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1 Ramsey’s Theorem

Let ω = {0, 1, 2, . . .} and for any set A and n ≤ ω let

[A]n = {B ⊆ A : |B| = n}

where |B| is the cardinality of the set B. So, for example, [ω]ω, is the set of
all infinite subsets of ω.

Theorem 1.1 (Pidgeon Hole Principal1) Suppose f : ω → k. Then there
exists H ∈ [ω]ω such that f � H is constant.

Theorem 1.2 Ramsey’s Theorem ([7]) for any m, k < ω and f : [ω]k → m
there exists H ∈ [ω]ω such that f � [H]k is constant.

proof:
The set H is said to be homogeneous for the function f .
We begin with the standard proof for k = 2. Construct a0 < a1 < ... <

an−1 and Xn ∈ [ω]ω as follows:
Let an = min{Xn−1} and find Xn ∈ [Xn−1 \ {an}]ω so that for every

a ≤ an and u, v ∈ Xn

f(a, u) = f(a, v).

We can construct such a set by iteratively applying the pidgeon hole
principal as follows. Note given any a ∈ ω and Y ∈ [ω]ω there is a Z ∈ [Y ]ω

and i < m such that for every z ∈ Z we have f({a, z}) = i. Now we just
iterate this

Xn−1 = Z0 ⊇ Z1 ⊇ Z2 . . . ⊇ Zm = Xn

taking care of all a ≤ an (so m = an + 1).
Finally consider the set K = {an : n ∈ ω}. It is “tail homogeneous”, i.e.,

for any u, v, w distinct elements of K if u < v and u < w, then f(u, v) =

1One of my colleagues told me about the pidgeon head principal. If you get into an
elevator and there are more buttons pressed than there are people in the elevator, then
there must be a pidgeon head.
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f(u, w). Thus we can define g : K → m by g(u) = f(u, v) for any v > u in
K. By the pidgeon hole principle there exists H ∈ [K]ω such that g � H is
constant and therefore f � [H]2 is constant.

Instead of giving the standard proof for k > 2 for novelty we give a proof2

using model theory. Let f : [ω]k+1 → m be any function. Consider the model

A = (ω,<, f, n)n∈ω.

By applying the compactness theorem we can find a model B which is a
proper elementary extension of A. This means it contains a “hyperfinite”
integer H, i.e., an element of the model B satisfying n < H for every n ∈ ω.
We construct a sequence a0 < a1 < . . . < an in ω with the following property:

For any u1 < u2 < . . . uk ≤ an−1 we have that

f(u1, . . . , uk, an) = fB(u1, . . . , uk, H).

This can be done, because if we define iu1,...,uk
< m by

fB(u1, . . . , uk, H) = iu1,...,uk

then
B |= ∃x > an

∧∧
u1<...<uk≤an−1

f(u1, . . . , uk, x) = iu1,...,uk

(namely x = H) so by elementarity

A |= ∃x > an

∧∧
u1<...<uk≤an−1

f(u1, . . . , uk, x) = iu1,...,uk

so now choose an to be any such x ∈ ω.
Now our set K = {an : n ∈ ω} is tail-homogeneous, i.e., given any

u1 < u2 < . . . < uk and v, w > uk in K we have

f(u1, . . . , uk, u) = f(u1, . . . , uk, v)

(since both are equal to fB(u1, . . . , uk, H)). As before, we define

g : [K]k+1 → m by g(u1, . . . , uk) = fB(u1, . . . , uk, H)

and apply induction to g to get H ∈ [K]ω on which g is constant and then
f � [H]k+1 is constant.
�

2This proof was found by my fellow graduate student Charlie Gray (circa 1975) and is
based on the idea of Simpson’s model theoretic proof of the Erdos-Rado Theorem.
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Corollary 1.3 Finite Ramsey Theorem. For any m, k, h < ω there exists
N < ω such that for every f : [N ]k → m there exists H ∈ [N ]h such that
f � [H]k is constant.

proof:
Suppose there is no such N and let fN : [N ]k → m be a counterexample

for each N . Define

g : [ω]k+1 → m by g(a1, a2, . . . , ak, b) = fb(a1, a2, . . . , ak)

where a1 < a2 < . . . < ak < b. By Ramsey’s Theorem, there exists H ∈ [ω]ω

such that g � [H]k+1 is constant. But if a1 < a2 < ... < ah < b are any h + 1
elements of H then {a1, . . . , ah} is a homogeneous set for fb, a contradiction.

