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Abstract. In this paper, we present a new geometric level-set formulation of a plasma-
sheath interface arising in the plasma physics. We formally derive the explicit dynamics
of the interface from the Euler-Poisson equations and study the local-time evolution of the
interface and sheath in some special cases.
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1. Introduction

The purpose of this paper is to continue the study begun in [37] of the dynamics of a
plasma-sheath interface (in short ”sheath interface”) arising from the plasma sheath problem
[2, 15, 35, 38, 40, 48, 56]. The issues can be easily understood by the examination of the
Euler-Poisson system (E-P). Consider a plasma consisting of cold ions and hot electrons
confined to a domain Ω = R3 − Ω0 which is exterior to a target Ω0 ⊂ R3. Both ions
and electrons have constant temperature, the temperature of the ions being absolute zero
Kelvin. The density of ions is denoted by n, the density of electrons is e−φ (Boltzmann
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relation [40]), −φ is the potential field and u is the velocity of the ions. In this case, (E-P)
reads

(1.1)





∂tn +∇ · (nu) = 0, (x, t) ∈ Ω× (0,∞),
∂tu + (u · ∇)u = ∇φ,

ε2∆φ = n− e−φ,

subject to initial and boundary conditions:

(n,u, φ)(x, 0) = (n0,u0, φ0)(x), x ∈ Ω,

∇φ · ν0 =
g(x, t)

ε
, (x, t) ∈ ∂Ω0 × [0,∞).(1.2)

Here ε is proportional to the Debye length λD [40] and ν0 is the exterior normal at the
target boundary ∂Ω0. Typically away from the boundary ∂Ω0, the formal ε → 0 limit in
(E-P) can be used to yield the quasi-neutral relation n = e−φ. However near the boundary
∂Ω0, this quasi-neutrality breaks down (see Section 2) and a sheath boundary layer of width
ε forms.

In [37], Ha and Slemrod gave a description of sheath dynamics for the case of planar,
cylindrically and spherically symmetric motion, generalizing earlier work of Daube and
Riemann [48]. In this paper, we make no restriction as to symmetry and formulate the
dynamics of the sheath interface in terms of a geometric level-set, where the dynamics of
the sheath interface is based on a step-sheath model. In the step sheath model, the spatial-
time domain is separated by a propagating sheath interface into distinct quasi-neutral and
sheath regions. Particularly interesting in our approach is a set of equations describing the
evolution of the sheath interface as a curvature driven flow. Specifically, we show that the
sheath interface evolution is governed by the equations:

δψ

δt
= 0,

δn

δt
= n∇ · ν, (V + 1) +

h · ν
n

= − 1
n
∇s · (V∇s ln n),

where

(i) the level set S(t) = {(x, t) : ψ(x, t) = 0} is the sheath interface;
(ii) δ

δt = ∂t + V ν · ∇ is the normal time derivative following S(t)
and ∇s is the surface gradient on S(t);

(iii) ν is the exterior unit normal to S(t). Since ∇ · ν is twice the
mean curvature of S(t), motion is curvature driven;

(iv) h is the ion current and n is the ion density on the sheath interface.

Usefulness of such models is seen in studying material processing [40] and in particular the
plasma source ion implantation (PSII) technique invented by Conrad and his collaborators
[16]. Other applications may be found in the related problems for the modelling of electron
beam where again loss of quasi-neutrality is a crucial issue (see [7, 8, 9, 10, 21, 22, 23, 24]).

We note that in this paper we have taken the normal component of the electric field
to be prescribed on the boundary ∂Ω0. This boundary condition was used by Cipolla
and Silevitch [15] in their study of plasma-sheath evolution and considerably simplifies the
proof of the existence and uniqueness theorems presented in Section 7. On the other hand
the derivation of the evolution equations for the sheath interface is independent of the
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boundary conditions. (An existence and uniqueness theorem for the boundary conditions
used in [37, 48] u = uw, φ = φw on ∂Ω0 remains an open problem).

The rest of this paper is organized as follows.

In Section 2, we present a formulation of the plasma-sheath problem for general targets
under suitable physical assumptions. We decompose the domain Ω into two sub-domains (a
quasi-neutral region and a sheath region) and a common boundary (the sheath interface).
On each sub-domain, we simplify the Euler-Poisson system according to suitable physical
relations (the equations of isothermal gas dynamics in the quasi-neutral region and the zero
electron density limit in the sheath region). In Section 3, we review the definitions of normal-
time derivative and surface gradient for the fields defined on a sheath interface. In Section
4, we derive the explicit kinematics of the plasma-sheath interface from the Euler-Poisson
system. In Section 5, we simplify the sheath-interface dynamics by considering orthogonal
flow (the tangent component of ion velocity is zero) on the sheath interface. In Section 6,
we summarize the systems governing dynamics of sheath, sheath-interface and quasi-neutral
plasma and in Section 7 we study the local dynamics of sheath and sheath interface when
the sheath interface is represented by the graph of a smooth function in R2. The proof of
local existence for the full initial-boundary value problem describing sheath, quasi-neutral
and interface regions is modelled on free boundary studies of Chen and Feldman [13] and
Canic, Keyfitz and Lieberman [12]. We also borrow many ideas from the fundamental
paper of Nouri [43] where our sheath system was considered in the absence of boundary
conditions and the interface region. In Section 8, we present a new ”bulk interface” level-set
formulation of the initial-boundary value problem. Appendix A provides a detailed proof of
the local existence theorem of Section 7 while Appendices B and C provide other technical
lemmas.

2. Level-set formulation of the plasma-sheath interface

In this section, we present a level-set formulation of the sheath interface for general three-
dimensional targets. This formulation was partly employed in [37] in the case of planar,
cylindrical and spherical targets.

First we give a rather elementary description of the plasma sheath. Since the Debye
length ε is a small parameter in (1.1), the Poisson equation suggests that the quasi-neutral
relation n = e−φ should pervade in our problem. Substitution of this relation into (1.1)
yields the quasi-neutral system:

(2.3)

{
∂tn +∇ · (nu) = 0, (x, t) ∈ Ω× [0,∞),
∂tu + (u · ∇)u +∇(lnn) = 0,

with prescribed initial data for n and u at t = 0 and boundary data ∇ ln n · ν0 = −g
on ∂Ω0. In general, the initial-boundary value problem for (2.3) is not well-posed. For
example, consider the symmetric cases of planar, cylindrical and spherical targets. In these
cases, the Euler-Poisson system (1.1) becomes

(2.4)





∂tρ + ∂r(ρu) = 0, r0 ≤ r < ∞, t > 0,

∂tu + ∂r

(
u2

2

)
= ∂rφ,

ε2∂r(rν∂rφ) = ρ− ρe, ρ = nrν , ρe = e−φrν ,
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where ν = 0, 1, 2 correspond to the planar, cylindrical and spherical cases respectively.
With this one-dimensional symmetry, (2.3) possesses two distinct characteristic curves:

dχ1

dt
= u− 1,

dχ2

dt
= u + 1,

which carry the prescribed data into the domain (r0,∞)×R+. Notice that when u decreases
below the critical value u = −1, both characteristics χ1 and χ2 run into the boundary
r = r0, thus making the initial-boundary value problem for (2.3) overdetermined and hence
unsolvable in the class C1((r0,∞)× (0, T ))∩C0([r0,∞)× [0, T )), for some positive constant
T . Hence near the ”Bohm velocity” u = −1, quasi-neutrality breaks down and a sheath
boundary layer forms. Since the Poisson equation reads

ε2∂r(rν∂rφ) = rν(n− e−φ),

the quasi-neutrality relation is violated when the left hand side becomes non-negligible. This
has been quantified by Franklin and Ockendon for steady problems [30], where a matched
asymptotic expansion yields ∂rφ ≈ ε−β, 0 < β < 1, so that the electric potential develops
a large gradient near the sheath edge (see also [47]). Since φ has rapidly increased as the
ions entered the ”sheath” boundary layer, we formally set the electron density ρe = 0 of
(2.4) in the boundary layer to define the ”step sheath” model which we now describe in
more detail.

Specifically we return to the Euler-Poisson system. Since the sheath width is order of ε,
we use fast variables (x̄, t̄):

x̄ =
x
ε
, t̄ =

t

ε
,

to get a rescaled system:

(2.5)





∂t̄n +∇x̄ · (nu) = 0, (x, t) ∈ Ω× (0,∞),
∂t̄u + (u · ∇x̄)u = ∇x̄φ,

∆x̄φ = n− e−φ,

and rescaled initial and boundary data{
(n,u, φ)(x̄, 0) = (n0,u0, φ0)(x̄), x̄ ∈ Ω,

∇x̄φ · ν0 = g(x̄, t), (x̄, t̄) ∈ ∂Ω0 × [0,∞).

where now the gradient ∇x̄ and the Laplacian ∆x̄ are taken in terms of rescaled variables
x̄.

As mentioned above in the sheath region, we formally set the electron density to be zero
to get the rescaled sheath system (S):

(2.6)





∂t̄n +∇x̄ · (nu) = 0, (x̄, t) ∈ Ω× (0,∞),
∂t̄u + (u · ∇x̄)u = ∇x̄φ,

∆x̄φ = n.

In contrast, in the quasi-neutral region, we use the rescaled quasi-neutral system (Q):

(2.7)

{
∂t̄n +∇x̄ · (nu) = 0, (x̄, t) ∈ Ω× (0,∞),
∂t̄u + (u · ∇x̄)u +∇x̄(lnn) = 0.
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Of course it is readily noted that (2.7) is just the system of compressible inviscid isothermal
gas dynamics.

The boundary surface ∂Ω0 is described by an implicit relation:

b(x, ε) = 0, for a smooth function b : R3 × R+ → R.

Furthermore we assume b satisfies the scaling relation:

If x̄ =
x
ε
, then b(εx̄, ε) = c(ε)b̄(x̄), for some smooth functions c, and b̄.

For these rescaled independent variables x̄, the boundary surface ∂Ω0 of the target Ω0 can
be represented as

(2.8) b̄(x̄) = 0.

Example 1. (Perturbation of a planar surface x1 = 0). Consider a high frequency small
perturbation of our planar surface such that

x1 = εb1

(x2

ε
,
x3

ε

)
, where b1 : R2 → R;

x̄1 − b1(x̄2, x̄3) = 0, and b̄(x̄1, x̄2, x̄3) = x̄1 − b1(x̄2, x̄3).

Example 2. (Perturbation of a circle in the R2: r = εr0). Consider a perturbation of a
circle such that

r = εr0b2(θ) where b2 : R→ R : smooth and 2π-periodic;

Set
x̄i =

xi

ε
, i = 1, 2, and r̄ =

r

ε
, r̄ = r0b2(θ).

and
x̄2

1 + x̄2
2 − r2

0b
2 tan−1

( x̄2

x̄1

)
= 0,

describes the curve in the x1 − x2 plane.

Example 3. (Perturbation of a sphere r = εr0). Consider the sphere in R3 described by
r = εr0 and let θ, φ denote the standard polar and azimuthal angles such that

x1 = r sinφ cos θ, x2 = r sinφ sin θ, x3 = r cosφ.

As a perturbation of our sphere, consider

r = εr0b3(θ, φ)

where b3 : R3 → R is smooth and 2π periodic in θ, φ. Then again setting

x̄i =
x

ε
, r̄ =

r

ε
,

we see
r̄ = r0b3(θ, φ),

and
x̄2

1 + x̄2
2 + x̄2

3 − r2
0b

2
3

(
tan−1

( x̄2

x̄1

)
, cos−1

( x̄3√∑3
i=1 x̄2

i

))
= 0,

describes the surface.
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Figure 1. Schematic diagram of a physical domain at time t

In this paper, for fixed time t, we decompose the domain Ω into the sheath region, the
quasi-neutral region and their interface, i.e.,

Ω = Ωs(t) ∪ S(t) ∪ Ωq(t), Ωs(t) : the sheath region,
Ωq(t) : the quasi-neutral region, S(t) : plasma-sheath interface.

Now we return to the issue of the sheath edge. As noted above for the steady motion
with planar, cylindrical and spherical symmetry, a matched asymptotic expansion [30] yields
∂rφ = ε−β, 0 < β < 1. Hence in the formal quasi-neutral limit (ε → 0+), we obtain the
sheath edge relation

∂r̄φ = ε∂rφ ≈ ε1−β → 0, as ε → 0+,

so that the normal component of ∇xφ on the interface becomes zero, i.e.,

(2.9) ∇φ · ν = 0 on S(t).

We will incorporate this relation in defining the sheath interface below.
First drop the over bars in (2.6) and (2.7) for notational simplicity and set ne to be the

electron density so that our governing equations become

∂tn +∇x · (nu) = 0, (x, t) ∈ Ωs(t)× (0,∞),
∂tu + (u · ∇x)u = ∇φ,

∆xφ = n, ne = 0.(2.10)

in the sheath region and

∂tn +∇x · (nu) = 0, (x, t) ∈ Ωq × (0,∞),
∂tu + (u · ∇x)u +∇x(lnn) = 0

n = ne = e−φ (quasi-neutrality and the Boltzmann relation) ,(2.11)

in the quasi-neutral region.
Note that with overbars deleted the target boundary surface (2.8) can be rewritten as

b(x) = 0.
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We combine (2.9) with the ”Bohm-relation” u · ν = −1 (where ν is the unit exterior
normal to the plasma-sheath interface) to give a definition of the sheath interface for (2.5).
Specifically the definition of the plasma-sheath interface S(t) is defined by the level set of
the normal component of the electric field and ion-velocity fields:

Definition 2.1. A plasma-sheath interface S(t) separating a quasi-neutral region and an
ion-sheath region is the level set of the normal component of the ion velocity and electric
fields,

S(t) ≡ {x ∈ R3 : (u · ν)(x, t) = −1, (∇φ · ν)(x, t) = 0}, t ≥ 0,

where ν is the exterior normal to the interface.

Notice our definition is motivated by the observation that in the symmetric case [37] only
the normal component of fluid velocity u and electric field ∇φ affect the sheath location.

We list main assumptions (M) employed in this paper.

• (M1) The sheath interface is non-characteristic for the exterior quasi-neutral system
(2.11) and whose (signed) normal speed satisfies

V 6= 0,−1.

• (M2) Continuity relation: n,u, φ,∇n,∇u,∇φ and h are continuous across the
sheath interface.

• (M3) Continuity of surface Laplacian of φ, i.e., ∆sφ across the interface.
• (M4) The current density h decays to zero at ∞, i.e., for each t ≥ 0,

lim
|x|→∞

h(x, t) = 0.

• (M5) The target boundary is C2-regular, i.e., the boundary can be represented by
the graph of a C2-function locally.

3. Preliminaries

In this section, we review the concept of a normal-time derivative and some basic lemmas
which will be used in Section 4. In the sequel, we use the Einstein summation convention for
repeated indices and assume that the sheath interface S(t) is represented by the zero-level
set of a scalar valued function ψ, i.e.,

S(t) = {x ∈ R3 | ψ(x, t) = 0} for t ≥ 0.

We let {S(t)} be a C2-regular sheath interface in R3 such that tangent planes, normal lines
and mean curvature are well defined. Since S(t) is regular, we have

|∇xψ(x, t)| 6= 0.

Let ν(x, t) = (ν1, ν2, ν3)(x, t) be the exterior unit normal vector of the sheath region at
the interface S(t). Then it follows from e.g. [33, 36] that we have

νi =
∂xiψ

|∇ψ| , i = 1, 2, 3 and ∇ · ν = 2κm,

where κm is the mean curvature. Throughout this paper, we follow the terminology of
Gurtin [36], and we use “bulk” field to denote the fields (e.g., scalar, vector and tensor
fields) defined on R3−Ω0 and in contrast, we use “superficial” field to represent fields only



8 MIKHAIL FELDMAN, SEUNG-YEAL HA, AND MARSHALL SLEMROD

defined on the interface S(t).

For given t ≥ 0, let ν(S(t)) be the normal bundle of S(t) which is a subbundle of a
tangent bundle of R3 restricted on S(t), i.e., T (R3)|S(t), moreover, we have the following
orthogonal decomposition of T (R3) = R3:

T (R3) = T (S(t))⊕ ν(S(t)).

The fiber of any bundle at a point p ∈ S(t) will be denoted using a subscript p, for example,

if p ∈ S(t), Tp(R3) = Tp(S(t))⊕ νp(S(t)).

We define the projection operator P onto the tangent bundle of S(t):

P : T (R3) → T (S(t)); P(ω) ≡ ω − (ω · ν)ν.

For simplicity of presentation, we use the following notation: ω ∈ T (R3),

ω> = P(ω), ω⊥ = (ω · ν)ν, ω = ω⊥ + ω>.

Definition 3.1. [36] The surface gradients ∇sf and ∇sF of f and F are defined as pro-
jection of bulk gradients, i.e.,

∇sf = P∇f and ∇sF = ∇sFP.

Suppose the interface moves in the direction −ν. Consider two surfaces S(t) and S(t)(t+
∆t) and choose the unit interior normal −ν to S(t) at a position p0 where the normal
intersects the surface S(t)(t + ∆t) at the point p1.

Definition 3.2. [36] If the velocity field v of the interface S(t) is a normal field v = V ν
and f is a superficial scalar field on the {S(t)}, the normal-time derivative of f is defined
as:

δf(p0, t)
δt

≡ lim
∆t→0

f(p1, t + ∆t)− f(p0, t)
∆t

.

Remark 3.1. If f is a C1-bulk field, then the normal-time derivative of f can be defined
as

δf

δt
= ∂tf + V ν · ∇f,

moreover, the normal-time derivative for the C1-bulk vector field F can be defined similarly,
i.e.,

δF
δt

= ∂tF +∇F(V ν).

Here the sign of (scalar) normal velocity V is positive or negative depending on expansion
or contraction of S(t) respectively.

Recall that ν is the outward normal at the interface of the sheath region (see Figure 1).

Lemma 3.1. [36] The normal-time derivative of an exterior normal ν is the negation of
surface gradient of the scalar normal velocity V of the interface, i.e.,

δν

δt
= −∇sV.
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Proof. We consider the following five identities:

V = − ∂tψ

|∇ψ| , ∂t|∇ψ| = (∇∂tψ) · ν, ∇|∇ψ| = (∇⊗∇ψ)ν,

|∇ψ|∇ν = ∇⊗∇ψ − ν(∇⊗∇ψ)ν, |∇ψ|∂tν = P(∇∂tψ).

The first three identities can be obtained easily, so we only present the calculation for the
last two identities. First we observe

|∇ψ|∇ν = |∇ψ|
((∇⊗∇ψ)|∇ψ| − ∇ψ(∇⊗∇ψ)ν

|∇ψ|2
)

= ∇⊗∇ψ − ν(∇⊗∇ψ)ν.

Similarly, we have

|∇ψ|∂tν = |∇ψ|∂t

( ∇ψ

|∇ψ|
)

= |∇ψ|
( |∇ψ|(∇∂tψ)− (∇∂tψ · ν)∇ψ

|∇ψ|2
)

= ∇∂tψ − (∇∂tψ · ν)ν = P(∇∂tψ).

Based on the above identities, we note that

∇∂tψ

|∇ψ| = ∇
( ∂tψ

|∇ψ|
)
− ∂tψ∇

( 1
|∇ψ|

)
= ∇

( ∂tψ

|∇ψ|
)

+
∂tψ

|∇ψ|2∇|∇ψ|

= −∇V − V

|∇ψ|∇|∇ψ|.(3.12)

By definition of the normal-time derivative for the vector field, we have

δν

δt
= ∂tν +∇ν(V ν) = P

(∇∂tψ

|∇ψ|
)

+∇ν(V ν)

= −∇V − P
( V

|∇ψ|∇|∇ψ|
)

+∇ν(V ν).

Here we used the identity (3.12). Now we claim:

I =: −P
( V

|∇ψ|∇|∇ψ|
)

+∇ν(V ν) = 0.

Proof of the claim:

I = −
[ V

|∇ψ|∇|∇ψ| −
( V

|∇ψ|∇|∇ψ| · ν
)
ν
]

+
V

|∇ψ|∇ν(|∇ψ|ν)

= − V

|∇ψ|
[
∇|∇ψ| −

(
∇|∇ψ| · ν

)
ν − |∇ψ|(∇ν)ν

]

= − V

|∇ψ|
[
(∇⊗∇ψ)ν −

(
(∇⊗∇ψ)(ν, ν)

)
ν −

(
∇⊗∇ψ − (∇⊗∇ψ)(ν, ν)

)
ν
]

= 0.

¤

Lemma 3.2. Let υ be any bulk scalar field such that ∇υ · ν = 0 on the sheath interface
S(t). Then we have

∆υ = ∆sυ + (∇⊗∇υ)(ν, ν) on S(t),

where (∇⊗∇υ)(ν, ν) = ν(∇⊗∇υ)ν.
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Proof. Let υ denote a bulk scalar field. Recall that

∇sυ = P∇υ = ∇υ − (∇υ · ν)ν,

which then yields

(∇sυ)i = ∂xiυ − (νj∂xjυ)νi, and ∇s(∇sυ) = ∂xi(∇υ)i − (νl∂xl
(∇υ)i)νi.

