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Abstract. Motivated by the limit mixed Hodge structure on the Milnor fiber of a hyper-

surface singularity germ, we construct a natural mixed Hodge structure on the torsion

part of the Alexander modules of a smooth connected complex algebraic variety. More

precisely, let U be a smooth connected complex algebraic variety and let f : U → C∗ be

an algebraic map inducing an epimorphism in fundamental groups. The pullback of the

universal cover of C∗ by f gives rise to an infinite cyclic cover Uf of U . The action of the

deck group Z on Uf induces a Q[t±1]-module structure on H∗(U
f ;Q). We show that the

torsion parts A∗(U
f ;Q) of the Alexander modules H∗(U

f ;Q) carry canonical Q-mixed

Hodge structures. We also prove that the covering map Uf → U induces a mixed Hodge

structure morphism on the torsion parts of the Alexander modules. As applications, we

investigate the semisimplicity of A∗(Uf ;Q), as well as possible weights of the constructed

mixed Hodge structures. Finally, in the case when f : U → C∗ is proper, we prove the

semisimplicity and purity of A∗(Uf ;Q), and we compare our mixed Hodge structure on

A∗(U
f ;Q) with the limit mixed Hodge structure on the generic fiber of f .
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1. Introduction

Let U be a connected topological space of finite homotopy type, and let

ξ : π1(U)� Z

be an epimorphism. Denote by U ξ the infinite cyclic cover of U corresponding to ker ξ.
Let k be a subfield of R, and denote by R = k[t±1] the ring of Laurent polynomials in
variable t with k-coefficients. The group of covering transformations of U ξ is isomorphic
to Z, and it induces an R-module structure on each group Hi(U

ξ; k). By analogy with
knot theory, the R-module Hi(U

ξ; k) is called the i-th (homology) k-Alexander module of
the pair (U, ξ). Since U is homotopy equivalent to a finite CW-complex, Hi(U

ξ; k) is a
finitely generated R-module, for each integer i.

Note that ξ : π1(U) → Z can be regarded as an element in H1(U ;Z) via the canonical
identification:

Hom
(
π1(U),Z

) ∼= Hom
(
H1(U ;Z),Z

) ∼= H1(U ;Z).

Moreover, any such class in H1(U ;Z) is represented by a homotopy class of continuous
maps U → S1. Whenever such a representative f : U → S1 for ξ is fixed (that is, ξ = f∗),
we will also use the notation U f for the corresponding infinite cyclic cover of U .

For example, if f : U → S1 is a fiber bundle with connected fiber F a finite CW-
complex, then ξ = f∗ : π1(U) → π1(S1) = Z is surjective, and the corresponding infi-
nite cyclic cover U f is homeomorphic to F × R and hence homotopy equivalent to F .
The deck group action on Hi(U

f ; k) is isomorphic (up to a choice of orientation on S1,
as described in Lemma 2.5.2) to the monodromy action on Hi(F ; k), which gives the
latter vector spaces R-module structures. Therefore Hi(U

f ; k) ∼= Hi(F ; k) is a torsion
R-module for all i ≥ 0. This applies in particular to the following geometric situations:

(a) a smooth proper surjective submersion (with connected fibers) f : U → ∆∗ from
an open set of a smooth complex algebraic variety to a punctured disc.

(b) the Milnor fibration f : U → S1 associated to a reduced complex hypersurface
singularity germ, with F the corresponding Milnor fiber.

(c) the global (affine) Milnor fiber f : U = Cn\{f = 0} → C∗, where f is a square-free
homogeneous polynomial in n complex variables and F = f−1(1).

In a different vein, it was shown in [43] that if U is a smooth quasi-projective variety of
complex dimension n, admitting a proper semi-small map (e.g., a finite map or a closed
embedding) to some complex semiabelian variety, then for any generic epimorphism



4 ELDUQUE, GESKE, HERRADÓN CUETO, MAXIM AND WANG

ξ : π1(U) → Z the corresponding Alexander modules Hi(U
ξ; k) are torsion R-modules

for all i 6= n.
However, for an arbitrary topological space U of finite homotopy type, the Alexander

modules Hi(U
ξ; k) are not torsion R-modules in general. One then considers the torsion

part

Ai(U
ξ; k) := TorsRHi(U

ξ; k)

of the R-module Hi(U
ξ; k). This is a k-vector space of finite dimension on which a

generating covering transformation (i.e., t-multiplication) acts as a linear automorphism.
Moreover, if U is a smooth complex algebraic variety, then all eigenvalues of the t-action
on Ai(U

ξ; k) are roots of unity, for any integer i (see Proposition 2.6.1).

In this paper, we assume that U is a smooth complex algebraic variety and we inves-
tigate the existence of mixed Hodge structures on Ai(U

ξ; k) for k = Q or R. Note that
U ξ is not in general a complex algebraic variety, so the classical Deligne theory does not
apply. Specifically, we address the following question, communicated to the authors by
Ştefan Papadima:

Question 1.0.1. Let U be a smooth connected complex algebraic variety. Let ξ : π1(U)→
Z be an epimorphism with corresponding infinite cyclic cover U ξ. Is there a natural
Q-mixed Hodge structure on the torsion part Ai(U ξ; k) of the Q[t±1]-module Hi(U

ξ;Q),
for all i ≥ 0?

The purpose of this paper is to give a positive answer to Question 1.0.1 in the case
when the epimorphism ξ : π1(U) → Z is realized by an algebraic map f : U → C∗. We
remark here that a homomorphism ξ : π1(U) → Z is induced by an algebraic map
f : U → C∗ if and only if, when considered as an element in H1(U ;Z), ξ is of type
(1, 1), that is ξ ∈ F 1H1(U ;C)∩ F 1H1(U ;C). This is a consequence of Deligne’s theory of
1-motives (cf. [11, (10.I.3)]). In this algebraic context, Question 1.0.1 has already been
answered positively in the following special situations:

(1) When Hi(U
ξ;Q) is Q[t±1]-torsion for all i ≥ 0 and the t-action is unipotent, see

[30];
(2) When f : U = Cn \ {f = 0} → C∗ is induced by a reduced complex polynomial

f : Cn → C which is transversal at infinity (i.e., the hyperplane at infinity in CP n

is transversal in the stratified sense to the projectivization of {f = 0}), for ξ =

f∗ and i < n; see [19, 41]. In fact, in this case it was shown in [45] that the
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corresponding Alexander modules Hi(U
ξ;Q) are torsion Q[t±1]-modules for i <

n, while Hn(U ξ;Q) is free and Hi(U
ξ;Q) = 0 for i > n. Furthermore, the t-action

on Hi(U
ξ;C) is diagonalizable (semisimple) for i < n, and the corresponding

eigenvalues are roots of unity of order d = deg(f).
(3) When f : U = Cn \{f = 0} → C∗ is induced by a complex polynomial f : Cn → C

which has at most isolated singularities, including at infinity, in the sense that
both the projectivization of {f = 0} and its intersection with the hyperplane at
infinity have at most isolated singularities. In this case, and with ξ = f∗, there
is only one interesting Alexander module, Hn−1(U ξ;Q), which is torsion (see [39,
Theorem 4.3, Remark 4.4]), and a mixed Hodge structure on it was constructed
in [40]; see also [38] for the case of plane curves under some extra conditions.

In this paper we prove the following general statement (see Corollary 5.4.12):

Theorem 1.0.2. Let U be a smooth connected complex algebraic variety, with an algebraic map
f : U → C∗. Assume that ξ = f∗ : π1(U)→ Z is an epimorphism, and denote by U f = {(x, z) ∈
U × C | f(x) = ez} the corresponding infinite cyclic cover. Then the torsion part Ai(U f ;Q) of
the Q[t±1]-module Hi(U

f ;Q) carries a canonical Q-mixed Hodge structure for any i ≥ 0.
Suppose N is a positive integer, chosen such that tN acts unipotently on Ai(U

f ;Q). Let
log(tN) denote the Taylor series centered at tN = 1. Then the action of log(tN) is a mixed Hodge
structure morphism Ai(U

f ;Q) → Ai(U
f ;Q)(−1), where (−1) denotes the Tate twist of mixed

Hodge structures.

In Section 7.3 we prove that, if U and f are as in case (2) above, the mixed Hodge
structure of Theorem 1.0.2 recovers the mixed Hodge structure obtained by different
means in both [19, 41]. We expect, but have not proven, the same to be true for cases
(1) and (3). Moreover, in Section 7.2, we also prove that, in the global affine Milnor
fibration case (c) mentioned above, the mixed Hodge structure of Theorem 1.0.2 recovers
Deligne’s mixed Hodge structure on the fiber (Corollary 7.2.4).

The proof of Theorem 1.0.2 makes use of a sequence of reductions (e.g., after pulling
back to a finite cover, one may assume that the t-action on A∗(U ξ;Q) is unipotent, it also
suffices to work with cohomological Alexander modules, etc.), and it relies on the con-
struction of a suitable thickening of the Hodge-de Rham complex (see Section 5 for de-
tails). There are choices made in the construction, but we prove that the resultant mixed
Hodge structure is independent of them (see Theorems 5.4.7 and 5.4.8) and further that
it behaves functorially with respect to algebraic maps over C∗ (see Theorem 5.4.9). The
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only choice that affects the mixed Hodge structure is the choice of infinite cyclic cover
U f . This is because Z acts on this space as deck transformations and the mixed Hodge
structure is not preserved in general (see Proposition 5.5.1). However, this is consistent
with the behavior of the limit mixed Hodge structure (see Theorem 1.0.8), which is also
not preserved by deck transformations.

We proceed to relate our mixed Hodge structures on the torsion parts of the Alexan-
der modules to known mixed Hodge structures, then derive consequences of our con-
struction and these relations. Centrally, in Section 6 we prove that the infinite cyclic
covering map induces a morphism of mixed Hodge structures:

Theorem 1.0.3. In the setting of Theorem 1.0.2, the vector space map Ai(U f ;Q) → Hi(U ;Q)

induced by the covering U f → U is a morphism of mixed Hodge structures for all i ≥ 0, where
Hi(U ;Q) is equipped with (the dual of) Deligne’s mixed Hodge structure.

We use this theorem and our construction to obtain several results, including a bound
on the weight filtrations of the mixed Hodge structures on the torsion parts of the
Alexander modules (Theorem 7.4.1). This bound coincides with the known bound for
the homology of smooth algebraic varieties of the same dimension as the generic fiber
of f (cf. [10, Corollaire 3.2.15]).

Theorem 1.0.4. Assume the setting of Theorem 1.0.2. Let i ≥ 0. If k /∈ [i, 2i]∩[i, 2 dimC(U)−2],
then

GrW−kAi(U
f ;Q) = 0

where GrW−k denotes the −kth graded piece of the weight filtration.

Other consequences of our construction and Theorem 1.0.3 are related to the t-action
on the torsion parts of the Alexander modules. For example, we apply it to determine
bounds on the size of the Jordan blocks of this t-action (see Corollary 7.4.2), which nearly
cut in half existing bounds, as in [4, Proposition 1.10]. We also address conditions under
which this t-action is a mixed Hodge structure morphism. We prove that this is the case
if and only if the t-action is semisimple (see Corollary 7.0.4 and Proposition 7.0.5).

Theorem 1.0.5. Assume the setting of Theorem 1.0.2. Let i ≥ 0. The t-action on Ai(U f ;Q) is
a mixed Hodge structure morphism if and only if it is semisimple.

Semisimplicity has other pleasing consequences. We prove that, when the t-action is
semisimple, the mixed Hodge structure on the torsion parts of the Alexander modules
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can be constructed directly using a finite cyclic cover, which, unlike an infinite cyclic
cover, is always a complex algebraic variety. This bypasses our rather abstract general
construction of the mixed Hodge structure. We present two different viewpoints. In
the first, we utilize cap product with the pullback of a generator of H1(C∗;Q). In the
second, we utilize a generic fiber of the algebraic map, which is always a complex
algebraic variety. For the following result see Corollary 7.1.3 and Corollary 7.2.1.

Theorem 1.0.6. Assume the setting of Theorem 1.0.2. Let i ≥ 0 and assume that the t-action
on Ai(U ;Q) is semisimple. Let N be such that the action of tN on Ai(U f ;Q) is unipotent, and
let UN = {(x, z) ∈ U × C∗ | f(x) = zN} denote the corresponding N -fold cyclic cover. Equip
the rational homology of UN with the (dual of) Deligne’s mixed Hodge structure.

(A) Let fN : UN → C∗ denote the algebraic map induced by projection onto the second com-
ponent, and let gen ∈ H1(C∗;Q) be a generator. Then Ai(U

f ;Q) is isomorphic as a
mixed Hodge structure to the image of the mixed Hodge structure morphism induced by
cap product with f ∗N(gen)

(−) _ f ∗N(gen) : Hi+1(UN ;Q)(−1)→ Hi(UN ;Q),

where (−1) denotes the −1th Tate twist of a mixed Hodge structure.
(B) Let F ↪→ U be the inclusion of any generic fiber of f and let F ↪→ UN be any lift of this

inclusion. Then Ai(U f ;Q) is isomorphic as a mixed Hodge structure to the image of the
mixed Hodge structure morphism

Hi(F ;Q)→ Hi(UN ;Q)

induced by the inclusion, where Hi(F ;Q) is equipped with (the dual of) Deligne’s mixed
Hodge structure.

Theorem 1.0.6, when it applies, brings the mixed Hodge structures on the torsion
parts of the Alexander modules down to earth, and reinforces the significance of semisim-
plicity. The first viewpoint granted by semisimplicity, in terms of cap products (Theo-
rem 1.0.6A), is suggested by the thickened complexes that play the central role in our
construction (see Section 7.1). Regarding the second viewpoint, note that the homolo-
gies of different choices of generic fibers in the same degree may have different mixed
Hodge structures, but any choice is allowed in Theorem 1.0.6B. This shows that the
mixed Hodge structures on the torsion parts of the Alexander modules are common
quotients of the homologies of all generic fibers, when semisimplicity holds.
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Our results in this paper show that semisimplicity is not a rare occurrence. In fact,
we have proven that semisimplicity holds in many situations: it always holds on the
torsion part of the first Alexander module (see Corollary 7.4.3) and, when f is proper, it
necessarily holds on the torsion parts of all Alexander modules (see Theorem 8.0.1 and
Corollary 8.0.2). In fact, we do not know of any example where semisimplicity does not
hold–see the open questions at the end of Section 10. This lack of examples is mainly
due to the fact that higher Alexander modules are harder to compute than the first. An
interesting point is that we have used the mixed Hodge structure constructed in this
paper to prove the semisimplicity of the first Alexander module for arbitrary U and
f . This was previously known in the case of certain Alexander modules associated to
affine curve complements, as is explained in [19, Corollary 1.7], which combines results
from [38, 21, 14] (see Remark 7.4.4 for details).