There is another proof which works by invoking the compactness theorem.

�
Ramsey’s theorem is not a corollary of it’s finite version. This follows from

the fact that there is a recursive partition with no recursive homogeneous set,
a result due to Specker. See, for example, Simpson [11],and Jockusch [3].

2 Galvin-Prikry Theorem

Let U ⊂ [ω]ω be arbitrary but fixed. In what follows lower case s, t, . . .
letters will refer to finite subsets of ω and upper case letters X, Y, . . . to
infinite subsets of ω.

Given s ∈ [ω]<ω and Y ∈ [ω]ω define

• s⊆endY iff s ⊆ Y and max(s) < min(Y \ s),

• [s, Y ] = {X ∈ [ω]ω : s⊆endX ⊆ Y ∪ s},

• Y accepts s iff [s, Y ] ⊆ U ,

• Y rejects s iff ¬∃X ∈ [Y ]ω X accepts s.

Proposition 2.1 If Y accepts (rejects) s and X ∈ [Y ]ω, then X accepts
(rejects) s.

Proposition 2.2 Given any Y and s there exists X ∈ [Y ]ω such that either
X accepts s or X rejects s.
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Proposition 2.3 Given any Y and s1, s2, . . . , sn there exists X ∈ [Y ]ω such
that for each i = 1, . . . , n either X accepts si or X rejects si.

proof:
Iterate, i.e., construct

Y = Y0 ⊇ Y1 ⊇ Y2 . . . ⊇ Yn = X

so that Yi either accepts si or rejects si.
�

Proposition 2.4 Given any Y ∈ [ω]ω there exists Z ∈ [Y ]ω such that for
every s ∈ [Z]<ω either Z rejects s or Z accepts s.

proof:
Construct a0 < a1 < . . . < an = min(Yn) with

Y = Y0 ⊇ Y1 ⊇ Y2 ⊇ . . .

so that for every n and s ⊆ {a0, . . . , an} we have that Yn+1 either rejects or
accepts s. Let Z = {an : n < ω}. If s ∈ [Z]<ω, then let an = max(s). By
construction Yn+1 accepts or rejects s. But [s, Z] = [s, Yn+1] since am ∈ Yn+1

for all m ≥ n + 1. It follows that if Yn+1 accepts s, then Z accepts s; and if
Yn+1 rejects s, then Z rejects s.
�

Call such a Z as in Proposition 2.4 decisive.

Proposition 2.5 Suppose Z is decisive and Z rejects the empty set. Then
there exists Y ∈ [Z]ω such that Y rejects s for every s ∈ [Y ]<ω.

In order to prove this proposition we have the following claim.

Claim. Suppose Z is decisive and Z rejects t for every t ⊆ s. Then for all
but finitely many n ∈ Z, for every t ⊆ s ∪ {n} Z rejects t.
proof:

Suppose not. Then there are infinitely many n ∈ Z such that for some
sn ⊂ s ∪ {n} we have that Z accepts sn. Since Z rejects all subsets of s it
must be that sn = tn ∪ {n} for some tn ⊆ s. Since s is a finite set there
must be Y ∈ [Z]ω and t ⊆ s such that for every n ∈ Y we have that Z
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accepts t ∪ {n} and hence [t ∪ {n}, Z] ⊆ U . Without loss we may assume
max(s) < min(Y ). But

[t, Y ] =
⋃
{[t ∪ {n}, Y ] : n ∈ Y }

and
[t ∪ {n}, Y ] ⊆ [t ∪ {n}, Z] ⊆ U .

This means that Y accepts t. But Z rejects t. Contradiction.
�

To prove the proposition construct

{a0, a1, . . . , an−1} ⊆ Z

inductively so that Z rejects every t ⊆ {a0, a1, . . . , an−1}. We can get started
because Z rejects the empty set. Let Y = {a0, a1, . . .}.
�

Define

• U ⊆ [ω]ω is Ramsey iff for every X ∈ [ω]ω there exists Y ∈ [X]ω such
that either [Y ]ω ⊆ U or [Y ]ω ∩ U = ∅,

• U ⊆ [ω]ω is Completely Ramsey iff for every X ∈ [ω]ω and s ∈ [ω]<ω

there exists Y ∈ [X]ω such that either [s, Y ] ⊆ U or [s, Y ] ∩ U = ∅.