By definition of the surface Laplacian ∆sυ, we have

∆sυ = ∇s · (∇sυ)
= ∂xi

(
∂xiυ − (νj∂xj )νi

)
− νl∂xl

(
∂xiφ− (νj∂xjφ)νi

)
νi

= ∂2
xi

υ − νi(∂xiνj)(∂xjυ)− νiνj(∂xi∂xjυ)− νj(∂xjυ)(∂xiνi)
− νlνi(∂xi∂xl

υ) + νlν
2
i (∂xl

νj)(∂xjυ) + νlνjν
2
i (∂xj∂xl

υ) + νlνjνi(∂xjυ)(∂xl
νl)

= ∂2
xi

υ − νiνl∂xi∂xl
υ

= ∆υ − (∇⊗∇υ)(ν, ν).

Here we used
νj∂xjυ = 0, νiνi = 1.

¤

Remark 3.2. We have

∆φ = ∆sφ + (∇⊗∇φ)(ν, ν),
∆n = ∆sn + (∇⊗∇n)(ν, ν) on S(t).

Lemma 3.3. A surface gradient of a scalar superficial quantity lies in the tangent plane of
the surface, i.e., for any scalar superficial field w,

∇sw · ν = 0.

Proof. Let w be an arbitrary superficial field. By definition of surface gradient,

∇sw = ∇w − [(ν · ∇)w]ν,

and hence
∇sw · ν = ∇w · ν − (ν · ∇)w = 0.

¤

Remark 3.3. Since ν =
∇ψ

|∇ψ| , it can be regarded as a bulk quantity and hence via Remark

3.2, ∆sφ,∆sn can be regarded as bulk quantities as well.

4. Derivation of kinematics of the sheath interface

In this section, we derive the explicit dynamics of the plasma-sheath interface S(t) which
is implicit in the Euler-Poisson equation and defining equations (see Definition 2.1). Crucial
to our computations is the following assumption.

Assumption: Bulk quantities u, n and φ are C1 functions in space for
each fixed time t in both the quasi-neutral and sheath regions, and hence
these functions and their spatial gradients on the sheath interface can be
computed as limits from the sheath or quasi-neutral regions. Furthermore
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second derivatives of φ, n,u in directions tangential to S(t) exist and are
continuous across S(t), e.g.,

(4.13) ∆sφ = −∆s ln n on S(t),

since ∆sφ can be determined as a limit from the quasi-neutral region (see
Remark 3.3).

Remark 4.1. Notice since ne = 0 in the sheath region and ne = e−φ in the quasi-neutral
region, the electron density ne suffers a jump discontinuity across S(t).

As noted earlier we have assumed the outward normal from the sheath region to the
quasi-neutral region on S(t):

ν =
∇ψ

|∇ψ| for a bulk quantity ψ,

and henceforth we treat ν as a bulk quantity defined by this relationship. Thus the decom-
position:

u = −ν + u> on S(t),

which decomposes the velocity u> into its normal and tangent component on S(t) is mean-
ingful as a bulk relation as well, i.e.,

u> ≡ u +
∇ψ

|∇ψ| .

However we continue to use the slightly simpler notation for the bulk quantity u>:

u> ≡ u + ν.

The explicit dynamics for the plasma-sheath interface which we will obtain are as follows:
On S(t),

δψ

δt
= ∂tψ + V |∇ψ| = 0,(4.14)

δn

δt
= n∇ · ν −∇s · (nu>)−∇(nu>)(ν, ν),(4.15)

δu>

δt
=

[
(V ν − u) · ∇

]
u−∇sV −∇s ln n,

= −
[
(V ν − u) · ∇

]
ν +

[
(V ν − u) · ∇

]
u> −∇sV −∇s ln n,(4.16)

with the implicit “constitutive equation” for V

(4.17) (V + 1) +
h · ν

n
= − 1

n
∇s · (V∇s lnn).

Here the current density h is given as:

h = ∂t∇φ + nu on S(t).

We derive the above dynamics in the following subsections separately and all normal-time
derivatives will be calculated from the quasi-neutral region unless otherwise noted.
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• Derivation of (4.14). Since the sheath interface is the zero-level set of ψ, we obtain
a Hamilton-Jacobi equation:

0 =
δψ

δt
= ∂tψ + V ν · ∇ψ

= ∂tψ + V
∇ψ

|∇ψ| · ∇ψ

= ∂tψ + V |∇ψ|.
• Derivation of (4.15). We calculate the normal-time derivative as a limit from the

quasi-neutral region to get

δn

δt
= ∂tn + V ν · ∇n = −∇ · (nu) + V ν · ∇n

= −∇n · u− n∇ · u + (V ν) · ∇n

= −∇n · (−ν + u>)− n∇ · (−ν + u>) + (V ν) · ∇n

= ∇n · ν −∇n · u> + n∇ · ν − n∇ · u> + (V ν) · ∇n

= −∇ · (nu>) + n∇ · ν + (V + 1)ν · ∇n

= −∇s · (nu>)−∇(nu>)(ν, ν) + n∇ · ν + (V + 1)ν · ∇n

= −∇s · (nu>)−∇(nu>)(ν, ν) + n∇ · ν on S(t).

• Derivation of (4.16) By definition of u> and momentum equation in (2.11), we have

δu>

δt
=

δ(u + ν)
δt

= ∂tu + (V ν · ∇)u−∇sV
= −(u · ∇)u−∇s ln n + (V ν · ∇)u−∇sV

=
[
(V ν − u) · ∇

]
u−∇sV −∇s lnn

= −
[
(V ν − u) · ∇

]
ν +

[
(V ν − u) · ∇

]
u> −∇sV −∇s lnn,

where we used the quasi-neutrality relation φ = − ln n and u = −ν on S(t) consistent with
our Assumption (4.13).

• Derivation of (4.17). For x ∈ Ωs(t), we differentiate the Poisson equation in (2.10)
with respect to t to get

(4.18) 0 = ∂t(∆φ− n) = ∇ ·
(
∇∂tφ + nu

)
.

We define the current density h in the sheath region Ωs as

(4.19) ∇∂tφ + nu = h and hence ∇ · h = 0.

Now we claim:

(4.20) lim
y→x

y∈Ωs(t)

(
∇∂tφ · ν

)
(y, t) =

[
∇s

(
V∇sφ

)
− V n

]
(x, t), (x, t) ∈ S(t),

Proof of the claim: Recall that

∇φ · ν = 0 on S(t).
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We take the normal time-derivative of the above equation to get

0 =
δ(∇φ · ν)

δt
=

δ∇φ

δt
· ν +∇φ · δν

δt

=
[
∂t∇φ + (V ν · ∇)∇φ

]
· ν −∇φ · ∇sV

= ∇∂tφ · ν + (V∇⊗∇φ)(ν,ν)−∇sφ · ∇sV

= ∇∂tφ · ν −∇s · (V∇sφ) + V
[(
∇⊗∇φ

)
(ν,ν) + ∆sφ

]
on S(t),(4.21)

where the total quantity on the R.H.S. is well defined and continuous with limits from Ωs

and Ωq. Of course the individual terms ∇∂tφ ·ν and V (∇⊗∇φ)(ν, ν) will be discontinuous
across the interface. It follows from Lemma 3.2 and (M3) of Section 2 that

∆sφ = ∆φ− (∇⊗∇φ)(∇⊗∇φ)(ν,ν),

and again the R.H.S. is continuous across S(t) even though the individual terms are dis-
continuous. Hence

∆sφ(x, t) = lim
y→x

y∈Ωs(t)

(
∆φ− (∇⊗∇φ)(ν, ν)

)
(y, t)

= n− lim
y→x

y∈Ωs(t)

(∇⊗∇φ)(ν, ν)(y, t), (x, t) ∈ S(t).(4.22)

Take the limit y → x, y ∈ Ωs in (4.21) and use (4.22) to get

lim
y→x

y∈Ωs(t)

(
∇∂tφ · ν

)
(y, t)

= ∇s · (V∇sφ)(x, t)− V
[

lim
y→x

y∈Ωs(t)

(
∇⊗∇φ(ν, ν)

)
(y, t) + ∆sφ(x, t)

]

=
[
∇s

(
V∇sφ

)
− V n

]
(x, t).

This completes the proof of the claim.

Finally use the u · ν = −1 on S(t) and the definition of h in (4.19) to see

(4.23) lim
y→x

y∈Ωs(t)

(
∇∂tφ · ν

)
(y, t) = h · ν + n, x ∈ S(t).

We combine (4.23) and (4.20) to get the ”constitutive equation” for V(
∇s(V∇sφ)

)
− (V + 1)n = h · ν.

Remark 4.2. Since on the level set ψ = 0, n satisfies (4.15)
δn

δt
= n∇ · ν −∇s · (nu>)−∇(nu>)(ν, ν),

on S(t) and V 6= −1, then
∇n · ν = 0 on S(t).

Proof: From above subsection 4.2, we have the relation
δn

δt
= −∇s · (nu>)−∇(nu>)(ν, ν) + n∇ · ν + (V + 1)ν · ∇n

which combined with (4.15) yields the result.
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5. Orthogonal flow at the interface

In this section, we consider orthogonal ion-flow, i.e., flow which is normal to the inter-
face so that:

u> = 0 on S(t).

For the geometrical motion of the interface, orthogonal flow is crucial for simplifying (4.14)
- (4.16). Of course in general u> need not be zero; non-orthogonal flow on the sheath
interface may be induced by the presence of a magnetic field B. In this case, the term
u×B appears at the right hand side of (1.1 b) and, as shown in [46], non-orthogonal flow
occurs on the sheath interface. But notice in the rescaled variables (x̄, t̄), this term is now
O(ε) in (2.4 b) and hence negligible in our theory. Thus if u> initially zero on the sheath
interface, it is reasonable to assume u> = 0 on the interface for all time since magnetic field
perturbations are omitted in our rescaled theory. On the other hand, recall (4.15):

δn

δt
= n∇ · ν −∇s · (nu>)−∇(nu>)(ν, ν).

For an orthogonal flow (u> = 0), the last two terms in R.H.S. of the above equation are
zero, because

• u> = 0 on S(t) implies ∇s · (nu>) = 0 on S(t);
• u> = 0 on S(t) yields δu>

δt = 0 on S(t) and hence the L.H.S. of (4.16) is zero
and (4.16) becomes

(
(V + 1)ν · ∇

)
u> =

(
(V + 1)ν · ∇

)
ν +∇s(V + lnn) on S(t).

Here we used u = −ν. Now take the inner product of the above equation with ν
and use the relations

∇ν(ν,ν) = 0, ∇sn · ν = ∇n · ν = 0 on S(t),

to get

(V + 1)∇u>(ν, ν) = n∇s ln(V + 1) · ν = 0 by Lemma 3.3.

Since V 6= −1, we have

∇u>(ν,ν) = 0 on S(t).

Hence the term ∇(nu>)(ν, ν) becomes zero:

∇(nu>)(ν, ν) = (∇n⊗ u>)(ν, ν) + n∇u>(ν, ν) = 0.

In summary, for orthogonal flow at the interface, the dynamics of the sheath interface
S(t) is described by a pair of scalar evolution equations and an implicit ”constitutive equa-
tion” for V :

(5.24)
δψ

δt
= 0,

δn

δt
= n∇ · ν, (V + 1) +

h · ν
n

= − 1
n
∇s · (V∇s lnn).

Next we recover the dynamics of planar, cylindrical and spherical interfaces from (4.14)
- (4.17) to show consistency with the earlier paper [37]. In the case of symmetric motion,
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surface derivative terms in the constitutive relation for V will be zero, and so V satisfies

V = −1−
(h · ν

n

)
.

5.1. Dynamics of symmetric targets. We first consider a planar target. We take the
ansatz for the level set function ψ:

ψ(x, t) = x1 − s(t), x = (x1, x2, x3),

then the plasma-sheath interface is given by the zero-level set of ψ, i.e.,

S(t) ≡ {(x, t) : ψ(x, t) = 0}.
Moreover, we have

ν = (1, 0, 0), u> = 0, n = 1, ∇s lnn = 0, ∆s ln n = 0 and ∇sn = 0 on S(t).

Hence the dynamics (4.14) - (4.17) reduce to

ṡ(t) = −1− h(t),

which is the relation obtained in [37].

Next we consider a spherical target. Since all fields are assumed to depend only on the
radial variable r and t, the terms involving the tangential derivatives ∇s and u> in (4.14)
- (4.17) vanish, and we get the simplified dynamics:

(5.25) ∂tψ −
(
1 +

h · ν
n

)
|∇ψ| = 0, ∂tn = n∇ · ν.

We take the ansatz for the level set function ψ, weighted density ρ and current h:

ψ(r, t) = r − s(t), ρ(r, t) = r2n(r, t) and h(r, t) = s(t)2hr(t),

where hr is the radial component of the current h and only depends on the time t by the
divergence free condition. Then (4.24) becomes

(5.26) ṡ(t) = −
(
1 +

h

ρs

)
and ∂tn =

2n

r
on S(t).

Here ρs(t) = ρ(s(t), t). On the other hand, we have

ρ̇s(t) =
d

dt
ρ(s(t), t) = ∂tρ(s(t), t) + ṡ(t)∂rρ(s(t), t)

= 2s(t)n(s(t), t) + 2s(t)ṡ(t)n(s(t), t)

= 2s(t)n(s(t), t)[1 + ṡ(t)] = − 2h

s(t)
.

Hence the interface is governed by

ṡ(t) = −
(
1 +

h

ρs

)
, ρ̇s(t) = − 2h

s(t)
,

which is again the same dynamics derived in [37]. The cylindrically symmetric case is done
analogously to obtain

ṡ(t) = −
(
1 +

h

ρs

)
, ρ̇s(t) = − h

s(t)
,

as in [37].
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6. Recapitulation: The dynamics of an orthogonal flow

In this section, we summarize the governing systems for the sheath, quasi-neutral plasmas
and sheath-interface for an orthogonal flow.

The sheath system (S)





∂tn +∇x · (nu) = 0, (x, t) ∈ Ωs × (0,∞),
∂tu + (u · ∇x)u = ∇φ,

∆xφ = n,

subject to initial data and boundary data

(n,u, φ)(x, 0) = (ns0,us0, φs0)(x), x ∈ Ωs(0),
∇φ · ν0 = g on ∂Ω0,

in the sheath region;

the quasi-neutral system (Q):

{
∂tn +∇x · (nu) = 0, (x, t) ∈ Ωq × (0,∞),
∂tu + (u · ∇x)u +∇x(lnn) = 0.

subject to initial and boundary data

(n,u)(x, 0) = (nq0,uq0)(x), x ∈ Ωq(0),
(n,u)(x, t) = (ns,us)(x, t) on S(t),

in the quasi-neutral region;

the sheath interface system (SI):

δψ

δt
= 0,

δn

δt
= n∇ · ν, (V + 1) +

h · ν
n

= − 1
n
∇s · (V∇s ln n),

subject to initial data:

(ψ, n)(x, 0) = (ψ0, n0)(x), x ∈ S(0).

where h := ∇∂tφ + nu.

7. Planar motion and local existence theorems

In this section we present a simplification of the general theory in Section 6 to planar
flow. In addition we give local existence theorems for the interface system, the sheath
system under a ”small gradient” assumption for relation for V in (5.24) and the quasi-
neutral system.
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7.1. Local existence for the interface system. In this subsection, we first consider the
local existence of the interface system:

(7.27)
δψ

δt
= 0,

δn

δt
= n∇ · ν, (V + 1) +

h · ν
n

= − 1
n
∇s · (V∇s lnn),

in the case that the interface is a curve evolving in the x1 − x2 plane.

Below, we first explain the procedure to calculate h ·ν appearing at (7.27). As in [6], for
a H1-vector field v = (v1, v2) and a scalar function v, we define

∇ · v := ∂x1v1 + ∂x2v2, ∇× v := ∂x1v2 − ∂x2v1 and ∇⊥v := (∂x2v,−∂x1v).

Then it is easy to see
∇×∇⊥v = ∆v and ∇ · ∇⊥v = 0.

We next express the current h as a direct sum of three vector fields via the planar Hodge-
Weyl decomposition (Theorem 6 in [6]):

(7.28) h = ∇ζ +∇⊥v + m for (x, t) ∈ Ωs(t)× [0,∞),

where ζ and v are scalar valued functions, and all components mi of m = (m1, m2) are
harmonic functions.

We now take a ∇× (7.28) to find

∇× h = ∇×∇⊥v +∇×m
= ∆v +∇×m.(7.29)

In contrast, in the sheath region Ωs(t)

(7.30) h = ∇∂tφ + nu and ∇× h = ∇× (nu).

We combine (7.29) and (7.30) to get

(7.31) ∆v = ∇× (nu)−∇×m for (x, t) ∈ Ωs(t)× [0,∞).

According to equation (20) of Theorem 3 in [6], we can set Neumann boundary conditions
for ζ and Dirichlet boundary condition for v:

(7.32) v ≡ 0 on ∂Ω0 ∪ S(t).

Let τ 0 and τ be unit tangent vectors on ∂Ω0 and the sheath interface respectively. Then
zero Dirichlet boundary condition (7.32) yields

(7.33) ∇v · τ 0 = 0 on ∂Ω0 and ∇v · τ = 0 on S(t).

On the other hand (7.32) is equivalent to

(7.34) ∇⊥v = 0 on ∂Ω0 ∪ S(t).

Again by the equation (20) of Theorem 3 in [6], m satisfies

(7.35) m · ν0 = 0 on ∂Ω0 and m · ν = 0 on S(t).

Furthermore, the proof of Theorem 11 shows: for some scalar valued function p,

(7.36) m = ∇⊥p (x, t) ∈ Ωs(t)× [0,∞).



18 MIKHAIL FELDMAN, SEUNG-YEAL HA, AND MARSHALL SLEMROD

In particular, it follows from (7.28), (7.34) and (7.35) that

∇ζ · ν0 = h · ν0 on ∂Ω0 and(7.37)
∇ζ · ν = h · ν on S(t).(7.38)

Finally since ∇ · h = 0 and (7.36) in Ωs(t), we see from (7.28)

(7.39) ∆ζ = 0 in Ωs(t),

with Neumann boundary data for ζ given by (7.37) and (7.38). Note again that the function
h is not known a priori and must be computed from the given boundary data g and initial
conditions. In fact, however, to produce a solution ζ of (7.37) - (7.39), we solve the exterior
problem:

(7.40) ∆ζ = 0 on R2 − Ω̄0,

with the Neumann boundary condition (7.37) on ∂Ω0 and

(7.41) lim
|x|→∞

∇ζ = 0.

Solution of (7.40) and (7.41) in the full exterior domain reflects the fact that the decomposi-
tion (7.28) must be done in the whole exterior domain R2−Ω̄0 and∇·h = 0 in R2−Ω̄0, where
the current is appropriately defined in both the sheath and quasi-neutral regions. More ab-
stractly, if we write the direct sum decomposition (7.28) for h(·, t) ∈ L2(R2 − Ωs(t)), then
the projection ∇ζ must be in L2(R2 − Ωs(t)) as well. Notice that the exact computation
of v and m is irrelevant and would be done a posteriori to solve the full evolution in the
sheath region from (7.31).

In summary, the procedure for computing the quantity h ·ν on the sheath interface is as
follows. In order to evolve (7.27), we solve the exterior Neumann problem:{

∆ζ = 0 in R2 − Ω̄0,

∇ζ · ν0 = h · ν0 on ∂Ω0,

and then employ (7.38)
h · ν = ∇ζ · ν on S(t).

This provides the mechanism of the transfer of information from the boundary to the sheath
interface, enabling the sheath interface to evolve according to (7.27).

7.1.1. Evolving curve which is a graph of a function. We consider the situation
where the target is a perturbation of a plane so that the interface is given by the graph
of a function. Hence we assume that the interfacial quantities and profile are functions of
x1, x2,t and moreover the profile is given by the graph of some function f , i.e.,

x2 = f(x1, t).

As in the Figure 2, we denote the angle between the exterior unit normal ν and x1-axis at
(x1, t) by θ(x1, t), hence

ν(x1, t) = (cos θ(x1, t), sin θ(x1, t)), θ ∈ (0, π),

and also set

V̄ (x1, t) = V (x1, f(x1, t), t) and n̄(x1, t) ≡ n(x1, f(x1, t), t).
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Figure 2. Schematic diagram of a sheath interface on the plane

Lemma 7.1. The time and spatial derivatives of f are given by:

∂x1f = − cot θ, ∂tf =
V̄

sin θ
.

Proof. In Figure 2, we notice that

α + θ =
π

2
, and tanα = −∂x1f.

These imply
cot θ = −∂x1f.

It follows from the above figure 2 that
V̄ ∆t

f(x1, t + ∆t)− f(x1, t)
= sin θ +O((∆t)2).

As ∆t → 0, we have
V̄

∂tf
= sin θ, or ∂tf =

V̄

sin θ
.

¤
In the following lemma, we obtain evolution equations for the interface, which are equiv-

alent to (7.27).

Lemma 7.2. In the case when the sheath interface is a curve in the plane, (7.27) is equiv-
alent to the following system for θ, n̄ and V̄ :


∂tθ
∂tn̄
∂tf


 +




V̄ cos θ 0 0
2n̄ sin θ V̄ cos θ 0

0 0 0







∂x1θ
∂x1 n̄
∂x1f


 =




sin θ∂x1 V̄
0
V̄

sin θ




with the constitutive relation for V :

(V + 1) +
h · (cos θ, sin θ)

n
= − 1

n
∇s · (V∇s lnn),
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which can be expressed as a ODE for V̄ :

(∂x1 V̄ )(∂x1 n̄) sin2 θ(1 + cos2 θ)
n̄2

+ V̄
(
1 +

sin θ

n̄
∂x1

(sin θ∂x1 n̄

n̄

))
+ 1 +

h · (cos θ, sin θ)
n̄

= 0.