We use the above-mentioned semisimplicity in the case when f is proper to show the
following (see Corollary 8.0.6).

Theorem 1.0.7. If f : U → C∗ is a proper algebraic map, then Ai(U f ;Q) carries a pure Hodge
structure of weight −i.

There is a well-known and motivating (for our construction) mixed Hodge structure
that we would be remiss not to explicitly address. In the situations (a)–(c) mentioned
above, the mixed Hodge structure on Ai(U

ξ;Q) coincides with the limit mixed Hodge
structure on Hi(F ;Q). In the situation considered in this paper, the epimorphism ξ is
realized by an algebraic map f : U → C∗. Let D∗ be a sufficiently small punctured disk
centered at 0 in C, such that f : f−1(D∗) → D∗ is a fibration, and let T ∗ = f−1(D∗). The
infinite cyclic cover (T ∗)f is homotopy equivalent to F , where F denotes any fiber of the
form f−1(c), for c ∈ D∗. With this in mind, (T ∗)f can be regarded as the canonical fiber
of f : f−1(D∗) → D∗. If f is proper, Hi((T

∗)f ;Q) is also endowed with a limit mixed
Hodge structure, which we compare with the one we construct on Ai(U f ;Q). In Section
9 we show the following:

Theorem 1.0.8. In the setup of Theorem 1.0.2, assume f is proper, and let D∗ be a small enough
punctured disk centered at 0 in C such that f : f−1(D∗)→ D∗ is a fibration. Let T ∗ = f−1(D∗),
and let (T ∗)f be its corresponding infinite cyclic cover induced by f . Then, for all i ≥ 0, the
inclusion (T ∗)f ⊂ U f induces an epimorphism of Q-mixed Hodge structures

Hi((T
∗)f ;Q)� Ai(U

f ;Q),
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where Hi((T
∗)f ;Q) is endowed with its limit mixed Hodge structure. If, moreover, f is a

fibration, then the two mixed Hodge structures are isomorphic.

The paper is structured as follows. In Section 2, we recall the relevant background
and set notations for the rest of the paper. We introduce here the Alexander modules
(homological and cohomological versions, and their descriptions in terms of local sys-
tems), differential graded algebras (dga), mixed Hodge complexes, and recall how the
latter are used to get mixed Hodge structures on smooth varieties. We also summa-
rize here the construction of the limit mixed Hodge structure associated to a family of
projective manifolds. Section 3 is devoted to the theory of thickened complexes, which
already made an appearance in [5]. The purpose of Section 4 is to show that, under
certain technical assumptions, the thickened complex of a multiplicative mixed Hodge
complex is again a mixed Hodge complex (Theorem 4.2.1). In Section 5, we perform
the construction of a suitable thickening of the Hodge-de Rham complex (see Theorem
5.4.3) and prove Theorem 1.0.2 (see Corollary 5.4.12). We also show that, fixing f , the
mixed Hodge structure constructed here is independent of all choices (finite cover used
to make the monodromy unipotent, and good compactification) and is functorial.

The content of the remaining sections can largely be classified either as (1) comparing
our mixed Hodge structures on the torsion parts of the Alexander modules with known
mixed Hodge structures or (2) investigating applications. In Section 6, we prove that
the infinite cyclic covering map induces morphisms of mixed Hodge structures from
the torsion parts of the Alexander modules into the homology vector spaces of the base
space (see Theorem 1.0.3). The consequences of this fact are discussed in Section 7,
in particular we obtain sharp bounds on the weight filtrations (Theorem 1.0.4) and
explore how the t-action interacts with the mixed Hodge structures. It is here that we
hit on the significance of semisimplicity, and prove theorems to which it relates (see
Theorems 1.0.5 and 1.0.6). We also show that our construction coincides with the mixed
Hodge structure of case (2) above, when the latter is defined. In Section 8, we prove the
semisimplicity of Ai(U f ;Q) in the case when f : U → C∗ is a proper map (see Corollary
8.0.2), as well as the purity statement of Theorem 1.0.7. In Section 9, we compare the
mixed Hodge structure we constructed on the torsion part of the Alexander modules
with the limit mixed Hodge structure on the generic fiber of the algebraic map realizing
the infinite cyclic cover. In particular, Theorem 1.0.8 is proved in this section. We
apply our results to specific examples in Section 10, more exactly to the first Alexander
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modules of hyperplane arrangements. We conclude by listing open questions regarding
our constructions, as well as some of our expectations for what the answers will be.

Acknowledgements. We thank Lingquan Ma and Mircea Mustaţă for helpful discus-
sions. E. Elduque is partially supported by an AMS-Simons Travel Grant. L. Maxim is
partially supported by the Simons Foundation Collaboration Grant #567077. B. Wang is
partially supported by the NSF grant DMS-1701305 and by a Sloan Fellowship.

2. Preliminaries

In this section, we recall some standard results about Alexander modules, mixed
Hodge complexes, differential graded algebras and limit mixed Hodge structures. We
closely follow the presentation of [50]. However, we choose different conventions in
several places.

2.1. Denotations and Assumptions. In this section, we fix the notations for the rest of
the paper. Let k denote a field of characteristic zero. Unless otherwise stated, ⊗ denotes
⊗k. If V is a graded vector space, we denote by V i its i-th graded component.

Let R denote the ring k[t±1] of Laurent polynomials in the variable t over the field k.
Let R∞ denote the ring k[[s]] of formal power series in the variable s over the field k.
We identify R with a distinguished subring of R∞ by setting t = 1 + s. For m ≥ 1 let
Rm denote the quotient ring R/((t − 1)m) = R∞/(s

m). Throughout, M∨ will denote the
(sometimes derived) dual of M as an R-module, and we will use M∨k for the dual as a
k-vector space.

If U is a smooth manifold, let E•U denote the real de Rham complex of sheaves on U .
If U is moreover a complex manifold, let Ω•U denote the holomorphic de Rham complex
of sheaves on U . If X is a complex manifold, and D ⊂ X is a simple normal crossing
divisor, let Ω•X(logD) denote the log de Rham complex of sheaves on X .

When working with sheaves, we follow the notations of [16]. In particular, the pull-
back is denoted f−1. For a module M (over R or k) and a space X , we will use MX to
denote the constant sheaf on X with stalk M .

If the differential of a cochain complex is not specified, it is assumed to be denoted
by d. Given any double complex A•,•, we denote the total complex by TotA•,•. We use
the sign conventions that agree with [26, III §3.2]. Most importantly, given a map of
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complexes f : A• → B•, its cone is Cone(f)i = Bi ⊕ Ai+1, with differential

(
dB f

0 −dA

)
.

The maps B• → Cone(f)→ A•[1] are induced by IdB and IdA.

2.2. Alexander Modules. Let U be a smooth connected complex algebraic variety, and
let f : U → C∗ be an algebraic map inducing an epimorphism f∗ : π1(U) � Z on funda-
mental groups. Let exp: C→ C∗ be the infinite cyclic cover, and let U f be the following
fiber product:

(1)
U f ⊂ U × C C

U C∗.

f∞

π
y

exp

f

Under this presentation U f is embedded in U × C:

U f = {(x, z) ∈ U × C | f(x) = ez}.

Let f∞ be the restriction to U f of the projection U×C→ C. Since exp is an infinite cyclic
cover, π : U f → U is the infinite cyclic cover induced by ker f∗. The group of covering
transformations of U f is isomorphic to Z, and it induces an R-module structure on each
group Hi(U

f ; k), with 1 ∈ Z corresponding to t ∈ R = k[t±1]. We will also say t acts on
U f as the deck transformation (x, z) 7→ (x, z + 2πi).

Definition 2.2.1. The i-th homological Alexander module of U associated to the alge-
braic map f : U → C∗ is the R-module

Hi(U
f ; k).

Remark 2.2.2. The deck transformation group, generated by t, induces an automor-
phism of Hi(U

f ; k), but in principle it does not preserve the mixed Hodge structure that
we will define on its torsion. We will show in Corollary 7.0.4 and Proposition 7.0.5 that
this is the case if and only if the t-action is semisimple on TorsRHi(U

f ; k). Therefore, it
is important that f∞ is fixed, as choosing a map of the form f∞ ◦ tm = f∞ + 2πim for
any m ∈ Z would still identify U f with the fiber product U ×C∗ C, but it could give rise
to an isomorphic, but not equal, mixed Hodge structure on the same vector space.

This is to be expected: the limit mixed Hodge structure exhibits the same behavior,
see [50, 11.2]. �
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For our purposes, it is more convenient to realize the Alexander modules as homology
groups of a certain local system on U , which we now define. Let L = π!kUf . The action
of t on U f as deck transformations induces an automorphism of L, making L into
a local system of rank 1 free R-modules. For any point x ∈ U , the stalks are given by
Lx =

⊕
x′∈π−1(x) k. The monodromy action of a loop γ on Lx interchanges the summands

according to the monodromy action of γ on π−1(x). Therefore, the monodromy of L is
the representation:

π1(U) −→ AutR(R)

γ 7→
(
1 7→ tf∗(γ)

)
.

Remark 2.2.3. By [35, Theorem 2.1], there are natural isomorphisms of R-modules for
all i: Hi(U ;L) ∼= Hi(U

f ; k). These come from an isomorphism at the level of chain
complexes.�

Remark 2.2.4. The definition of the homological Alexander modules can be applied to
every connected space Y of finite homotopy type and any epimorphism π1(Y )� Z. See
for example [21, 5, 45, 47]. Note that every complex algebraic variety has the homotopy
type of a finite CW-complex [13, p.27].�

Remark 2.2.5. If M is a (sheaf of) R-modules, we will use M to denote M with the
conjugate R-module structure, where t acts by t−1. This is the same as saying M =

M ⊗RR, where the tensor is via the map R→ R sending t to t−1. Note that every (sheaf
of) R-modules has a canonical k-linear isomorphism M ∼= M , namely m 7→ m := m⊗1.�

Definition 2.2.6. The i-th cohomology Alexander module of U associated to the algebraic
map f is the R-module

H i(U ;L).

Note that by flatness there is an isomorphism

H i(U ;L) = H i(U ;L)⊗R R ∼= H i(U ;L ⊗R R) = H i(U ;L).

Remark 2.2.7. The Universal Coefficients Theorem (UCT) relates the two notions of
Alexander modules as follows (for a proof see Lemma 2.3.3). There is a natural short
exact sequence of R-modules

0→ Ext1
R(Hi−1(U ;L), R)→ H i(U ;HomR(L, R))→ HomR(Hi(U ;L), R)→ 0.

Moreover, this short exact sequence splits, but the splitting is not natural. Taking into
account Remark 2.2.8 below, the middle term can be identified with H i(U ;L).�
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Remark 2.2.8. Both rank 1 local systems HomR(L, R) and L have monodromy γ 7→
t−f∗(γ). Let us make a canonical choice of isomorphism between them. Since L = π!k,
for any x ∈ U , the stalk Lx has a k-basis parametrized by π−1(x). Let us call this basis
{δx′}x′∈π−1(x), and note that tδx′ = δtx′ . Then we have bases:

Lx = k〈δx′〉x′∈π−1(x); HomR(L, R)x ∼= k〈δ∧x′〉x′∈π−1(x).

Here δ∧x′ is the element in HomR(Lx, R) mapping δx′ 7→ 1. Let γ be a loop acting on the
stalks by the monodromy. Then:

γδx′ = t−f∗γδx′ ; tδx′ = δt−1x′ ; γδ∧x′ = t−f∗γδ∧x′ ; tδ∧x′ = δ∧t−1x′ .

Therefore, mapping δx′ 7→ δ∧x′ on every stalk gives an isomorphism L ∼= HomR(L, R).
We will freely identify these local systems from now on.�

Remark 2.2.9. In general, the cohomological Alexander modules are not isomorphic
as R-modules to the cohomology of the corresponding infinite cyclic cover. Indeed,
H i(U ;L) is a finitely generated R-module for all i. However, if Hi(U

f ; k) is not a finite
dimensional k-vector space, then H i(U f ; k) is not a finitely generated R-module. Al-
ternatively, H∗(U f ; k) and H∗(U ;L) are the hypercohomology of U with coefficients in
Rπ∗π

−1kU = π∗kUf and L = π!kUf respectively, so they need not be isomorphic.
However, the torsion parts of the cohomological Alexander modules and the cohomol-

ogy of U f are related in a way which will be made more precise in Proposition 2.4.1.�

2.3. Universal Coefficient Theorem. In this paper, we work with local systems of R-
modules. For an R-module M (or a complex thereof), we denote M∨ = RHom•R(M,R).
Similarly, for a sheaf of R-modulesM on a topological space X (or a complex thereof),
we denoteM∨ = RHom•R(M, RX).

Definition 2.3.1. Let U be a connected locally contractible space, and let F• be a bounded
complex of local systems of finitely generated free R-modules on U . Let x ∈ U , and de-
note π1 := π1(U, x). Let Ũ be any covering space induced by a normal subgroup H of π1

on which the inverse image of all the local systems F i becomes trivial. Following [57,
VI.3], we define

• C•(F•) := C•(Ũ ;R)⊗R[π1/H] F•x
• C•(F•) := Hom•R[π1/H](C•(Ũ ;R),F•x)

Here C•(Ũ ;R) are the singular chains with coefficients in R with a right action of π1/H

by deck transformations.



14 ELDUQUE, GESKE, HERRADÓN CUETO, MAXIM AND WANG

Remark 2.3.2. Let M be a local system of R-modules on U , and let F• → M be a
resolution ofM, where U and F• are as in Definition 2.3.1.
C•(F•) is a chain complex computing the homology ofM. Indeed, since C•(Ũ ;R) is a

complex of free R[π1/H]-modules, the tensor product appearing in the formula defining
C•(F•) coincides with the left derived tensor product, so C•(F•) is quasiisomorphic to
C•(Ũ ;R)⊗R[π1/H]Mx = C•(M) (the quasiisomorphism given by the resolution F• →M),
which is the complex computing the homology ofM by [57, VI.3].

