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CHAPTER 1

Page 32, line 11: ”in the sense of Definition 2.3.3” should be ”in the sense of Definition 2.3.1”;

Page 34, line 8 in Theorem 2.6.7: ”in the sense of Definition 2.3.3” should be ”in the sense of
Definition 2.3.1”;

CHAPTER 4

page 147, line 14 (displayed equation): the π
2 should be π, i.e. the formula becomes:

θ0 ≤ θk ≤ π − θ0.

Page 161, line -9: in ”... ≤ ∥f∥(−1−α),{0}
2,α,(0,s) ≤Mob”, f should be changed to fob.

Page 166. In Lemma 4.5.8 add assumption g3 = 0. Note that the proof is given for that case.
All applications of this lemma in the book are for the case g3 = 0.

Pages 167-169. Corrections for proof of Lemma 4.5.8: see at the end of these notes.

Page 170. In Lemma 4.5.9 add assumption g3 = 0 (compare with correction for Lemma 4.5.8
above). For the applications of Lemma 4.5.9, see correction to Proposition 4.8.4 below.

Page 199, line -11: in λ2
√
λ2 + 1 > λ

2 , the inequality sign have to be changed, i.e. should be

λ2
√
λ2 + 1 < λ

2 .

Page 199, line -5: Problem (4.8.8) should be changed to Problem (4.7.2).

Page 206. In equations (4.8.5) and (4.8.6), in the term
∑
j=1,3

∥gj∥
(−α),∂Γj

1,α,Γ1
, the Γ1 in the subscript

should be Γj .

Page 209. In Proposition 4.8.4 we should assume g3 = 0. This correction justifies the use of
Lemma 4.5.9 in the proof. For the applications of Proposition 4.8.4, see correction to the proof
of Proposition 4.8.7 below.

Page 215. In the proof of Proposition 4.8.7, the following corrections are needed, related to the
requirement g3 = 0 in Proposition 4.8.4 (introduced in the correction above): Spaces CD and
CT are now defined as:

CD =
{
u ∈ C

(−1−α1),{P1}∪Γ2

2,α1,Ω
: b(3)(x) ·Du = 0 on Γ3, u|P0 = 0

}
,

CT =

{
(f, g1, g2, g3) ∈ C

(1−α1),{P1}∪Γ2

0,α1,Ω
× C

(−α1),∂Γ1

1,α1,Γ1
× Cα1(Γ2)× C

(−α1),∂Γ3

1,α1,Γ3

with g3 ≡ 0 on Γ3

}
.

CHAPTER 5

1



2

Page 218. The title of §5.1.3 should be ”Tangential derivative of the Rankine-Hugoniot condi-
tions on Γshock”.

Page 219, line -5: in first bracket, the sign should be changed from minus to plus for ρ1τ . This
term however vanishes since it is multiplied by the orthogonal vector ν̃, so this typo does not
affect the rest of the calculation.

CHAPTER 8

Page 282. In (8.1.3), the C1(Λ \ P0P1P2) should be C1(Λ \ (S0 ∪ P0P1P2)), i.e. Dφ has also
discontinuity across incident shock S0 (in addition to the reflected shock P0P1P2)

CHAPTER 11

Page 437 line 2: ∂Ω(∞) to be changed to ∂Ω(ij)

CHAPTER 12

Page 510. In (12.7.16), typo: in superscript, should be Γsym instead of ∂symQiter.

Page 516, displayed equation before (12.7.26). Typo: first term on the rhs: û(u(F−1(ξ1, ξ2)))
should be changed to to û(F−1(ξ1, ξ2)).

CHAPTER 13

Page 535, line -4: ”By (13.4.11)” should be changed to ”By Rankine-Hugoniot condition for
φ± on S”.

Page 572, Lemma 13.9.6 (iii): In second displayed equation, change C2,β(Ωa
(1+ 1

2
κ)g

)(b1, b2) to

C2,β(Ωa
(1+ 1

2
κ)g

(b1, b2))

CHAPTER 15

(15.1.2), discontinuity across S0 should be added to C1(Λ\Γshock), to have C1(Λ\(S0∪Γshock)).
This is similar to correction in (8.1.3)

In (15.1.3) Dφ(P0) should be changed to Dφ|Ω(P0) to clarify, since Dφ is discontiuous across
Γshock at P0.

CHAPTER 16

Page 680: in (16.6.59), in the expression for a22(p, z,y), the
p2
p1

should be changed to 1
p1
.

Page 687, first line of Section 16.6.5: P0 should be changed to P1.