Proof. (i)
δψ

δt
= 0 : So the statement equivalent to

δψ

δt
= 0 is just the equality of cross

partial derivatives ∂t(∂x1f) = ∂x1(∂tf) and we have

∂t(− cot θ) = ∂x1

( V̄

sin θ

)
.

This yields

(7.42) ∂tθ + V̄ cos θ∂x1θ = sin θ∂x1 V̄ .

(ii) δn
δt = ndivν: Recall the 2nd equation can be rewritten as

(7.43) ∂tn + V̄ ν · ∇n = ndivν.

Here all quantities and their derivatives are evaluated on the interface. Next we claim:

∂tn = ∂tn̄−
( V̄

sin θ

)
∂x2n, ∇ · ν = −2 sin θ∂x1θ,

V̄ cos θ∂x1n = V̄ cos θ∂x1 n̄ + V̄
(cos2 θ

sin θ

)
∂x2n.

Proof of the claim: By direct calculation and Lemma 7.1, we have

∂tn̄ = ∂tn + ∂x2n∂tf = ∂tn + ∂x2n
( V̄

sin θ

)
.

Similarly we obtain

V̄ cos θ∂x1 n̄ = V̄ cos θ∂x1n + V̄ cos θ∂x2n∂x1f

= V̄ cos θ∂x1n−
( V̄ cos2 θ

sin θ

)
∂x2n.

Next note
∇ · ν = −2 sin θ∂x1θ.

In (7.43), use the above claim to get

∂tn + V̄ ν · ∇n

= ∂tn + V̄ cos θ∂x1n + V̄ sin θ∂x2n

= ∂tn̄−
( V̄

sin θ

)
∂x2n + V̄ cos θ∂x1 n̄ + V̄

(cos2 θ

sin θ

)
∂x2n + V̄ sin θ∂x2n

= ∂tn̄ + V̄ cos θ∂x1 n̄ +
V̄ ∂x2n

sin θ

(
− 1 + cos2 θ + sin2 θ

)

= ∂tn̄ + V̄ cos θ∂x1 n̄.

Therefore our scaled evolution equation is

(7.44) ∂tn̄ + V̄ cos θ∂x1 n̄ + 2n̄ sin θ∂x1θ = 0.

Now combine (7.42) and (7.44) to get the equations for the motion:
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(7.45)




∂tθ
∂tn̄
∂tf


 +




V̄ cos θ 0 0
2n̄ sin θ V̄ cos θ 0

0 0 0







∂x1θ
∂x1 n̄
∂x1f


 =




sin θ∂x1 V̄
0
V̄

sin θ


 .

Finally we derive ODE satisfied by V̄ . Recall the interfacial quanities

V̄ (x1, t) = V (x1, f(x1, t), t) and n̄(x1, t) ≡ n(x1, f(x1, t), t),

and use the fact that the unit normal ν and the unit tangent t to the sheath interface are
given by

ν = (cos θ, sin θ) and t = (sin θ,− cos θ)
to see

∇sV = ∇V − (∇V · ν)ν = (∇V · t)t
= (sin θ∂x1V − cos θ∂x2V )(sin θ,− cos θ).(7.46)

Furthermore via the chain rule and the relation ∂x1f = − cot θ, we find

∂x1 V̄ = ∂x1V + ∂x2V ∂x1f = ∇V · (1, ∂x1f)

= ∇V · (1,− cot θ) =
∇V · t
sin θ

.(7.47)

Thus (7.46) and (7.47) imply

(7.48) ∇sV = ∂x1 V̄ (sin2 θ,− sin θ cos θ).

Similarly we find for n̄(x1, t) that

(7.49) ∇s ln n = ∂x1 n̄(sin2 θ,− sin θ cos θ),

as well as

(7.50) ∂x1 n̄ =
∇n · t
sin θ

.

In fact from (7.50) we easily see

∂x1(sin θ∂x1 n̄) = (∂2
x1

n) sin θ + (∂x1∂x2n)(∂x1f) sin θ

− (∂x1∂x2n) cos θ − (∂2
x2

n)(∂x1f) cos θ + (∂x1n) cos θ∂x1θ + (∂x2n) sin θ∂x1θ,

but by the definition of ∆sn we know

∆sn = (∂2
x1

n) sin2 θ − 2(∂x1∂x2n) sin θ cos θ + (∂2
x2

n) cos2 θ,

and hence

(7.51) sin θ∂x1(sin θ∂x1 n̄) = ∆sn + (∇n · ν)(∂x1θ) sin θ.

Recall now that the definition of the sheath edge requires

∇n · ν = 0,

and (7.51) simplifies to

(7.52) sin θ∂x1(sin θ∂x1 n̄) = ∆sn.

Finally substitute (7.48) - (7.50) into the defining ”constitutive relation” for V :

(V + 1) +
h · (cos θ, sin θ)

n
= − 1

n
∇s · (V∇s lnn),
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and do the obvious trigonometric simplifications to find the first order O.D.E. for V̄ :

(∂x1 V̄ )(∂x1 n̄) sin2 θ(1 + cos2 θ)
n̄2

+ V̄
(
1 +

sin θ

n̄
∂x1

(sin θ∂x1 n̄

n̄

))
+ 1 +

h · (cos θ, sin θ)
n̄

= 0.

¤
Remark 7.1. These are the same formulas as would have followed from the formulation of
Angenent and Gurtin [3].

For a presumably known V̄ (x1, t), we see that the coefficient matrix of (7.45) yields the
characteristic equation:

λ(V̄ cos θ − λ)2 = 0
yielding eigenvalues

λ1 = 0, λ2 = λ3 = V̄ cos θ

and unfortunately we have only one linearly independent eigenvector for the pair of eigen-
values λ2, λ3, i.e., (7.45) is not strictly hyperbolic. Hence the relation between V̄ and t
”input” given by (7.1.1) is crucial.
The simplest approximation that captures the dependence of V̄ on the other fluid variables
is to recall that when the sheath interface is a plane, a cylinder and a sphere, surface gradient
terms in (7.27) will vanish. Hence for sheath interfaces which are near planes, cylinders, or
spheres, dropping surface gradient terms provides a first approximation quasi-linear theory
of sheath interface motions, i.e., we take the normal velocity to be given by the approximate
relation.

Ṽ = −1− ∇ζ · ν
n

= −1− cos θ∂x1ζ + sin θ∂x2ζ

n
.

With this approximate speed Ṽ , the system (7.45) becomes

(7.53)




∂tθ
∂tn
∂tf


 +




Ṽ cos θ − sin θ∂θṼ − sin θ∂nṼ 0
2n sin θ Ṽ cos θ 0

0 0 0







∂x1θ
∂x1n
∂x1f


 =




sin θ∂x1 Ṽ
0
Ṽ

sin θ


 ,

where we have dropped the overbars.

The characteristic equation for the coefficients matrix is given by

λ
[
λ2 − (2Ṽ cos θ − ∂θṼ sin θ)λ + (Ṽ )2 cos2 θ − Ṽ ∂θṼ cos θ sin θ + 2n sin2 θ∂nṼ

]
= 0.

But notice that
∂nṼ = −∇ζ · ν

n2
,

and hence we have
n∂nṼ =

∇ζ · ν
n

= −Ṽ − 1.

It follows that λ satisfies

λ = 0 or
λ2 −

(
2Ṽ cos θ − ∂θṼ sin θ

)
λ + Ṽ 2 cos2 θ − Ṽ ∂θṼ cos θ sin θ − 2(Ṽ + 1) sin2 θ = 0,

and hence

λ = 0 or
2λ = (2Ṽ cos θ − ∂θṼ sin θ)
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±
[
(2Ṽ cos θ − ∂θṼ sin θ)2 − 4(Ṽ 2 cos2 θ − V ∂θṼ cos θ sin θ − 2(Ṽ + 1) sin2 θ)

] 1
2
.

Thus we have three real distinct eigenvalues when

4Ṽ 2 cos2 θ−4Ṽ ∂θṼ cos θ sin θ+(∂θṼ )2 sin2 θ > 4Ṽ 2 cos2 θ−4Ṽ ∂θṼ cos θ sin θ−8(Ṽ +1) sin2 θ.

Doing the obvious cancellation we see

(∂θṼ )2 > −8(Ṽ + 1)

so that when Ṽ + 1 > 0 we have real distinct eigenvalues. Of course a more precise result
is that we have real distinct eigenvalues if and only if

(− sin θ∂x1ζ + cos θ∂x2ζ)2

n2
> 8

(cos θ∂x1ζ + sin θ∂x2ζ

n

)
.

Thus we may state the following local existence, uniqueness theorem.

Theorem 7.1. Assume the normal component of the current ∇ζ · ν obtained from solving
the interior sheath system (2.6) is known and sufficiently smooth on R2 × [0, T ] for some
T > 0, and initial data (θ0, ns0, f0) satisfy the following conditions:

(i) (θ0, ns0, f0) ∈ (C1(R))3 and ||θ0||C1(R) + ||ns0||C1(R) + ||f0||C1(R) < G0;
(ii) ns0 > 0;

(iii)
(− sin θ0∂x1ζ0 + cos θ0∂x2ζ0)2

n2
s0

> 8
(cos θ0∂x1ζ0 + sin θ0∂x2ζ0

ns0

)
on the interface S,

where G0 is a positive constant. Then there is a time interval [0, T∗) with T∗ > 0, so that
the interface equations (??)-(7.53) with the approximate constitutive relation V = Ṽ have
a unique classical solution (θ, n) ∈ (C1(R× [0, T∗)))2.

Proof. The result follows from the classical local existence theorem for strictly hyperbolic
systems (see Courant and Hilbert [19], Douglis [25]). ¤

Remark 7.2. 1. The time T∗ depends on ||θs0||1,∞;R, ||nso||1,∞;R and G0.
2. If initial data and all coefficients are Ck, k ≥ 2, then by the standard iteration scheme,
there exist unique Ck-solutions to the sheath interface system (see Friedrichs [31]).

7.1.2. Evolving simple closed convex curve in the plane. In this part, we consider
the case where the interface is given by a simple closed convex curve in the plane (see Figure
3).

Consider a portion Γ of a curve which is represented by x2 = f(x1, t) in x1-x2 plane.
If we wish to study the evolution of a simple closed convex curve in the plane, it will be
convenient to use polar coordinates:

(7.54) x1 = r cosβ, x2 = r sinβ,

so that the evolving curve is represented by r = r(β, t), and the portion Γ becomes

(7.55) r sinβ = f(r cosβ, t),

First recall the result of Lemma 7.1 to be used in computations below, i.e.

∂x1f = − cot θ, ∂tf =
V

sin θ
.
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Figure 3. Schematic diagram of a sheath interface in the plane

Now differentiate (7.55) with respect to t to get

∂tr sinβ = ∂x1f(∂tr cosβ) + ∂tf

= − cot θ(∂tr cosβ) +
V

sin θ
,

and we see

(7.56) ∂tr =
V

cos(θ − β)
.

Note that we need to know the evolution of θ together with n. In order to use the previous
computation in Section 7.1.1, we need to express ∂x1 in terms of ∂β.

(7.57) We claim: ∂x1 = −2 sin β

r
∂β.

Proof of the claim. Differentiate (7.55) with respect to r to obtain

(7.58) ∂rβ = − sinβ + cot θ cosβ

r cosβ − r sinβ cot θ
,

where we used ∂x1f = − cot θ. On the other hand, the chain rule yields

∂x1 = ∂x1r∂r + ∂x1β∂β

= ∂x1r∂rβ∂β + ∂x1β∂β.(7.59)

Recall that
r2 = x2

1 + (f(x1, t))2 and β = arctan
(f(x1, t)

x1

)
,

and apply (7.59) to r and β, use the above relation to find

(7.60) ∂x1r = − sinβ cot θ + cosβ and ∂x1β = −(cosβ cot θ + sinβ)
r

,

and then use (7.58) and (7.60) to obtain

∂x1 = −(− sinβ cot θ + cosβ)(sin β + cot θ cosβ)
r(cosβ − sinβ cot θ)

∂β − (cosβ cot θ + sinβ)
r

∂β,
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i.e.,

∂x1 = −2 sin β

r
∂β.

This completes the proof of the claim.

On the other hand, note that the convexity of interface can be treated as follows:

∂2
x1

f = ∂x1(− cot θ) =
∂x1θ

sin2 θ
= −2 sin β∂βθ

r sin2 θ
> 0,

where we used the above claim and hence the convexity of an interface is represented by
the relation

sinβ∂βθ < 0.

We combine (7.56) - (7.57) and Lemma 7.2 to obtain the following lemma.

Lemma 7.3. In the case when the sheath interface is a simple closed curve, (7.27) is
equivalent to the system:




∂tθ
∂tns

∂tr


− 2 sin β

r




V cos θ 0 0
2ns sin θ V cos θ 0

0 0 0







∂βθ
∂βns

∂βr


 =



−2 sin θ sin β∂βV

r
0
V

cos(θ−β)




with the same constitutive equation for V as in Lemma 7.1.

If we employ the small surface gradient approximation Ṽ for V , we can state the following
theorem.

Theorem 7.2. Assume the normal component of the irrotational part of the current ∇ζ ·ν
obtained from solving the interior sheath system (2.10) is known, sufficiently smooth, 2π-
periodic in β and smooth 2π-periodic initial data (θ0, ns0, r0) in the sheath interface satisfy
the following conditions:

(i) (θ0, ns0, r0) ∈ (C1(R))3 and ||θ0||C1(R) + ||ns0||C1(R) + ||r0||C1(R) < G0;
(ii) ns0 > 0, r0 > 0;

(iii)
(− sin θ0, cos θ0) · ∇ζs0

n2
s0

>
8(cos θ0, sin θ0) · ∇ζs0

ns0
;

(iv) |θ0 − β| < π

2
sinβ∂βθ0 < 0.

Then there is a T∗∗ > 0 so that the interface equations (7.64) with approximate constitutive
relation V = Ṽ has a unique classical solution (θ, n, r) ∈ (C1(R × [0, T∗∗)))3 which is 2π-
periodic in β, and this solution satisfies the estimates

||θ||C1(R×[0,T∗∗)) + ||ns||C1(R×[0,T∗∗)) + ||r||C1(R×[0,T∗∗))

≤ 2
(
||θ0||C1(R) + ||ns0||C1(R) + ||r0||C1(R)

)
,(7.61)

where G0 is a positive constant, and T∗∗ depends on ||θ0||C1(R), ||ns0||C1(R), ||r0||C1(R) and
G0. Furthermore the sheath interface is convex since sinβ∂βθ < 0.
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Proof. The eigenvalues of the coefficient matrix are λ1, λ2, λ3, where λ1, λ2 are the eigen-
values of (7.45) and λ3 = 0. Thus again we have real distinct eigenvalues and again the
classical existence and uniqueness theorem in [19, 25] can be applied. Convexity is preserved
since we have C1-continuity of θ in β and t. ¤

Remark 7.3. 1. If the initial data and all coefficients are Ck, k ≥ 2, then by the standard
iteration scheme, there exists a unique Ck-solution to the sheath interface system satisfying
(7.61) with C1-norms replaced by Ck-norms (see Friedrichs [31]).

2. The above existence theorem can be further generalized into the Hölder space Ck,γ(R)
with the estimate (7.61) replaced by Ck,γ(R)-norm. (See [39]).

7.2. Local existence for the sheath system. In this subsection we study the local exis-
tence of smooth solutions to the sheath system when the boundary of the target is a small
perturbation of an infinite cylinder and the initial sheath interface is a smooth simple closed
convex curve as in Section 7.1.2. We model the proof on the presentation of Nouri [43] and
use an iteration procedure given in the papers of Chen and Feldman [13] and Canic, Keyfitz
and Lieberman [12] to construct approximate solutions to the sheath system and then em-
ploy the Schauder Fixed Theorem to show the existence of local in time sheath solutions.
Since the exact location of the sheath interface is not known a priori, at each iteration
step, we have to evolve the interface system with the data given by the sheath system
as well. This makes the proof technically challenging, yet since the proof outlines a pos-
sible approach to numerical implementation, we view it as a crucial part of our presentation.

Below we summarize the main assumptions for initial and boundary data to the sheath
and interface systems and then we state the main theorem of this subsection. In what
follows, δ∗i, i = 1, 2 and δ∗ are positive constants representing the lower and upper bounds
of the size of data, and ∇, ∆ denotes a spatial gradient and a spatial Laplacian respectively.

Notations. We first introduce some efficient notation for norms and partial derivatives:

| · | : the Eulidean norm in Rn,
[ · ]0,γ : the Hölder seminorm in a spatial region in R2

|| · ||0,γ : the Hölder norm in spatial region in R2,
[[ · ]]0,γ : the Hölder seminorm in a space-time region in R2 × [0, T ],

||| · |||0,γ : the Hölder norm in a space-time region R2 × [0, T ].

For the definitions of Hölder seminorm and norm, we refer to Evans’ book [28]. On the
other hand, for calculus in two space variables, we will denote the multi-indice α as an
ordered pair (α1, α2) of nonnegative integers, and use the notation:

|α| := α1 + α2 and ∂α := ∂α1
x1

∂α2
x2

.

Now consider the sheath system (S):

(7.62)





∂tn +∇ · (nu) = 0, (x, t) ∈ Ωs(t)× (0,∞),
∂tu + (u · ∇)u = ∇φ,

∆φ = n,
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subject to initial and boundary data:

(7.63)

{
(n,u, φ) = (n0,u0, φ0) on Ωs(0)× {t = 0},
∇φ · ν0 = g on ∂Ω0 × [0,∞).

We impose several conditions on data and the target boundary: Let γ ∈ (0, 1) be fixed.

• (A1) (Regularity, compatibility)

n0 ∈ C1,γ(Ω̄s(0)), u0 ∈ (C2,γ(Ω̄s(0)))2,
g ∈ C1,γ(∂Ω0 × (0,∞)), ∆φ0 = n0 on Ωs(0),
u0 = −ν on S(0), ∇φ0 · ν0 = g on ∂Ω0 × {t = 0}.

• (A2) (Boundedness)

δ∗1 ≤ n0, max
|α|≤1

||∂αn0||0,γ,Ω̄s(0) + |||g|||2,γ,∂Ω0×[0,∞)) ≤ δ∗,

max
i=1,2

∑

0≤k≤2

max
|α|=k

||∂αu0i||0,γ,Ω̄s(0) ≤ δ∗.

• (A3) (Monotonicity and dissipativity) For x ∈ Ωs(0),

(1) The real parts of the eigenvalues of ∇u0(x) are non-negative.
(2) The initial velocity u0 is strongly dissipative in the sense that

u0(x) · x ≤ −η0||x||2 for some positive constant η0.

• (A4) (Consistency)

Initial data (n0,u0, φ0) are given so that initial interface is contracting:

−1 < Ṽ0 := −1− ∇ζ0 · ν
n0

< 0,

where ζ0 is the unique solution of the exterior Neumann problem

∆ζ0 = 0 in Ω,

with boundary data



∇ζ0 · ν0 = h0, on ∂Ω0 × {t = 0},
lim
|x|→∞

∇ζ0 = 0,

and h0 := ∂tg − n0(u0 · ν0).

• (A5) (Convexity and regularity of the target boundary)

∂Ω0 is convex and C2,γ so that the corresponding normal ν0 is in C1,γ(∂Ω0 ×
[0,∞)) :

max
i=1,2

|||ν0i|||1,γ,∂Ω0×[0,T ] ≤ δ∗.
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We next consider the approximate interface system is given as before by:

(7.64)




∂tθ
∂tns

∂tr


− 2 sin β

r




Ṽ cos θ 0 0
2ns sin θ Ṽ cos θ 0

0 0 0







∂βθ
∂βns

∂βr


 =



−2 sin θ sin β∂β Ṽ

r
0
Ṽ

cos(θ−β)




subject to initial data:

(θ, n, r)(β, 0) = (θ0, ns0, r0)(β), β ∈ R.

We impose following conditions on initial data (B):
• (B1) (Regularity, boundedness and compatibility)

(θ0, ns0, r0) ∈ (C3,γ(R))3, n0 = ns0 on S(0),
δ∗1 ≤ min

β∈R
ns0(β), ||θ0||3,γ,R + ||ns0||3,γ;R + ||r0||3,γ;R ≤ δ∗,

where δ∗1 and δ∗ are positive constants.

• (B2) (Location of the initial sheath interface)
The target and initial sheath interface are sufficiently separated in the sense that

2rb < δ∗2 ≤ min
β∈R

r0(β),

where rb denotes the radius of the smallest circle with center 0 containing a target
Ω0 and δ∗2 is a positive constant.

• (B3) (Convexity of initial interface)

|θ0 − β| ≤ π

2
and sinβ∂βθ0 > 0.

• (B4) (Initial strict hyperbolicity)

∇ζs0 · (− sin θ0, cos θ0)
n2

s0

>
8∇ζs0 · (cos θ0, sin θ0)

ns0
.

• (B5) (Consistency with initial data)

−(cos θ0, sin θ0) · (r0 cosβ, r0 sinβ) ≤ −η0r
2
0, β ∈ R.

Let r1 be a sufficiently small positive number satisfying

0 < r1 < min
{

δ∗,
δ∗2
2
− rb

}
and we set

K0 := 151
([4πδ∗

r1

]
+ 2

)
,

ra := the radius of the largest circle with a center 0 contained
inside the target Ω0.