Similarly, C•(F•) is quasiisomorphic to Hom•R[π1/H](C•(Ũ ;R),Mx) = C•(M) (the quasi-
isomorphism given by the resolution F• →M). C•(M) is a chain complex computing
the cohomology ofM (by loc. cit.). Again, note that the derived RHom•R[π1/H] coincides
with the usual Hom•R[π1/H] in the definition of C•(F•), by the freeness of C•(Ũ ;R). �

The Universal Coefficients Theorem will be important in Section 6. Below is the
version that we will need to use, which contains the definitions of the maps UCTR and
UCTk. We include the proof, since we will later make use of the spectral sequence that
appears in it, and we have not been able to find this version of the Universal Coefficients
Theorem in the literature. When using homological notation, we let Hj = H−j .

Lemma 2.3.3 (Definition of the maps UCTR and UCTk). Let U be a locally contractible
space, and let F• be a bounded complex of local systems of finitely generated free R-modules.
Let x ∈ U , and let π1 := π1(U, x). Since R is a PID, we have the following natural Universal
Coefficients Theorem short exact sequence

0→ Ext1
R(Hi−1(C•((F•)∨));R)→ H i(C•(F•))→ HomR(Hi(C•((F•)∨)), R)→ 0,

which gives us a natural isomorphism

UCTR : Ext1
R(Hi−1(C•((F•)∨));R)

∼−→ TorsRH
i(C•(F•)).

Now, suppose that F• is a single local systemM located at degree 0. If the stalk ofM at x is
a finitely generated torsion R-module, we can consider M as a local system of k-vector spaces.
Analogously to the short exact sequence above, we can replace R by k and F• byM, to obtain
the natural isomorphism UCTk : H i(U ;M)

∼−→ Homk(Hi(U ;Homk(M, k)), k).

Proof. By tensor-hom adjunction, we have the following isomorphism.

C•(F•) = Hom•R[π1/H]

(
C•(Ũ ;R),Hom•R((F•)∨x , R)

)
∼=

∼= Hom•R

(
C•(Ũ ;R)⊗R[π1/H] (F•)∨x , R

)
= Hom•R (C•((F•)∨), R) .
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Note that we are using (F•)∨ = RHom•R(F•, R), but since F• is a complex of local sys-
tems of free R-modules, then we have (F•)∨ = Hom•R(F•, R), which is again a bounded
complex of local systems of free R-modules. We are also using that for bounded com-
plexes of local systems, Hom•R commutes with taking stalks.

Now, since R is a PID, we can proceed as in the proof of the Universal Coefficient
Theorem in [32, Chapter 3.1], to arrive at the natural Universal Coefficients short exact
sequence from the statement of the lemma.

(2) 0→ Ext1
R(Hi−1(C•((F•)∨));R)→ H i(C•(F•))→ HomR(Hi(C•((F•)∨)), R)→ 0.

Alternatively, we can obtain this short exact sequence using a spectral sequence, namely
the one obtained from the Grothendieck spectral sequence for the composition of two
derived functors RF ◦ RG, taking G = Id and F = HomR(•, R). Later on we will need
to worry about what the maps are, so let us recall how it is obtained. Let K = k(t)

be the field of fractions of R, viewed as an R-module. Let I• be the following injective
resolution of R, with the obvious maps:

R→ K
(=I0)

→ K/R.
(=I1)

Consider the map of complexes induced by the map I0 → I1:

Hom•R(C•((F•)∨), I0)→ Hom•R(C•((F•)∨), I1).

We can turn this map into a double complex where each of the complexes above is a row,
and the map between them (with some sign changes) becomes the vertical differential.
We consider the spectral sequences associated to this double complex.

Consider the spectral sequence that starts by taking the vertical cohomology. Since
R → I• is an injective resolution, the cohomology of the columns is Exti(C•((F•)∨), R),
which vanishes if i 6= 0 since C•((F•)∨) is a complex of free R-modules. We are left with
only one nonzero row, namely the complex Hom•R(C•((F•)∨), R). Therefore, the spectral
sequence converges in the second page, to the cohomology of Hom•R(C•((F•)∨), R). In
other words, the cohomology of the total complex is the cohomology of C•(F•).

Now we consider the other spectral sequence, starting with the horizontal cohomo-
logy. Since I i is injective, there are natural isomorphisms:

Hj(Hom•R(C•((F•)∨), I i)) ∼= HomR(Hj(C•((F•)∨)), I i).
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Since I• is an injective resolution of R, we have isomorphisms as follows:

H i(HomR(Hj(C•((F•)∨)), I•)) ∼= ExtiR(Hj(C•((F•)∨)), R).

Further, the map R→ I• induces maps R→ K and β : K/R[−1]→ R, which means that
the isomorphisms above are induced by the inclusion R → K if i = 0 and by β if i = 1

(we will need to use this fact in Proposition 6.1.3). At this point, the spectral sequence
has converged (just by looking at the degrees), yielding a filtration of H i(C•(F•)) by
the cohomology groups above. In other words, we obtain the desired short exact se-
quence (2).

The isomorphism UCTk is obtained by replacing R by k, and F• by M in the proof
above. �

Remark 2.3.4. If we take F• = L seen as a complex in degree 0, we get that (F•)∨ ∼= L.
Taking into account Remark 2.3.2, the UCT short exact sequence in Lemma 2.3.3 (in R)
becomes

0→ Ext1
R(Hi−1(U ;L);R)→ H i(U ;L)→ HomR(Hi(U ;L), R)→ 0,

that is, the UCT short exact sequence in Remark 2.2.7.�

2.4. Cohomology Alexander modules and duality. The relation between the cohomol-
ogy Alexander modules and the corresponding infinite cyclic cover can be made more
precise as follows.

Proposition 2.4.1. There is a natural R-module isomorphism between TorsRH
i(U ;L) and

(TorsRHi−1(U f ; k))∨k , where ∨k denotes the dual as a k-vector space.
Moreover, this isomorphism is functorial in the following sense. Let U1 and U2 be smooth

connected complex algebraic varieties, with algebraic maps fj : Uj → C∗ such that fj induces an
epimorphism in fundamental groups for j = 1, 2, and assume that there exists an algebraic map
g : U1 → U2 that makes the following diagram commutative.

U1 U2

C∗
f1

g

f2

Let πj : U
fj
j → Uj be the corresponding infinite cyclic covers, and let Lj = π!k

U
fj
j

be the local

systems of R-modules induced by fj for j = 1, 2. Then, g induces a commutative diagram of
R-modules compatible with the above isomorphism as follows
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TorsRH
i(U2;L2) (TorsRHi−1(U f2

2 , k))∨k

TorsRH
i(U1;L1) (TorsRHi−1(U f1

1 , k))∨k .

∼=

g∗ (g∗)∨k

∼=

Proof. By the UCT (Remark 2.3.4), there is a short exact sequence of R-modules

0→ Ext1
R

(
Hi−1(U ;L), R

)
→ H i(U ;L)→ HomR

(
Hi(U ;L), R

)
→ 0.

Since R is a PID, the R-module HomR(Hi(U ;L), R) is free and Ext1
R(Hi−1(U ;L), R) is a

torsion R-module. Moreover, there is a natural isomorphism of R-modules

Ext1
R(Hi−1(U ;L), R) ∼= Ext1

R(TorsRHi−1(U f ; k), R).

Therefore, we have a natural isomorphism of R-modules

(3) TorsRH
i(U ;L) ∼= Ext1

R(TorsRHi−1(U f ; k), R).

Using equation (3) and applying Lemma 2.4.2 (see below) to the finitely generated
torsion R-module TorsRHi−1(U f ; k) yields a natural isomorphism of R-modules

TorsRH
i(U ;L)

∼=−→ (TorsRHi−1(U f ; k))∨k ,

concluding our proof of the first part of this proposition.
The functoriality follows from the functoriality of the UCT and Lemma 2.4.2. �

Lemma 2.4.2. Let A be a finitely generated torsion R-module. Then, there exists a natural
isomorphism of R-modules

Res: Ext1
R(A,R)

∼=−→ A∨k ,

where ∨k denotes the dual as a k-vector space.

This lemma is essentially a special case of the relative local duality theorem of Smith,
see [53, Theorem 1.5]. Since we are only using a very special version of the local duality
theorem, we sketch a more elementary proof.

We first make the following definition, which we will use in the proof.

Definition 2.4.3. Let K = k(t), and let β : K/R[−1] → R be the map in the derived
category of R-modules given by the floor diagram:

0 K R

K/R K/R 0.

1

1 ∼

1
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For an R-module M , this induces a map

R1 Hom•R(M,β) : HomR(M,K/R)→ Ext1
R(M,R).

Let res∗ be the composition HomR(·, K/R) → Homk(·, K/R) → Homk(·, k), where the
first arrow is just the forgetful arrow and the second arrow is the residue of a rational
function (see below for details). For every torsion R-module A, the isomorphism of
R-modules Res is defined as Res = res∗ ◦(R1 Hom•R(A, β))−1 : Ext1

R(A,R)→ Homk(A, k).
That is, it is the composition of the inverse of the map HomR(A,K/R) → Ext1

R(A,R)

in the long exact sequence corresponding to RHomR(A, ·) applied to the short exact
sequence of R-modules 0→ R→ K → K/R→ 0 with res∗.

Sketch of proof of Lemma 2.4.2. First, we prove that Res is an isomorphism assuming that
k is algebraically closed. Since R is a PID, the following is an injective resolution of R:

0→ R→ K → K/R→ 0.

By definition, there is a natural isomorphism Ext1
R(A,R) ∼= HomR(A,K/R)/HomR(A,K).

Since A is a torsion R-module, HomR(A,K) = 0 and hence we have a natural isomor-
phism

(4) Ext1
R(A,R) ∼= HomR(A,K/R).

We next define a k-linear map res : K/R→ k as follows. Using the division algorithm
and partial fraction decomposition, every element b ∈ K can be written uniquely as a
finite sum

b = v(t) +
r∑
i=1

qi∑
j=1

αi,j
(t− βi)j

,

where v(t) ∈ R, and αi,j ∈ k, βi ∈ k \ {0} are constants. We define res(b) =
∑r

i=1 αi,1.
Composing with the k-linear map res, we get a k-linear map

res∗ : HomR(A,K/R)→ Homk(A, k) = A∨k .

One can check that this is a homomorphism of R-modules. In fact, it is easy to check
this after localizing at each βi ∈ k \ {0} = mSpec(R). Since A is a finitely generated
torsion R-module, both HomR(A,K/R) and Homk(A, k) decompose into direct sums of
the localizations.

Next, we prove that res∗ is an isomorphism of R-modules. We claim that ker(res) ⊂
K/R does not contain any non-zero R-submodule M . In fact, without loss of generality,
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we can assume that M is supported at one point β1. Then a nonzero element of M is of
the form

[ w(t)
(t−β1)q

]
, where q ≥ 1 and w(β1) 6= 0. Now,

(t− β1)q−1 ·
[ w(t)

(t− β1)q

]
=
[ w(t)

t− β1

]
∈M

and res( w(t)
t−β1

) = w(β1) 6= 0. Thus, the above claim follows, which then implies that res∗

is injective.
Using the primary decomposition of finitely generated R-modules, it is easy to see

that as k-vector spaces, HomR(A,K/R) and Homk(A, k) have the same dimensions.
Therefore res∗ is an isomorphism. Hence, by equation (4), we have a functorial R-
module isomorphism

Ext1
R(A,R)

∼=−→ A∨k .

When k is not algebraically closed, we let k̄ be its algebraic closure. The above argu-
ments show that there exists a natural isomorphism

(5) Ext1
R⊗kk̄(A⊗k k̄, R⊗k k̄)

∼=−→ (A⊗k k̄)∨k .

Notice that the division algorithm and the partial fraction decomposition are invariant
under the Galois action of Gal(k̄/k). Therefore, the isomorphism (5) descends to an
isomorphism over k. �

Remark 2.4.4. Let β be as in Definition 2.4.3. In the derived category, there is an exact
triangle:

R
1−→ K

1−→ K/R
β[1]−−→ R[1].

Here β[1] is the following floor diagram. Note the sign:

0 K R

K/R K/R 0.

1

−1

1

This sign means that the map HomR(·, K/R)→ Ext1
R(·, R) appearing in the obvious Ext

long exact sequence is opposite to the map in the derived category induced by β[1].
We will use the former map, but this sign won’t affect any of our computations in this
paper.�

Corollary 2.4.5. In the above notations, assume moreover that Hi(U
f ; k) is a torsion R-module

for some i ≥ 0. Then, there exists a canonical isomorphism

TorsRH
i+1(U ;L) ∼= H i(U f ; k).
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Moreover, if Hi+1(U f ; k) is also a torsion R-module, then, so is H i+1(U ;L). Hence, in that case,
H i+1(U ;L) and H i(U f ; k) are naturally isomorphic.

Proof.

TorsRH
i+1(U ;L)

(2.4.1)∼= Homk(TorsRHi(U
f ; k), k) = Homk(Hi(U

f ; k), k)
UCTk∼= H i(U f ; k).

The rest of the proof follows from the UCT (written as in Remark 2.3.4). �

The result of the above corollary applies, in particular, to the special case when U =

Cn \ {f = 0} and i 6= n, with f : U → C∗ induced by a complex polynomial in general
position at infinity; see [19, 45].

2.5. Relationship with the generic fiber. Let U, f, π be as in Section 2.2. By Verdier’s
generic fibration theorem [55, Corollary 5.1], there exists a finite set of points B ⊂ C∗

such that f : f−1(C∗ \ B) −→ C∗ \ B is a locally trivial fibration. Being the pullback of a
locally trivial fibration, f∞ is a locally trivial fibration away from exp−1(B) as well.

Definition 2.5.1. We will say a fiber f−1
∞ (c) (resp. f−1(ec)) is generic if c /∈ exp−1(B)

(resp. if ec /∈ B).

Let F be a generic fiber of f . For any c ∈ C, π is an isomorphism between a
neighborhood of f−1

∞ (c) and a neighborhood of f−1(ec) (recall that π is the pullback
of exp: C → C∗). In particular, if F = f−1(ec), there is a unique lift i∞ : F ↪→ U f of the
inclusion i : F ↪→ U inducing an isomorphism F ∼= f−1

∞ (c).
Let us recall the description of the monodromy action of F , along with its compati-

bility with the deck action on U f .

