Due Thursday December 14 (put in my mailbox).

1. Sect. 6.6 #9

Assume u is a smooth solution of $Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} = f$ in U, u = 0 on ∂U , where f is bounded. Fix $x^0 \in \partial U$. A barrier at x^0 is a C^2 function w such that

 $Lw \ge 1$ in U, $w(x^0) = 0$, and $w \ge 0$ on ∂U .

Show that if w is a barrier at x^0 , there exists a constant C such that

$$|Du(x^0)| \le C \left| \frac{\partial w}{\partial \nu}(x^0) \right|.$$

Remark. You may assume that ∂U is smooth.

2. Sect. 3.5 #5. Solve using characteristics: (a) $x_1u_{x_1} + x_2u_{x_2} = 2u$, $u(x_1, 1) = g(x_1)$; (c) $uu_{x_1} + u_{x_2} = 1$, $u(x_1, x_1) = \frac{1}{2}x_1$.

3. Sect. 3.5 #13. Prove that Hopf-Lax formula reads

$$u(x,t) = \min_{y \in \mathbb{R}^n} \left\{ tL\left(\frac{x-y}{t}\right) + g(y) \right\}$$
$$= \min_{y \in B(x,Rt)} \left\{ tL\left(\frac{x-y}{t}\right) + g(y) \right\}$$

for $R = \sup_{\mathbb{R}^n} |DH(Dg)|$, $H = L^*$. (This proves *finite propagation speed* for Hamilton-Jacobi equation.)

Hint: use problem 3.5 #11. You can use the fact asserted in problem 3.5 #11 without proof.

4. Sect. 3.5 #14.

Let E be a closed subset of \mathbb{R}^n . Show that *if* the Hopf-Lax formula can be applied to the initial-value problem

$$\begin{cases} u_t + |Du|^2 = 0 & \text{ in } \mathbb{R}^n \times (0, \infty) \\ u = \begin{cases} 0 & x \in E \\ +\infty & x \notin E \end{cases} & \text{ on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

it would give the solution

$$u(x,t) = \frac{1}{4t} \operatorname{dist}(x,E)^2.$$