We set T to be a sufficiently small positive constant satisfying the a priori bound:

0 < T ¿ min
{

1,
1

6K0δ∗
(δ∗2

2
− rb

)
,

η0r
2
a

2(6K0(δ∗)2 + R3)

}
.
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where R3 is a positive constant depending only on K0, δ
∗, δ∗i, i = 1, 2 to be specified explic-

itly in Lemma A.9. In what follows, we use a simplified notation for space-time regions:
For the positive constant T chosen as above,

(7.65) Ω1 := B(0, 3δ∗)− Ω0, Ω∗ = {x :
δ∗2
2

< |x| < δ∗} and Λ(T ) := Ω1 × [0, T ].

Here B(0, 3δ∗) denotes the ball with a radius 3δ∗ and a center x = 0.

Notice that Λ(T ) is a bounded region in space-time and the inclusion relation:

Ω0 ⊂ Ω1 ⊂ Ω and Ω∗ ⊂ Ω1.

We define a subset of a Banach space (C1,γ(Λ̄(T )))2 as follows.

Definition 7.1.

B(T ) := {v = (v1, v2) ∈ (C1,γ(Λ̄(T )))2 : ∂αvi ∈ C0,γ(Λ̄(T )), i = 1, 2, |α| = 2,
and v satisfies the conditions (D) below},

(D1) v(x, 0) = u0(x) on Ωs(0);
(D2) v(x, t) · x ≤ −η0

2
||x||2, (x, t) ∈ (B(0, rb + 6K0δ

∗T )− Ω0)× [0, T ];

(D3) max
i=1,2

∑

0≤k≤2

max
|α|=k

|||∂αvi|||0,γ,Λ̄(T ) ≤ 3K0δ
∗;

(D4) max
i=1,2

|||∂tvi|||0,γ,Λ̄(T ) ≤ K0

(
18(δ∗)2 + R3

)
,

Remark 7.4. 1. The definition of the above set B(T ) was motivated by the work of Nouri
[43].
2. B(T ) is a compact convex subset of a Banach space T
(7.66) T := {v ∈ C1,τ (Λ̄(T )) : ∂αvi ∈ C0,τ (Λ̄(T )), i = 1, 2, |α| = 2}
for τ ∈ (0, γ) via the Arzela-Ascoli Theorem.
3. The dissipative condition (D2) guarantees that all characteristic curves passing through
a point (x, t) ∈ (B(0, rb + 3K0δ

∗T ) − Ω0) × [0, T ] reaches the initial sheath region Ωs(0)
backward in time and the target boundary ∂Ω0 forward in time.

In the following subsection, we present the construction of an iteration map and then
state the main theorem for a local existence of sheath solutions. The detailed proof of the
existence of local sheath solution is based on a series of lengthy and technical lemmas and
these lemmas will be proved in Appendix A.

7.2.1. Construction of an iteration map. Let T be a given small positive number to be
determined later. Next we describe the construction of an iteration map step by step.

• Step 0. Let v ∈ B(Λ(T )) be given.

• Step 1. Determine Λ1
s(T ;v) and n in Λ1

s(T ;v):

We solve a linear transport equation for n as follows:

(7.67) ∂tn +∇ · (nv) = 0, n(x, 0) = n0(x).
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Figure 4. Schematic diagram of a space-time region

Define a space-time region Λ1
s(T ;v) and Ω1

s(0;v) (see Figure 4):

Λ1
s(T ;v) := the region bounded by ∂Ω0 × [0, T ] and backward characteristic surfaces

issued from ∂Ω0 × {t = T} ,
Ω1

s(s;v) := projection of the space-time region Λ1
s(T ;v) ∩ (R2 × {t = s}) onto R2,

and a characteristic curve passing through (x, t): For (x, t) ∈ Λ1
s(T ;v),

(7.68)
dχ(s)

ds
= v(χ(s), s), χ(t) = x, 0 ≤ s ≤ T.

Since v is uniformly bounded in C1,γ-norm, there exists a unique solution χ(s, t,x) to (7.68),
and we set

α(x, t) = χ(0, t,x), (x, t) ∈ Λ1
s(T ;v).

On the other hand, along the characteristic n satisfies

d

ds
lnn(χ(s, t,x), s) = −(∇ · v)(χ(s, t,x), s) 0 ≤ s ≤ T.

We integrate the above equation along χ(·, t,x) to get

(7.69) n(x, t) = n0(α(x, t)) exp
(
−

∫ t

0
(∇ · v)(χ(s, t,x), s)ds

)
, (x, t) ∈ Λ1

s(T ;v).

• Step 2: Determine the normal current h · ν = ∇ζ · ν on the interface.

We use the given boundary data g and n given by Step 1 to compute

h0 = ∂tg − (nv)
∣∣∣
∂Ω0

· ν0,
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and solve the exterior Neumann problem for Laplace’s equation: For given t ∈ [0, T ],

(7.70)





∆ζ(x, t) = 0, x ∈ Ω,

∇ζ · ν0 = h0 on ∂Ω0 and lim
|x|→∞

∇ζ = 0.

• Step 3: Determine the location of the interface and the interfacial density.

With ∇ζ determined by Step 2, we solve the interface system:



∂tθ
∂tns

∂tr


− 2 sin β

r




Ṽ cos θ 0 0
2ns sin θ Ṽ cos θ 0

0 0 0







∂βθ
∂βns

∂βr


 =



−2 sin θ sin β∂β Ṽ

r
0
Ṽ

cos(θ−β)




subject to C2,γ-initial data

(θ, ns, r)(β, 0) = (θ0, ns0, r0)(β) ∈ (C2,γ(R))3,

satisfying the assumptions (B1) -(B3) and approximate normal velocity of the interface

Ṽ = −1− ∇ζ · (cos θ, sin θ)
ns

,

where ∇ζ is evaluated at (r cos θ, r sin θ). Since ∇ζ is uniformly bounded in C1,γ(Λ̄(T )) and
T ¿ 1, it follows from Theorem 7.2 that there exist C1,γ solutions (θ, ns, r) such that

δ∗2
2
≤ r(β, t) ≤ 2δ∗, (β, t) ∈ R× [0, T ].

• Step 4: Determine Λ2
s(T ;v), Ω2

s(0;v) and n in Λ2
s(T ;v).

In Step 3, we have determined the trajectory of the sheath interface S(t), and an ion
density ns on the interface. We first define Λ2

s(T ;v), Ω2
s(0;v) (see Figure 4):

Λ2
s(T ;v) := the region bounded by backward characteristic surfaces issued from

∂Ω0 × {t = T} and interfaces ∪t∈[0,T ]S(t),
Ω2

s(s;v) := projection of the space-time region Λ2
s(T ) ∩ (R2 × {t = s}) onto R2.

We then repeat the same procedure as in Step 1 to get n in Λ2
s(T ;v), i.e., solve the linear

transport equation
∂tn +∇ · (nv) = 0, (x, t) ∈ Λ2

s(T ;v),

with initial and boundary data:

n(x, 0) = n0(x) x ∈ Ω2
s(0) and n(x, t) = ns(x, t) (x, t) ∈ S(t).

Let (α, t0) be the point on either Ωs(0)×{t = 0} or S(t0)×{t = t0}. We solve the equations
for χ and n as before:





d

ds
χ(s, t0,α) = v(χ(s, t0,α), s), s > t0,

d

ds
ln n(χ(s, t0,α), s) = −(∇ · v)(χ(s, t0, α), s),
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subject to initial and boundary data:

χ(t0, t0, α) = α and n(α, t0) =

{
n0(α) t0 = 0,

ns(α, t0) t0 > 0.

We set the approximate sheath region Λs(T ;v):

Λs(T ;v) := Λ1
s(T ;v) ∪ Λ2

s(T ;v) and Ωs(t;v) := Ω1
s(t;v) ∪ Ω2

s(t;v).

• Step 5: Determine an electric field ∇φ in Λs(T ;v).

¿From Step 4, we know n in the region Λs(T ;v), so we can now solve the Poisson equation
with mixed Dirichlet-Neumann boundary data:

{
∆φ = n, (x, t) ∈ Λs(T ;v),
∇φ · ν0 = g on ∂Ω0 and φ = − ln ns on S(t), 0 ≤ t ≤ T.

• Step 6: Determine a new updated velocity û.

With the electric field ∇φ from step 5, solve the inhomogeneous Burgers’ equation:

∂tû + û · ∇û = ∇φ,

with initial and boundary data:

û(x, 0) = u0(x), x ∈ Ωs(0), and û = −ν on S(t), 0 ≤ t ≤ T.

Let χ̂(s, t0, α) be the characteristic curve issued from (α, t0). Then we have

û(χ̂(t, t0, α)) =

{
u0(α) +

∫ t
0 ∇φ(χ̂(s, 0, α), s)ds t0 = 0,

−ν(α) +
∫ t
t0
∇φ(χ̂(s, t0, α), s)ds t0 > 0.

Here χ̂ is a characteristic curve associated with û. Since ∇φ can be uniformly bounded
by initial and boundary data and T ¿ 1, the above inhomogeneous Burgers’ equation is
uniquely solvable.

• Step 7: Extend û to the whole fixed domain Λ(T ).

We use Theorem 7.2 and the fact that the boundary data h0 for (7.70) is uniformly
bounded by the initial and boundary data for the sheath system to get

Ωs(t;v) ⊂ B(0, 3δ∗) for t ∈ [0, T ].

We then extend each component of û to the fixed physical domain Ω1 (see Appendix B).
Finally we set

u(·, t) ≡ E(û(·, t)|S(t)), t ∈ [0, T ].
and then define an iteration map F as follows:

F : B(Λ(T )) → B(Λ(T )); F(v) = u.
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Below we state the main theorem of this subsection which provides a local in time exis-
tence of sheath solutions to (2.6). The proof of the theorem and relevant lemmas are given
in Appendix A.

Theorem 7.3. Suppose the conditions (A1) - (A5) and (B1)-(B5) stated at the beginning
of this subsection hold. Then there exists a sufficiently small positive time T and the sheath
region Λs(T ;u) such that the sheath system (7.62) - (7.63) admits a smooth solution (n,u, φ)
satisfying

n ∈ C1,γ(Λ̄s(T ;u)), u ∈ (C1,γ(Λ̄s(T ;u)))2

∂αui ∈ C0,γ(Λ̄s(T ;u)), ∇φ ∈ C1,γ(Λ̄s(T ;u)), |α| = 2, i = 1, 2.

7.3. Local existence for the exterior quasi-neutral system. Recall the quasi-neutral
system is given by the isothermal gas dynamics system:

(7.71)

{
∂tn +∇x · (nu) = 0, (x, t) ∈ Ωq × (0,∞),
∂tu + (u · ∇x)u +∇x(lnn) = 0.

subject to initial and boundary data

(n,u)(x, 0) = (nq0,uq0)(x), x ∈ Ωq(0),
(n,u)(x, t) = (ns,us)(x, t) on S(t),

in the quasi-neutral region. We continue our discussions of Section 7.1 where the sheath
edge is described by a curve:

x2 = f(x1, t),

in the x1 − x2 plane. Theorem 7.1 provided local existence and uniqueness in time for the
sheath edge dynamics when V was replaced by the local ”small gradient” approximation
Ṽ . Thus Theorem 7.1 provides a smooth boundary x2 = f(x1, t) and data:

(7.72) n = ns, u = −ν on x2 = f(x1, t), t > 0,

with ν = (−∂x1f, 1)
(
1 + (∂x1f)2

)− 1
2 for the exterior quasi-neutral system.

In this section, we will sketch the proof of the following theorem for local existence-
uniqueness of initial-boundary value problem for the exterior isothermal gas dynamics quasi-
neutral system.

Theorem 7.4. The exterior isothermal gas dynamics quasi-neutral system (7.71) with
boundary data (7.72) and initial data

n(x1, x2, 0) = n0(x1, x2), u(x1, x2, 0) = u0(x1, x2), x2 > f(x1, 0),

has a unique classical smooth solution on [0, T ] for any compact subset of Ωq = {(x1, x2) :
x2 ≥ f(x1, t)} where T > 0 sufficiently small, provided the following conditions are satisfied:

(1) the initial data for the sheath edge problem of Theorem 7.1 and the
initial data for the exterior quasi-neutral problem are consistent and
sufficiently smooth at x2 = f(x1, 0);

(2) the initial data is sufficiently smooth;
(3) Ṽ is not −1 or 0 at t = 0.
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Proof. The proof follows from the theorem of S. Schochet (Appendix A2 in [54]). We will
apply Schochet’s theorem via the obvious change of variables. First set

z = x2 − f(x1, t), U1(x1, z, t) = u1(x1, z + f(x1, t), t),
U2(x1, z, t) = u2(x1, z + f(x1, t), t), N(x1, z, t) = n(x1, z + f(x1, t), t).

and let U1e, U2e and Ne be any smooth extension of the boundary data in the region z =
x2 − f(x1, t) > 0. Next set

N̄ = N −Ne, Ū1 = U − U1e, Ū2 = U − U2e, W = (N̄ , Ū1, Ū2).

A straightforward application of the chain rule shows the quasi-neutral system (7.71) be-
comes

A0∂tW + A1∂x1W + A2∂z + BW = F,

where A0, A1, A2 and B are 3 × 3 symmetric matrices that depend smoothly on W,x1, z, t
for z ≥ 0, t > 0, x1 ∈ R and W in a neighborhood of 0. F is a smooth function of (x1, z, t)
taking values in R3:

A0 =




1 0 0
0 (N̄ + Ne)2 0
0 0 (N̄ + Ne)2


 , A1 =




Ū1 + U1e N̄ + Ne 0
N̄ + Ne Ū1 + U1e 0

0 0 (Ū1 + U1e)(N̄ + Ne)2




and let us set
Z ≡ −∂tf − (Ū1 + U1e)∂x1f + (Ū2 + U2e).

Then

A2 =




Z −∂x1(N̄ + Ne) N̄ + Ne

−∂x1(N̄ + Ne) Z(N̄ + Ne)2 0
N̄ + Ne 0 Z(N̄ + Ne)2




and B, F are defined in the obvious way. The boundary condition (7.52) becomes

W = 0 at z = 0, t > 0, x1 ∈ R.

Notice the boundary z = 0 is C∞ and Schochet’s boundary matrix M on z = 0 (see [54]) is
just the identity whose null space is 0. Thus Schochet’s conditions (ii) - (viii) are satisfied
if we only consider the boundary z = 0. Also on the boundary z = 0, the boundary matrix
of (v) is simply −A2 and detA2 = −n4

s[1 + (∂x1f)2]
3
2 V̄ (1 + V̄ ) when W = 0. Hence if

V̄ 6= 0,−1, condition (v) of Schochet’s theorem is also satisfied in the neighborhood of
W = 0. Unfortunately Schochet’s theorem as stated above requires a bounded domain with
C∞ boundary. However since the proof is based on his Theorem A1 which holds for planar
boundaries, Theorem A2 holds in our case as well [53]. ¤

8. Dynamics of the sheath interface: Extended bulk interface system

In this section we suggest another approach to compute the sheath interface motion
based on only bulk quantities. The idea is simple and follows from the general level set
ideas recently summarized in the monograph of Osher and Fedkiw [44]. Recall that all
quantities in the sheath interface evolution (5.24) can be extended as bulk variables defined
on R3 × [0,∞), say ν = ∇ψ

|∇ψ| ,etc. Hence if we solve the bulk system, location of the level
set ψ = 0 will provide the true location of the sheath interface given the known value of ∇ζ
obtained from solving the interior sheath problem. This idea is explained below in further
detail.
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8.1. Extended bulk interface system (EBI). We follow the program noted above and
introduce the extended bulk interface system (5.24) whose solution on the interface reduces
to the original solution to the interface system. The bulk system for the extended bulk
quantities ψ and n are:

(8.73)





∂tψ + V |∇ψ| = 0,

∂tn + V ν · ∇n = n∇ · ν,

V + 1 +
h · ν

n
= − 1

n

[
∇ · (V∇ lnn)−∇ ·

(
(V∇ ln n · ν)ν

)]

− 1
n

[
∇(V∇ lnn)(ν, ν)−∇

(
(V∇ ln n · ν)ν

)
(ν, ν)

]
,

where ∇ζ is known from solving the interior sheath system and ν =
∇ψ

|∇ψ| . Notice on level

sets ψ = 0, (5.24) and (8.73) are identical. The advantage of (8.73) is that it is defined via
”bulk” quantities and the evolution of the level set ψ = 0 may be obtained by solving (8.73)
on (R2 − Ω0)× [0,∞).

8.1.1. Special solutions to EBI. In this part, we show consistency of the (EBI) approach
with the earlier results of [37] for planar, cylindrical and spherical symmetric motions. Hence
we first look for the special solutions of (8.73) which are planar and radially symmetric.

We first consider planar solutions with the following ansatz:

ψ(x, t) = x1 − s(t) n(x, t) = n(r, t) and h = (h, 0, 0).

In this case, since all surface gradients and a curvature term ∇ · ν vanish, EBI system
(8.73) becomes

δψ

δt
= 0,

δn

δt
= 0 and V = −1− h

n
.

The relation
δ

δt
= ∂t + V ν · ∇ yields a system for planar solutions (ψ, n, h):

(8.74) −ṡ + V = 0, ∂tn + ṡ∂x1n = 0 and V = −1− h

n
.

It is easy to see that

(8.75) n(x, t) = n0( constant ), ṡ(t) = −1− h

n0
, and ψ(x, t) = x1 − s(t).

are solutions of (8.74) and this is consistent with [37].

Next we consider radially symmetric solutions so that (ψ, n, h) only depends on the radial
distance r and time t. We take the ansatz ψ as:

ψ(r, t) = r − s(t).

Under the above ansatz for ψ, the system (8.73) becomes

V = ṡ(t), ∂tn + V ∂rn =
2n

r
, ṡ + 1 +

hr

n
= 0,
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where hr is the radial component of the current h. We combine the first two equations to
get

(8.76) ∂tn + ṡ∂rn =
2n

r
, ṡ + 1 +

hr

n
= 0.

We define ŝ(α, t) by the characteristic curve (particle path) issued from α corresponding to
the first equation of (8.76), i.e.,

dŝ(α, t)
dt

= ṡ(t), ŝ(α, 0) = α.

Then along the characteristic r = ŝ(α, ·), the system (8.76) becomes

(8.77)
dn(ŝ(t), t)

dt
=

2n(ŝ(t), t)
ŝ(t)

, ˙̂s(t) + 1 +
hr(ŝ(t), t)
n(ŝ(t), t)

= 0.

We now take the time-derivative of the second equation in (8.77) to get

¨̂s(t) +
2( ˙̂s(t) + 1)

ŝ(t)
− ( ˙̂s(t) + 1)(∂rhr

˙̂s(t) + ∂thr)
n

= 0.

Here hr and n are evaluated at the particle path (ŝ(t), t). We take the ansatz for the
hr(r, t) = h(t)

r2 . By direct calculation we have

¨̂s(t) +
2( ˙̂s(t) + 1)2

ŝ(t)
− ḣ(t)( ˙̂s(t) + 1)

h(t)
= 0.

and hence on the interface ψ(r, t) = 0 we recover the 2nd order equation for ŝ(t) which is
identical with the result in [37]. The cylindrical case can be done analogously.

8.2. Approximate extended bulk interface system. While we view the (EBI) ap-
proach as a promising method for numerical computation, in this subsection we give a more
modest application and derive an approximate solution of the bulk interface motion when
the target is a small ”transversal” perturbation of an infinite plane. We employ a formal
asymptotic expansion around the special solution (ψ0, n0, h0) satisfying (8.75).

8.2.1. Small transversal perturbation of a planar target. Let us choose a small pa-
rameter µ and we formally expand ψ, n and h in terms of power series of µ:

ψ(x, t) = x1 − s(t) + µψ1(x2, x3, t) + · · · ,
n(x, t) = n0 + µn1(x2, x3, t) + · · · ,
h(x, t) = (h0(t), 0, 0) + µh1(x2, x3, t) + · · · ,

where n0 is a positive constant and h1 = (h11, h12, h13) and

ψ0(x, t) = x1 − s(t), n(x, t) = n0 and h0(t)

are exact solutions to the extended EBI with the relation:

ṡ(t) = −1− h0(t)
n̄0

.

Below, we formally denote the higher-order terms by ”· · · ”.
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Next we derive a system for (ψ1, n1,h1):

(8.78)





∂tψ1 − h11(x2, x3, t)
n0

− h0(t)n1

n0
+

1
n2

0

(
1 +

h0(t)
n0

)
∆n1 = 0,

∂tn1 = n0(∂2
x2

ψ1 + ∂2
x3

ψ1).

or equivalently, we have a linear plate equation for n1:

∂2
t n1 +

h0

n0
(∂2

x2
n1 + ∂2

x3
n1) +

1
n0

(
1 +

h0

n0

)
(∂2

x2
+ ∂2

x3
)2n1 = ∂2

x2
h11 + ∂2

x3
h11.

• Derivation of (8.78). We claim:

ν · ∇n = O(µ2),
h · ν

n
=

h0

n0
+ µ

(h11

n0
− h0n1

n2
0

)
+O(µ2),

V = −1− h0

n0
− µ

h11

n0
− µ

h0

n1
n2

0 +
µ

n2
0

(
1 +

h0

n0

)
∆n1 +O(µ2).