Lemma 2.5.2. For any j ≥ 0, the map i∞ induces a map:

(i∞)j : Hj(F ; k) −→ Hj(U
f ; k).

This map is an R-module homomorphism if we let t ∈ R act on the right hand side as the deck
transformation of U f and on the left-hand side as the clockwise monodromy of f , i.e. the action
of −1 ∈ Z ∼= π1(C∗).

Further, Hj(F ; k) is finite dimensional, so it is necessarily a torsion R-module. Therefore, the
image of (i∞)j is contained in TorsRHj(U

f ; k) = Aj(U
f ; k).

Proof. Suppose we have any two generic fibers F1, F2, with Fi = f−1
∞ (ci), and a path γ

connecting c1 with c2 in C \ exp−1(B). Then, f∞ restricted to f−1
∞ (γ) is a locally trivial
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fibration over a contractible base, and therefore f−1
∞ (γ) deformation retracts to any fiber.

In particular, we obtain a homotopy equivalence F1 ' F2. Therefore, we are free to
choose a fixed fiber F ⊆ U f such that exp(f∞(F )) is contained in a small neighborhood
of 0. Recall that we can use π to identify F ∼= π(F ). Let c0 = f∞(F ).

Let γ be a counterclockwise circle centered at 0 passing through ec0 . By definition,
the monodromy action of γ on π(F ) ∼= F is given as follows. Lifting γ to a line segment
γ̃ = [c0, c0 + 2πi] ⊂ C, we use the same deformation retraction argument from above to
obtain the monodromy map as the following composition from left to right (defined up
to homotopy):

π(F )
π←−∼= f−1

∞ (c0) ↪−→
'
f−1
∞ (γ̃)←−↩

'
f−1
∞ (c0 + 2πi)

π−→∼= π(F ).

Let us see how this relates to the deck action. The preimage exp−1(γ) is a line, and
therefore it is contractible. Therefore, F̃ := f−1

∞ (exp−1(γ)) deformation retracts to all its
fibers. Fix the homotopy equivalence α : π(F ) ∼= f−1

∞ (c0)
'
↪−→ F̃ . The deck transformation

t acts on F̃ by restricting the action on U f . Consider the following diagram.

π(F ) π(F ) π(F )

f−1
∞ (c0) f−1

∞ (c0 + 2πi) f−1
∞ (c0)

F̃ F̃ F̃ .

α

γ

α

π ∼=

'

t

'

π ∼= π ∼=

'

t

Here γ denotes the homotopy action of γ, as defined above. The diagram is commu-
tative, except for the right hand rectangle, which only commutes up to homotopy (by
definition of the monodromy). From this diagram we see that on π(F ), α−1 ◦ t◦α = γ−1,
as desired. Choosing a different lift F of π(F ), we could repeat this proof to obtain the
same result. �

Proposition 2.5.3. Under the notations of Lemma 2.5.2, the homomorphism (i∞)j : Hj(F ; k) −→
TorsRHj(U

f ; k) is an epimorphism for all j ≥ 0. In other words, the R-module Hj(F ; k) maps
onto to the torsion part of the j-th homology Alexander module.

Moreover, the kernel of (i∞)j can be described as follows: for any b ∈ C∗, let Tb = f−1(Db),
where Db is a small disk around b. Using a path to identify F with a general fiber in Tb, let

Kb = ker (Hj(F ; k)→ Hj(Tb; k)) .
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The kernel of (i∞)j is the R-module generated by the subgroups Kb for b ∈ B, where B ⊂ C∗

consists of the points over which f is not a locally trivial fibration.

Proof. We use an argument similar to [20, 2.3]. As in the proof of Lemma 2.5.2, we may
choose F to be a generic fiber of f∞ such that | exp(f∞(F ))| � 1. Recall that π induces
an isomorphism between F and a generic fiber of f .

For all c ∈ C, let Dc be a small disk centered at c, D∗c = Dc \ {c}, Tc := f−1(Dc) and
T ∗c := f−1(D∗c ). There is a deformation retraction of C∗ to a subspace we will call X ,
which is the union of D∗0 and Db for b ∈ B, together with a path connecting D∗0 with Db

for each b. We choose these paths to be contractible and pairwise disjoint.
Then, C has a deformation retraction to exp−1(X), which is the union of Db̃ for b̃ ∈

exp−1(B), the preimages of all the paths in X and a left half-plane, which is the preimage
of D∗0. We can further deformation retract C to X̃ , defined as follows: for every b̃ ∈
exp−1 B, fix a contractible path from f∞(F ) to the boundary of Db̃, so that all the paths
are disjoint away from f∞(F ). Let X̃ be the union of all of the Db̃’s and all those paths
joining each of the disks to f∞(F ). It will later be convenient for us to use closed disks
to construct X̃ .

Recall that f∞ is a locally trivial fibration away from exp−1(B). Let Y = f−1
∞ (X̃).

Using the fibration, we have that U f deformation retracts to Y . Therefore, the inclusion
Y → U f induces isomorphisms for all i:

Hj(Y, F ; k) ∼= Hj(U
f , F ; k).

Now we consider two contractible neighborhoods V1 ( V2 of f∞(F ) in X̃ : let V1 be
the complement of the closed disks around each b̃ ∈ B (i.e. a wedge sum of segments),
and let V2 be a contractible open neighborhood of V 1 that doesn’t intersect exp−1 B. For
example, V2 can be taken to be the union of V1 with a small open disk around V 1 ∩Db̃

for every b̃ ∈ exp−1(B).
Since Vi are both contractible and f∞ is a locally trivial fibration over them, we have

that the inclusions are homotopy equivalences F ' f−1
∞ (V1) ' f−1

∞ (V2). Therefore, by
these equivalences and by excision, we have isomorphisms induced by inclusions:

Hj(Y, F ; k) ∼= Hj(Y, f
−1
∞ (V2); k) ∼= Hj(Y \ f−1

∞ (V1), f−1
∞ (V2 \ V1); k).

Since X̃ \ V1 is a disjoint union of Db̃,

Hj(Y, F ; k) ∼=
⊕

b̃∈exp−1(B)

Hj(f
−1
∞ (Db̃), f

−1
∞ (V2 ∩Db̃); k).
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Over V2 ∩ Db̃, f∞ is a trivial fibration (since the base is contractible). Therefore, any
path connecting f∞(F ) with some point c ∈ V2 ∩ Db̃ induces a homotopy equivalence
F ' f−1

∞ (c), which in turn is homotopy equivalent to f−1
∞ (V2 ∩ Db̃). If we just denote

F = f−1
∞ (c), we have⊕

b̃∈exp−1(B)

Hj(f
−1
∞ (Db̃), f

−1
∞ (V2 ∩Db̃); k) ∼=

⊕
b̃∈exp−1(B)

Hj(f
−1
∞ (Db̃), F ; k).

Now we consider the R-module structure on the cohomology of the pair (U f , F ). If
F = f−1

∞ (c) for <c � 0 (< denotes the real part), F is homotopy equivalent to F̃ :=

f−1
∞ ({z | <z = <c}). Then the deck transformations (z 7→ z+ 2πi) act on the pair (U f , F̃ ),

making the maps in the long exact sequence R-linear. Recall from Lemma 2.5.2 that the
deck action on Hj(F̃ ; k) coincides with the monodromy action on Hj(F ; k).

Note that the action of t ∈ R on U f restricts to
⊔
b̃∈exp−1(B)(f

−1
∞ (Db̃), F ; k): we can

choose the disks to be Z-invariant, and we can choose the paths identifying the fibers so
that the monodromy action agrees with the action on F . Therefore, the homology group
above is an R-module. Further, it is a free R-module, since f−1

∞ (Db̃)
∼= f−1(Db)× Z:⊕

b̃∈exp−1(B)

Hj(f
−1
∞ (Db̃), F ; k) ∼=

⊕
b∈B

R⊗k Hj(f
−1(Db), F ; k).

We have the long exact sequence of the pair (U f , F ):

Hj+1(U f , F ; k)→ Hj(F ; k)→ Hj(U
f ; k)→ Hj(U

f , F ; k).

Since the last group is free, the restriction TorsRHj(U
f ; k) → Hj(U

f , F ; k) must van-
ish. We have seen above that the inclusion induces an isomorphism Hj+1(U f , F ; k) ∼=⊕

b∈BHj+1(Z × Tb, F ; k), so the sequence above restricts to an exact sequence of R-
modules: ⊕

b∈B

R⊗k Hj+1(Tb, F ; k)→ Hj(F ; k)→ TorsRHj(U
f ; k)→ 0.

By the exactness, the kernel of (i∞)j is the image of the first map. This image is the
R-module generated by Hj+1(Tb, F ; k) for all b ∈ C∗ (note that for b /∈ B, this homology
group vanishes). Therefore, it is enough to describe the image of:

Hj+1(Tb, F ; k)→ Hj(F ; k).

By the long exact sequence of the pair (Tb, F ), the image of the above map is Kb. �
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Remark 2.5.4. The map in Proposition 2.5.3 factors through Hj((T
∗)f ; k), where T ∗ =

f−1(D∗) for D∗ a punctured disk centered at 0 in C. We choose D∗ to be small enough
that the restriction of f to T ∗ is a fibration, so (T ∗)f is homotopy equivalent to F , and
the epimorphism Hj(F ; k)� TorsRHj(U

f ; k) factors as

(6) Hj(F ; k)
∼=−→ Hj((T

∗)f ; k)� TorsRHj(U
f ; k),

where the second morphism doesn’t depend on the choice of base points.
Now, if we take the k-dual of (i∞)j , we get a monomorphism of R-modules(

TorsRHj(U
f ; k)

)∨
↪→
(
Hj(F ; k)

)∨
.

By Proposition 2.4.1 and the isomorphism (Hj(F ; k))∨ ∼= Hj(F ; k), we get a monomor-
phism of R-modules, only depending on a choice of lift of the base point:

(7) TorsRH
j+1(U ;L) ↪→ Hj(F ; k).

By the isomorphism in (6), Hj((T
∗)f ; k) is finite dimensional, so it is a torsion R-module.

Hence, by Corollary 2.4.5, Hj((T ∗)f ; k) ∼= Hj+1(T ∗;L) (note that all the results of Sec-
tion 2.4 are purely topological, so they can be applied to T ∗). This implies that for D∗

small enough, the monomorphism in (7) factors in this way:

TorsRH
j+1(U,L) ↪→ Hj+1(T ∗;L)

∼=−→ Hj(F ; k),

where the first map is given by restriction and does not depend on the choice of base
points.�

Remark 2.5.5. If f is proper, then Proposition 2.5.3 can be expressed using the nearby
cycles of f at b ∈ C∗, as follows.

By [29, Part II, Section 6.13], Tb has a deformation retraction to Fb = f−1(b), and we can
compose with the inclusion of F into Tb to obtain the specialization map in cohomology
Hj(Fb; k) → Hj(F ; k). Letting ψf−bk be the nearby cycles of f supported on f = b,
there is an isomorphism Hj(F ; k) ∼= Hj(Fb;ψf−bk) by [1, Exposé XIII p.103]. Under this
isomorphism, the specialization map agrees with the map Hj(Fb; k) → Hj(Fb;ψf−bk)

induced by the canonical morphism i−1
b k → ψf−bk, where ib : Fb ↪→ U is the inclusion.

Let K∨kb ⊆ Hj(F ; k) be the image of the specialization map. Using Proposition 2.4.1, we
have the dual map ((i∞)j)

∨k : TorsRH
j+1(U ;L) → Hj(F ; k). The image of ((i∞)j)

∨k is
the largest R-module contained in K∨kb for all b ∈ B.�
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2.6. Monodromy action on Alexander Modules and finite cyclic covers. Let k = C, let
U be a smooth connected complex algebraic variety, and let f : U → C∗ be an algebraic
map inducing a local system L of R-modules as in Section 2.2. Since R is a PID, we
have the primary decomposition

Ai(U
f ;C) = TorsRHi(U ;L) ∼=

r⊕
i=1

R/
(
(t− λi)pi

)
with pi ≥ 1 for all i = 1, . . . , r. The set {λi ∈ C | i = 1, . . . , r} is uniquely determined by
Ai(U

f ;C).

Proposition 2.6.1. Every λi defined above is a root of unity.

Proof. When U is quasi-projective, this fact is proved in [5, Proposition 1.4] by reducing
to a structure theorem for the cohomology jump loci of a smooth quasi-projective variety
[7, Theorem 1.1]. The structure theorem of cohomology jump loci is generalized to
arbitrary smooth complex algebraic varieties in [8, Theorem 1.4.1]. So the statement of
[5, Proposition 1.4] applies to any smooth complex algebraic variety. �

In particular, applying Proposition 2.4.1, one has the following.

Corollary 2.6.2. Let k = C. The eigenvalues of the action of t on TorsRH
∗(U ;L) are all roots

of unity.

The main goal of this paper is to construct a natural mixed Hodge structure on
TorsRH

∗(U ;L) (for k = Q,R). For reasons that will become apparent later on, we
would like to be able to reduce this problem to the case where the eigenvalues of the
action of t on TorsRH

∗(U ;L) are not just roots of unity, but equal to 1. The rest of this
section is devoted to justifying such a reduction.

Let N ∈ N be such that the N -th power of all the eigenvalues of the action of t on
TorsRH∗(U ;L) (equiv. on TorsRH

∗(U ;L)) is 1 for all ∗. Consider the following pull-back
diagram:

UN = {(x, z) ∈ U × C∗ | f(x) = zN} C∗

U C∗.

p
y

fN

z 7→zN

f

Here p is an N -sheeted cyclic cover. Notice that all of the maps involved in this diagram
are algebraic, and that UN is also a smooth algebraic variety. We can define (UN)fN ,
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(fN)∞, πN and LN as in Section 2.2 for the map fN : UN → C∗. We define:

θN : U f −→ U fN

U × C 3 (x, z) 7−→ (x, ez/N , z/N) ∈ UN × C ⊂ U × C∗ × C.

It fits into the following commutative diagram:

(8)
U f U fN

N UN U

C C C∗ C∗.

f∞

∼
θN

π

(fN )∞

πN

y
fN

p

y
f

z 7→ z
N

exp

exp z 7→zN

The map θN allows us to identify U f with U fN
N in a canonical way, which we will do

from now on. In particular, we can also identify the constant sheaves k
U
fN
N

and kUf

canonically.
On fundamental groups, p induces an isomorphism:

π1(UN) ∼= {γ ∈ π1(U) | f∗(γ) ∈ NZ}.

