Suppose u is smooth and solves $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.

- (i) Show $u_{\lambda}(x,t) := u(\lambda x, \lambda^2 t)$ solves the heat equation for each $\lambda \in \mathbb{R}$.
- (ii) Use (i) to show that $v(x,t) = x \cdot Du(x,t) + 2tu_t(x,t)$ solves the heat equation as well.

Solution

(i) We compute:

$$\partial_t u_{\lambda}(x,t) = \lambda^2 \partial_t u(\lambda x, \lambda^2 t), \qquad \partial_{x_i x_i} u_{\lambda}(x,t) = \lambda^2 \partial_{x_i x_i} u(\lambda x, \lambda^2 t),$$

thus

$$(\partial_t - \Delta)u_\lambda(x, t) = \lambda^2(\partial_t - \Delta)u(\lambda x, \lambda^2 t) = 0.$$

(ii) Since

$$(\partial_t - \Delta)u_\lambda(x, t) = 0$$
 for all $(x, t, \lambda) \in \mathbb{R}^n \times (0, \infty) \times \mathbb{R}$

by (i), we differentiate with respect to λ , thus get

$$(\partial_t - \Delta)(\partial_\lambda u_\lambda)(x, t) = 0$$
 for all $(x, t, \lambda) \in \mathbb{R}^n \times (0, \infty) \times \mathbb{R}$.

We compute:

$$(\partial_{\lambda}u_{\lambda})(x,t) = \partial_{\lambda}[u(\lambda x,\lambda^{2}t)] = x \cdot Du(\lambda x,\lambda^{2}t) + 2\lambda t u_{t}(\lambda x,\lambda^{2}t).$$

Thus, for each fixed $\lambda \in \mathbb{R}$, the function $v_{\lambda}(x,t) = x \cdot Du(\lambda x, \lambda^2 t) + 2\lambda t u_t(\lambda x, \lambda^2 t)$ solves the heat equation. Choosing $\lambda = 1$ we get assertion (ii).