Page 689. A new Section 16.7 needs to be added to extend the results of Section 11.6 to all
(supersonic and subsonic) regular reflections. These results, given below, are used in the proof
of Lemma 17.10.2 (which extends to all types of wedge angles the proof of Lemma 13.5.1 where
the results of Section 11.6 are used). See the pages at the end of these notes for the added
Section 16.7,
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CHAPTER 17

Page 710, line 6: After this line, add the new item:
(e) N4 = 10C, where C is from Corollary 9.1.3, extended by Proposition 15.2.2.
Page 728, line 8. Words ”property (i)” should be ”property (i) of Lemma 12.4.2, which holds
in the present case by Lemma 17.3.17 ”. Also, on line (10), the ”(i)” should be changed to ”(i)
of Lemma 12.4.2”.

Page 732, lines 2 and 18: ”Lemma 16.4.2” should be ”Lemma 16.4.1”.

See next pages for:
• corrections to proof of Lemma 4.5.8.
• new added Section 16.7.
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Corrections for proof of Lemma 4.5.8.

We first note that in (4.5.126) the property b̂
(1)
1 ≤ −λ holds only on Γ1 ∩ {x1 < ε/2}, not on

the whole Γ1, as follows from (4.5.102) and (4.5.123). This typo/mistake requires the following
updates in the remainder of proof, i.e. in the argument on pp. 168-169. Constants C, Ck below
depend only on λ, ε,M .

First we show (4.5.119). We use w(x1) defined by (4.5.128) with M̂ = 2M
λε and large C1 > 0

defined below. Then w(0) = 0,

λε

2
w′′ +Mw′ +M = 0.

Also, (4.5.126) holds, and from this and w(0) = 0, it follows that w(x1) > 0 for x1 > 0. Let

V (x1, x2) = w(x1) + C2,

where large C2 > 0 will be fixed below. Then the argument on pp. 168-169 shows that
L(V )− f < 0 in Ω and B(k)V ≤ gk on Γk for k = 2, 3 if C1 is large, where g3 = 0. Note that in
showing L(V )−f < 0, we consider separately the cases Ω∩{0 < x1 < ε/2} and Ω∩{x1 ≥ ε/2}
(not ε as on p. 168). Also, V ≥ C2 > 0 in Ω, thus on Γ0. It remains show that B̂(1)V ≤ g1 on

Γk. We use that b̂
(1)
0 ≤ −λ and |b̂(1)1 | ≤M on Γ1 and that V ≥ C2 in Ω. Also, w′ > 0 on (0, h)

by (4.5.126). Then

B̂(1)V = b̂
(1)
1 w′ + b̂

(1)
0 V ≤Mw′ − λC2 ≤ −M ≤ g1 on Γ1,

if C2 is large. Then following the argument in the second half of p.169, we obtain |u| ≤ V in
Ω. This proves (4.5.119).

Next we prove (4.5.120). We continue to use w(x1) defined by (4.5.128) with M̂ = 2M
λε , but

choose C1 large so that w( ε2) ≥ C, where C is from (4.5.119). Let

v(x1, x2) = w(x1).

We show that |u| ≤ v in Ωε/2 := Ω∩{0 < x1 < ε/2}. By the choice of C1 above, we have |u| ≤ v
on ∂Ωε/2 ∩ {x1 = ε/2}. Also, u = 0 = v on Γ0. Finally, since all properties in (4.5.125) hold
on Γ1 ∩{0 < x1 < ε/2}, the argument on pp. 168-169 shows that, after possibly increasing C1,

we have L(v)− f < 0 in Ωε/2, and B(k)v ≤ gk on Γk ∩ ∂Ωε/2 for k = 1, 3, where g3 = 0. Then
following the argument in the second half of p.169, we obtain |u| ≤ v in Ωε/2. From this, using

that v(0, x2) = 0 and vx1 ≤ M̂C1 in Ωε/2 by (4.5.128), we obtain (4.5.120) in Ωε/2. Combining
with (4.5.119), we obtain (4.5.120) in Ω.
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New added Section 16.7.

16.7. Compactness of admissible solutions in the general case.

Fix θ∗w ∈ (θcw,
π
2 ) for the critical angle θcw introduced in Definition 15.7.3.

Proposition 16.7.1 All assertions proved in Section 11.6, which include Proposition 11.6.1
and Corollary 11.6.2, hold for both supersonic and subsonic admissible solutions, with only the
following notational changes: Γsonic need to be replaced by Γsonic in (11.6.2) and (11.6.3), where
we recall that Γsonic denotes {P0} for subsonic/sonic wedge angles.

Proof. The proofs of Proposition 11.6.1 and Corollary 11.6.2 work with several minor

changes in the case when θ
(∞)
w is a subsonic or sonic angle, by using that all results on con-

vergence, ellipticity and regularity which are used in their proof are extended to the present
case.