Let R(N) := k[tN , t−N ]. Since p is an N -sheeted covering space, p∗LN = p!LN is a local
system of R(N)-modules of rank N on U . Since R is a rank N free R(N)-module, we can
also consider L as a local system of rank N free R(N)-modules on U . In fact, θN induces
the following isomorphism of local systems of R(N)-modules (we are using equal signs
for canonical isomorphisms):

p∗LN = p!LN = p!

(
(πN)!kUfNN

) θN∼= p! ((πN ◦ θN)!kUf ) = π!kUf = L.

Since p is a finite covering, p∗ = p! is the left and right adjoint to the sheaf inverse image
p−1. In particular p∗ is exact.

As in Remark 2.2.8, there is a basis of the stalk of L (resp. LN ) parametrized by the
fiber of π (resp. πN ). If we denote δx′ the elements in this basis, then θN maps an element
of the form δ(x,ez/N ,z) (in the stalk of LN at (x, ez/N) ∈ UN ) to δ(x,z). This discussion and
some immediate consequences are summarized in the following lemma.

Lemma 2.6.3. In the above notations, θN induces a canonical isomorphism of local systems of
R(N)-modules θLN : p∗LN ∼= L. This induces canonical isomorphisms in the homology of these
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local systems, which is the same as the map induced by θN , i.e. the following diagram commutes:

Hi(UN ;LN) Hi(U ;L)

Hi(U
fN
N ; k) Hi(U

f ; k).

θLN
∼

∼ ∼
θN
∼

Identifying each local system with its conjugate, we obtain another canonical isomorphism
θLN : p∗LN ∼= p∗LN ∼= L. This induces in cohomology the same map as θN , i.e. the follow-
ing diagram commutes:

TorsRH
i+1(U ;L) TorsR(N) H

i+1(UN ;LN)

(TorsRHi(U
f ; k))∨k (TorsR(N) Hi(U

fN
N ; k))∨k .

θLN
∼

∼ ∼
θ
∨k
N

∼

The vertical isomorphisms come from Proposition 2.4.1.

Proof. The statement about homology is a straightforward application of the discussion
in [57, VI.3]. For the cohomology, we will outline the proof and leave the details to the
reader. First, it is enough to show that this diagram commutes, since the isomorphism
in Proposition 2.4.1 is natural:

(9)

Hi+1(U ;L) Hi+1(U ; p!LN ) Hi+1(UN ;LN )

Hi+1(U ;HomR(L, R)) Hi+1(U ;HomR(p!LN , R)) Hi+1(UN ;HomR(N)(LN , R(N)))

Ext1R(Hi(U ;L), R) Ext1R(Hi(U ; p!LN ), R) Ext1R(N)(Hi(UN ;LN ), R(N))

θLN (1)

θ∨LN (2)

UCTR

θLN

UCTR

(3)

UCTR(N)

The top row of vertical arrows is the identification of the dual of a rank 1 free (local
system of) modules with its conjugate, as in Remark 2.2.8. The top left square commutes
because this identification is natural, as one can easily verify. By θ∨LN (resp. θLN ) we
mean the result of applying HomR(·, R) (resp. the conjugate structure) to θLN .

The bottom row of vertical arrows are all the maps of Lemma 2.3.3, which are iso-
morphisms onto the torsion of the codomain. The bottom left square commutes by
the naturality of these maps. The arrow labeled (1) comes from the relation between
cohomology and pushforward.

According to the statement we want to prove, the arrow labeled (3) must come from
the isomorphism TorsRHi(U ; p!LN) ∼= TorsR(N) Hi(U ; p!L), after taking k-duals and using
Lemma 2.4.2 together with the fact that TorsR = TorsR(N).
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The arrow labeled (2) is a composition of two maps. We start with the adjunction
between restriction of scalars and Hom: HomR(A,HomR(N)(R,B)) ∼= HomR(N)(AR(N), B).
We have an R-linear isomorphism R ∼= HomR(N)(R,R(N)) where g(t) goes to the map
f(t) 7→ 1

N

∑
ξN=1 g(ξt)f(ξt). This gives us an isomorphism

HomR(p!LN , R) ∼= HomR(N)(p!LN , R(N))(
δ∧

(x,ez/N ,z)
: δ(x,ez/N ,z) 7→ 1

)
7→

(
δ∧

(x,ez/N ,z)
: δ(x,ez/N ,z) 7→ 1

)
.

Note that on the left-hand side, δ∧
(x,ez/N ,z)

is R-linear, so it sends δ(x,e(z+2πik)/N ,z+2πik) 7→
tk. On the right-hand side, its image sends δ(x,e(z+2πik)/N ,z+2πik) to 0 whenever k is not
a multiple of N . Verdier duality ([56], see also [3, V, 7.17]) then gives the following
isomorphism, taking into account that, since p is a finite covering map, p! = p−1:

HomR(N)(p!LN , R(N)) ∼= p∗HomR(N)(LN , R(N)) = p∗L∨N
δ∧

(x,ez/N ,z)
7→

(
δ∧

(x,ez/N ,z)
: δ(x,ez/N ,z) 7→ 1

)
.

The stalk at x of p∗L∨N is the sum of the stalks of L∨N at p−1(x), and δ∧
(x,ez/N ,z)

is 0 on all
these stalks except at (x, ez/N). We can now see that the top right square above com-
mutes, as it comes from applying cohomology to the following commutative square,
where the elements are mapped as in the right-hand side (the notation · is as in Re-
mark 2.2.5):

p!LN p!LN δ(x,ez/N ,z/N) δ(x,ez/N ,z/N)

HomR(p!LN , R) p∗HomR(N)(LN , R(N)) δ∧
(x,ez/N ,z/N)

δ∧
(x,ez/N ,z/N)

.

It remains to show that the bottom right square of (9) commutes. To this end, con-
sider the arrow labeled (3). Up to composing with the isomorphism Hi(U ; p!LN) ∼=
Hi(UN ;LN), it is the bottom path in the following diagram.

Ext1R(Hi(U ; p!LN ), R) Ext1R(Hi(U ; p!LN ),HomR(R,R(N))) Ext1R(N)(Hi(U ; p!LN ), R(N))

Homk(TorsRHi(U ; p!LN ), k) Homk(TorsR(N) Hi(U ; p!LN ), k)

Res∼ Res∼

On the top row we have the same R-linear isomorphism R ∼= HomR(R,R(N)) that we
used above, composed with (Ext applied to) the adjunction map HomR(R,R(N)) 7→
R(N), sending ϕ 7→ ϕ(1). We leave to the reader the verification that this diagram
commutes, noting that one can use the classification of modules over a PID to reduce to
the case where Hi(U ; p!LN) is a cyclic module.
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Therefore, to show that the bottom right square in (9) commutes, we may use the
description of the map above. We show that it commutes by taking the complexes
whose cohomologies give rise to this square. Take a base point xN ∈ UN , let x = p(xN)

and π1 := π1(U, x) ⊃ π1(UN , xN) =: π′1. Denote the stalk M := (LN)xN , seen as a R(N)[π′1]-
module. Note that (p∗LN)x ∼= k[π1]⊗k[π′1]M , which becomes an R-module by letting t ∈ R
act as γ ∈ π1 such that f∗(γ) is the counterclockwise generator of π1(C∗). Let C• be the
singular chain complex of the universal cover of U with k coefficients, seen as a right
k[π1]-module by the inverse of deck transformations. Then, the square we are interested
in arises from the cohomology of the commutative diagram below.

Hom•k[π1](C•,HomR(k[π1]⊗k[π′1] M,R)) Hom•k[π′1](C•,HomR(N)(M,R(N)))

Hom•R(C• ⊗k[π1] k[π1]⊗k[π′1] M,R) Hom•R(N)(C• ⊗k[π′1] M,R(N)).

t-h t-h

To obtain the bottom right square in (9), we must take cohomology and then restrict to
the torsion of the bottom row, applying the universal coefficient theorem. The vertical
arrows are tensor-hom adjunction.

We can directly verify that the diagram commutes. Note that C• is a free k[π1]-module,
with a basis that we will denote {cj}j∈J . M is a rank 1 free module over R(N). Let us
call a basis (for both module structures) {m}, and note that m also generates M over
k[π′1]. Take γ ∈ π1 to be any lift of the generator of π1/π

′
1
∼= Z/NZ. Then {γk}0≤k<N

is a k[π′1]-basis of k[π1]. Let P : R → R(N) be the projection f(t) 7→ 1
N

∑
ξN=1 f(ξt).

The elements of the groups above have the following form. They are parametrized by
picking aj ∈ R for j ∈ J .{

cj 7→ (γk ⊗m 7→ tkaj)
}

(aj)j∈J

{
γ−kcj 7→ (m 7→ P (tkaj))

}
(aj)j∈J

{
cj ⊗ γk ⊗m 7→ tkaj

}
(aj)j∈J

{
γ−kcj ⊗m 7→ P (tkaj)

}
(aj)j∈J

.

We will leave to the reader the verification that the maps are indeed defined as the
diagram suggests, so that the diagram commutes as desired. �

Remark 2.6.4. Notice that the only eigenvalue of the action of tN in TorsR(N) H
∗(UN ;LN)

is 1. So Lemma 2.6.3 allows us to reduce the problem of constructing a mixed Hodge
structure on TorsRH

∗(U ;L) to the case when the only eigenvalue is 1.�
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2.7. Differential Graded Algebras. By a commutative differential graded k-algebra
(cdga) we mean a triple (A, d,∧) such that:

• (A,∧) is a positively graded unital k-algebra.
• a ∧ b = (−1)deg(a) deg(b)b ∧ a for homogeneous a, b ∈ A.
• (A, d) is a cochain complex.
• d(a ∧ b) = da ∧ b+ (−1)deg(a)a ∧ db for homogeneous a, b ∈ A.

Notice that when we write cdga, the field k is implicit. We often write A instead of
(A, d,∧) when the differential and multiplication are understood.

When we discuss Hodge complexes, we will often work with filtered cdgas whose
filtrations are compatible with the differential and the multiplication. Suppose (A, d,∧)

is a cdga. By an increasing cdga-filtration on (A, d,∧) we mean an increasing filtration
W� on A such that

WiA ∧WjA ⊂ Wi+jA and d(WiA) ⊂ WiA

for all integers i and j. By a decreasing cdga-filtration on (A, d,∧) we mean a decreasing
filtration F � on A such that

F iA ∧ F jA ⊂ F i+jA and d(F iA) ⊂ F iA

for all integers i and j. One defines cdga-filtrations on a sheaf of cdgas analogously, by
looking at the cdgas of sections over arbitrary open subsets.

2.8. Mixed Hodge Structures and Complexes. Let k denote a subfield of R and X denote a
topological space in this subsection.

The purpose of this subsection is to compile relevant definitions and to set notations
related to mixed Hodge structures and complexes.

Definition 2.8.1 ([50, Definition 2.1]). Let m ∈ Z, V be a finite dimensional k-vector
space, and let VC = V ⊗k C be its complexification. A k-Hodge structure of weight m on
V is a direct sum decomposition (Hodge decomposition):

VC =
⊕
p,q∈Z
p+q=m

V p,q such that V p,q = V q,p.

The data of the Hodge decomposition is equivalent to a decreasing filtration F p on VC

(the Hodge filtration) with the property that VC = F p ⊕ F q for all p, q ∈ Z such that
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p+ q = m+ 1. More precisely, one can be obtained from the other as follows:

F p =
⊕
r≥p

V r,m−r; V p,q = F p ∩ F q.

Definition 2.8.2 ([50, Definition 3.1]). Let V be a finite dimensional k-vector space, and
let VC = V ⊗k C be its complexification. A k-mixed Hodge structure (MHS) on V is
the data of an increasing filtration W� on V (weight filtration) and a decreasing filtra-
tion F � on VC (Hodge filtration), with the following property: for every m ∈ Z, on
GrWm V := Wm

Wm+1
, the filtration induced F p on the complexification gives GrWm V a pure

Hodge structure of weight m.

Definition 2.8.3 ([50, Definition 2.32]). If m ∈ Z then a k-Hodge complex of sheaves on
X of weight m is a triple K• = (K•k, (K•C, F ), α) where:

• K•k is a bounded below cochain complex of sheaves of k-vector spaces on X such
that the H∗(X,K•k) are finite-dimensional.
• K•C is a bounded below cochain complex of sheaves of C-vector spaces on X and
F is a decreasing filtration on K•C.
• α : K•k 99K K•C is a pseudo-morphism of complexes of sheaves of k-vector spaces

onX (i.e. a morphism in the derived category) that induces a pseudo-isomorphism
α⊗ 1: K•k ⊗ C 99K K•C (i.e. an isomorphism in the derived category).
• the filtration induced by F and α on H∗(X,K•k) ⊗ C ∼= H∗(X,K•C) endows the
k-vector space H∗(X,K•k) with a k-Hodge structure of weight ∗+m.
• The spectral sequence Hp+q(X,GrpFK•C) ⇒ Hp+q(X,K•C) associated to (K•C, F ) de-

generates at the E1-page (see [50, Definition 2.32] for more details).

Definition 2.8.4 ([50, Definition 3.13]). A k-mixed Hodge complex of sheaves on X is a
triple K• = ((K•k,W�), (K•C,W�, F �), α) where:

• K•k is a bounded below cochain complex of sheaves of k-vector spaces on X such
that H∗(X,K•k) are finite-dimensional, and W� is an increasing (weight) filtration
on K•k.
• K•C is a bounded below cochain complex of sheaves of C-vector spaces on X ; W�

is an increasing (weight) filtration and F � a decreasing (Hodge) filtration on K•C.
• α : (K•k,W�) 99K (K•C,W�) is a pseudo-morphism of filtered complexes of sheaves

of k-vector spaces on X (i.e. a chain of morphisms of bounded-below complexes
of sheaves as in [50, Definition 2.31] except that each complex in the chain is
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filtered, as are all the morphisms) that induces a filtered pseudo-isomorphism

α⊗ 1: (K•k ⊗ C,W� ⊗ C) 99K (K•C,W�)

that is, a pseudo-isomorphism on each graded component.
• for m ∈ Z, the m-th W -graded component

GrWmK• =
(

GrWmK•k,
(
GrWmK•C, F �

)
,GrWmα

)
is a k-Hodge complex of sheaves [50, Definition 2.32] on X of weight m, where
F � denotes the induced filtration.

