1. Let Ω be the half plane $\{x_2 > 0\}$ in \mathbb{R}^2 . Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be harmonic:

$$\Delta u = 0 \qquad \text{in } \Omega.$$

Under the additional assumption that $u(\cdot)$ is bounded from above in Ω , prove that

$$\sup_{\Omega} u = \sup_{\partial \Omega} u.$$

Note: The additional assumption is needed to exclude examples like $u(x_1, x_2) = x_2$. Hint: Take for $\varepsilon > 0$ the harmonic in Ω function

$$v(x_1, x_2) = u(x_1, x_2) - \varepsilon \log \sqrt{x_1^2 + (x_2 + 1)^2}.$$

Apply the maximum principle in an appropriate *bounded* region. Let $\varepsilon \to 0$.

2. Let $U \subset \mathbf{R}^n$ be open and bounded, let $U_T = U \times (0, T]$ be the parabolic cylinder, and and $\Gamma_T = \overline{U_T} \setminus U_T$ be the parabolic boundary. Let nonnegative $u \in C_1^2(U_T) \cap C(\overline{U_T})$ satisfies

$$u_t = \Delta u + cu$$
 in U_{T_t}

where c(x,t) is continuous in $\overline{U_T}$.

(a) Prove that if c(x,t) < 0 in $\overline{U_T}$, then

$$\max_{\overline{U_T}} u = \max_{\Gamma_T} u.$$

Hint. Show that $\max_{\overline{U_T}} u$ cannot be assumed in U_T unless $\max_{\overline{U_T}} u \leq 0$. In order to do that, consider the possible signs of u_t and Δu at a point of maximum $(x_0, t_0) \in U_T$. Note that it is possible that $t_0 = T$.

(b) Show that more generally

$$\max_{\overline{U_T}} u \le e^{CT} \max_{\Gamma_T} u,$$

where

$$C = \max(0, \max_{\overline{U_T}} c)$$

Hint. Substitute $u(x,t) = e^{\gamma t}v(x,t)$, where $\gamma > C$.

3.(2.5 #24 from Evans book). Let $u \in C^2(\mathbb{R} \times [0, \infty))$ solve the initial-value problem for the wave equation in one dimension:

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty), \\ u = g, \ u_t = h & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}$$

Suppose g, h have compact support. The kinetic energy is $k(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx$, and the potential energy is $p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx$. Prove: (a) k(t) + p(t) is constant in t;

(b) k(t) = p(t) at all large enough times t.

4. Let u solve

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^3 \times (0, \infty), \\ u = g, \ u_t = h & \text{on } \mathbb{R}^3 \times \{t = 0\}, \end{cases}$$

where g,h are smooth and have have compact support. Show there exists constant C such that

 $|u(x,t)| \le C/t$ $(x \in \mathbb{R}^3, t > 0).$