Below we will check the above claim. It follows from the ansatz for ψ that

∇ψ = e1 + µ∇ψ1 + · · · ,
∂tψ = −ṡ(t) + µ∂tψ1 + · · · ,

where e1 is the unit coordinate vector in x1-axis, i.e., e1 = (1, 0, 0). Since ∂x1ψ1 = 0,

|∇ψ| = 1 +O(µ), ν = e1 + µ(0, ∂x2ψ1, ∂x3ψ1) +O(µ2),
h · ν

n
=

h0(t)
n0

+ µ
h11

n0
− µ

h0n1

n2
0

+O(µ2).

By direct calculation we have

ν · ∇n =
(
e1 + µ(0, ∂x2ψ1, ∂x3ψ1) +O(µ2)

)
·
(
µ∇n1 +O(µ2)

)

= µ∂x1n1 +O(µ2) = O(µ2).

Recall that
∇s = ∇− ν(ν · ∇),

i.e.,

∇s = ∇−
(
e1 + µ∇ψ1

)
(∂x1 + µ∇ψ1 · ∇) +O(µ2),

where ∇ψ1 = (0, ∂x2ψ1, ∂x3ψ1). Hence for any scalar quantity w(x2, x3, t), we have

(8.79) ∇sw = ∇w − (∂x1w)e1 − µ
(
(∂x1w)∇ψ1 + (∇ψ · ∇w)e1

)
+O(µ2).

We apply the above equation (8.79) to w = lnn to obtain

∇s ln n =
∇sn

n̄
= µ

∇n1

n0
+O(µ2).

Hence we have

− 1
n
∇s(V∇s lnn) = − µ

n2
0

∇
[(
− 1− h0(t)

n0

)
∇n1

]
+O(µ2) and

V = −1− h0

n0
− µ

h11

n0
− µ

h0

n1
n2

0 +
µ

n2
0

(
1 +

h0

n0

)
∆n1 +O(µ2).
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We now equate order µ-terms in our EBI system to see

∂tψ1 − h11

n0
− h0n1

n0
+

1
n2

0

(
1 +

h0

n0

)
∆(x2,x3)n1 = 0,(8.80)

∂tn1 = n0(∂2
x2

ψ1 + ∂2
x3

ψ1).(8.81)

Finally we apply the differential operators ∆(x2,x3) and ∂t to (8.80) and (8.81) respectively
to obtain

(8.82) ∂2
t n1 + h0∆(x2,x3)n1 +

1
n0

(
1 +

h0

n0

)
∆2

(x2,x3)n1 = ∆(x2,x3)h11.

Since h0 < 0, the above equation has the structure of an equation for a vibrating plate.
Note it is well-posed if and only if

1 +
h0

n0
> 0.

The motion of ψ is constructed by the insertion of the solution n̄1 of (8.82) into the first
equation of (8.78). The level set ψ = 0 tracks the motion of the ”vibrating plate” via the
relation:

x1 = s(t)− µψ1(x2, x3, t) +O(µ2).

Remark 8.1. Notice here we have not made the ”small gradient” approximation V = Ṽ
and the role of the surface derivatives in the original implicit constitutive equation for V
becomes apparent.
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Appendix A. Local existence of sheath solutions

In this appendix, we present a series of a priori estimates for the approximate solutions
constructed in Step 0 - Step 7 in Section 7 and then give the proof Theorem 7.3.

A.1. Basic a priori estimates. In this part, we give a priori estimates for the approximate
solutions constructed in Step 0 - Step 7.

A.1.1. A priori estimates for Step1 . In Lemmas A1-A3, we will give a proof of the ex-
istence, uniqueness and regularity for n as given in Step 1 of Section 7.2.

We first consider the equation for a characteristic curve. For given (x, t),

(A.83) ∂sχ(s, t,x) = v(χ(s, t,x), s), χ(t, t,x) = x, 0 ≤ s ≤ T.

In what follows, we will use calculus type estimates for the Hölder seminorm. For fi ∈
C0,γ(Λ̄s(T ;v)) i = 1, 2, we have

[[f1f2]]0,γ ≤ [[f1]]0,γ |||f2|||0 + |||f1|||0[[f2]]0,γ ,(A.84)

[[ef ]]0,γ ≤ e|||f |||0 [[f ]]0,γ .(A.85)

Here [[·]]0,γ and ||| · |||0 denote the Hölder and esssup norms defined on the same space-time
region.

In the following Lemma, we use simplified notation for balls in R2:

B1 := B(0, rb + 3K0δ
∗T0) and B2 := B(0, rb + 6K0δ

∗T0).

Lemma A.1. There exists a sufficiently small constant T0 > 0 and a unique solution χ to
the equation (A.83) satisfying the following estimates: For 0 < T ≤ T0, v ∈ B(T ),

(1) The forward characteristic curve χ(s, 0,x), s ≥ 0, x ∈ Ω1
s(0;v) ⊂ (B1 − Ω0) hits

the target boundary ∂Ω0 and the ion-density in the region Λ1
s(T ;v) is given by

n(χ(t, 0,x), t) = n0(x) exp
(
−

∫ t

0
(∇ · v)(χ(s, 0,x), s)ds

)
, x ∈ Ω1

s(0;v).

(2) χ(s, t,x) ∈ C1,γ([0, T ]× [0, T ]× R2) and sup
s,t,x

max
i,j=1,2

|∂xjχ
i| ≤ 2.

(3) Suppose that vi → v in C1,γ(Λ̄(T )) and let χi and χ be the characteristic curves
corresponding to vi and v respectively. Then for (x, t) ∈ Λ1

s(T ;v),

χi(·, t,x) → χ(·, t,x) in C1,γ([0, T ]).

(4) α(x, t) := χ(0, t,x) is Lipschitz continuous in (x, t) ∈ Λ(T ) with a Lipschitz con-
stant 4, i.e.

|α(x, t)−α(y, s)| ≤ 4|(x, t)− (y, s)|.
Proof. (i) It follows from the dissipative condition (D2) in the definition of B(T ), we have

v(x, t) · x ≤ −η0

2
|x|2, (x, t) ∈ (B2 − Ω0)× [0, T ].

Then we have for (x, t) ∈ (B2 − Ω0)× [0, T ],

d

ds
|χ(s, t,x)|2 = 2〈v(χ(s, t,x), s), χ(s, t,x)〉 ≤ −η0|χ(s, t,x)|2.
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Here 〈·, ·〉 denotes the standard inner product in R2. Hence the characteristic χ(s, t,x)
satisfies

|χ(s, 0,x)| ≤ e−
η0s
2 |χ(0, 0,x)| = e−

η0s
2 |x|.

So χ(s, 0,x) has decreasing magnitude and must hit the target at some positive s.

Let T ≤ T0 and we define the subregions Λ1
s(T ;v), Ω1

s(T ;v) of Λ(T ) and Ωs(0) as in Step
1 of Section 7.2.1. Then the characteristic curve χ(s, 0,x), (x, 0) ∈ Ω1

s(0) × {t = 0} hits
the target boundary ∂Ω0 and will provide the ion density n at the target boundary, i.e.,

n(χ(t, 0,x), t) = n0(x) exp
(
−

∫ t

0
(∇ · v)(χ(s, 0,x), s)ds

)
, x ∈ Ω1

s(0;v).

T

T

0

x t,0 0( )

y( )s,0 0 Λ

Ω s

s

1

1 (T)

(0)
S*

Figure 5. Schematic diagram of the geometry of characteristic curves

Remark A.1. We briefly summarize the geometry of characteristic curves in the space-
time region Λ(T ) (see Figure 5).

The region Λ1
s(T ) will be completely covered by the characteristic curves χ(s, 0,x), (x, 0) ∈

Ω1
s(0;v)×{t = 0} and they are pointing toward the target for positive s. On the other hand,

all backward characteristic curves χ(s, t,x), 0 ≤ s ≤ t, (x, t) ∈ Λ(T )− Λ1
s(T ) will either hit

the initial region (B(0, 3δ∗) − Ω0) × {t = 0} at s = 0 or the target boundary ∂Ω0 at some
s ∈ [0, t) (see Figure 5). However the latter situation will not happen, for example, suppose
the backward characteristic curve χ(s, t0,x0), 0 ≤ s ≤ t0, (x0, t0) ∈ Λ(T ) − Λ1

s(T ) hits the
target boundary at s = s0 at y0:

y0 := χ(s0, t0,x0).

Then forward characteristic curve χ(s, s0,y0), s ∈ [s0, t0] will have the same image of a
trajectory as χ(s, t0,x0), s ∈ [s0, t0], (x0, t0) ∈ Λ(T )− Λ1

s(T ), but this is impossible since by
the strong dissipation assumption D2 in the Definition 7.1, no forward characteristic curves
will be issued from the target boundary.

(ii) The first part of the proof for (1) follows from the standard theory of ordinary differential
equations. In fact we gain regularity in the s-variable, i.e.,

χ(·, t,x) ∈ C2,γ([0, T ]).
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We differentiate (A.83) with respect to xj to get
{

∂s∂xjχ
k(s, t,x) = ∇vk(χ(s, t,x), s) · ∂xjχ(s, t,x), 0 ≤ s ≤ T k, j ∈ {1, 2},

∂xjχ
k(t, t,x) = δjk.

Here δjk is a Kronecker delta function and χk is the k-th component of χ, k=1,2.

We integrate the above equation along the characteristic curve χ to see

∂xjχ
k(ξ, t,x) = δjk −

∫ t

ξ
∇vk(χ(s, t,x), s) · ∂xjχ(s, t,x)ds.

The above relation implies

sup
s,t,x

max
k,j=1,2

|∂xjχ
k| ≤ 1 + 6K0δ

∗(t− ξ) sup
s,t,x

max
k,j=1,2

|∂xjχ
k|.

Since t− ξ ≤ T ¿ 1, we have
sup
s,t,x

max
k,j=1,2

|∂xjχ
k| ≤ 2.

(iii) Consider the equations for χi and χ: For (x, t) ∈ Λ1
s(T ;v),

{
∂ξχi(ξ, t,x) = vi(χi(ξ, t,x), ξ),
χi(t, t,x) = x,

and

{
∂ξχ(ξ, t,x) = v(χ(ξ, t,x), ξ),
χ(t, t,x) = x.

We use the above equations to calculate χi(ξ, t,x)−χ(ξ, t,x), and integrate in ξ from ξ = s
to ξ = t to get

χi(s, t,x)− χ(s, t,x) = −
∫ t

s

(
vi(χi(ξ, t,x), ξ)− v(χ(ξ, t,x), ξ)

)
dξ

= −
∫ t

s

(
vi(χi(ξ, t,x), ξ)− vi(χ(ξ, t,x), ξ)

)
dξ

−
∫ t

s

(
vi(χ(ξ, t,x), ξ)− v(χ(ξ, t,x), ξ)

)
dξ.

(A.86)

Here we used χi(t, t,x) = χ(t, t,x) = x and note that
∫ t

s

(
vi(χi(ξ, t,x), ξ)− vi(χ(ξ, t,x), ξ)

)
dξ

=
∫ t

s

∫ 1

0
∂s1vi

(
χ(ξ, t,x) + s1(χi(ξ, t,x)− χ(ξ, t,x), ξ

)
ds1dξ

=
∫ t

s

∫ 1

0
∇xvi

(
χ(ξ, t,x) + s1(χi(ξ, t,x)− χ(ξ, t,x), ξ

)
·
(
χi(ξ, t,x)− χ(ξ, t,x)

)
ds1dξ.

(A.87)

We now take the R2-norm in (A.86) and use (A.87) to see

|χi(s, t,x)− χ(s, t,x)|
≤ |||∇vi|||0,Λ̄(T )

∫ t

s
|χi(ξ, t,x)− χ(ξ, t,x)|dξ + |||vi − v|||0,Λ̄(T )(t− s).
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Note that Gronwall’s inequality yields

|χi(s, t,x)− χ(s, t,x)|
≤ |||vi − v|||0,Λ̄(T )(t− s)

(
1 + |||∇vi|||0,Λ̄(T )(t− s)e|||∇vi|||0,Λ̄(T )(t−s)

)
.

(A.88)

By hypothesis (2) of this lemma, we have vi → v in C1,γ(Λ̄(T )) as t →∞, and this implies
from (A.88) that

(A.89) ||χi(s, t,x)− χ(s, t,x)||0,[0,T ] → 0 as i →∞.

Next we show

(A.90) ||∂sχi(·, t,x)− ∂sχ(·, t,x)||0,[0,T ] → 0 as i →∞.

Note that (A.83) implies

||∂sχi(·, t,x)− ∂sχ(·, t,x)||0,[0,T ]

≤ ||vi(χi(·, t,x), ·)− vi(χ(·, t,x), ·)||0,[0,T ] + ||vi(χ(·, t,x), ·)− v(χ(·, t,x), ·)||0,[0,T ]

≤ |||∇vi|||0,Λ̄(T )||χi(·, t,x)− χ(·, t,x)||0,[0,T ] + |||vi − v|||0,Λ̄(T ) → 0 as i →∞.

We use (A.90) to show

(A.91) [χi(·, t,x)− χ(·, t,x)]0,γ,[0,T ] → 0, as i →∞.

By direct calculation we have

|(χi − χ)(s1, t,x)− (χi − χ)(s2, t,x)|
|s1 − s2|γ

≤ ||∂sχi(·, t,x)− ∂sχ(·, t,x)||0,[0,T ]|s1 − s2|1−γ

≤ ||∂sχi(·, t,x)− ∂sχ(·, t,x)||0,[0,T ]T
1−γ → 0 as i →∞.

Next we show

(A.92) [∂sχi(·, t,x)− ∂sχ(·, t,x)]0,γ,[0,T ] → 0, as i →∞.

It follows from (A.83) and (A.84) that

[∂sχi(·, t,x)− ∂sχ(·, t,x)]0,γ,[0,T ]

≤ [vi(χi(·, t,x), ·)− vi(χ(·, t,x), ·)]0,γ,[0,T ] + [vi(χ(·, t,x), ·)− v(χ(·, t,x), ·)]0,γ,[0,T ]

≤ |||∇vi|||0,γ,Λ̄(T )||χi(·, t,x)− χ(·, t,x)||0,γ,[0,T ] + |||vi − v|||0,γ,Λ̄(T ) → 0 as i →∞.

Here we used (A.89) and (A.91).

Finally we combine the estimates (A.89) - (A.92) to get

|||χi(s, t,x)− χ(s, t,x)|||1,γ,[0,T ] → 0 as i →∞.

(iv) By the triangle inequality, we have

|α(x, t)−α(y, s)|
|(x, t)− (y, s)| ≤ |α(x, t)−α(y, t)|

|x− y| +
|α(y, t)−α(y, s)|

|t− s| .

Here we used (A.89) and hypothesis (2) of this lemma. Next observe that

|α(x, t)−α(y, t)| = |χ(0, t,x)− χ(0, t,y)|
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=
∣∣∣
∫ 1

0
∂ξχ(0, t,x + ξ(y − x))dξ

∣∣∣ =
∣∣∣
∫ 1

0
∇xχ(0, t,x + ξ(y − x)) · (y − x)dξ

∣∣∣

≤
∫ 1

0
|∇xχ(0, t,x + ξ(y − x))||y − x|dξ ≤ 2|y − x|.

Here we used Lemma A1 (1):

|||∇xχ|||0,[0,T ]×[0,T ]×R2 ≤ 2.

Similarly, we have
|||α(x, t)−α(y, t)|||0,[0,T ]×R2 ≤ 2|t− s|.

Hence we have
|α(x, t)−α(y, s)| ≤ 4|(x, t)− (y, s)|.

¤

Lemma A.2. Suppose f is a scalar valued function defined on Λ1
s(T ;v) satisfying

sup
0≤t≤T

||f(·, t)||0,γ,Ω̄1
s(t;v) < ∞.

Then we have
[[ ∫ t

0
f(χ(ξ, 0, α(x, t)), ξ)dξ

]]
0,γ,Λ̄1

s(T ;v)
≤ C1(T )

(
sup

0≤t≤T
||f(·, t)||0,γ,Ω̄1

s(t;v)

)
,

where [[ · ]]0,γ,Λ̄1
s(T ;v) is the Hölder seminorm on the space-time region, and

C1(T ) :=
(
T 1−γ + 16γT

)
= O(T 1−γ).

If f is in C0,γ(Λ̄1
s(T ;v)), then the term sup0≤t≤T ||f(·, t)||0,γ,Ω̄1

s(t;v) can be replaced by
|||f |||0,γ,Λ̄1

s(T ;v), i.e.,
[[ ∫ t

0
f(χ(ξ, 0, α(x, t)), ξ)dξ

]]
0,γ,Λ̄1

s(T ;v)
≤ C1(T )|||f |||0,γ,Λ̄1

s(T ;v).

Proof. Let (x, t) and (y, s) be two points in Λ1
s(T ;v). Without loss of generality, we assume

that s ≤ t. ∣∣∣
∫ t
0 f(χ(ξ, 0,α(x, t)), ξ)dξ − ∫ s

0 f(χ(ξ, 0, α(y, s)), ξ)dξ
∣∣∣

|(x, t)− (y, s)|γ

≤

∣∣∣
∫ t
s f(χ(ξ, 0,α(x, t)), ξ)dξ

∣∣∣
|(x, t)− (y, s)|γ

+

∫ s
0

∣∣∣f(χ(ξ, 0, α(x, t)), ξ)− f(χ(ξ, 0, α(y, s)), ξ)
∣∣∣dξ

|(x, t)− (y, s)|γ .(A.93)

The terms on the right hand side of (A.93) can be treated as follows:

•

∣∣∣
∫ t
s f(χ(ξ, 0, α(x, t)), ξ)dξ

∣∣∣
|(x, t)− (y, s)|γ ≤ (t− s)1−γ |||f |||0,Λ̄s(T ;v) ≤ T 1−γ |||f |||0,Λ̄1

s(T ;v),

•
∣∣∣f(χ(ξ, 0,α(x, t)), ξ)− f(χ(ξ, 0, α(y, s)), ξ)

∣∣∣
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≤
(

sup
0≤ξ≤T

[f(·, ξ)]0,γ,Ω̄s(ξ)

)
|χ(ξ, 0, α(x, t))− χ(ξ, 0, α(y, s))|γ

≤
(

sup
0≤ξ≤T

[f(·, ξ)]0,γ,Ω̄s(ξ)

)
2γ |α(x, t)−α(y, s)|γ

≤
(

sup
0≤ξ≤T

[f(·, ξ)]0,γ,Ω̄s(ξ)

)
8γ |(x, t)− (y, s)|γ .

Note that

max
{
|||f |||0,Λ̄1

s(T ;v),
(

sup
0≤t≤T

[f(·, t)]0,γ,Ω̄1
s(t;v)

)}
≤ sup

0≤t≤T
||f(·, t)||0,γ,Ω̄1

s(t;v).

Hence we have the desired result. Furthermore if f is in C0,γ(Λ̄1
s(T ;v)), then the term

sup0≤t≤T ||f(·, t)||0,γ,Ω̄1
s(t;v) can be replaced by |||f |||0,γ,Λ̄1

s(T ;v), i.e.,
[[ ∫ t

0
f(χ(ξ, 0, α(x, t)), ξ)dξ

]]
0,γ,Λ̄1

s(T ;v)
≤ C1(T )|||f |||0,γ,Λ̄1

s(T ;v).

¤

Lemma A.3. Let n be the solution of (7.67) given by (7.69). Then there exists a positive
constant T1 such that n satisfies the a priori estimate:

|||n|||0,γ,Λ̄1
s(T ;v) + max

|α|=1
|||∂αn|||0,γ,Λ̄1

s(T ;v) + |||∂tn|||0,γ,Λ̄1
s(T ;v) ≤ R1, 0 < T ≤ T1,

where R1 is a positive constant depending on K0, δ
∗ and γ.

Proof. (i) Recall that n satisfies
(A.94)

n(x, t) = n0(α(x, t)) exp
(
−

∫ t

0
(∇ · v)(χ(ξ, 0, α(x, t)), ξ)dξ

)
, for (x, t) ∈ Λ1

s(T ;v).

Since v ∈ BT , we have
|||∇ · v|||0,γ,Λ̄(T ) ≤ 6K0δ

∗ in Λ(T )

and hence (A.94) implies

|||n|||0,Λ̄1
s(T ;v) ≤ e6TK0δ∗ ||n0||0,Ω̄1

s(0;v).

Furthermore if we assume T1 is sufficiently small enough to satisfy

(A.95) e6T1K0δ∗ ≤ 2

then we have

(A.96) |||n|||0,Λ̄1
s(T ;v) ≤ 2||n0||0,Ω̄1

s(0;v).

Next we show that n0(α(x, t)) is in C0,γ(Λ̄1
s(T ;v)). Let (x, t) and (y, s) be points in

Λ1
s(T ;v). Without loss of generality, we assume s ≤ t. Then we have

|n0(α(x, t))− n0(α(y, s))|
|(x, t)− (y, s)|γ =

|n0(α(x, t))− n0(α(y, s))|
|α(x, t)−α(y, s)|γ

( |α(x, t)−α(y, s)|
|(x, t)− (y, s)|

)γ

≤ [n0]0,γ,Ω̄1
s(0;v)4

γ ,

and hence

(A.97) [[n0(α)]]0,γ,Λ̄1
s(T ;v) ≤ [n0]0,γ,Ω̄1

s(0;v)4
γ .
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On the other hand, it follows from Lemma A.2 and the fact that v ∈ B(T ) (see (D(2)) in
Definition 7.1) that

[[
−

∫ t

0
(∇ · v)(χ(ξ, 0, α(x, t)), ξ)dξ

]]
0,γ,Λ̄1

s(T ;v))
≤ 6C1(T )K0δ

∗.