Since [Y ]ω = [∅, Y ] it is clear that Completely Ramsey implies Ramsey.
The usual topology on [ω]ω is the topology it inherits by being considered as
follows:

[ω]ω ⊆ P (ω) ≡ 2ω

A basic open set in the usual or product topology has the form, [s, ω]. The
Ellentuck Topology has as its basic open sets those of the form [s, X] where
s ∈ [ω]<ω and X ∈ [ω]ω. To be a basis (as opposed to subbasis) it is
neccessary that the intersection of any two basic open sets is a union of basic
open sets.

Proposition 2.6 Suppose [s, X] and [t, Y ] are two basic open sets. Then
either they are disjoint or

[s, X] ∩ [t, Y ] = [s ∪ t,X ∩ Y ].
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proof:
If neither s⊆endt or t⊆ends, then they are disjoint, since then there are no

Z with s⊆endZ and t⊆endZ. So suppose s⊆endt. Now if it is not true that
(t \ s) ⊆ X, then again they are disjoint, since t ⊆ Z for every Z ∈ [t, Y ].
Finally if X ∩ Y is finite, then they are disjoint. If none of these things
happen, then s ∪ t = t, t \ s ⊆ X, and both sides can described as the set of
infinite Z such that t⊆endZ and (Z \ t) ⊆ (X ∩ Y ).
�

Lemma 2.7 If U is open in the Ellentuck Topology, then U is Ramsey.

proof:
Given X ∈ [ω]ω apply the Proposition 2.4 and find Z ∈ [X]ω such Z is

decisive. Now if Z accepts the empty set, then [Z]ω = [∅, Z] ⊆ U and we
are done. If Z rejects the empty set, then apply Proposition 2.5 and obtain
Y ∈ [Z]ω such that Y rejects all of its finite subsets. To finish the proof it is
enough to prove the following

Claim. [Y ]ω ∩ U = ∅.
proof:

If not, there is some Z ∈ [Y ]ω ∩ U . In the Ellentuck topology the sets
of the form [Z ∩ n, Z] form a neighborhood basis for Z. Since U is open, it
must be that for some n

Z ∈ [Z ∩ n, Z] ⊆ U .

But this means that Z accepts Z ∩ n contradicting the fact that Y rejects
Z ∩ n.
�

Lemma 2.8 If U is open in the Ellentuck Topology, then U is Completely
Ramsey.

proof:
We can either say - just do the whole proof over again but start with

[s, Y ] instead of [∅, Y ] or we can use the following argument.
Fix s and Y with max(s) < min(Y ). Let h : [ω]ω → [s, Y ] be defined

as follows. Let Y = {yn : n < ω} be written in increasing order. For each
X ∈ [ω]ω let h(X) = s ∪ {yn : n ∈ X}. It is easy to check that h is a
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homeomorphism in the Ellentuck topology, in fact, it takes basic open sets
to basic open sets. Let V = h−1(U). Then V is open and hence by Lemma
2.7 it is Ramsey, and so there exists H ∈ [ω]ω such that either [H]ω ⊆ V or
[H]ω∩V = ∅. Let Z = {yn : n ∈ H}. Then either [s, Z] ⊆ U or [x, Z]∩U = ∅.

�

Lemma 2.9 The Completely Ramsey sets form a σ-algebra, i.e., a family of
sets closed under taking compliments and taking countable unions.

proof:
It is easy to see that the compliment of a Completely Ramsey set is Com-

pletely Ramsey. It also easy to see that the union of two Completely Ramsey
sets is Completely Ramsey. So it suffices to prove that the countable union
of an increasing union of Completely Ramsey sets is Completely Ramsey.
Let U = ∪n<ωUn be an increasing union of Completely Ramsey sets. We
begin by showing that U is Ramsey. The acceptance-rejection terminology is
with respect to a fixed background set V so we write “modulo V” to indicate
which one. For any X ∈ [ω]ω there exists Y ∈ [X]ω such that either

• Y accepts the empty set modulo U , and so [Y ]ω ⊆ U , or

• Y rejects all of its finite subsets modulo U .

