
2.5 #15

Given g : [0,∞)→ R with g(0) = 0, derive the formula

u(x, t) =
x√
4π

∫ t

0

1

(t− s)3/2
e

−x2

4(t−s) g(s)ds

for a solution of the initial-value problem
ut − uxx = 0 in R+ × (0,∞),
u = 0 on R+ × {t = 0},
u = g on {x = 0} × [0,∞).

(Hint: Let v(x, t) := u(x, t)−g(t) and extend v to {x < 0} by odd reflection v(x, t) :=
−v(−x, t) for x < 0)

Solution All foregoing calculations are formal. Rigorously, after the formula is de-
rived, we need to check if it gives a solution.

Denote by w(x, t) the odd extension of v(x, t). Note that w(·, t) is continuous
at x = 0 for every t > 0, and thus, using the definition of odd reflection, w(·, t)
is continuously differentiable across x = 0. Then (heuristically, formally), w(x, t)
satisfies: {

wt − wxx = −sign(x)g′(t) in R× (0,∞),
u = 0 on R× {t = 0},

where

sign(z) =


1 if z > 0,
0 if z = 0,
−1 if z < 0.

Thus, using formula (13) of sect. 2.3, we find a solution in the form

w(x, t) = −
∫ t

0

1

(4π(t− s))1/2

∫ ∞
−∞

e−
(x−y)2

4(t−s) sign(y)g′(s) dyds.

Note that for x > 0, t > s > 0:∫ ∞
−∞

e−
(x−y)2

4(t−s) sign(y) dy =

∫ ∞
0

e−
(x−y)2

4(t−s) dy −
∫ 0

−∞
e−

(x−y)2

4(t−s) dy

=

∫ x

−x
e−

y2

4(t−s)dy

= 2

∫ x

0

e−
y2

4(t−s)dy

= 2
√

4(t− s)
∫ x√

4(t−s)

0

e−z
2

dz,



where we changed variables by z = y√
4(t−s)

in the last line. Thus we get for x >

0, t > 0:

w(x, t) = − 2

(π)1/2

∫ t

0

g′(s)

∫ x√
4(t−s)

0

e−z
2

dzds.

Integrating by parts in s, and using that

d

ds

∫ x√
4(t−s)

0

e−z
2

dz =
x

2
√

4(t− s)3/2
e−

x2

4(t−s) ,

we get:

w(x, t) = − 2

(π)1/2
g(t)

∫ ∞
0

e−z
2

dz +
1

(π)1/2

∫ t

0

x√
4(t− s)3/2

e−
x2

4(t−s) g(s)ds.

Using that
∫∞
−∞ e

−z2dz =
√
π and thus

∫∞
0
e−z

2
dz =

√
π
2

, we get that, for x > 0, t > 0

v(x, t) = w(x, t) = −g(t) +
x

(4π)1/2

∫ t

0

1

(t− s)3/2
e−

x2

4(t−s) g(s)ds.

Thus, u(x, t) = g(t) + v(x, t) is

u(x, t) =
x

(4π)1/2

∫ t

0

1

(t− s)3/2
e−

x2

4(t−s) g(s)ds.