We use (A.85) and (A.95) to get

(A.98)
[[

exp
(
−

∫ t

0
(∇ · v)(χ(ξ, 0, α(x, t)), ξ)dξ

)]]
0,γ,Λ̄1

s(T ;v))
≤ 12C1(T )K0δ

∗,

and then use (A.84), (A.95), (A.97) and (A.98) to find

(A.99) [[n]]0,γ,Λ̄1
s(T ) ≤ 2[n0]0,γ,Ω̄1

s(0;v)4
γ + 12||n0||0,Ω̄1

s(0;v)C1(T )K0δ
∗.

Since C1(T1) = O(T 1−γ
1 ), we have for T1 sufficiently small that

(A.100) 12C1(T )K0δ
∗ ≤ 1, T ≤ T1,

so that (A.99) implies

(A.101) [[n]]0,γ,Λ1
s(T ;v) ≤ 2[n0]0,γ,Ω̄1

s(0;v)4
γ + ||n0||0,Ω̄1

s(0).

Finally combine (A.96) and (A.101) to get the desired bound

|||n|||0,γ,Λ̄1
s(T ) ≤ max{22γ+1, 3}||n0||0,γ,Ω̄1

s(0), 0 < T ≤ T1,

≤ max{22γ+1, 3}δ∗.(A.102)

(ii) We now need to estimate space derivatives of n. Differentiate the continuity equation

∂tn +
2∑

i=1

∂xi(nvi) = 0

with respect to xj to find

(A.103)
D(∂xjn)

Dt
= −

( 2∑

i=1

∂2
xixj

vi

)
n−

( 2∑

i=1

∂xivi

)
∂xjn−

( 2∑

i=1

∂xin∂xjvi

)
, j = 1, 2.

Here D
Dt = ∂t + v · ∇x.

Integrate (A.103) along the characteristic curve χ to obtain

∂xjn(x, t) = ∂xjn0(α(x, t))

−
2∑

i=1

∫ t

0

(
n∂2

xixj
vi + ∂xivi∂xjn + ∂xin∂xjvi

)
(χ(ξ, 0, α(x, t)), ξ)dξ.(A.104)

Since v satisfies

max
i=1,2

(
max
|α|=1

|||∂αvi|||0,γ,Λ̄1(T ;v) + max
|α|=2

|||∂αvi|||0,γ,Λ̄(T )

)
≤ 3K0δ

∗, by the definition of B(T )

and n satisfies
|||n|||0,Λ̄1

s(T ;v) ≤ 2||n0||0,Ω̄1
s(0;v),
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for T sufficiently small by (A.96), we have from (A.104) that

max
|α|=1

|||∂αn|||0,Λ̄1
s(T ;v)

≤ max
|α|=1

||∂αn0||0,Ω̄1
s(0;v) + 6TK0δ

∗||n0||0,Ω̄1
s(0;v) + 12K0δ

∗T max
|α|=1

|||∂αn|||0,Λ̄1
s(T ;v).

(A.105)

We assume T1 is sufficiently small so that

(A.106) K0δ
∗T1 ≤ 1

24
,

then we have from (A.106) that

(A.107) max
|α|=1

|||∂αn|||0,Λ̄1
s(T ;v) ≤ 2 max

|α|=1
||∂αn0||0,Ω̄1

s(0;v) +
1
2
||n0||0,Ω̄1

s(0;v) for T ≤ T1.

Next we estimate [[∂αn]]0,γ,Λ̄1
s(T ;v), |α| = 1 using Lemma A.2 and (A.84).

By direct calculation, we have following estimates: For T > 0 sufficiently small, we have

• [[∂xjn0(α(x, t))]]0,γ,Λ̄1
s(T ;v) ≤ 4γ max

|α|=1
[∂αn0]0,γ,Ω̄1

s(0;v),(A.108)

• [[∂2
xixj

vin]]0,γ,Λ̄1
s(T ;v) ≤ 6K0(δ∗)2 max{22γ+1, 3},(A.109)

• [[∂xivi∂xjn]]0,γ,Λ̄1
s(T ;v) ≤ 3K0δ

∗[[∇n]]0,γ,Λ̄1
s(T ;v) + 3K0δ

∗|||∇n|||0,Λ̄1
s(T ;v),(A.110)

• [[∂xin∂xjvi]]0,γ,Λ̄1
s(T ;v) ≤ 3K0δ

∗
(
[[∇n]]0,γ,Λ̄1

s(T ;v) + max
|α|=1

|||∂αn|||0,Λ̄1
s(T ;v)

)
.(A.111)

We combine estimates (A.108) - (A.111) to get

max
|α|=1

[[∂αn]]0,γ,Λ̄1
s(T ;v) ≤ 4γ max

|α|=1
[∂αn0]0,γ,Ω̄1

s(0;v) + 12K0δ
∗C1(T )

×
(
δ∗max{22γ+1, 3}+ max

|α|=1
[[∂αn]]0,γ,Λ̄1

s(T ;v) + max
|α|=1

|||∂αn|||0,Λ̄1
s(T ;v)

)
.(A.112)

We assume T1 is sufficiently small so that

(A.113) K0δ
∗C1(T1) ≤ 1

24
and hence for T ∈ (0, T1], (A.112) implies

max
|α|=1

[[∂αn]]0,γ,Λ̄1
s(T ;v) ≤ 22γ+1 max

|α|=1
[∂αn0]0,γ,Ω̄1

s(0;v) + δ∗max{24γ , 3}

+ 2 max
|α|=1

||∂αn0||0,Ω̄1
s(0;v) +

1
2
||n0||0,Ω̄1

s(0;v).(A.114)

We combine (A.107) and (A.114) to obtain

(A.115) max
|α|=1

|||∂αn|||0,γ,Λ̄1
s(T ;v) ≤ 2δ∗max{22γ+1, 4}.

(iii) Now we estimate the time derivative of n. Recall that n satisfies

(A.116) ∂tn +∇ · (nv) = 0.
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Next we use (A.102), (A.115) and (A.116) to see

||∂tn||0,γ,Λ̄1
s(T ;v) ≤ 2 max

|α|=1
||∂αn||0,γ,Λ̄1

s(T ;v) · |||v|||0,γ,Λ̄(T ) + ||n||0,γ,Λ̄1
s(T ;v))||∇ · v||0,γ,Λ̄(T ))

≤ 15K0(δ∗)2 max{22γ+1, 4}.(A.117)

Finally we set

R1(K0, δ
∗, γ) := max{22γ+1, 3}δ∗ + 2δ∗max{22γ+1, 4}+ 15K0(δ∗)2 max{22γ+1, 4}

to see that (A.102), (A.115) and (A.117) imply the desired result. ¤

A.1.2. A priori estimates for Step 2. In this part, we will give existence, uniqueness and
regularity for the function ζ as given in Step 2 of Section 7.2.

Recall from Step 2, ζ satisfies the exterior Neumann problem for Laplace’s equation at
given time t ∈ [0, T ]:

(A.118)





∆ζ(·, t) = 0, x ∈ Ω1,

∇ζ · ν0 = h0, x ∈ ∂Ω0 and lim
|x|→∞

∇ζ = 0.

Lemma A.4. h0 ∈ C1,γ(∂Ω0 × [0, T ]) and satisfies

|||h0|||1,γ,∂Ω0×[0,T ] ≤ δ∗ + 6C̄0K0R1(δ∗)2,

where C̄0 is a positive constant.

Proof. Recall that h0 = ∂tg − (nv) · ν0. Then

|||h0|||1,γ,∂Ω0×[0,T ] ≤ |||∂tg|||1,γ,∂Ω0×[0,∞)

+ |||nv1ν01|||1,γ,∂Ω0×[0,T ] + |||nv2ν02|||1,γ,∂Ω0×[0,T ].(A.119)

Since the product of Hölder continuous functions is again Hölder continuous (see [33], pg.
53), we have

|||nv1ν01|||1,γ,∂Ω0×[0,T ] + |||nv2ν02|||1,γ,∂Ω0×[0,T ]

≤ C̄0

(
|||n|||1,γ,∂Ω0×[0,T ]|||v1|||1,γ,∂Ω0×[0,T ]|||ν01|||1,γ,∂Ω0×[0,T ]

+|||n|||1,γ,∂Ω0×[0,T ]|||v2|||1,γ,∂Ω0×[0,T ]|||ν02|||1,γ,∂Ω0×[0,T ]

)

≤ 6C̄0K0R1(δ∗)2.(A.120)

Here C̄0 is a positive constant and we used Lemma A.3, max
i=1,2

|||vi|||1,γ,Λ̄(T ) ≤ 3K0δ
∗, and

inequalities

|||n|||1,γ,∂Ω0×[0,T ] ≤ |||n|||1,γ,Λ̄1
s(T ;v) and |||vi|||1,γ,∂Ω0×[0,T ] ≤ |||vi|||1,γ,Λ̄(T ).

Hence in (A.119), we use (A.120) and the assumption (A2) of Section 7.2 to get

(A.121) |||h0|||1,γ,∂Ω0×[0,T ] ≤ δ∗ + 6C̄0K0R1(δ∗)2.

¤
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Recall the annulus region (7.65) in Section 7.2:

Ω∗ = {x ∈ R2 :
δ∗2
2

< |x| < 2δ∗}.

The following existence and uniqueness result of two-dimensional exterior Neumann prob-
lem (A.118) is due to the results of Bers [11] and Finn-Gilbarg [29].

Lemma A.5. Suppose the boundary data h0 is in C1,γ(∂Ω0× [0,∞)) as provided by Lemma
A.4. Then there exists a unique solution ζ up to constant of (A.118) satisfying the following
estimates: For the compactly supported subset Ω∗ of Ω1, we have

(1)

|||∇ζ|||1,γ,Ω̄∗×[0,T ] + sup
0≤t≤T

max
|α|=3

|||∂αζ(·, t)|||0,γ,Ω̄∗ ≤ R̄1, 0 ≤ t ≤ T,

where R̄1 is a positive constant which depends only on Ω0, δ∗.
(2) Let h

(n)
0 ∈ C1,τ (∂Ω0 × [0,∞)) be a sequence of boundary data satisfying the bound

(A.121) and

h
(n)
0 → h0 in C1,τ (∂Ω0 × [0,∞)) as n →∞.

Suppose ∇ζ(n) and ∇ζ are the corresponding solutions to the above exterior Neu-
mann problem (A.118) for data h

(n)
0 , h0 respectively. Then we have

∇ζ(n) → ∇ζ in (C1,τ (Ω̄∗ × [0, T ]))2 as n →∞.

Proof. (i) Since Ω∗ is compactly supported in Ω1, it follows from the interior Schauder
estimates ([33], Section 6.1), we have

||∇ζ(·, t)||1,γ,Ω̄∗ + max
|α|=3

||∂αζ(·, t)||0,γ,Ω̄∗

≤ C0(Ω0,Ω∗)|||h0|||1,γ,∂Ω0×[0,T ]

≤ C0(Ω0,Ω∗)(δ∗ + 6C̄0K0R1(δ∗)2), 0 ≤ t ≤ T.(A.122)

Let 0 ≤ s < t. Then it follows from Laplace’s equation and the boundary condition that




∆
(

ζ(x,t)−ζ(x,s)
|t−s|γ

)
= 0, x ∈ Ω1, 0 ≤ s < t ≤ T,

∇
(

ζ(x,t)−ζ(x,s)
|t−s|γ

)
· ν0 = h0(x,t)−h0(x,s)

|t−s|γ , x ∈ ∂Ω0.

We now apply the global Schauder estimate ([33], Section 6.2) to get

|∇ζ(x, t)−∇ζ(x, s)|
|t− s|γ

≤ C1(Ω0,Ω∗)|||h0|||1,γ,∂Ω0×[0,T ]

≤ C1(Ω0,Ω∗)(δ∗ + 6C̄0K0R1(δ∗)2), x ∈ Ω1.(A.123)

We take the supremum over t 6= s to get

(A.124) sup
t 6=s

|∇ζ(x, t)−∇ζ(x, s)|
|t− s|γ ≤ C1(Ω0, Ω∗)(δ∗ + 6C̄0K0R1(δ∗)2), x ∈ Ω1.
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Let (x, t) 6= (y, s) and without loss of generality, assume that x 6= y, t 6= s. From (A.122)
and (A.125), the Hölder quotient satisfies

|∇ζ(x, t)−∇ζ(y, s)|
|(x, t)− (y, s)|γ ≤ |∇ζ(x, t)−∇ζ(x, s)|

|t− s|γ +
|∇ζ(x, s)−∇ζ(y, s)|

|x− y|γ
≤ [∇ζ(x, ·)]0,γ,[0,T ] + [∇ζ(·, s)]0,γ,Ωs(s)

≤ (C0(Ω0, Ω∗) + C1(Ω0, Ω∗))(δ∗ + 6C̄0K0R1(δ∗)2).

Taking sup over the time-space region Ω∗ × [0, T ], we have

(A.125) [∇ζ]0,γ,Ω̄∗×[0,T ] ≤ (C0(Ω0, Ω∗) + C1(Ω0, Ω∗))(δ∗ + 6C̄0K0R1(δ∗)2).

Similarly we can estimate max
|α|=2

|||∂αζ|||0,γ,Ω̄∗×[0,T ] to get

(A.126) max
|α|=2

|||∂αζ|||0,γ,Ω̄∗×[0,T ] ≤ C2(Ω0, Ω∗)(δ∗ + 6C̄0K0R1(δ∗)2).

Finally we combine (A.122), (A.125) and (A.126) to get

|||∇ζ|||1,γ,Ω̄∗×[0,T ] + sup
0≤t≤T

max
|α|=3

|||∂αζ(·, t)|||0,γ,Ω̄∗ ≤ R̄1,

where R̄1 := (C0(Ω0, Ω∗) + C1(Ω0, Ω∗) + C2(Ω0, Ω∗))(δ∗ + 6C̄0K0R1(δ∗)2).

(ii) The difference ζ(n) − ζ satisfies
{

∆(ζ(n)(·, t)− ζ(·, t)) = 0, x ∈ Ω1,

∇(ζ(n) − ζ) · ν0 = h
(n)
0 − h0, x ∈ ∂Ω0 and ζ(n) − ζ = 0 on ∂B(0, 3δ∗).

By the Schauder estimates (Section 6.2 in [33]), we have

||∇ζ(n)(·, t)−∇ζ(·, t)||1,τ,Ω̄1
≤ C||h(n)

0 − h0||1,τ,∂Ω0 .

Letting n →∞, it follows from the above inequality and hypothesis (2) of this lemma that

(A.127) ∇ζ(n)(·, t) → ∇ζ(·, t) in (C1,τ (Ω̄1))2, 0 ≤ t ≤ T.

For the time-estimates we apply the same method as in (i) to get

(A.128) ∇ζ(n)(x, ·) → ∇ζ(x, ·) in (C1,τ ([0, T ]))2, x ∈ Ω̄∗.

We combine (A.127) and (A.128) to see

∇ζ(n) → ∇ζ in (C1,τ (Ω̄1 × [0, T ]))2.

This yields

∇ζ(n) → ∇ζ in (C1,τ (Ω̄∗ × [0, T ]))2.

¤
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A.1.3. A priori estimates for Step 3. We now need to give existence, uniqueness and
regularity for the interface of Step 3 of Section 7.2.

Lemma A.6. 1. Assume that ζ satisfies estimate (1) of Lemma A.5:

||∇ζ||1,γ,Ω̄∗×[0,T ] + sup
0≤t≤T

max
|α|=3

||∂αζ(·, t)||0,γ,Ω̄∗ ≤ R̄1.

Then there exists a unique solution for the interface system (7.64) satisfying

(θ, ns, r) ∈ (C1,γ(R× [0, T ]))3 and (∂βθ, ∂βns, ∂βr)(·, t) ∈ (C2,γ(R))3, t ∈ [0, T ].

Moreover, we have

• ||θ||1,γ,R×[0,T ] + ||ns||1,γ,R×[0,T ] + ||r||1,γ,R×[0,T ]

≤ 2
(
||θ0||1,γ,R + ||ns0||1,γ,R + ||r0||1,γ,R

)
,

• ||∂βθ(·, t)||2,γ,R + ||∂βns(·, t)||2,γ,R + ||∂βr(·, t)||2,γ,R

≤ 2
(
||∂βθ0||2,γ,R + ||∂βns0||2,γ,R + ||∂βr0||2,γ,R

)
.

2. Let

∇ζ(n) → ∇ζ in (C1,τ (Ω̄∗ × [0, T ]))2 as given by (2) of Lemma A.4,

and let (θ(n), n
(n)
s , r(n)) and (θ, ns, r) be the solutions of the sheath system corresponding to

∇ζ(n) and ∇ζ respectively. Then we have

(θ(n), n(n)
s , r(n)) → (θ, ns, r) in (C1,τ (R× [0, T ]))3 as n →∞.

Proof. The result is just continuity with respect to data for the hyperbolic system (7.64).
The proof of convergence in C1(R× [0, T ]) follows from the argument in [25]. The proof of
Hölder norms C1,γ(R× [0, T ]) is similar to that of [25] (see [39]. ¤

A.1.4. A priori estimates for Step 4. We next present the existence, uniqueness and
regularity of the ion density n in the region Λ2

s(T ) given by Step 4 of Section 7.2.

Lemma A.7. Let n be the ion-density obtained from Step 4. Then the formulas in Step 4,
namely n satisfies the differential equations:





d

ds
χ(s, t0,α) = v(χ(s, t0,α), s), s > t0,

d

ds
ln n(χ(s, t0,α), s) = −(∇ · v)(χ(s, t0, α), s),

subject to initial and boundary data:

χ(t0, t0, α) = α and n(α, t0) =

{
n0(α) t0 = 0,

ns(α, t0) t0 > 0,

are indeed valid. Furthermore for sufficiently small T , the following estimates hold:

n ∈ C1,γ(Λ2
s(T ;v)) and ||n||1,γ;Λ2

s(T ;v) ≤ R2,

where R2 is a positive constant depending only on K0, δ
∗, γ.
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Proof. The proof follows from Remark A.1, i.e. since backward characteristics starting at
a point (x, t) ∈ Λ2

s(T ;v) can be traced back to a point (α, 0) in the absence of the sheath
interface, the presence of the sheath interface means backward characteristics must hit either
a point in Ω2

s(0;v) or a point in the sheath interface. Furthermore, the segment of backwards
characteristic between (x, t) and (α, 0) can hit the sheath interface at most once. Indeed, the
backwards characteristic can enter but not exit the domain Λs(T ;v) = Λ1

s(T ;v)∩Λ2
s(T ;v)

through the interface surface at time 0 < t < T . This is because initially u0 = −ν on S(0),
hence |v · ν + 1| < ε on S(t) for 0 < t < T by (A1) and Theorem ??, where T > 0 is
sufficiently small depending only on initial data, boundary data, and ε > 0. By choosing

ε > 0 sufficiently small, the vector field for the characteristic
dχ

dt
= v(χ, t) always points

into the domain Λs(T ;v) at the point of intersection with the sheath interface.
Hence the formulas follow from (7.67). Furthermore the regularity estimates in the state-

ment of the lemma can be obtained in a similar manner as in Lemma A.3. ¤
We combine Lemma A.3 and Lemma A.7 to get the regularity result for n in the sheath

region.

Lemma A.8. For sufficiently small T , we have

n ∈ C1,γ(Λ̄s(T ;v)) and ||n||1,γ,Λ̄s(T ;v) ≤ R1 + R2.

A.1.5. A priori estimates for Step 5. We next give the existence, uniqueness and regu-
larity for the function φ defined in Step 5.

Consider Poisson’s equation on the space-time sheath region Λs(T ;v): Let t ∈ [0, T ] be
given and φ satisfy

(A.129)

{
∆φ = n in Ωs(t;v),
∇φ · ν0 = g on ∂Ω0 and φ = − ln ns on S(t).

Lemma A.9. Let n be an ion density in the sheath region Λs(T ;v) and satisfy the a priori
estimate in Lemma A.8. Then Poisson’s equation (A.129) has a unique solution φ satisfying
the following estimate:

max
1≤|α|≤2

|||∂αφ|||0,γ,Λ̄s(T ;v) + sup
0≤t≤T

max
|α|=3

||∂αφ(·, t))||0,γ,Ω̄s(t;v) ≤ R3.

Here R3 is a positive constant only depending on K0, δ∗i, i = 1, 2 and δ∗ respectively.

Proof. (i) Differentiation of (A.129) with respect to t shows that ∂tφ satisfies the mixed
Dirichlet-Neumann problem for Poisson’s equation.{

∆∂tφ = −div(nv) in Ωs(t;v),
∇∂tφ · ν0 = ∂tg on ∂Ω0 and ∂tφ = −∂t ln ns on S(t),

where we used ∇φ · ν = 0 and ∇n · ν = 0 on the interface S(t), 0 ≤ t ≤ T .
By the direct application of Hölder estimates of the first derivatives given in ([33], Section

8), we have

||∂tφ||2,γ,Ω̄s(t;v) ≤ C̄1

(
||∂tg||1,γ,Ω̄s(t;v) + |||nv|||1,γ,Ω̄s(t;v) + ||∂t ln ns||2,γ,R

)
.