In the first case, we are done, so we must analize the second case. If Y rejects
s modulo U , then since Un is smaller it must also reject s modulo Un. But
Un is Completely Ramsey, so there must be Z ∈ [Y ]ω such that

[s, Z] ∩ Un = ∅.

Lemma 2.10 Suppose for every finite s ∈ [Y ]ω, and Z ∈ [Y ]ω, there exists
W ∈ [Z]ω such that [s, Z] ∩ Un = ∅. Then there exists Z ∈ [Y ]ω such that

[Z]ω ∩ (∪n<ωUn) = ∅.

proof:
Construct a0 < a1 < . . . < an−1 < an = min Yn with

Y = Y0 ⊇ Y1 ⊇ . . .
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Apply the hypothesis to obtain Yn+1 ∈ [Yn]ω with the property that an <
min(Yn+1) and so that for every s ⊆ {a0, a1, . . . , an}

[s, Yn+1] ∩ Un = ∅.

Now let Z = {an : n ∈ ω}. We claim that: [Z]ω ∩ (∪n<ωUn) = ∅. If not,
there exists W ∈ [Z]ω ∩ Un for some n. Since the Un are increasing, we may
(by choosing n larger, Un is an increasing sequence) assume that an ∈ W .
But then letting s = W ∩ (an + 1)

W ∈ [s, W ] ⊆ [s, Yn+1]

contradicting the fact that

[s, Yn+1] ∩ Un = ∅.

�
This proves that the countable union of Completely Ramsey sets is Ram-

sey. The proof that it is Completely Ramsey is the same but done by rela-
tivizing the entire argument to a fixed [s, Y ].
�

Corollary 2.11 (Galvin-Prikry [2]) The Borel subsets of [ω]ω are Ramsey,
i.e., for any Borel set B ⊆ [ω]ω there exists an H ∈ [ω]ω such that either
[H]ω ⊆ B or [H]ω∩B = ∅ . In fact, the Borel subsets of [ω]ω in the Ellentuck
topology are Completely Ramsey.

Ramsey’s Theorem is also a corollary of the Galvin-Prikry Theorem.
Given f : [ω]n → 2 define B ⊆ [ω]ω by

B = {X ∈ [ω]ω : f({x1, . . . , xn}) = 0}

where {x1, . . . , xn} is the first n elements X. Then B is Borel (in fact clopen)
and a homogeneous set for it, is homogeneous for f .

3 Rosenthal’s Theorem

A sequence of subsets of a set X 〈An : n ∈ ω〉 converges iff for any x ∈ X
we have that x ∈ An for all but finitely many n or x /∈ An for all but finitely
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many n. This is the same as saying that the characteristic functions are
pointwise convergent.

A sequence of sets, 〈An : n ∈ ω〉, is independent iff given any two disjoint
finite subsets of ω, s and t the set

(
⋂
n∈s

An) ∩ (
⋂
n∈t

∼ An)

is nonempty. (∼ An is the compliment of An in the set X.)

Theorem 3.1 (Rosenthal [9]) Given 〈An : n ∈ ω〉, sequence of subsets of a
set X, there exists a C ∈ [ω]ω such that either 〈An : n ∈ C〉 is convergent or
〈An : n ∈ C〉 is independent.

proof:
This proof was found by Farahat (see also Lindenstrauss and Tzafriri [5]

page 100.) Define Q ⊆ [ω]ω by Y ∈ Q iff Y = {y0 < y1 < . . .} and for every
n ∈ ω

A0∩ ∼ A1 ∩ A2∩ ∼ A3 ∩ · · · ∩ ∼ A2n−1 ∩ A2n 6= ∅.

That is, we take the compliment of every other one. Then Q is a closed set.
Therefore, by the Galvin-Prikry Theorem, there exists an infinite H ⊆ ω
such that either

1. [H]ω ⊆ Q or

2. [H]ω ∩Q = ∅.

In the second case take C = H. Then it must be that 〈An : n ∈ H〉 is
convergent, otherwise we could find x ∈ X and an infinite subsequence of H,
say K = {k0 < k1 < . . .}, with x ∈ Ak2n and x /∈ Ak2n+1 for each n, but then
K ∈ Q, contradiction.

In the first case, [H]ω ⊆ Q, let H = {hn : n < ω} and take

C = {h2n+1 : n < ω}.