For the proof of Proposition 11.6.1, we use that Corollaries 9.2.5, 9.6.6 and Proposition 10.6.1
were extended to the case of both supersonic and subsonic admissible solutions in Proposition
15.2.2, Corollary 15.6.3, and Proposition 15.7.5. We also use the results on regularity near
sonic arc for supersonic and supersonic-near-sonic cases §16.3-16.4 and regularity near point
P0 for the subsonic-near-sonic and subsonic-away-from-sonic cases in §16.5-16.6. We describe
the changes which require some additional the argument.

The argument in the paragraph starting from line -2 of page 434 still holds if θ
(∞)
w is a super-

sonic wedge angle, with use of (16.4.59) in Proposition 16.4.6 instead of (11.4.4) in Proposition

11.4.6, and shows that Dφ(∞) = Dφ
(∞)
2 on Γ

(∞)
sonic. Furthermore, if θ

(∞)
w is a subsonic or sonic

angle, then, noting that ψ(∞) ∈ C1,α(Ω ∩Bε(P0)) by Propositions 16.5.3 and 16.6.11, and that

φ(∞) is a weak solution of Problem 2.6.1 by Corollary 9.2.5 (extended by Proposition 15.2.2),

we obtain Dφ(∞)(P0) = Dφ
(∞)
2 (P0).

In the argument of Step 2 of proof of Proposition 11.6.1, we use the fact that there exist
C > 0 and α ∈ (0, 1) such that any admissible solution φ for any wedge angle (supersonic and
subsonic) θw ∈ [θ∗w,

π
2 ) satisfies

∥φ∥C1,α(Ω) ≤ C (∗)
and its shock function fO1,sh, introduced in Corollary 10.5.1 (extended in Proposition 15.7.1 to
the case of all supersonic and subsonic wedge angles), satisfies

∥fO1,sh∥C1,α([θP1
,θP1

− ]) ≤ Ĉ,

where P1 = P0 for subsonic (including sonic) wedge angles. Note that the last estimate extends
(11.4.39) to the case of all supersonic and subsonic wedge angles. Both estimates follow by
combining Corollaries 16.4.8, 16.5.4 and 16.6.12. With these estimates, argument of Step 2 of

proof of Proposition 11.6.1, applies to any wedge angle θ
(∞)
w ∈ [θ∗w,

π
2 ), where the argument

for subsonic and sonic θ
(∞)
w does not include the case ξ∞ ∈ Γsonic. Step 2 shows that (iii) of

Proposition 11.6.1 holds for any ξ∞ ∈ Ω(∞) \ {P (∞)
1 , . . . , P

(∞)
4 }, where P (∞)

1 = P
(∞)
4 = P

(∞)
0

for subsonic and sonic wedge angles.
The argument of Step 3 of the proof of Proposition 11.6.1 is unchanged for the cases ξ∞ =

P
(∞)
2 and ξ∞ = P

(∞)
3 , since Proposition 10.5.1 is extended to the case of general (supersonic

and subsonic) wedge angles in Proposition 15.7.5.
It remains to consider the cases when
- θ

(∞)
w is a subsonic (or sonic) wedge angle and ξ∞ = P

(∞)
0 ;

- θ
(∞)
w is a supersonic wedge angle and ξ∞ ∈ {P (∞)

1 , P
(∞)
4 }.

Note that if θ
(∞)
w is sonic, then θ

(ij)
w may be either subsonic or supersonic. It is sufficient

to extend solutions φ(∞), φ(ij) to BR(Γ
(ij)
sonic), BR(Γ

(∞)
sonic) resp. for some small R > 0 (where

Γsonic = {P0} for subsonic and sonic wedge angles), so that the extensions satisfy uniform C1,α

bound, after that we can argue as in the previous cases.
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We discuss such extension for any admissible solution φ for θw ∈ [θ∗w,
π
2 ]. We note that

all results in §8.2 are extended to all wedge angles by Proposition 15.2.1, where P1 = P4 =
P0 = Γsonic for subsonic and sonic angles, and we use the structure of Ω in coordinates (S, T )
along (νw, τw), given by (8.2.5) in Corollary 8.2.14. By (8.2.24) with e = νw, and by Lemma
8.2.11, there exists λ > 0 such that f ′νw,sh(TP1) ≤ −λ for all θw ∈ [θ∗w,

π
2 ]. Using uniform C1,α

regularity of shock functions for all θw ∈ [θ∗w,
π
2 ], obtained by by combining Corollaries 16.4.8,

16.5.4 and 16.6.12, we have that there exists δ > 0 such that f ′νw,sh ≤ −λ
2 on [TP1 − 2δ, TP1 ]

for all θw ∈ [θ∗w,
π
2 ]. If θw is supersonic wedge angle, we also need to consider the interval

(TP1 , TP4), on which the curve ∂Ω ∩ {S > 0} is the sonic arc which is given in (8.2.24) by the

graph of function fνw,so defined in Remark 8.2.12. For that, we recall that c
(θw)
2 ≥ 1

C > 0 for all
θw ∈ [θ∗w,

π
2 ] and also the continuous dependence of P1 on θw. From Remark 7.5.5(i, ii) by an

elementary geometric argument we obtain that TP1 > |(u2, v2)| and f ′νw,sh(TP1) > f ′νw,so(TP1).