Here C̄1 depends on Ω0 and S(t), but we can choose uniform C̄1 independent of t and
depending only on δ∗ and δ∗ for sufficiently small T , 0 ≤ t ≤ T .
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On the other hand, since v ∈ B(T ), we have

• |||nv|||1,γ,Ω̄s(t;v) ≤ C̄2||n||1,γ,Ω̄s(t;v)||v||1,γ,Ω̄s(t;v) ≤ C̄3K0(R2 + R3)δ∗,
• ||∂tg||1,γ,Ω̄s(t;v) ≤ δ∗ by the assumption (A2) in Section 7.2,

where C̄2 and C̄3 are some positive constants.
It follows from the interface equation (7.64) that

∂tns

ns
= −

(4 sin β sin θθ

r

)
∂βθ −

(2 sin βṼ cos θ

rns

)
∂βns,

Ṽ = −1− ∇ζ · (cos θ, sin θ)
ns

.

We use the above relation and the estimates from Lemma A.5 (1) to obtain

||∂t ln ns||2,γ,R ≤ C(δ∗1, δ∗).

Here C(δ∗1, δ∗) is a positive constant depending only on δ∗1, δ∗. Hence we have

(A.130) sup
0≤t≤T

||∂tφ(·, t)||2,γ,Ω̄s(t;v) ≤ R3,0(K0, δ∗1, δ∗2, δ∗) for t ∈ [0, T ].

(ii) It follows from the Schauder estimates (Section 6.2 in [33]) that

||φ(·, t)||2,γ,Ω̄s(t;v) ≤ C̄4

(
||n(·, t)||0,γ,Ω̄s(t;v) + ||g(·, t)||1,γ,∂Ω0 + || ln ns(·, t)||2,γ,R

)

≤ R3,1(K0, δ∗1, δ∗2, δ∗), 0 ≤ t ≤ T.(A.131)

Here C̄4 depends only on the Ω0 and S(t), but again we can choose C̄4 depending only on
δ∗ and δ∗ for sufficiently small T, 0 ≤ t ≤ T .

Let (x, t) and (y, s) be any points in Λs(T ;v). Without loss of generality, we assume
that 0 ≤ s < t. By assumption (A4) of Section 7.2, we have a contracting interface so that

Ωs(t;v) ⊂ Ωs(s;v), 0 ≤ s < t ≤ T ¿ 1.

Hence x ∈ Ωs(t;v). Then inequality (A.130) implies, for x ∈ Ωs(t;v)

(A.132) max
1≤|α|≤2

||∂αφ(x, ·)||0,γ,[0,T ] ≤ R3,0(K0, δ∗1, δ∗2, δ∗)T 1−γ .

We combine (A.131) and (A.132) and choose T sufficiently small to get

(A.133) max
1≤|α|≤2

|||∂αφ|||0,γ,Λ̄s(T ;v) ≤ R3,2(K0, δ∗1, δ∗2, δ∗).

(In fact the above argument holds for the expanding interfaces as well).

(iii) On the other hand, ∂xiφ, i = 1, 2 satisfies

(A.134)

{
∆∂xiφ = ∂xin in Ωs(t;v),
∇∂xiφ · ν0 = ∂xig on ∂Ω0 and ∂xiφ = −∂xi lnns on S(t).

Again, it follows from the Poisson equation and the Schauder estimates (Section 6.2 in [33])
that

||∂xiφ(·, t)||2,γ,Ω̄s(t;v)

≤ C̄5

(
||∂xin(·, t)||0,γ,Ω̄s(t;v) + ||∂xig(·, t)||1,γ,∂Ω0 + ||∂xi ln ns(·, t)||2,γ,R

)
.(A.135)
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Here C̄5 depends on S(t), but we can choose C̄5 depending only on δ∗i, i = 1, 2 and δ∗ for
sufficiently small T, 0 ≤ t ≤ T .

The first two terms in the right hand side of (A.135) can be bounded by a quantity
depending on δ∗ using Lemma A.7 and assumptions (A1)-(A2) of the boundary data in
Section 7.2, i.e.,

(A.136) ||∂xin(·, t)||0,γ,Ω̄s(t;v) + ||∂xig(·, t)||1,γ,∂Ω0 ≤ C̄6.

Here C̄6 is a positive constant depending only on δ∗1 and δ∗.
Now we estimate the third term ||∂xi lnns||2,γ,R as follows. It follows from (7.57) that we

have

∂x1 = −2 sin β

r
∂β

and similarly we can express ∂x2 in terms of ∂β. Therefore we have

(A.137) ||∂xi ln ns(·, t)|||2,γ,R =
∣∣∣
∣∣∣∂xins(·, t)

ns(·, t)
∣∣∣
∣∣∣
2,γ,R

≤ C̄7 i = 1, 2.

Here C̄7 is a positive constant depending only on δ∗1 and δ∗.
Combining estimates (A.136) and (A.137), we obtain

max
|α|=1

||∂αφ(·, t)||2,γ,Ω̄s(t;v) ≤ R3,3(K0, δ∗1, δ∗2, δ∗) for t ∈ [0, T ].

The above inequality implies

sup
0≤t≤T

max
|α|=1

||∂αφ(·, t)||0,γ,Ω̄s(t;v) ≤ R3,3(K0, δ∗1, δ∗2, δ∗) for t ∈ [0, T ].

In particular we have

(A.138) sup
0≤t≤T

max
|α|=3

||∂αφ(·, t)||0,γ,Ω̄s(t;v) ≤ R3,3(K0, δ∗1, δ∗2, δ∗) for t ∈ [0, T ].

We set R3(K0, δ∗1, δ∗2δ∗) := R3,2(K0, δ∗1, δ∗2, δ∗)+R3,3(K0, δ∗1, δ∗2, δ∗) and use (A.135) and
(A.138) to get the desired result. ¤

A.1.6. A priori estimates for Step 6. In this part, we give the existence, uniqueness and
regularity for the ion velocity û defined in Step 6 of Section 7.2.

Consider the Burgers’ equation with a known source ∇φ:

(A.139) ∂tû + (û · ∇)û = ∇φ, (x, t) ∈ R2 × R+.

Lemma A.10. Suppose the source ∇φ satisfies the estimates obtained in Lemma A.9. Also
assume initial data u0 satisfy the assumption (A3) of Section 7.2 so that

(1) ∇φ ∈ C1,γ(Λ̄s(T ;v)) and ∇φ(·, t) ∈ C2,γ(Ωs(t;v));
(2) for each α ∈ R2, the real parts of the eigenvalues of ∇u0(α) are non-negative;
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the there is a positive constant T2 such that (A.139) has a unique solution û ∈ C1,γ(Λ̄s(T ;v))
satisfying

det Γ(α, t) > 0 and

û(χ(t, 0, α)) = u0(α) +
∫ t

0
∇φ(χ(s, 0, α), s)ds, t ∈ [0, T2],(A.140)

û(x, t) · x ≤ −η0

2
|x|2, (x, t) ∈ (B(0, rb + 6K0δ

∗T2)− Ω0)× [0, T2],

where T2 is a positive constant and

dχ(t, 0, α)
dt

= û(χ(t, 0, α), t) and Γ(α, t) = ∇û(α, t).

Proof. (i) Along the particle path χ(t, 0, α), system (A.139) becomes

(A.141)
Dû
Dt

= ∇φ, where
D

Dt
= ∂t + û · ∇

Any smooth solution of (A.140) will satisfy

(A.142)
d2χ(t, 0, α)

dt2
= ∇φ(χ(t, 0, α), t); χ(α, 0) = α,

dχ(0, 0, α)
dt

= u0(α).

Since ∇φ(·, t) is Lipschitz continuous and uniformly bounded, there exists a unique char-
acteristic curve χ(t, 0,α) satisfying (A.142) locally in time t. Now we integrate (A.142) to
get

(A.143)
dχ(t, 0, α)

dt
= u0(α) +

∫ t

0
∇φ(χ(s, 0,α), s)ds.

and integration of the above equation yields

χ(t, 0, α) = χ(0, 0, α) + tu0(α) +
∫ t

0

∫ t1

0
∇φ(χ(s, 0, α), s)dsdt1

= α + tu0(α) +
∫ t

0

∫ t1

0
∇φ(χ(s, 0,α), s)dsdt1.(A.144)

Next we differentiate (A.144) with respect to α to get

(A.145) Γ(α, t) = I + t∇u0(α) +
∫ t

0

∫ t1

0
(∇⊗∇)φ(χ(s, 0, α), s)Γ(α, s)dsdt1.

Set
y(t) = |Γ(α, t)− I − t∇u0(α)|,

where | · | denotes any norm on 2× 2 matrices so that we have

y(t) ≤
∫ t

0

∫ t1

0
|(∇⊗∇)φ(χ(s, 0, α), s)||Γ(α, s)|dsdt1.

Since

|Γ(α, t)| = |Γ(α, t)− I − t∇u0(α)|+ |I + t∇u0(α)|
≤ y(t) + 1 + d1t,
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where sup
α∈Ω(0)

|∇u0(α)| ≤ d1, we have from (A.145) that

y(t) ≤
∫ t

0

∫ t1

0
d2(y(s) + 1 + d1s)dsdt1,

where |∇ ⊗∇φ(χ(s, 0,α)| ≤ d2 for α ∈ Ω(0), 0 ≤ s ≤ T . Hence we have

y(t) ≤ d2

( t2

2
+ d1

t3

3

)
+ d2

∫ t

0

∫ t1

0
y(s)dsdt1

and by Appendix B
y(t) ≤ d3t

2 on 0 ≤ t ≤ T,

for sufficiently small T , i.e.,

|Γ(α, t)− I − t∇u0(α)| ≤ d3t
2, 0 ≤ t ≤ T.

Define
tD(t,α) := Γ(α, t)− I − t∇u0(α).

Then we have
|D(t,α)| ≤ d3t for some constant d3 > 0

and
det(Γ(α, t)) = det(I + t(∇u0(α) + D(t,α))).

Let λi(α, t) and λi(α), i = 1, 2 be the eigenvalues of a matrix ∇u0(α) + D(t,α)
and ∇u0(α) respectively. Then we can see that

λi(α, t) = λi(α) +O(t).

By the Cayley-Hamilton theorem, we have

det(Γ(α, t)) = (tλ1(α, t) + 1)(tλ2(α, t) + 1)
= (tλ1(α) + 1)(tλ2(α) + 1) +O(t2)
= det(I + t∇u0(α)) +O(t2).

As long as 0 ≤ t ≤ T ¿ 1, the sign of det(Γ(α, t)) will be determined by det
(
I +t∇u0(α)

)
.

Next we calculate det(I + t∇u0(α)). Let us set the characteristic polynomial of ∇u0(α)
by P (α, λ). Then we have

P (α, λ) ≡ det(∇u0(α)− λI) = (λ1(α)− λ)(λ2(α)− λ),

where λi(α) are the eigenvalues of ∇u0(α). Hence

det
(
I + t∇u0(α)

)
= t2 det

(
∇u0(α) + t−1I

)
= t2P (α,−t−1)

= t2(λ1(α) + t−1)(λ2(α) + t−1)
= (tλ1(α) + 1)(tλ2(α) + 1).

Since by assumption (2) above, real parts of the eigenvalues of the Jacobian matrix ∇u0(α)
are nonnegative, we have

det Γ(α, t) ≥ Π2
q=1[1 + t Re λq(α)] +O(t2) > 0, 0 ≤ t ≤ T ¿ 1.

Hence the Lagrangian map is a C1-diffeomorphism locally in time.
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(ii) It follows from (A.140) that

û(χ(t, 0, α), t) = u0(α) +
∫ t

0
∇φ(χ(s, 0, α), s)ds.

We take an inner product with χ(t, 0, α), t) to get

〈û(χ(t, 0, α), t), χ(t, 0, α)〉

= 〈u0(α), χ(t, 0,α)〉+
∫ t

0
〈∇φ(χ(s, 0,α), χ(t, 0, α)〉ds

= 〈u0(α), χ(t, 0,α)−α〉+ 〈u0(α), α〉+
∫ t

0
〈∇φ(χ(s, 0, α),χ(t, 0,α)〉ds.(A.146)

Since

|χ(t, 0, α)−α| =
∣∣∣
∫ t

0
v(χ(s, 0, α), s)ds

∣∣∣ ≤ 6K0δ
∗T,

and |||∇φ|||0,Λ̄s(T ;v) ≤ R3,

Hence in (A.146), we have

〈û(χ(α, t), t),χ(α, t)〉 ≤ 6K0(δ∗)2T − η0||α||2 + R3T.

Now we choose T sufficiently small so that
(
6K0(δ∗)2 + R3

)
T ≤ η0r

2
a

2
≤ η0

2
||α||2, α ∈ Ωs(0).

Then we have
〈û(χ(α, t), t),χ(α, t)〉 ≤ −η0

2
||α||2.

On the other hand, since
d

ds
|χ(0, 0, α)|2 ≤ −2η0|χ(0, 0,α)|2 = −2η0|α|2,

we have
|χ(t, 0, α)| ≤ |α| for t ≤ T ¿ 1.

Therefore we obtain

〈û(χ(t, 0, α), t),χ(t, 0, α)〉 ≤ −η0

2
|χ(t, 0, α)|2.

¤
A.1.7. A priori estimates for Step 7 of Section 7.2. Finally we prove the existence of
a linear extension map and some estimates of the extension.

Lemma A.11. Let S(t), t ∈ [0, T ] be the C2,γ-regular simple closed convex curve in R2

provided by Lemma A.6 such that S(t) lies inside the annulus Ω∗ and Ωs(t;v) is the corre-
sponding sheath region 0 ≤ t ≤ T , T sufficiently small. Then there exists a bounded linear
operator E(·;S(t)) : C2,γ(Ωs(t;v)) → C2,γ(Ω1) satisfying

(a) E(û|S(t)) = û, in Ωs(t;v),
(b) E(û|S(t)) has support in B(0, 3δ∗),
(c) |||E(û|S(t))|||2,γ,Ω̄1

≤ K0|||û|||2,γ,Ω̄s(t;v),

where K0 is independent of t ∈ [0, T ] and Ω∗ is the annulus region (7.65).

Proof. Since the proof is rather long, we delay its proof until Appendix C. ¤
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A.2. Continuity of F . In this part, we establish the continuity of F which in turn imply
the existence of a fixed point of F .

Lemma A.12. Let f be a continuous function such that

f(t) ≤ C0 + C1(f(t))2, t ≥ 0,

f(0) ≤ C0 and C0C1 ≤ 1
8
,

where C0 and C1 are positive constants independent of t. Then we have

f(t) ≤ 2C0.

Proof. Define
F (k) = C1k

2 − k + C0.

Then by direct calculation, we have

minF (k) =
−1 + 2C0C1

2C1
< 0 at k =

1
2C1

.

Now we denote r1 and r2 by the roots of F (k) = 0 such that r1 < r2. Then by direct
calculation, the smallest root r1 satisfies

C0 ≤ r1 =
2C0

1 +
√

1− 4C0C1
≤ 4(

√
2− 1)C0 ≤ 2C0.

On the other hand, since F (f(t)) ≥ 0, we have two cases:

either f ≤ r1 or f ≥ r2,

however since f(0) ≤ C0 ≤ r1 and f(t) is continuous, we have

f ≤ r1 ≤ 2C0.

¤
Proposition A.1. There exists a positive constant T such that the map F with F(v) :=
E(û;S(t)) is a well-defined map from B(T ) to B(T ).

Proof. For the time being, we assume T sufficiently small so that

(A.147) T ≤ min{T1, T2}.
So all estimates in the previous lemmas hold.
(i) By the construction of û in the sheath region Λs(T ;v), we have from solving (A.139)
along the characteristic

(A.148) û(x, t) =

{
u0(α(x, t)) +

∫ t
0 ∇φ(χ̂(s, t,x), s)ds t0 = 0,

−ν(α(x, t)) +
∫ t
t0
∇φ(χ̂(s, t,x), s)ds t0 > 0.

In (A.148), we have

||ûi||0,Λ̄s(T ;v) ≤
{
||ui0||0,Ω̄s(0) + t|||∇φ|||0,Λ̄s(T ;v) t0 = 0,

1 + (t− t0)|||∇φ|||0,Λ̄s(T ;v) t0 > 0.

This of course implies

||ûi||0,Λ̄s(T ;v) ≤ ||ui0||0,Ω̄s(0) + T |||∇φ|||0,Λ̄s(T ;v)

≤ ||u0i||0,Ω̄s(0) + TR3 by Lemma A.8.(A.149)
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On the other hand, we use Lemma A.2 to obtain

(A.150) [[ûi]]0,γ,Λ̄s(T ;v) ≤ [u0i]0,γ,Ω̄s(0) + C1(T )R3.

We combine (A.149) and (A.150) to get

(A.151) ||ûi||0,γ,Λ̄s(T ;v) ≤ ||u0i||0,γ,Ω̄s(0) + TR3 + C1(T )R3.

We assume T sufficiently small so that

(A.152) TR3 + C1(T )R3 ≤ δ∗

3
.

Here we used C1(T ) = O(T 1−γ). Hence we have from (A.152) that

(A.153) max
i=1,2

||ûi|||0,γ,Λ̄s(T ;v) ≤ max
i=1,2

||u0i||0,γ,Ω̄s(0) +
δ∗

3
.

(ii) We differentiate the momentum equation

∂tû + û · ∇û = ∇φ

with respect to xk to find

(A.154)
D(∂xk

ûi)
Dt

+
3∑

j=1

(∂xk
ûj)(∂xi ûj) = ∂xk

(∂xiφ),

where D
Dt = ∂t + û · ∇. We integrate (A.154) along the characteristic to get

(i) if t0 = 0,

∂xk
ûi(x, t) = ∂xk

u0i(α(x, t))−
2∑

j=1

∫ t

0

(
(∂xk

ûj)(∂xi ûj)
)
(χ̂(s, t,x), s)ds

+
∫ t

0
∂xk

(∂xiφ)(χ̂(s, t,x), s)ds;

(ii) and if t0 > 0,

∂xk
ûi(x, t) = −∂xk

νi(α(x, t))−
2∑

j=1

∫ t

t0

(
(∂xk

ûj)(∂xi ûj)
)
(χ̂(s, t,x), s)ds

+
∫ t

t0

∂xk
(∂xiφ)(χ̂(s, t,x), s)ds.(A.155)

The above equalities yield

max
i=1,2

max
|α|=1

|||∂αûi|||0,Λ̄s(T ;v) ≤ max
i=1,2

max
|α|=1

||∂αu0i||0,Ω̄s(0) + 2T
(

max
i=1,2

max
|α|=1

|||∂αûi|||0,Λ̄s(T ;v)

)2

+ T max
|α|=2

|||∂αφ|||0,Λ̄s(T ;v), 0 ≤ t ≤ T.

Since T ¿ 1, it follows from Lemma A.12 that

max
i=1,2

max
|α|=1

|||∂αûi|||0,Λ̄s(T ;v) ≤ 2
(

max
i=1,2

max
|α|=1

|||∂αu0i||0,Ω̄s(0) + T max
|α|=2

|||∂αφ|||0,Λ̄s(T ;v)

)

≤ 2max
i=1,2

max
|α|=1

||∂αu0i||0,Ω̄s(0) + 2TR3.(A.156)
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On the other hand, it follows from the inequalities (A.155) and (A.84) that

max
i=1,2

max
|α|=1

[[∂αûi]]0,γ,Λ̄s(T ;v)

≤ max
i=1,2

max
|α|=1

[∂αu0i]0,γ,Ω̄s(0) + 4C1(T )
(
2max

i=1,2
max
|α|=1

||∂αû0i||0,Ω̄s(0) + 2TR3

)

×max
i=1,2

max
|α|=1

[[∂αûi]]0,γ,Λ̄s(T ;v) + C1(T )R3.

We assume that

4C1(T )
(
2 max

i=1,2
max
|α|=1

||∂αu0i||0,Λ̄s(T ;v) + 2TR3

)
≤ 1

2
.

Here we used C1(T ) = O(T 1−γ).

Then we have

(A.157) max
i=1,2

max
|α|=1

[[∂αûi]]0,γ,Λ̄s(T ;v) ≤ 2max
i=1,2

max
|α|=1

[[∇u0i]]0,γ,Ω̄s(0) + 2C1(T )R3.

We combine (A.156) and (A.157) to get

max
i=1,2

max
|α|=1

|||∂αûi|||0,γ,Λ̄s(T ;v) ≤ 2max
i=1,2

max
|α|=1

||∂αu0i||0,γ,Ω̄s(0) + 2TR3 + 2C1(T )R3.

We assume again that T is sufficiently small so that

(A.158) 2TR3 + 2C1(T )R3 ≤ δ∗

3
.

Then we have

(A.159) max
i=1,2

|||∇ûi|||0,γ,Λ̄s(T ;v) ≤ 2max
i=1,2

||∇u0i||0,γ,Ω̄s(0) +
δ∗

3
.

