(a) Show the general solution of the PDE $u_{xy} = 0$ is

$$u(x,y) = F(x) + G(y)$$

for arbitrary functions F, G.

- (b) Using the change of variables $\xi = x + t$, $\eta = x t$, show $u_{tt} u_{xx} = 0$ if and only if $u_{\xi\eta} = 0$.
- (c) Use (a) and (b) to rederive d'Alembert's formula.

Solution.

(a) First, any function u(x, y) of the form u(x, y) = F(x) + G(y) clearly satisfies $u_{xy} = 0$.

Now suppose $u_{xy} = 0$. Denote $v = u_x$. Then $u_{xy} = 0$ implies $v_y = 0$, thus

$$u_x(x,y) = v(x,y) = f(x)$$

for some function f. Let F be such that F'(x) = f(x). Then integrating with respect to x we get

$$u(x,y) = F(x) + G(y)$$

for some function G.

(b) From the definition of ξ , η , we get $u_x = u_\xi \frac{\partial \xi}{\partial x} + u_\eta \frac{\partial \eta}{\partial x} = u_\xi + u_\eta$, and similarly $u_t = u_\xi \frac{\partial \xi}{\partial t} + u_\eta \frac{\partial \eta}{\partial t} = u_\xi - u_\eta$. Differentiating again, get

$$u_{xx} = u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}, \quad u_{tt} = u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta}.$$

Thus

$$u_{tt} - u_{xx} = -4u_{\varepsilon_n}$$

and (b) follows.

(c) If u satisfies $u_{tt} - u_{xx} = 0$, then from part (b), get $u_{\xi\eta} = 0$. Thus by part (a),

$$u = F(\xi) + G(\eta) = F(x+t) + G(x-t).$$

This implies

$$u_t = F'(x+t) - G'(x-t).$$

If

$$u = g$$
, $u_t = h$ on $\mathbb{R} \times \{t = 0\}$,

get

$$g(x) = u(x,0) = F(x) + G(x), \quad h(x) = u_t(x,0) = F'(x) - G'(x).$$

Thus, if

$$H(x) := F(x) - G(x),$$

then

$$H'(x) = h(x).$$

From the above equalities, we find:

$$F(x) = \frac{1}{2}(g(x) + H(x)), \qquad G(x) = \frac{1}{2}(g(x) - H(x))$$

Thus

$$u(x,t) = F(x+t) + G(x-t)$$

$$= \frac{1}{2}(g(x+t) + g(x-t)) + \frac{1}{2}(H(x+t) - H(x-t))$$

$$= \frac{1}{2}(g(x+t) + g(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy.$$