Then 〈An : n ∈ C〉 is independent. This is because, given any disjoint s and
t in [C]<ω, we can find K ∈ [H]ω (by filling in on the even ones as needed)
so that

s ⊆ {h2n : n < ω} and t ⊆ {h2n+1 : n < ω}.
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But since K ∈ Q this implies

(
⋂
n∈s

An) ∩ (
⋂
n∈t

∼ An) 6= ∅.

�

4 Ellentuck’s Theorem

Silver [10] generalized the Galvin-Prikry Theorem (Thm 2.11) by showing
the Σ1

1 sets are Ramsey (in fact Completely Ramsey). His proof was meta-
mathematical. Ellentuck [1] gave a more general and simplier proof of Silver’s
Theorem.

In order to state Ellentuck’s result we begin by reviewing the notion of
Property of Baire or Baire Property. Let X be any topological space. Define

• N ⊆ X is nowhere dense iff its closure has no interior. Or equivalently
for any nonempty basic open set U there exists a nonempty basic open
set V ⊆ U such that V ∩N = ∅.

• M ⊆ X is meager iff M is the countable union of nowhere dense subsets
of X. Meager is also refer to as “first category” in X.

• G ⊆ X is comeager iff X \G is meager.

• B ⊆ X has the Property of Baire iff there exists an open set U and a
meager set M such that

B = U4M

where U4M = (U \ M) ∪ (M \ U) is the symmetric difference. It
equivalent to say B4U = M .

Note that a set is nowhere dense iff its closure is nowhere dense. Thus any
meager set can be covered by a meager Fσ, i.e., a countable union of closed
nowhere dense sets. Also any subset of a nowhere dense set is nowhere dense,
and hence the meager subsets of X form a σ-ideal. One terminology for “sets
with the Baire Property” is to refer to them as “sets which are almost open”.
Another equivalent definition is the following: a set B ⊆ X has the Baire
property iff there exists a comeager set G and an open set U such that
B ∩G = U ∩G. Thus when we restrict B to a comeager subset, it is open.
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Theorem 4.1 (Baire) The sets with Property of Baire in X form a σ-
algebra, i.e., if B has the Property of Baire then so does X \ B; and if
〈Bn : n ∈ ω〉 each have the Baire property, then so does ∪n<ωBn.

proof:
If U is any open set let V be the interior of X\U and note that X\(U∪V )

is nowhere dense. This is true because for any nonempty open W either W
meets U (and so W ∩ U ⊆ W is a nonempty open set missing X \ (U ∪ V ))
or W is disjoint from U and hence contained in V , the interior of the closed
set X \ U , (and so W already misses X \ (U ∪ V )).

Suppose B ∩G = U ∩G where U is open and G is comeager. Then

(X \B) ∩G′ = V ∩G′

where V is the interior of X \ U and G′ = G ∩ (U ∪ V ) is comeager.
If Bn ∩Gn = Un ∩Gn where each Gn is comeager and Un open, then

(∪n<ωBn) ∩ (∩n<ωGn) = (∪n<ωUn) ∩ (∩n<ωGn).

�

Theorem 4.2 (Ellentuck [1]) A set B ⊆ [ω]ω is Completely Ramsey iff it
has the Baire Property in the Ellentuck topology.

proof:
This will follow easily from the following lemma:

Lemma 4.3 Any meager set in the Ellentuck topology is nowhere dense.

Before proving the Lemma let us deduce from it, Theorem 4.2. Suppose
that B ⊆ [ω]ω is Completely Ramsey. Let

U = ∪{[s, X] : [s, X] ⊆ B},

i.e., U is the interior of B in the Ellentuck topology. To see, that B has the
property of Baire, it is enough to show that B \U is nowhere dense. Since U
is open it is Completely Ramsey, hence B \ U is Completely Ramsey. Given
any [s, A] there exists B ∈ [A]ω such that either

[s, B] ⊆ (B \ U) or [s, B] ∩ (B \ U) = ∅.
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But the first cannot happen by the definition of U , so the second, [s, B] ∩
(B \ U) = ∅, must happen. And since [s, A] is an arbitrary basic open set, it
follows that B \ U is nowhere dense.