(iii) We differentiate (A.154) with respect to xl to obtain

D(∂2
xkxl

ûi)
Dt

+
3∑

j=1

[
(∂xl

ûj)(∂2
xjxk

ûi) + (∂xi ûj)(∂2
xkxl

ûj) + (∂xk
ûj)(∂2

xixl
ûj)

]

= ∂2
xkxl

(∂xiφ).(A.160)
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We integrate the equation (A.160) along the characteristic curve to find

(i) if t0 = 0,

∂2
xkxl

ûi(x, t) = ∂2
xkxl

u0i(α(x, t))

−
2∑

j=1

∫ t

0

(
(∂xl

ûj)(∂2
xjxk

ûi) + (∂xi ûj)(∂2
xkxl

ûj) + (∂xk
ûj)(∂2

xixl
ûj)

)
(χ̂(s, t,x), s)ds

+
∫ t

0
∂xk

∂xl
(∂xiφ)(χ̂(s, t,x), s)ds;

(ii) if t0 > 0,

∂xk
∂xl

ûi(x, t) = −∂2
xkxl

νi(α(x, t))

−
2∑

j=1

∫ t

t0

(
(∂xl

ûj)(∂2
xjxk

ûi) + (∂xi ûj)(∂2
xkxl

ûj) + (∂xk
ûj)(∂2

xixl
ûj)

)
(χ̂(s, t,x), s)ds

+
∫ t

t0

∂2
xkxl

(∂xiφ)(χ̂(s, t,x), s)ds.

(A.161)

Then it follows from (A.161) that

max
i=1,2

max
|α|=2

|||∂αûi|||0,Λ̄s(T ;v)

≤ max
i=1,2

max
|α|=2

||∂αû0i||0,Ω̄s(0) + 6T
(
2 max

i=1,2
max
|α|=1

||∂αu0i||0,γ,Ω̄s(0) +
δ∗

3

)

×max
i=1,2

max
|α|=2

|||∂αûi|||0,Λ̄s(T ;v) + TR3.

We choose T sufficiently small so that

(A.162) 6T
(
2max

i=1,2
max
|α|=1

||∂αu0i||0,γ,Ω̄s(0) +
δ∗

3

)
≤ 1

2
and TR3 ≤ δ∗

12
.

Then we have

(A.163) max
i=1,2

max
|α|=2

|||∂αûi|||0,Λ̄s(T ;v) ≤ 2max
i=1,2

max
|α|=2

||∂αu0i||0,Ω̄s(0) +
δ∗

6
.

We need to check the Hölder seminorm of ∂αûi. Again we use (A.161) to find

max
i=1,2

max
|α|=2

[[∂αûi]]0,γ,Λ̄s(T ;v)

≤ max
i=1,2

[[∂αu0i]]0,γ,Λ̄s(T ;v) + 6C1(T )
(
2max

i=1,2
max
|α|=1

||∂αu0i||0,γ,Ω̄s(0) +
δ∗

3

)

×max
i=1,2

max
|α|=2

[[∂αûi]]0,γ,Λ̄s(T ;v) + 6C1(T )
(
2max

i=1,2
max
|α|=1

||∂αu0i||0,γ,Ω̄s(0) +
δ∗

3

)

×
(
2max

i=1,2
max
|α|=2

||∂αu0i||0,Ω̄s(0) +
δ∗

6

)
+ C1(T )R3.

Here we have used (A.84).
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We assume that T sufficiently is sufficiently small that

6C1(T )
(
2max

i=1,2
max
|α|=1

||∂αu0i||0,γ,Ω̄s(0) +
δ∗

3

)
≤ 1

2
and(A.164)

6C1(T )
(
2max

i=1,2
max
|α|=1

||∂αu0i||0,γ,Ω̄s(0) +
δ∗

3

)

×
(
2max

i=1,2
max
|α|=2

||∂αû0i||0,Ωs(0) +
δ∗

6

)
+ C1(T )R3 ≤ δ∗

12
.(A.165)

Hence we have

(A.166) max
i=1,2

max
|α|=2

[[∂αûi]]0,γ,Λ̄s(T ;v) ≤ 2max
i=1,2

max
|α|=2

[∂αu0i]0,γ,Ω̄s(0) +
δ∗

6
.

We combine (A.163) and (A.166) to get

(A.167) max
i=1,2

max
|α|=2

|||∂αûi|||0,γ,Λ̄s(T ;v) ≤ 2max
i=1,2

max
|α|=2

||∂αu0i||0,γ,Ω̄s(0) +
δ∗

3
.

We combine (A.153), (A.159) and (A.167) to get

(A.168) max
i=1,2

∑

0≤k≤2

max
|α|=k

|||∂αûi|||0,γ,Λ̄s(T ;v) ≤ 2max
i=1,2

∑

0≤k≤2

max
|α|=k

||∂αu0i||0,γ,Ω̄s(0) + δ∗ ≤ 3δ∗.

(iv) It follows from the Burgers’ equation (A.139) that

max
i=1,2

|||∂tûi|||0,γ,Λ̄s(T ;v) ≤ 2
(

max
i=1,2

|||ûi|||0,γ,Λ̄s(T ;v)

)(
max
i=1,2

max
|α|=1

|||∂αûi|||0,γ,Λ̄s(T ;v)

)

+ |||∇φ|||0,γ,Λ̄s(T ;v)

≤ 18(δ∗)2 + R3.

(A.169)

Finally we combine all estimates (A.168) and (A.169) to get

max
i=1,2

(
max
|α|≤2

|||∂αûi|||0,γ,Λ̄(T )

)
≤ 3δ∗ and max

i=1,2
|||∂tûi|||0,γ,Λ̄(T ) ≤

(
18(δ∗)2 + R3

)
.

By the construction of extension of û, we find

(a) max
i=1,2

(
max
|α|≤2

|||∂αui|||0,γ,Λ̄(T )

)
≤ 3K0δ

∗,(A.170)

(b) max
i=1,2

|||∂tui|||0,γ,Λ̄(T ) ≤ K0

(
18(δ∗)2 + R3

)
.(A.171)

Here we notice that the norm || · ||0,γ,Ω̄s(t;v) in Appendix C can be generalized to the space-
time norm ||| · |||0,γ,Λ̄(T ).

Finally the estimates (A.170) and (A.171) show that u ∈ B(T ). ¤

We set
Λs(T ; r) : the sheath region determined by the interface r ,

and recall that an interface S(t) is represented by the radial function r(·, t).



62 MIKHAIL FELDMAN, SEUNG-YEAL HA, AND MARSHALL SLEMROD

Lemma A.13. ([13]) Let τ < γ,

ri → r in C1,τ (R× [0, T ]) as given by Lemma A.5 and
ûi ∈ C1,τ (Λs(T ; ri)) : be associated solutions of (A.139) for each i as given by Lemma A.10.

Let E(ûi(·, t); ri(t)) be the extension of ûi(·, t) with

E(ui(·, t); ri(t)) → w in C1,τ (Λ̄(T )).

Then we have
w = E(ŵ

∣∣∣
Λs(T ;r)

).

Proof. The proof follows from a straightforward modification of the proof in [13] as hence
is omitted. ¤

Proof of Theorem 7.3
Let {vi} be a convergent sequence in BT in the topology of T (see (7.66)) such that

vi → v in C1,τ (Λ̄(T )) and ∂αvi → ∂αv, in C0,τ |α| = 2, 0 < τ < γ.

By Proposition A.1, F(vi) is well-defined as an element of B(T ) for each i and the sequence
{F(vi)} is uniformly bounded in T . Since the Arzela-Ascoli theorem implies the compact
imbedding of C1,γ(Λ̄(T )) into C1,τ (Λ̄(T )) with 0 < τ < γ, we have a convergent subsequence
which we still denote by (vi,F(vi)):

F(vi) → w in C1,τ (Λ̄(T )).

We claim:

(A.172) F(v) = w.

Proof of the claim: Let (χi, ni, ûi,Si, φi) and (χ, n, û,S, φ) be the quantities corresponding
to vi and v respectively.

Step I. Suppose that
vi → v in C1,τ (Λ̄(T )) as i →∞.

Then it follows from Lemma A.1 (2) that χi(·, t,x) → χ(·, t,x) in C1,γ([0, T ]) as i →∞
and hence since v ∈ C1,τ (Λ̄(T )), we have

∇ · vi(χi(ξ, t,x), ξ) → ∇ · v(χ(ξ, t,x), ξ) in C1,τ (∂Ω0 × [0, T ]) as i →∞.

We use Lemma A.2 to get
(A.173)∫ t

0
∇ · vi(χi(ξ, t,x), ξ)dξ →

∫ t

0
∇ · v(χ(ξ, t,x), ξ)dξ in C1,τ (∂Ω0 × [0, T ]) as i →∞.

On the other hand, since αi → α in C1,τ (∂Ω0 × [0, T ]) as i →∞, we have

(A.174) n0(αi(x, t)) → n0(α(x, t)) in C1,τ (∂Ω0 × [0, T ]) as i →∞.

Here we used the fact that n0 is in C1,τ (R2). Recall the formula for n:

n(x, t) = n0(α(x, t)) exp
(
−

∫ t

0
(∇ · v)(χ(ξ, 0, α(x, t)), ξ)dξ

)
.

We now combine (A.173) and (A.174) and the above formula to see

ni(x, t) → n(x, t) in C1,τ (∂Ω0 × [0, T ]) as i →∞,
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which in turn implies

h0i = ∂tg − (nivi) · ν → h0 = ∂tg − (nv) · ν, in C1,τ (∂Ω0 × [0, T ]).

By Lemma A.5 and Lemma A.6, we have

∇ζi → ∇ζ in C1,τ (Ω̄∗ × [0, T ]) as i →∞,(A.175)
(θi, ri, ni) → (θ, r, n) in C1,τ (R× [0, T ]).(A.176)

Step II. Let Λs(T ;v) be the sheath region determined by v. Since F(v) is uniquely
determined by v on the sheath region, once we can show w satisfies equations (7.62)-(7.63)
and the interface conditions:

(A.177) u = −ν and ∇φ · ν = 0 on S(t),

for the orthogonal flow in the sheath region Λs(T ;v), we will have

w = F(v) in Λs(T ;v).

So let us proceed to show that w satisfies the sheath system (7.62) and boundary conditions
(A.177) in Λs(T ;v). Let O be any open set compactly supported in Λs(T ;v). Then by
(A.175) and (A.176), since ri → r in C1,τ (R× [0, T ]), we have

O ⊂ Λs(T ;vi) i ≥ N.

For i ≥ N , we know that (ni,vi, φi, ûi) satisfy



∂tni +∇ · (nivi) = 0, (x, t) ∈ O,

∆φi = ni,

∂tûi + (ûi · ∇)ûi = ∇φi,

and
(ni,vi, φi, ûi) → (n,v, φ,w) in C1,τ (Ō),

and hence we find in the limit as i →∞,



∂tn +∇ · (nv) = 0, (x, t) ∈ O,

∆φ = n,

∂tw + (w · ∇)w = ∇φ.

Next we check the boundary conditions on the sheath interface. Since by (A.176) θi → θ
in C1,γ(R) and νi = (cos θi, sin θi), we obtain

νi → ν, in C1,γ(R× [0, T ]).

On the other hand, we have

∇φi · νi = 0 and ûi = −νi on Si.

Letting i →∞, we see

∇φ · ν = 0 and w = −ν on S.

Hence we have shown that w satisfies the sheath system (7.62) in the sheath region and
boundary conditions (A.177). By the uniqueness of the construction, we have

F(v) = w on Λs(T ;v).

Step III. Recall by (A.176) that we have

ri → r in C1,τ (R× [0, T ]) and F(vi) → w.
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Then by Lemma A.12, we have

w = E(w
∣∣∣
Λs(T ;v)

) = F(v).

Hence we showed that F is continuous in the C1,τ -topology. Since F is a continuous map
on the compact and convex set B(T ) of C1,γ space, by the Schauder fixed point theorem,
F has a fixed point u such that

F(u) = u.

This u is a desired smooth solution of the sheath system. This completes the proof.
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Appendix B. Gronwall-Bellman type inequality

In this appendix, we prove the Gronwall-Bellman type inequality.

Let f be a real valued positive continuous function and suppose a nonnegative real valued
function y satisfies the following integral inequality:

y(t) ≤ f(t) + c2

∫ t

0

∫ t1

0
y(τ)dτdt1.

Then y satisfies

y(t) ≤ f(t) + c2

∫ t

0

∫ t1

0
f(s) exp[c(t− 2t1 + s)]dsdt1

= f(t) +
(

max
τ∈[0,t]

f(τ)
)
O(t2), as t → 0.

Proof. Let us set

w(t) ≡
∫ t

0

∫ t1

0
y(τ)dτdt1.

Then we have

(B.178) y(t) ≤ f(t) + c2w(t).

It is easy to see that

w′′(t) = y(t), w(0) = 0, w′(0) = 0.

In (C.179), we have a differential inequality for w:

w′′(t) ≤ c2w(t) + f(t).

Now we introduce another dependent variable u defined by

w(t) = exp(ct)u(t).

By direct calculation, we obtain a differential inequality for u:

u′′ + 2cu′ ≤ f(t) exp(−ct).

We multiply an integrating factor exp(2ct) to get
(

exp(2ct)u′
)′
≤ f(t) exp(ct).

Next we integrate the above inequality to get

u(t) ≤
∫ t

0

∫ t1

0
f(s) exp[−c(2t1 − s)]dsdt1,

where we used
u(0) = 0, u′(0) = 0.

This implies

w(t) = exp(ct)u(t)

≤
∫ t

0

∫ t1

0
f(s) exp[c(t− 2t1 + s)]dsdt1.



66 MIKHAIL FELDMAN, SEUNG-YEAL HA, AND MARSHALL SLEMROD

In (B1), we have

y(t) ≤ f(t) + c2

∫ t

0

∫ t1

0
f(s) exp[c(t− 2t1 + s)]dsdt1

≤ f(t) + c2
(

max
τ∈[0,t]

f(τ)
)∫ t

0

∫ t1

0
exp[c(t− 2t1 + s)]dsdt1

= f(t) +
(

max
τ∈[0,t]

f(τ)
)
O(t2) as t → 0,

where we used∫ t

0

∫ t1

0
exp[c(t− 2t1 + s)]dsdt1 =

1
c2

[
− 1 +

1
2
(e−ct + ect)

]
=
O(t2)

c2
as t → 0.

¤
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Appendix C. Extension Theorem

In this part, we present an extension theorem for C2,γ-functions defined on the sheath
region Ωs(t;v), t ∈ [0, T ] to the bigger domain Ω1 := B(0, 3δ∗)− Ω0.

We first consider an upper bounds for the length of a convex polygon and a simple closed
convex curve inside the annulus A(r1, r2) defined by

A(r1, r2) := {x ∈ R2 : r1 < |x| < r2}.
Lemma C.1. Let P and C be a convex n-polygon and a convex curve inside the annulus
A(r1, r2) respectively. Then we have

l(P) ≤ 2πr2 and l(C) ≤ 2πr2,

where l(P) and l(C) denote the lengths of the polygon P and the curve C respectively.

Proof. (i) Let P = P(x1, · · · ,xn) be a convex n-polygon whose vertices are x1, · · · ,xn. We
choose any point c0 inside P, and we set

yi : the intersection point with a ray
−→
c0xi and a circle B(0, r2).

Then it is easy to see that

(C.179) l(P(x1, · · · ,xn)) ≤ l(P(y1, · · · ,yn)).

On the other hand we know that

(C.180) l(P(y1, · · · ,yn)) ≤ l(B(0, r2)) = 2πr2.

We combine (C.179) and (C.180) to obtain

l(P) ≤ 2πr2.

(ii) Let C be a simple closed convex curve lying inside A(r1, r2). Note that for any simple
closed convex curve there exists some polygon whose sides are parts of supporting lines of
the given convex curve. Choose a sufficiently small positive constant r0 > 0. Since the
curve C is compact, there exists a finite open cover of C consisting of balls with a center x̄i

and a radius r0, say,
C ⊂ ∪M

i=1B(x̄i, r0), where x̄i ∈ C.
Consider an M -polygon consisting of parts of supporting lines at x̄i, i = 1, · · · ,M and
denote it by P̄. Then it follows from the result of (i) that

l(C) ≤ l(P̄) ≤ 2πr2.

¤

Next we present the existence of a continuous linear extension operator from C1,γ(Ωs(t;v))
to C1,γ(Ω1). Even though the construction of this extension operator can be found in the
literature, see for example [1, 28, 33], we slightly modify the proofs given in books [1, 28, 33]
for our purpose.

The proof of Lemma A.10: We first consider the local extension near one generic
point on the interface and then glue these local extensions together using the standard
partition of unity to get a global extension. Let t be given.
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Step I (local extension): Let x0 be any generic point on the interface S(t). Then there are
two cases: either S(t) is flat near x0, lying in the plane or it is not flat near x0.

Case 1: S(t) is flat near x0 lying on some line.

For simplicity, we assume x0 = (a1, a2) and the plane is {x2 = a2}. We choose an open
ball B(x0, r) such that

{
B+ := B(x0, r) ∩ {x2 ≥ a2} ⊂ B(0, 3δ∗)− Ωs(t;v),
B− := B(x0, r) ∩ {x2 ≤ a2} ⊂ Ω̄s(t;v).

Let f be any C2,γ-function defined on Ωs(t;v). We extend f to the ball B+∪B− as follows.

f̄(x1, x2) :=

{
6f(x1, 2a2 − x2)− 8f(x1, 3a2 − 2x2) + 3f(x1, 4a2 − 3x2), if (x1, x2) ∈ B+,

f(x1, x2), if (x1, x2) ∈ B−.

Notice this choice of f̄ is not the same as given by Evans [28], since he only desired C1-
regularity. We have used a special case of the result given in [1].

We claim: f̄ is C2,γ in the ball B.

We need to show all partial derivatives are continuous at x0 = (a1, a2). Let us write
f− := f̄

∣∣∣
B−

, f+ := f̄ |B+ . By direct calculation we obtain

• ∂k
x1

f−(x1, x2)
= 6∂k

x1
f(x1, 2a2 − x2)− 8∂k

x1
f(x1, 3a2 − 2x2) + 3∂k

x1
f(x1, 4a2 − 3x2), k = 0, 1, 2,

• ∂x2f
−(x1, x2)

= −6∂x2f(x1, 2a2 − x2) + 16∂x2f(x1, 3a2 − 2x2)− 9∂x2f(x1, 4a2 − 3x2),
• ∂2

x2
f−(x1, x2)

= 6∂2
x2

f(x1, 2a2 − x2)− 32∂2
x2

f(x1, 3a2 − 2x2) + 27∂2
x2

f(x1, 4a2 − 3x2),
• ∂x1∂x2f

−(x1, x2)
= −6∂x1∂x2f(x1, 2a2 − x2) + 16∂x1∂x2f(x1, 3a2 − 2x2)− 9∂x1∂x2f(x1, 4a2 − 3x2)

Now evaluate the above identities on the line {x2 = a2} to see that extended function f̄ is
C2 in the ball B and we have

[∂2
x1

f−]0,γ,B̄+ ≤ 31[∂2
x1

f ]0,γ,B̄− , [∂x1∂x2f
−]0,γ,B̄+ ≤ 119[∂x1∂x2f ]0,γ,B̄−

and [∂2
x2

f−]0,γ,B̄+ ≤ 151[∂2
x2

f ]0,γ,B̄− .

Hence we have
||f̄ ||2,γ,B̄ ≤ 151||f ||1,γ,B̄− .

Case 2: S(t) is not flat near x0.

Since the interface S(t) is C2,γ-regular, we can find a C2,γ-mapping Φ with inverse Φ−1

such that Φ straightens out S(t) near x0. We write y = Φ(x), f ′(y) := f(Φ−1(y)). We
choose a small ball B as before. Then as in Case 1, we extend f ′ from B− to B and get

||f̄ ′||2,γ,B̄ ≤ 151||f ′||2,γ,B̄− .
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Let W := Φ−1(B) and W± := Φ−1(B±). Then we have

||f̄ ||2,γ,W̄ ≤ 151||f ||2,γ,W̄− .

Now we glue local extensions together using the partition of unity to get a global extension.

Step II (Global extension): We will extend f defined on Ωs(t;v) to the bigger domain Ω1

such that the extended f̄ has support in Ω1. Let r1 be a sufficiently small number satisfying

0 < r1 < min
{

δ∗, 0.5δ∗2 − rb

}
.

Then for such r1, we choose points xi(i = 1, · · · ,M(t)) on the curve S(t) such that neigh-
boring xi’s are located by the part of curve with length r except one pair of points, i.e.,

l(part of an interface curve connecting xi and xi+1) = r0, i = 1, · · · ,M(t)− 1,
l(part of an interface curve connecting xM(t) and x1) ≤ r.

Then the number M(t) of such points are bounded by

M(t) ≤
[ l(S(t))

r1

]
+ 1,

where the bracket is the greatest integer function. Then by Lemma C.1, we know that

M(t) ≤
[4πδ∗

r1

]
+ 1, t ∈ [0, T∗].

As in Step I, we extend f to B(xi, r) for each i, and denote f̄i by the extended function. Now
take an open set W0 whose closure is a compact subset of Ωs(t) and Ωs(t) ⊂ W0(t)∪

(
∪M(t)

i=0

Wi(t)
)
. Let {κi} be a partition of unity corresponding to the open covering {Wi(t)}M(t)

i=0 of
Ωs(t;v) and define

f̄ :=
M(t)∑

i=0

κif̄i, f̄0 = f.

It follows from Step I that

||f̄ ||2,γ,Ω̄1
≤ 151(M(t) + 1)||f ||2,γ,Ω̄s(t;v).

We take K0 to be 151
([

4πδ∗
r1

]
+ 2

)
to obtain the desired result.
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