We will sometimes introduce a k-mixed Hodge complex of sheaves on X simply as K•

and implicitly assume the components of the triple to be notationally the same as in the
above definition.

Definition 2.8.5. A multiplicative k-mixed Hodge complex of sheaves on X is a k-mixed
Hodge complex of sheaves K• on X such that the pseudo-morphism α has a distin-
guished representative given by a chain of morphisms of sheaves of cdgas on X (with
all but K•k being a sheaf of C-cdgas), and such that all filtrations (including those in the
chain) are cdga-filtrations (over C except for the weight filtration on K•k).

From a given Hodge complex, one can construct others as follows. Suppose m ∈ Z
and K• = (K•k, (K•C, F �), α) is a (pure) k-Hodge complex of sheaves [50, Definition 2.32]
on X of weight m. If j ∈ Z, the j-th Tate twist of K• is the triple

K•(j) =
(
K•k,

(
K•C, F [j]

)
, α
)

where F [j]i = F j+i is the shifted filtration. K•(j) is a k-Hodge complex of sheaves on X

of weight m − 2j. For details see [50, Definition 2.35] and notice the we have changed
the convention by selecting not to multiply by (2πi)j .

Tate twists can also be defined for mixed Hodge complexes of sheaves. Suppose K•

is a k-mixed Hodge complex of sheaves on X . If j ∈ Z, the j-th Tate twist of K• is the
triple

K•(j) =
((
K•k,W [2j]�

)
,
(
K•C,W [2j]�, F [j]�

)
, α
)

where W [2j]i = W2j+i and F [j]i = F j+i are shifted filtrations. K•(j) is again a k-mixed
Hodge complex of sheaves on X . For details see [50, Definition 3.14] and notice again
that we have changed convention by selecting not to multiply by (2πi)j .

We will also refer to Tate twists of k-mixed Hodge structures. These are defined by
shifting the weight and Hodge filtrations with the same formula we used for mixed



33

Hodge complexes above. See [50, Example 3.2(3)] for an explicit definition, except that,
as expected, we opt not to multiply by a power of 2πi.

We will be interested in shifting mixed Hodge complexes. If F• is a complex of
sheaves on X , then its translation is the complex F•[1] = F•+1 with differential d•[1] =

−d•+1. Suppose K• is a k-mixed Hodge complex of sheaves on X . The translation of
K• is the triple

K•[1] = ((K•k[1],W [1]�), (K•C[1],W [1]�, F [1]�), α[1])

where the filtrations are described by:

(W [1])i (K•k[1]) = (Wi+1K•k) [1], (W [1])i (K•C[1]) = (Wi+1K•C) [1], i ∈ Z

(F [1])p (K•C[1]) =
(
F p+1K•C

)
[1], p ∈ Z.

This is again a k-mixed Hodge complex of sheaves on X . Note that this agrees with the
translation of a pure Hodge complex as defined in [50, 2.35] for pure Hodge complexes,
but not with the translation of mixed Hodge complexes implicit in loc. cit. 3.22.

Remark 2.8.6. Suppose K• is a k-mixed Hodge complex of sheaves on X . By [50, Theo-
rem 3.18II] the hypercohomology vector spaces H∗(X,K•k) inherit k-mixed Hodge struc-
tures. There is a relation between Tate twists and the translation of a k-mixed Hodge
complex K• of sheaves on X . Namely it can be shown that:

H∗(X,K•k[1]) ∼= H∗+1(X,K•k)(1)

where a Tate twist has been taken on the right-hand side, and the k-mixed Hodge struc-
ture on the left-hand side has been induced by the translated k-mixed Hodge complex
K•[1].�

Remark 2.8.7 (Derived direct image of a mixed Hodge complex of sheaves.). Suppose
K• is a k-mixed Hodge complex of sheaves on X where the filtrations W� and F � are
biregular (i.e. for all m, the filtrations induced on Km are finite). Let g : X → Y be a
continuous map between two topological spaces. The derived direct image of K• via g
is again a mixed Hodge complex of sheaves, and it is defined as follows ([50, B.2.5]).

Let Tot[C•GdmF•] be the Godement resolution of a complex of sheaves F• as defined in
[50, B.2.1], which is a flabby resolution. Here, Tot[C•GdmF•] denotes the simple complex
associated to the double complex C•GdmF•. We define Rg∗K• to be the following triple((

g∗Tot[C•GdmK•k], g∗Tot[C•GdmW�]
)
,
(
g∗Tot[C•GdmK•C], g∗Tot[C•GdmW�], g∗Tot[C•GdmF

�]
)
, g∗α

)
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where g∗α is the pseudo-morphism of filtered complexes of sheaves of k-vector spaces
induced by α and the functoriality of both g∗ and the Godement resolution.�

2.9. Real Mixed Hodge Complexes on Smooth Varieties. Throughout this subsection let
k = R, U denote a smooth complex algebraic variety, and X denote a good compactification [50,
Definition 4.1] of U with simple normal crossing divisor D = X \ U . Let j : U → X denote
the inclusion. In this section, we remind the reader of the R-mixed Hodge complex of
sheaves associated to the log de Rham complex Ω•X(logD). For a definition of the log de
Rham complex and its properties, see [50, Section 4.1].

Before describing the particular filtrations on the log de Rham complex, we define a
pair of filtrations that can be applied to any cochain complex. Suppose F• is a cochain
complex of sheaves. Then we have the increasing canonical filtration τ�, which is de-
scribed by:

τm(F•) =
{
· · · → Fm−2 → Fm−1 → ker dm → 0→ 0→ · · ·

}
and we have the decreasing trivial filtration, whose p-th filtered subcomplex is F≥p.

We now look at the log de Rham complex in particular. On it we have the weight
filtration W�, which is described by:

WmΩp
X(logD) =


0 if m < 0

Ωp
X(logD) if m ≥ p

Ωp−m
X ∧ Ωm

X(logD) if 0 ≤ m ≤ p

and we have Hodge filtration F �, defined to be the trivial filtration.

Theorem 2.9.1. The triple

Hdg•(X logD) :=
((
j∗E•U , τ�

)
,
(
Ω•X(logD),W�, F

�
)
, α
)

where E•U is the real de Rham complex and α is represented by:

(10) (j∗E•U , τ�) (j∗(E•U ⊗ C), τ�) (Ω•X(logD), τ�) (Ω•X(logD),W�)
j∗(id⊗1)

'
incl id

'

determines an R-mixed Hodge complex of sheaves on X .

Proof. This is the content of [50, Proposition-Definition 4.11] except that here we work
over R instead of Q. Notice that we do not need derived pushforwards, because the
objects being pushed forward are complexes of soft sheaves. �
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Remark 2.9.2. All the complexes of sheaves appearing in (10) are cdgas over C except
the first one, and the morphisms are morphisms of sheaves of cdgas. Furthermore,
all filtrations are cdga-filtrations. In other words, Hdg•(X logD) is a multiplicative R-
mixed Hodge complex of sheaves.�

2.10. Rational Mixed Hodge Complexes on Smooth Varieties. Throughout this subsec-
tion let k = Q, let U denote a smooth complex algebraic variety, and X denote good com-
pactification of U with simple normal crossing divisor D = X \ U . Let j : U → X denote
the inclusion. In [50, Section 4.4] the authors define a multiplicative Q-mixed Hodge
complex of sheaves associated to the log de Rham complex whose pseudo-morphism
is actually a morphism. The rational component of this mixed Hodge complex is per-
haps less familiar than the de Rham complex, which is the reason we have separately
considered the real case.

Let us outline the Q-mixed Hodge complex. Let OX denote the sheaf of holomorphic
functions on X . Let O∗U denote the sheaf of invertible holomorphic functions on U .
Let Mgp

X,D be the sheaf of abelian groups associated to MX,D = OX ∩ j∗O∗U , defined
by the following universal property: there is a universal map c : MX,D → Mgp

X,D such
that every homomorphism of monoid sheaves from MX,D to a sheaf of groups on X

factorizes uniquely over c. In other words,Mgp
X,D is the sheaf of meromorphic functions

on X which are holomorphic on U and whose inverse is holomorphic on U as well. For
i ∈ Z let Symi

Q(OX) denote the i-th symmetric tensor sheaf on OX , where OX has been
interpreted as a sheaf of Q-vector spaces. As in [50, Section 4.4] for integers m and p we
define:

Kpm =

{
Symm−p

Q (OX)⊗Q
∧p

Q(Mgp
X,D ⊗Z Q) if m ≥ p ≥ 0

0 otherwise,

and the differential d : Kpm → Kp+1
m is given by:

d(f1 · · · fm−p ⊗ y) =

m−p∑
k=1

f1 · · · fk−1 · fk+1 · · · fm−p ⊗ exp(2πifk) ∧ y

for m ≥ p ≥ 0, where f1, . . . , fm−p are sections ofOX and y is a section of
∧p

Q(Mgp
X,D⊗ZQ).

For fixed m, the differential d endows K•m with the structure of a cochain complex of
sheaves on X . It can be related to the log de Rham complex via the map ϕm : K•m →
WmΩ•X(logD) described by:

ϕm(f1 · · · fm−p ⊗ y1 ∧ · · · ∧ yp) =
1

(2πi)p
(f1 · · · fm−p)

dy1

y1

∧ · · · ∧ dyp
yp
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for 0 ≤ p ≤ m. The map ϕm ⊗ 1: K•m ⊗ C → WmΩ•X(logD) is a quasi-isomorphism by
[50, Theorem 4.15].

For any m, we have an inclusion of complexes K•m → K•m+1 given by:

f1 · · · fm−p ⊗ y 7→ 1 · f1 · · · fm−p ⊗ y

for 0 ≤ p ≤ m. Therefore we may consider the direct limit

K•∞ := lim−→
m

K•m.

Define a weight filtration W� on K•∞ by declaring WmK•∞ to be the image of K•m in the
direct limit. K•∞ can be equipped with the structure of a sheaf of cdgas by defining:

(f1 · · · fr ⊗ y) ∧ (g1 · · · gs ⊗ z) = (f1 · · · fr · g1 · · · gs)⊗ (y ∧ z).

The weight filtration W� is then a cdga-filtration. The direct limit ϕ∞ : K•∞ → Ω•X(logD)

is a morphism of cdgas and moreover by [50, Corollary 4.16] is a W�-filtered quasi-
isomorphism after tensoring with C. Moreover, by [50, Corollary 4.17], the triple((

K•∞,W�
)
,
(
Ω•X(logD),W�, F

�
)
, ϕ∞

)
is a multiplicative Q-mixed Hodge complex of sheaves on X .

Note that the filtration W� on K•∞ is not bounded above, though bounded above filtra-
tions will be important later. This can be easily corrected by replacing W� on K•∞ with
the cdga-filtration W̃� described by:

W̃mK•∞ =

WmK•∞ ifm ≤ dimX

K•∞ otherwise.

The morphism ϕ∞ maps W̃� into W� because WdimXΩ•X(logD) = Ω•X(logD). For the same
reason, the morphism

ϕ∞ ⊗ 1:
(
K•∞ ⊗ C, W̃� ⊗ C

)
→
(
Ω•X(logD),W�

)
continues to be a filtered quasi-isomorphism. And because C is faithfully flat over Q,
the inclusion (K•∞,W�) → (K•∞, W̃�) is also a filtered quasi-isomorphism. Therefore we
have:

Theorem 2.10.1. The triple ((K•∞, W̃�), (Ω•X(logD),W�, F
�), ϕ∞) is a multiplicative Q-mixed

Hodge complex of sheaves on X , and K•∞ is pseudo-isomorphic to Rj∗Q, where Q is the constant
sheaf on U .
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Proof. This is the content of [50, Corollary 4.17] except that W� has been replaced by W̃�.
By the discussion preceding the theorem, this replacement is inconsequential. �

2.11. Limit Mixed Hodge Structure. After we have identified the mixed Hodge struc-
ture of Theorem 1.0.2, we will compare it with the well-studied limit mixed Hodge
structure on the generic fiber of f . We review the construction of this structure over
Q, considered in our setting, and under an assumption of properness. Throughout
this subsection, let U denote a smooth, connected n-dimensional complex algebraic variety and
f : U → C∗ a proper algebraic map inducing an epimorphism on fundamental groups.

Select a good compactification X of U with simple normal crossing divisor D = X \U
such that f : U → C∗ extends to an algebraic map f̄ : X → CP 1. By replacing f : U → C∗

with a finite cyclic cover fN : UN → C∗ if necessary, we may assume that f̄−1(0) is
reduced, by [34, Semi-stable Reduction Theorem]. Fix f̄ : X → CP 1 as above for the rest of
this subsection. Let j : U → X and i : E ↪→ X denote inclusions, where E denotes the divisor
f̄−1(0), which is reduced.

Select an open disk ∆ ⊂ C centered at the origin such that f is submersive over ∆∗,
the punctured disk. The nearby cycles functor ψf̄ : D+

(
f̄−1∆

)
→ D+(E) is a functor

between derived categories of bounded below complexes of sheaves of vector spaces,
defined for example in [50, Section 11.2.3]. Importantly, H∗(E;ψf̄Q) ∼= H∗(F ;Q) where
F is any fiber of f over ∆∗. A clockwise loop in ∆∗ determines a monodromy home-
omorphism from F to itself and so equips H∗(E;ψf̄Q) with the structure of a torsion
module over Q[t±1]. The limit mixed Hodge complex is assigned to ψf̄Q.

To define complex weight and Hodge filtrations, Peters and Steenbrink in [50, Section
11.2.5] work with a double complex of sheaves that is quasi-isomorphic to ψfQ. In this
spirit, but with minor shifts of convention, we define a double complex A•,• of sheaves
of C-vector spaces on X as follows. Let

Ar,s =


Ωr+s+1
X (logD)

WrΩ
r+s+1
X (logD)

, if r ≥ 0,

0, if r < 0,

with differentials d′ = 1
2πi

df
f
∧ − : Ar,s → Ar+1,s, and d′′ = d : Ar,s → Ar,s+1 being the

differential from Ω•X(logD).
According to [50, Section 11.2.5], the associated total complex TotA•,• is, after apply-

ing the functor i−1, pseudo-isomorphic to ψfC. The monodromy weight filtration on
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TotA•,• is denoted by W (M)� and described for integers r ≥ 0, s, and m by:

W (M)mAr,s = image of Wm+2r+1Ωr+s+1
X (logD) in Ar,s.