Conversely, suppose B has the property of Baire in the Ellentuck topology.
Then there exists an open set U and meager set M such that B4U ⊆ M .
By Lemma 4.3 There is a closed nowhere dense C with M ⊆ C. Now since
open sets are Completely Ramsey, for any [s, X] there exists Y ∈ [X]ω such
that [s, Y ] ⊆ U or [s, Y ] ∩ U = ∅. Since closed sets are Completely Ramsey,
there exists Z ∈ [Y ]ω such that either [s, Z] ⊆ C or [s, Z] ∩ C = ∅. But the
first doesn’t happen, because C is nowhere dense. It follows that [s, Z] ⊆ B
or [s, Z]∩B = ∅ (according to what was true for U). And so B is Completely
Ramsey.

Proof of Lemma 4.3. This proof is somewhat analogous to the proof
that the countable union of Completely Ramsey sets is Completely Ramsey.
Suppose that Qn for n ∈ ω are nowhere dense in the Ellentuck topology.
Since their closures are also nowhere dense, and the finite union of nowhere
dense set is nowhere dense, we may assume without loss that they are closed
and increasing. Since they are closed each Qn is completely Ramsey. Now
given any A ∈ [ω]ω we can construct a sequence

a0 < a1 < . . . < an−1 < min(An)

as follows. Let A0 = A. Given

a0 < a1 < . . . < an = min(An)

find An+1 ⊆ An with the property that for every s ⊆ {a0, . . . , an}

[s, An+1] ∩Qn = ∅.

Now consider B = {an : n < ω}. We claim that

[B]ω ∩ ∪n<ωQn.

If not, there exists C and n with an ∈ C and C ∈ Qn. But if

s = C ∩ {a0, . . . , an}

then C ∈ [s, An+1] contradicting the fact that

[s, An+1] ∩Qn = ∅.

By relativizing this argument to any [s, A] it follows that ∪n<ωQn is nowhere
dense and the lemma is proved.
�
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5 Souslin Operation

The Souslin operation is the following. Given {As : s ∈ ω<ω} define

S〈As : s ∈ ω<ω〉 =
⋃

f∈ωω

∩n<ωAf�n.

This is the Souslin operation also called operation A. Given a family of sets
A define

S(A) = {S〈As : s ∈ ω<ω〉 : {As : s ∈ ω<ω} ⊆ A}.
Typically A is the family of all closed subsets of a topological space X and
then S(A) is known as the family of Souslin sets.

Theorem 5.1 Let A be an arbitrary family of sets. Then:

1. A ⊆ S(A),

2. S(A) is closed under countable unions, i.e., Xn ∈ S(A) for each n
implies

⋃
n<ω Xn ∈ S(A),

3. S(A) is closed under countable intersections, and

4. S(S(A)) = S(A).

proof:
The first item is obvious, since if As = A for all s then

A = S〈As : s ∈ ω<ω〉.

For countable unions, note that if Xk =
⋃

f∈ωω ∩n<ωAk
f�n, then⋃

k<ω

Xk =
⋃

f∈ωω

∩n<ωBf�n

where Bs = A
s(0)
〈s(1),...,s(n)〉 for each s ∈ ωn+1.

For countable intersections, a coding argument is required. Let 〈n, m〉 ∈ ω
be a bijective map between ω2 and ω satisfying, i < j implies 〈k, i〉 < 〈k, j〉.
Given Xk =

⋃
f∈ωω ∩n<ωAk

f�n then⋂
k<ω

Xk =
⋃

f∈ωω

∩n<ωBf�n
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where
Bs = Ak

t

where t and k are determined by s as follows. Let s = (s(0), . . . , s(n)), then
n = 〈k, m〉 and t = (t(0), . . . , t(m)) where t(i) = s(〈k, i〉) for each i ≤ m.
This encoding is based on the idea

∀k ∈ ω ∃f ∈ ωω θ(f, k) iff ∃f ∈ ωω ∀k ∈ ω θ(fk, k)

where fk(n) = f(〈k, n〉).
The fact that S(S(A)) = S(A) is left to the reader, see [8] for example.

�
Another way to define the Souslin sets is in terms of the projection oper-

ation.
For B ⊆ U ×X let

projX(B) = {x ∈ X : ∃u ∈ U (u, x) ∈ B}

For B a family of subsets of U ×X let

projX(B) = {projX(B) : B ∈ B}.

For X a topological space let cl(X) be the family of closed subsets of X.

