$$A = \bigcup_{f \in \omega^{\omega}} \bigcap_{n < \omega} \left(B_{f \upharpoonright n} \times C_{f \upharpoonright n} \right)$$

but not every subset of $2^{\omega} \times 2^{\omega}$ is in the σ -algebra generated by the abstract rectangles.

Theorem 29 (Sierpinski 1935) Assume CH. There Luzin sets and Sierpinski sets whose square can be continuously mapped onto 2^{ω} .

Corollary 30 (CH) For any α with $2 \leq \alpha < \omega_1$ there is $X \subseteq 2^{\omega}$ such that

$$\operatorname{ord}(X) = \alpha \ and \operatorname{ord}(X^2) = \omega_1$$

Theorem 31 (Miller [12]) (CH) There is an uncountable σ -set $X \subseteq 2^{\omega}$ which is concentrated on a countable set. (σ -set means $\operatorname{ord}(X) = 2$.)

Theorem 32 (Fleissner, Miller [4]) It is relatively consistent with ZFC to have an uncountable Q-set which is concentrated on a countable set.

Theorem 33 (Miller [19]) (CH) For any α_0 with $3 \le \alpha_0 < \omega_1$ there are $X_0, X_1 \subseteq 2^{\omega}$ with $\operatorname{ord}(X_0) = \alpha_0 = \operatorname{ord}(X_1)$ and $\operatorname{ord}(X_0 \cup X_1) = \alpha_0 + 1$.

Theorem 34 (Mostowski) If θ is a Σ^0_{α} formula of $L_{\omega_1,\omega}(\rho)$, then the set of models of θ is a Σ^0_{α} Borel subset of X_{ρ} . Where X_{ρ} is the Polish space of ρ -structures with universe ω .

Theorem 35 (Scott 1964 see Barwise [1]) For any countable structure A in a countable similarity type ρ , there is a sentence θ of $L_{\omega_1,\omega}(\rho)$ such that for any countable ρ -structure B

$$A \simeq B \text{ iff } B \models \theta$$

Theorem 36 (Vaught [22]) Any Σ^0_{α} subset of X_{ρ} which is closed under isomorphism is the set of models of a Σ^0_{α} sentence of $L_{\omega_1,\omega}(\rho)$

Theorem 37 (Hausdorff Difference Hierarchy) $B \in \Delta_{\alpha+1}^0$ iff there exists a countable sequence of decreasing Π_{α}^0 sets C_{β} such that

$$B = \bigcup_{\gamma \ even} C_{\beta} \backslash C_{\beta+1}$$

Theorem 38 (Douglas E. Miller [17]) If B is also invariant, then

$$B = \bigcup_{\gamma \ even} C_{\beta}^* \backslash C_{\beta+1}^*$$

Corollary 39 If the isomorphism class of a countable structure is $\Delta^0_{\alpha+1}$ then it must be either Π^0_{α} , Σ^0_{α} , or the difference of two invariant Π^0_{α} sets.

Theorem 40 (Miller [11]) The isomorphism class of a countable model cannot be properly Σ_1^0 or properly Σ_2^0 . For λ a countable limit ordinal, it cannot be properly Σ_{λ}^0 or properly the difference of two Π_{λ}^0 sets.

Theorem 41 (Miller [11], Hjorth [6]) In all other cases of there are examples of countable structures whose isomorphism class is properly of that Borel class.

References

- [1] Barwise, Jon; Back and forth through infinitary logic. Studies in model theory, pp. 5-34. MAA Studies in Math., Vol. 8, Math. Assoc. Amer., Buffalo, N.Y., 1973.
- [2] Bing, R. H.; Bledsoe, W. W.; Mauldin, R. D.; Sets generated by rectangles. Pacific J. Math. 51 (1974), 27-36.

- [3] Jonathan Cancino, Osvaldo Guzmán, Arnold W. Miller; Irredundant Generators, eprint June 2013 revised Apr 2014. http://www.math.wisc.edu/~miller/res/irr.pdf
- [4] Fleissner, William G.; Miller, Arnold W.; On Q Sets, Proceedings of the American Mathematical Society, 78(1980), 280-284.
 http://www.math.wisc.edu/~miller/res/qsets.pdf
- [5] Galvin, Fred; Mycielski, Jan; Solovay, Robert M.; Strong measure zero and infinite games, eprint Feb 2014. GalvinMycielskiSolovay.pdf
- [6] Hjorth, G.; An orbit that is exactly $\Sigma_{\lambda+1}$, handwritten note Feb 1995.
- [7] Kechris, Alexander S.; Classical descriptive set theory. Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995. xviii+402 pp. ISBN: 0-387-94374-9
- [8] Kunen, Kenneth; INACCESSIBILITY PROPERTIES OF CARDINALS. Thesis (Ph.D.) Stanford University. 1968.
- [9] Miller, Arnold W.; On the length of Borel hierarchies, Annals of Math Logic, 16(1979), 233-267.
 http://www.math.wisc.edu/~miller/res/hier.pdf
- [10] Miller, Arnold W.; Generic Souslin sets, Pacific Journal of Mathematics, 97(1981), 171-181. http://www.math.wisc.edu/~miller/res/gensous.pdf
- [11] Miller, Arnold W.; The Borel classification of the isomorphism class of a countable model, Notre Dame Journal of Formal Logic, 24(1983), 22-34. http://www.math.wisc.edu/~miller/res/ctblmod.pdf
- [12] Miller, Arnold W.; Special subsets of the real line, in Handbook of Set Theoretic Topology, North Holland, (1984), 201-233. http://www.math.wisc.edu/~miller/res/special.pdf
- [13] Miller, Arnold W.; Special sets of reals, in **Set Theory of the Reals**, ed Haim Judah, Israel Mathematical Conference Proceedings, 6(1993), 415-432, American Math Society.
 - http://www.math.wisc.edu/~miller/res/survey.pdf

- [14] Miller, Arnold W.; Descriptive Set Theory and Forcing: how to prove theorems about Borel sets the hard way, Lecture Notes in Logic 4(1995), Springer-Verlag. New edition 4-2001 now published by Association for Symbolic Logic.
 - http://www.math.wisc.edu/~miller/res/dstfor.pdf
- [15] Miller, Arnold W.; Ramsey Theory http://www.math.wisc.edu/~miller/old/m873-96/ramsey.pdf
- [16] Miller, Arnold W.; The hierarchy of ω_1 -Borel sets, eprint July 2011 http://www.math.wisc.edu/~miller/res/omega1.pdf
- [17] Miller, Douglas E.; The invariant Π^0_{α} separation principle. Trans. Amer. Math. Soc. 242 (1978), 185-204.
- [18] Larson, Paul B.; Miller, Arnold W.; Steprans, Juris; Weiss, William A.R.; Universal Functions eprint Apr 2012 http://www.math.wisc.edu/~miller/res/univ.pdf
- [19] Miller, Arnold W.; in prep April 2014.
- [20] Rao, B.V.; On discrete Borel spaces and projective sets. Bull. Amer. Math. Soc. 75 1969 614-617.
- [21] Rothberger, Fritz; A remark on the existence of a denumerable base for a family of functions. Canadian J. Math. 4, (1952). 117-119.
- [22] Vaught, Robert; Invariant sets in topology and logic. Collection of articles dedicated to Andrzej Mostowski on his sixtieth birthday, VII. Fund. Math. 82 (1974/75), 269-294.