The Hodge filtration on TotA•,• is denoted by F � and defined for an integer p by:

F p(TotA•,•) =
⊕
r

⊕
s≥p

Ar,s.

This concludes the description of the C-component of the limit mixed Hodge complex.
Following the same blueprint, we construct a double complex pseudo-isomorphic to

ψfQ. We make use of the pair (K•∞, W̃�) from Section 2.10. Define C̃•,• as follows:

C̃r,s =

 Kr+s+1
∞

W̃rKr+s+1
∞

, if r ≥ 0,

0, if r < 0,

with differentials d′ = (1 ⊗ f) ∧ − : C̃r,s → C̃r+1,s, and d′′ = d : C̃r,s → C̃r,s+1 being the
differential from K•∞. Equip the associated total complex Tot C•,• with the monodromy
weight filtration denoted by W̃ (M)� and described for integers r ≥ 0, s, and m by:

W̃ (M)m C̃r,s = image of W̃m+2r+1K•∞ in C̃r,s.

The map ϕ∞ : K•∞ → Ω•X(logD) induces a monodromy-filtered morphism ϕ∞ : Tot C̃•,• →
TotA•,•.

Theorem 2.11.1. The restricted triple:

ψ
Hdg
f := i−1

([
Tot C̃•,•, W̃ (M)�

]
,
[

TotA•,•,W (M)�, F
�
]
, ϕ∞

)
is a Q-mixed Hodge complex of sheaves on E, and i−1 Tot C̃•,• is pseudo-isomorphic to ψf̄Q.

Proof. This is established (up to minor modifications owing to moderate changes in the
definitions of both double complexes) by [50, Theorem 11.22] except that in place of
C̃•,• and its filtration W̃ (M)� the authors opt for C•,• and W (M)�, which are built using
the unbounded filtration W� on K•∞ instead of W̃�. Because the inclusion (K•∞,W�) →
(K•∞, W̃�) is a filtered quasi-isomorphism of cgdas, the induced map (Tot C̃•,•, W̃ (M)�)→
(Tot C•,•,W (M)�) can also be shown to be a filtered quasi-isomorphism. �

The Q[t±1]-module structure on H∗(E;ψf̄Q) ∼= H∗(F ;Q) induced by the monodromy
action can actually be realized on this mixed Hodge complex of sheaves. Specifically,
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for integers r ≥ 0 and s define:

Θ: C̃r,s → C̃r+1,s−1, Θ(−) = (−) mod W̃r+1Kr+s+1
∞

Θ: Ar,s → Ar+1,s−1, Θ(−) = (−) modWr+1Ωr+s+1
X (logD).

Theorem 2.11.2. Under the above notations, the map Θ gives rise to a morphism of mixed
Hodge complexes of sheaves:

i−1Θ: ψ
Hdg
f → ψ

Hdg
f (−1)

which induces the map log t : H∗(E;ψf̄Q) → H∗(E;ψf̄Q)(−1). Here log t is interpreted as its
power series representation at t = 1.

Proof. The assertion follows from [50, Section 11.3.1] with minor modifications, because
we have selected moderately different definitions for Tate twists and the pair of double
complexes appearing in ψ

Hdg
f . We remark that log t is in fact well-defined, because E

being reduced implies that the monodromy action on H∗(E;ψfQ) is unipotent (for a
proof see [50, Corollary 11.19]). �

3. Thickened Complexes

3.1. Thickened Complex of a Differential Graded Algebra. Suppose (A, d,∧) is a cdga
over k, η ∈ A1 ∩ ker d, and m ≥ 1. Recall that Rm is the quotient ring R∞/(s

m) =

k[[s]]/(sm). We define the m-thickening of A in the direction η to be the cochain complex
of Rm-modules denoted by

A(η,m) = (A⊗kRm, dη)

and described by:

• for p ∈ Z, the p-th graded component of A(η,m) is the free R-module Ap⊗kRm.
• for ω ∈ A and φ ∈ Rm, we set dη(ω ⊗ φ) = dω ⊗ φ+ (η ∧ ω)⊗ sφ.

A straightforward calculation verifies that d2
η vanishes.

If i ≥ 1, j ≥ 0, then the quotient map Ri+j � Ri induces a surjective morphism
φji : A(η, i + j) � A(η, i). These maps endow {A(η, i)} with the structure of an inverse
system of {Ri}-modules. Using that R∞ = lim←−Ri, we define the ∞-thickening of A in
the direction η to be the cochain complex of R∞-modules

A(η,∞) = lim←−A(η, i).
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Remark 3.1.1. The inverse system {A ⊗ Ri} admits a natural multiplication operation,
defined on simple tensors by (ω ⊗ φ) ∧ (ω′ ⊗ φ′) = (ω ∧ ω′) ⊗ φφ′. However, this multi-
plication does not in general endow {A(η, i)} with the structure of an inverse system of
cdgas, because it is not compatible with the differential dη. Nevertheless, we will find an
opportunity to utilize it shortly.�

Remark 3.1.2. The complex A(η,m) can be equipped with a decreasing filtration G,
described by

GpA(η,m) = A(η,m)sp

for p ≥ 0. Its graded components are, for p ≥ 0:

GrpGA(η,m) = (A⊗ k〈sp〉, d⊗ 1).

In particular, H∗(GrpGA(η,m)) ∼= H∗(A) ⊗k〈sp〉.�

We next state two lemmas concerning thickened complexes, which are essentially
listed in [5, Section 3]. For future reference, we also include their proofs.

Lemma 3.1.3. Suppose (A, d,∧) is a cdga and m ≥ 1. Suppose that η1 and η2 are cohomologous
elements in A1 ∩ ker d. Then A(η1,m) and A(η2,m) are isomorphic. More precisely: if a ∈ A0

is such that η1 − η2 = da, then the morphism

exp(a⊗ s) ∧ − : A(η1,m)→ A(η2,m)

is defined in the proof and is an isomorphism of cochain complexes.

Proof. Let a ∈ A0 be such that da = η1 − η2. The element

exp(a⊗ s) =
∞∑
n=0

1

n!
an ⊗ sn

belongs to lim←−A
0⊗Ri and determines, via the multiplication described in Remark 3.1.1,

a morphism

exp(a⊗ s) ∧ − : A⊗Rm → A⊗Rm

of Rm-modules. We will show that it in fact determines a morphism

exp(a⊗ s) ∧ − : A(η1,m)→ A(η2,m)
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by verifying commutativity with the differentials. It suffices to investigate its application
to a simple tensor of the form ω ⊗ 1:

dη2 (exp(a⊗ s) ∧ (ω ⊗ 1)) =

=
m−1∑
n=0

1

n!
dη2 (anω ⊗ sn) =

=
m−1∑
n=0

1

n!
d (anω)⊗ sn +

m−1∑
n=1

1

(n− 1)!
an−1η2 ∧ ω ⊗ sn =

=
m−1∑
n=1

1

(n− 1)!
an−1da ∧ ω ⊗ sn +

m−1∑
n=0

1

n!
an ∧ dω ⊗ sn +

m−1∑
n=1

1

(n− 1)!
an−1η2 ∧ ω ⊗ sn

and since da = η1 − η2, the above simplifies to:
m−1∑
n=1

1

(n− 1)!
an−1η1 ∧ ω ⊗ sn +

m−1∑
n=0

1

n!
an ∧ dω ⊗ sn =

= exp(a⊗ s) ∧ (η1 ∧ ω ⊗ s) + exp(a⊗ s) ∧ (dω ⊗ s) =

= exp(a⊗ s) ∧ dη1(ω ⊗ 1).

Therefore exp(a⊗s)∧− is a morphism of cochain complexes. It is in fact an isomorphism,
because exp(−a⊗ s) ∧ − is its inverse. �

Lemma 3.1.4. Suppose (A, d,∧) and (B, d,∧) are cdgas, η ∈ A1 ∩ ker d, and m ≥ 1. If
F : A→ B is a morphism of dgas, then there is a natural induced morphism

F# : A(η,m)→ B(F (η),m).

If F is a quasi-isomorphism, then so is F#.

Proof. The morphism F# is given by F ⊗ id : A ⊗ Rm → B ⊗ Rm. F# preserves the
decreasing filtration G of Remark 3.1.2. In particular, for p ≥ 0 it induces commutative
diagrams of short exact sequences:

0 Gp+1A(η,m) GpA(η,m) GrpGA(η,m) 0

0 Gp+1B(F (η),m) GpB(F (η),m) GrpGB(F (η),m) 0.

From the associated commutative diagram of long exact sequences, the central map is a
quasi-isomorphism if the outer two are. For all p ≥ 0, the induced map on cohomology
of graded components is the isomorphism F ∗ ⊗ id : H∗(A) ⊗ k〈sp〉 → H∗(B) ⊗ k〈sp〉.
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Therefore the induced map on graded components is a quasi-isomorphism. Since m is
finite, both GmA(η,m) and GmB(F (η),m) are zero. This provides the starting point to
an induction concluding that GpA(η,m)→ GpB(F (η),m) is a quasi-isomorphism for all
p ≥ 0. Take p = 0 to conclude. �

Remark 3.1.5. Besides the maps associated to the inverse system, there is another nat-
ural collection of maps between the thickened complexes. If i ≥ 1, j ≥ 0 then there is
an inclusion Ri ↪→ Ri+j mapping Ri isomorphically onto sjRi+j . We denote the induced
inclusion of thickened complexes by ψij : A(η, i) ↪→ A(η, i+ j).�

Remark 3.1.6. Note that R∞ is a PID. Therefore all finitely generated R∞-modules split
into torsion and free parts. We let TorsR∞ denote torsion as an R∞-module.�

Remark 3.1.7. For all m ≥ 1 we have A(η,m) ∼= A(η,∞)⊗R∞ Rm as R∞-modules. There-
fore, the ring map R∞ → Rm induces a map

A(η,∞) = A(η,∞)⊗R∞ R∞ → A(η,∞)⊗R∞ Rm
∼= A(η,m).�

The following lemma allows us to interpret TorsR∞H
∗A(η,∞) as the kernel of a map

between finitely thickened complexes.

Lemma 3.1.8. Suppose C• is a complex of torsion-free R∞-modules, and suppose that m is such
that sm annihilates TorsR∞ H

∗(C•). Let ψij : C• ⊗R∞ Ri → C• ⊗R∞ Ri+j be the map induced
by the map Ri ↪→ Ri+j as in Remark 3.1.5, and let ψ∗ij the map induced in cohomology. Let
φji : C

• ⊗R∞ Ri+j → C• ⊗R∞ Ri be the map induced by the projection Ri+j � Ri. The natural
map C• → C• ⊗R Ri induces isomorphisms

TorsR∞ H
∗(C•) ∼= kerψ∗ij ⊆ H∗(C• ⊗R Ri) if i, j ≥ m;

H∗(C•)⊗R∞ Ri
∼= imφ∗ji ⊆ H∗(C• ⊗R Ri) if j ≥ m.

Proof. Since C• is torsion-free, we have the following short exact sequences with maps
between them:

0→ C• C• C• ⊗R∞ Ri → 0 0→ C• C• C• ⊗R∞ Ri+j → 0

0→ C• C• C• ⊗R∞ Ri+j → 0; 0→ C• C• C• ⊗R∞ Ri → 0.

si

= sj ψij

si+j

sj = φji

si+j si

We take the cohomology long exact sequences corresponding to the sequences above,
and we consider the map between them. We obtain the following diagrams, where we
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denote TorssiM = {a ∈M | sia = 0}:

0 H∗(C•)⊗R∞ Ri H∗ (C• ⊗R∞ Ri ) Torssi H∗+1(C•) 0

0 H∗(C•)⊗R∞ Ri+j H∗ (C• ⊗R∞ Ri+j) Torssi+j H
∗+1(C•) 0;

sj ·(1) ψ∗ij IdH∗+1(C•)

0 H∗(C•)⊗R∞ Ri+j H∗ (C• ⊗R∞ Ri+j) Torssi+j H
∗+1(C•) 0

0 H∗(C•)⊗R∞ Ri H∗ (C• ⊗R∞ Ri ) Torssi H∗+1(C•) 0.

IdH∗(C•)(2) φ∗ji sj ·

Let i ≥ m. Since sm annihilates TorsR∞ H
∗(C•), the following composition of obvious

maps is an injection:

TorsR∞ H
∗(C•) ↪→ H∗(C•)→ H∗(C•)

siH∗(C•)
.

Seeing TorsR∞ H
∗(C•) as a submodule of H∗(C•)

siH∗(C•)
in this way, we have that as long as

j ≥ m, TorsR∞ H
∗(C•) is the kernel of the multiplication by the sj map labeled (1).

Applying the snake lemma to the diagram above yields the first statement. For the
second statement, note that if j ≥ m, then the right hand map sj vanishes. Therefore,
the image of φ∗ji equals the image of the map labeled (2). �

Corollary 3.1.9. Suppose (A, d,∧) is a cdga and η ∈ A1 ∩ ker d. Assume H∗A(η,∞) is a
finitely generated R∞-module. Consider the map H∗A(η,∞) → H∗A(η, i) from Remark 3.1.7.
This map induces the following isomorphisms:

TorsR∞ H
∗A(η,∞) ∼= kerψ∗ij if i, j � 0

H∗A(η,∞)⊗R∞ Ri
∼= imφ∗ji if j � 0.

Remark 3.1.10. Suppose i, j are sufficiently large as in Corollary 3.1.9. The following
statements follow from the proof of Lemma 3.1.8. If j′ ≥ j then kerψ∗ij′ = kerψ∗ij and if
i′ ≥ i then kerψ∗i′j

∼= kerψ∗ij via φ∗i′−i,i. Similarly, imφ∗j′i = imφ∗ji, and φ∗i′−i,i induces the
projection map imφ∗ji′

∼= H∗A(η,∞)⊗R∞Ri′ � H∗A(η,∞)⊗R∞Ri
∼= imφ∗ji. Finally, ψi,i′−i

induces the map coming from the inclusion Ri ↪→ si
′−iRi′ , tensored with H∗A(η,∞).�

Remark 3.1.11. Suppose 1 ≤ m ≤ ∞. Later on we will be interested not in the given
R∞-module structure on A(η,m) but rather a twisted one. Namely, if s̃ ∈ R∞ satisfies
s̃ = su where u ∈ R∞ is some unit, then define A(η,m)s̃ to be the vector space cochain
complex A(η,m) but with R∞-module multiplication ∗s̃ described by:
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if g(s) ∈ R∞, then − ∗s̃ g(s) = − · g(s̃).