Theorem 5.2 For any topological space X

projX(cl(ωω ×X)) = S(cl(X))

proof:
If B =

⋃
f∈ωω ∩n<ωCf�n where each Cs is closed in X, then let

C = {(f, x) : ∀n < ω x ∈ Cf�n} ⊆ ωω ×X.

Then C is closed and B = projX(C).
Suppose B = projX(C) where C ⊆ ωω ×X is closed. For each s ∈ ω<ω

define
As = closure({x ∈ X : ∃f ⊇ s (f, x) ∈ C}).

We claim that
B =

⋃
f∈ωω

∩n<ωAf�n.
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If x ∈ B = projX(C), then for some f ∈ ωω we have that (f, x) ∈ C and
therefore x ∈ Af�n for each n ∈ ω. Contrarywise, if x ∈ S〈As : s ∈ ω<ω〉
then for some g ∈ ωω for each m < ω

x ∈ closure({x ∈ X : ∃f ⊇ g � m (f, x) ∈ C}).

But this implies that (g, x) ∈ C since C is closed and therefore (g, x) /∈ C
would imply that there exists an m and open U ⊆ X with

(g, x) ∈ [g � m]× U

and [g � m]× U disjoint from C, contradiction.
�

The Borel subsets of X, Borel(X), is the smallest σ-algebra containing
the open subsets of X.

Theorem 5.3 Suppose X is a topological space and every closed subset of
X is a countable intersection of open sets. (More generally, assume every
open set is in S(cl(X))). Then the following classes are all the same:

1. S(cl(X))

2. S(Borel(X))

3. projX(cl(ωω ×X))

4. projX(Borel(ωω ×X))

proof:
Obviously (1) implies (2), (3) implies (4), and we already know (1) and (3)

are equivalent. The fact that (2) implies (4) is proved similarly to Theorem
5.2.

So we only need to see that (4) implies (3): Let Y = ωω × X. Then
Borel(Y ) ⊆ S(cl(Y )). This is true because S(cl(Y )) is closed under count-
able union and countable intersections and contains the closed sets. So it
is enough to see that every open subset of Y is in S(cl(Y )). But (because
ωω has countable base) every open subset of Y is a countable union of open
rectangles, i.e., set of the form U × V where U ⊆ ωω is open and V ⊆ X is
open. It follows that

projX(Borel(ωω ×X)) ⊆ projX(projωω×X(cl(ωω × ωω ×X))
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= projX(cl(ωω × ωω ×X)) = projX(cl(ωω ×X)).

�
This class of sets also includes projX(Borel(Z × X)) for all sufficiently

nice Z. For more on projective sets see Miller [6].
Marczewski proved a general theorem which gives a sufficient condition

under which a σ-field is closed under the Souslin operation. A σ-field B
of subsets of a set X is a family of sets closed under complimentation and
countable unions

A σ-ideal I in B is a subfamily of B which is closed under countable
unions and taking subsets, i.e., if Z ∈ I and W ⊆ Z then W ∈ I.

Theorem 5.4 (Marczewski, See Kuratowski [4]) Suppose the σ-field B on
the set X and a σ-ideal I in B satisfy the following minimal covering prop-
erty:

For every Y ⊆ X there exists B ∈ B such that Y ⊆ B and for
every C ∈ B if Y ⊆ C ⊆ B, then B \ C ∈ I.

Then S(B) = B, i.e., B is closed under the Souslin operation.

proof:
Suppose As ∈ B and

A =
⋃

f∈ωω

∩n<ωAf�n.

For each s ∈ ω<ω define

As =
⋃

s⊆f∈ωω

∩n<ωAf�n.

Note

1. A = A〈〉 where 〈〉 is the empty sequence,

2. As ⊆ As,

3. As = ∪n<ωAsˆn
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Apply the minimal cover assumption to all As, to get Bs ⊇ As with Bs ∈ B
a minimal cover. Using (2) we may as well assume Bs ⊆ As. By using (3) we
may replace Bsˆn with Bsˆn∩Bs, so without loss, we may assume Bsˆn ⊆ Bs

for each s and n. Now note that since

As = ∪n<ωAsˆn ⊆ ∪n<ωBsˆn ⊆ Bs

we have that by the minimal cover property that

(Bs \ ∪n<ωBsˆn) ∈ I.