Then from the expression of fνw,so, it follows that f
′
νw,sh ≤ −λ

2 on (TP1 , TP4). Thus we showed

that for every wedge angle θw ∈ [θ∗w,
π
2 ], it holds

∂Ω ∩ {S > 0, T > TP1 − δ} = {(S, T ) | S = h(T ), T ∈ (TP1 − δ, TP4)},

where h ∈ C0([TP1 −δ, TP4 ])∩C1([TP1 −δ, TP4)\{TP1}) with h′ ≤ −λ
2 for all T ∈ [TP1 −δ, TP4)\

{TP1} and h(TP4) = 0.
Remark. For subsonic/sonic wedge angles, P1 = P4 = P0 and h = fνw,sh on (TP0 − δ, TP0). For
supersonic wedge angles, h = fνw,sh on (TP1 − δ, TP1) and h = fνw,so on (TP1 , TP4).
It follows that

∂Ω ∩ {S > 0, T > TP1 − δ} = {(S, T ) | T = g(S), S ∈ (0, a)}, where a = fνw,sh(TP1 − δ),

and Lip[g] ≤ 2
λ on [0, a]. Moreover, since f ′νw,sh ≤ −λ

2 on [TP1 − 2δ, TP1 ], then

Ω(δ) := {S ∈ (0, a), TP1 − δ < T < g(S), } ⊂ Ω.

Denote by Ω̂ the extension of Ω by reflection across {S = 0}, i.e. Ω̂ = (Ω ∪ Ω̂−)0, where

Ω̂− = {(S, T ) | (−S, T ) ∈ Ω}. Let also, extend g to (−a, a) by the even reflection g(−S) = g(S)
for S ∈ [0, a). Then Lip[g] ≤ 2

λ on [−a, a], and

Ω̂(δ) := {S ∈ (−a, a), g(S) > T > TP1 − δ} ⊂ Ω̂.

Denote

Ω̂(δ,∞) := {S ∈ (−a, a), T > TP1 − δ}.

Note that

NR(Γsonic) ⊂ Ω̂(δ,∞)

for sufficiently small R depending only on λ and δ, and thus on the data and θ∗w. Thus it

remains to extend φ from Ω̂(δ) to Ω̂(δ,∞) with the uniform control of C1,α norm.
Since φνw = 0 on Γwedge, i.e. in φS = 0 on ∂Ω ∩ {S = 0}, we extend φ into Ω̂ by the even

reflection φ(−S, T ) = φ(S, T ) for (S, T ) ∈ Ω. Then

∥φ∥
C1,α(Ω̂)

≤ ∥φ∥C1,α(Ω) ≤ C,

where the last inequality is from (∗), where C depends only on the data and θ∗w. Now we extend

φ from Ω̂(δ) to Ω̂(δ,∞) using the extension operator introduced in Definition 13.9.3. Note that
Lemma 13.9.6 shows C2,α estimates for the extension operator, and the corresponding C1,α

estimates are obtained similarly (and easier). Thus, noting also the structure of domain Ω̂(δ)

and that g(S)− (TP1 − δ) ≥ δ, we obtain

∥φ∥
C1,α(Ω̂(δ,∞))

≤ C(Lip[g], α, δ)∥φ∥
C1,α(Ω̂(δ))

.
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Recalling that Lip[g], α, δ depend only on the data and θ∗w, we obtain that, there exists C > 0
such that for R defined above and any admissible solution φ for θw ∈ [θ∗w,

π
2 ], the extension

defined above satisfies
∥φ∥

C1,α(NR(Γsonic))
≤ C.

This completes the updates in the proof of Proposition 11.6.1.
For the proof of Corollary 11.6.2 for all types of wedge angles, we note that the results of

§8.2 and §9.1 are extended to the case of both supersonic and subsonic admissible solutions

in Propositions 15.1.1 and 15.2.2 respectively. We also change Nε(Γ
(i)
sonic) and Nε(Γ

(∞)
sonic) to

Nε(Γ
(i)
sonic), Nε(Γ

(∞)
sonic), where we recall that Γsonic denotes {P0} for subsonic/sonic wedge angles.