To finish the proof, since A = A〈〉, A〈〉 ⊆ B〈〉 and B〈〉 ∈ B, it is enough to
show B〈〉 \ A〈〉 ∈ I.

B〈〉 \ A〈〉 = B〈〉 \ (
⋃

f∈ωω

∩n<ωAf�n) ⊆ B〈〉 \ (
⋃

f∈ωω

∩n<ωBf�n)

This follows from the assumption that Bs ⊆ As so we are subtracking off a
smaller set.

B〈〉 \ (
⋃

f∈ωω

∩n<ωBf�n) ⊆
⋃

s∈ω<ω

(Bs \ ∩n<ωBsˆn).

Since the last set is in I we are done. This inclusion is true because if x
not in

⋃
s∈ω<ω(Bs \ ∩n<ωBsˆn) then whenever x ∈ Bs there is an n < ω such

that x ∈ Bxˆn. Hence if x ∈ B〈〉 but not in
⋃

s∈ω<ω(Bs \ ∩n<ωBsˆn) we can
construct f ∈ ωω such that x is in ∩n<ωBf�n.
�

The two main examples for which Marczewski’s result holds are

1. B is the family of sets with the property of Baire in some topological
space X and I is the ideal of meager sets, and

2. I is a ccc ideal in B, i.e., there does not an uncountable disjoint family
of sets in B \ I.

The second property holds, for example, when B is the family of measurable
sets and I is the σ-ideal of measure zero sets where µ is some finite countably
additive measure on X.

Theorem 5.5 If I is a ccc ideal in B, then they satisfy minimal cover prop-
erty (see hypothesis of Theorem 5.4).
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proof:
Given Y ⊆ X arbitrary, try to construct disjoint Bα as follows. Given

Bα : α < β, consider if there exists B ∈ (B \ I) such that

1. B ∩ A = ∅ and

2. B ∩Bα = ∅ for all α < β.

If there is such a B let Bβ be any such. If there is no such B stop the
construction. Since I is ccc the construction must eventually stop at some
countable stage β0 < ω1. Let

B = X \ (∪α<β0Bα).

Then B is a minimal cover of A, because if A ⊆ C ⊆ B and C ∈ B, then if
B \C /∈ I it would be a candidate for Bβ0 which however never got defined.
�

The obvious generalization of the above proof is to κ-fields and κ-ideals
and the κ+ chain condition.

Theorem 5.6 If B is the family of sets with the property of Baire in some
topological space X and I the meager ideal, then they satisfy minimal cover
property (as in Theorem 5.4).

proof:

Claim. Suppose U is family of open sets and for every U ∈ U we have that
Y ∩ U is meager. Then (∪U) ∩ Y is meager.
proof:

First assume the family U is pairwise disjoint. Then for each U ∈ U there
would exists NU

n nowhere dense so that

Y ∩ U = ∪n<ωNU
n .

But because the U ∈ U are disjoint it is easy to check that each

Nn = ∪U∈UNU
n

is nowhere dense.
Given an arbitrary family of open sets U let V be a maximal family of

pairwise disjoint open sets which refines U , i.e., for every V ∈ V there exists
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U ∈ U with V ⊆ U . So we know by the first case that (∪V) ∩ Y is meager.
But the maximality assumtion implies that ∪U \∪V is nowhere dense, hence

(∪U) ∩ Y ⊆ (∪U \ ∪V) ∪ ((∪V) ∩ Y )

is meager. This proves the Claim.
�

Now to prove the theorem, let Y ⊆ X be arbitrary and put

U = {U : U open and U ∩ Y meager }.

Let
B = (X \ (∪U)) ∪ ((∪U) ∩ Y ).

Then B has the property of Baire since it is the union of a closed set and a
meager set. Also Y ⊆ B. If Y ⊆ C ⊆ B and C has the Baire property, then
so does B \ C. So let

B \ C = (U \M1) ∪M2

where U is open and M1, M2 are meager. Since B \ C is disjoint from Y ,
U ∩ Y ⊆ M1. Hence U ∈ U . It follows that

U ∩B ⊆ (∪U) ∩ Y

and therefore that U is meager and so B \ C is meager.
�

This result would follow trivially from the ccc case if X had a countable
base, but in the case we are interested in, the Ellentuck topology, the space
is not second countable.

Corollary 5.7 (Silver [10]) Every Σ1
1 set is Ramsey.
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