The induced R∞-module structure on H∗A(η,m)s̃ is also given by − ∗s̃ g(s) = − · g(s̃).
Clearly the maps φji : A(η, i + j) � A(η, i) continue to induce R∞-module morphisms
φji : A(η, i + j)s̃ � A(η, i)s̃. Similarly, the maps ψij : A(η, i) ↪→ A(η, i + j) continue to
induce R∞-module morphisms ψij : A(η, i)s̃ ↪→ A(η, i + j)s̃. Even better, since s̃ and s

differ by multiplication with a unit, under the hypotheses of Corollary 3.1.9, we have
that H∗A(η,∞)s̃ is a finitely generated R∞-module and for all sufficiently large i, j,
ker
(
ψ∗ij : H∗A(η, i)s̃ → H∗A(η, i + j)s̃

)
is naturally isomorphic to TorsR∞ H

∗A(η,∞)s̃ as
R∞-modules.�

3.2. Thickened Complexes and Filtrations. Fix m ≥ 1 for this subsection.
When we discuss mixed Hodge complexes, we will need to find weight and Hodge

filtrations on thickened complexes that are induced by filtrations on the original cdga.
In this subsection, we describe a general procedure for inducing appropriate filtrations
on the thickened complex.

Suppose (A, d,∧) is a cdga with an increasing cdga-filtration W� and η ∈ W1A
1 ∩ ker d.

Note the requirement that η ∈ W1A. We start by defining a weight filtration w� on Rm.
For i ≥ 0, define

wiRm = Rm and w−2iRm = w−2i+1Rm = siRm.

We equip A(η,m) with the tensor weight filtration, which we also denote by W� since
it does not depend on η. In other words, for i ∈ Z, we set:

WiA(η,m) =
∑
j

Wi+jA⊗ w−jRm

where
∑

denotes the internal sum, not a direct sum. Observe that we can rewrite the
expression with a direct sum using the definition of w�:

WiA(η,m) =
m−1⊕
j=0

Wi+2jA⊗ k〈sj〉.

Since η ∧WiA ⊂ Wi+1A, we have sη ∧WiA(η,m) ⊂ WiA(η,m). Therefore, WiA(η,m) is
closed under dη.

One technical reason for skipping by twos in the direct sum description is explained
by the following lemma.
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Lemma 3.2.1. Suppose (A, d,∧) is a cdga with an increasing cdga-filtration W� and suppose
η ∈ W1A

1 ∩ ker d. Then,

GrWi A(η,m) =
m−1⊕
j=0

GrWi+2jA⊗ k〈sj〉

with differential given by d⊗ id.

Proof. This follows from the definition of the weight filtration. In particular, skipping by
twos ensures that the (η ∧ −) ⊗ s component of the differential vanishes on the graded
pieces. �

We can state a filtered analogue of Lemma 3.1.3.

Lemma 3.2.2. Suppose (A, d,∧) is a cdga with an increasing cdga-filtration W�. Suppose that
η1 and η2 are elements of W1A

1 ∩ ker d that are cohomologous in W1A. If a ∈ W1A
0 is such that

η1 − η2 = da, then the morphism exp(a⊗ s) ∧ − of Lemma 3.1.3 gives a filtered isomorphism

exp(a⊗ s) ∧ − : (A(η1,m),W�)→ (A(η2,m),W�)

that induces the identity map on each graded component associated to W�.

Proof. Let a ∈ W1A
0 be such that da = η1 − η2. By Lemma 3.1.3, we know that

exp(a⊗ s) ∧ − : A(η1,m)→ A(η2,m)

is an isomorphism. Because a ∈ W1A, this isomorphism preserves filtrations. Further-
more, wedging by exp(a⊗ s)− 1⊗ 1 takes Wi into Wi−1 for all integers i. Consequently,
exp(a⊗ s) ∧ − coincides with (1⊗ 1) ∧ − on each graded component. �

We can also expand on Lemma 3.1.4.

Lemma 3.2.3. Suppose (A, d,∧) and (B, d,∧) are cdgas with increasing cdga-filtrations both
denoted by W�, and η ∈ W1A

1 ∩ ker d. If F : (A,W�)→ (B,W�) is a filtered morphism of cdgas,
then F# : A(η,m)→ B(F (η),m) is a filtered morphism with respect to W�. Moreover for i ∈ Z,
F# is given on the i-th graded component by:

GrWi (F#) =
m−1⊕
j=0

GrWi+2jF ⊗ id :
m−1⊕
j=0

GrWi+2jA⊗ k〈sj〉 →
m−1⊕
j=0

GrWi+2jB ⊗ k〈sj〉.

Proof. Because F# = F ⊗ id, the lemma is immediate. �
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Suppose now that (A, d,∧) is a cdga with two cdga-filtrations, an increasing filtration
W� and a decreasing filtration F �. Suppose also that η ∈ W1A

1 ∩ F 1A1 ∩ ker d. We next
equip A(η,m) with a decreasing filtration, which we also denote by F � because it does
not depend on η. For p ∈ Z, set:

F pA(η,m) =
m−1⊕
j=0

F p+jA⊗ k〈sj〉.

This is closed under dη, because η ∧ F pA ⊂ F p+1A for all p ∈ Z. Unlike the filtration W�

on A(η,m), the decreasing filtration F � is not a filtration by cochain complexes of Rm-
modules, only by cochain complexes of k-vector spaces. The following lemma describes
the interplay of the two filtrations we have defined.

Lemma 3.2.4. Suppose (A, d,∧) is a cdga with an increasing cdga-filtration W� and a decreasing
cdga-filtration F �. Suppose also that η ∈ W1A

1 ∩ F 1A1 ∩ ker d. Then for i ∈ Z the filtration on
GrWi A(η,m) induced by the filtration F � of A(η,m) is described by:

F pGrWi A(η,m) =
m−1⊕
j=0

(
F p+jGrWi+2jA

)
⊗ k〈sj〉.

where on the right hand side we use the filtration on GrWi+2jA induced by the filtration F � of A.

Proof. Using the definition of the two filtrations, for all integers i and p we find:

F pA(η,m) ∩WiA(η,m) =
m−1⊕
j=0

(
F p+jA ∩Wi+2jA

)
⊗ k〈sj〉

which, under the quotient map to GrWi A(η,m), maps to:

F pGrWi A(η,m) =
m−1⊕
j=0

(
F p+jGrWi+2jA

)
⊗ k〈sj〉. �

3.3. Thickened Complexes of Sheaves of Differential Graded Algebras. Suppose X
is a topological space and (A,∧, d) is a sheaf of cdgas on X . If m ≥ 1 and η ∈ Γ(X,A1)∩
ker d, then we define the m-thickening of A in direction η, denoted by A(η,m), to be the
cochain complex of sheaves of R∞-modules on X defined by:

U 7→ Γ(U,A)(η|U ,m)

for an open subset U ⊂ X . Observe that this does in fact define a cochain complex of
sheaves, not just presheaves. By definition, for all p ≥ 0 we have Ap(η,m) = Ap ⊗k Rm.
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Recalling Remark 3.1.11, if s̃ ∈ R∞ differs from s by multiplication with a unit, then
we define A(η,m)s̃ to be the cochain complex of sheaves of R∞-modules described for
open U ⊂ X by:

U 7→ Γ(U,A)(η|U ,m)s̃.

As before, if i ≥ 1, j ≥ 0 then we have a surjective morphism φji : A(η, i + j) �

A(η, i). This endows {A(η, i)} with the structure of an inverse system of sheaves of
{Ri}-modules. We avoid discussing the inverse limit, as it may not coincide with the
derived inverse limit. Again as before, if i ≥ 1, j ≥ 0 then we also have an injective
morphism ψij : A(η, i) ↪→ A(η, i+ j).

Remark 3.3.1. The analogues of Lemmas 3.1.3 and 3.1.4 hold for sheaves of cdgas and
the dga-sheaf-morphisms between them. If a sheaf of cdgas (A,∧, d) is equipped with
an increasing cdga-filtration W�, then as in Subsection 3.2, the thickened complex of
sheaves A(η,m) inherits this filtration, provided that η is a global section of W1A. The
same holds if we replace W� by a decreasing filtration. The analogues of Lemmas 3.2.2,
3.2.3, and 3.2.4 are then also valid.�

Remark 3.3.2. The analogue of Lemma 3.1.8 holds for a complex of sheaves of free R∞-
modules. This can be seen by applying Lemma 3.1.8 to a free resolution of a complex
representing the hypercohomology. Therefore, the analogue of Corollary 3.1.9 holds for
the hypercohomology sheaves of a thickening of a sheaf of cdgas (A,∧, d).�

4. Thickened Complexes and Mixed Hodge Complexes

The main goal of this section is to prove that the thickened complex of a multiplicative
mixed Hodge complex is again a mixed Hodge complex, provided that the 1-forms used
to conduct thickenings belong to W1 and F 1 when applicable.

4.1. Denotations and Assumptions. Let k denote a subfield of R and X denote a topo-
logical space. Let K• = ((K•k,W�), (K•C,W�, F �), α) denote a multiplicative k-mixed Hodge
complex on X with distinguished representative for α given by:

(K•k,W�) = (L•0,W�) (L•1,W�) (L•2,W�) · · · (L•2r+1,W�) = (K•C,W�),
α1 α2 α3 α2r+1

where αodd are right arrows and αeven are left arrows. To thicken K• as a mixed Hodge
complex, we need to thicken each L•i with an element from Γ(X,L1

i ) ∩ ker d. It is in fact
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enough to choose such global 1-cycles from the even-numbered sheaves L1
even, provided

their images in the odd-numbered L1
odd are cohomologous.

Specifically, we need the following assumption on chosen sections η` ∈ Γ(X,L1
2`)∩ker d

to guarantee that the differentials in the lifting are compatible with the filtrations and
that the maps αi extend to psuedo-isomorphisms.

Assumption 4.1.1. The elements η` ∈ Γ(X,L1
2`) ∩ ker d where 0 ≤ ` ≤ r satisfy:

(1) η` ∈ W1Γ(X,L1
2`) ∩ ker d;

(2) α2r+1ηr ∈ F 1Γ(X,K•C);
(3) the images of η` in L1

odd are cohomologous, i.e.,

α1η0 'W1 α2η1, α3η1 'W1 α4η2, . . . , α2r−1ηr−1 'W1 α2rηr,

where 'W1 denotes the relation of being cohomologous in W1. For ` ≥ 1 fix
choices of a` ∈ W1Γ(X,L0

2`−1) such that α2`−1η`−1 − α2`η` = da`.

4.2. Thickened Complexes of Mixed Hodge Complexes. Fix m ≥ 1 for this subsection.
Before thickening our complexes, we point out that, if ` ≥ 1, then L•` is a sheaf of C-

cdgas with filtration(s) defined over C. This is part of the definition of a multiplicative
mixed Hodge complex.

Using Remark 3.3.1 and Assumption 4.1.1, we obtain a chain of morphisms of thick-
ened complexes:

K•k(η0,m) L•1(α1η0,m) L•1(α2η1,m) L•2(η1,m) · · · K•C(α2r+1ηr,m)
α1# exp(a1⊗s)

∼=

α2# α3# α2r+1#

where all but the leftmost complex have been thickened over C, not k. Note that α1#

is technically a composition: first the induced morphism of thickened k-complexes,
then the map from the thickened k-complex to the thickened C-complex induced by
Rm = Rm ⊗ k

id⊗incl−−−−→ Rm ⊗ C.
We define α# : K•k(η0,m) 99K K•C(α2r+1ηr,m) to be the pseudo-morphism associated to

the above chain.
Because the thickenings are conducted with sections of W1L1, it follows by Remark

3.3.1 that the thickened complexes of sheaves inherit their own increasing filtrations W�.
Moreover, K•C(α2r+1ηr,m) inherits a decreasing filtration F �, because α2r+1ηr belongs to
F 1Γ(X,K•C).

Theorem 4.2.1. Under the above notations and assumptions, the triple

K•(η,m) :=
((
K•k(η0,m),W�

)
,
(
K•C(α2r+1ηr,m),W�, F

�
)
, α#

)
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is a k-mixed Hodge complex of sheaves on X .

Proof. We need to verify the following assertions:

(i) α# preserves the W�-filtrations;
(ii) α# ⊗ 1: K•k(η0,m)⊗ C 99K K•C(α2r+1ηr,m) is a W�-filtered pseudo-isomorphism;

(iii) the i-th W -graded component of K•(η,m) is a pure Hodge complex of weight i.

To show statements (i) and (ii), we apply the sheaf analogues of Lemma 3.2.2 and
Lemma 3.2.3. The chain of morphisms representing α# is W�-filtered, and it induces on
the i-th W -graded component the pseudo-morphism:

GrWi (α#) =
m−1⊕
j=0

GrWi+2jα⊗ incl :
m−1⊕
j=0

GrWi+2jK•k ⊗ k〈sj〉 99K
m−1⊕
j=0

GrWi+2jK•C ⊗C C〈sj〉.

Therefore GrWi (α# ⊗ 1) =
⊕m−1

j=0 GrWi+2j(α ⊗ 1) ⊗C id. Each GrWi+2j(α ⊗ 1) is a quasi-
isomorphism, because K• is a mixed Hodge complex. Therefore, as their direct sum,
GrWi (α# ⊗ 1) is also a quasi-isomorphism.

To prove (iii), let us fix i ∈ Z. We have just verified that the i-th graded component of
K•(η,m) is:

m−1⊕
j=0

(
GrWi+2jK•k ⊗ k〈sj〉,

(
GrWi+2jK•C ⊗ C〈sj〉, F �

)
,GrWi+2jα⊗ incl

)
and we need to show that this is a Hodge complex of weight i. It is enough to check
that, for all 0 ≤ j ≤ m−1, the j-th direct summand above is a Hodge complex of weight
i. By Lemma 3.2.4, we have:

F p
(
GrWi+2jK•C ⊗ C〈sj〉

)
=
(
F p+jGrWi+2jK•C

)
⊗ C〈sj〉

for p ∈ Z. Therefore, the j-th direct summand is isomorphic to the j-th Tate twist of the
following weight i+ 2j Hodge complex of sheaves:(

GrWi+2jK•k,
(
GrWi+2jK•C, F �

)
,GrWi+2jα

)
.

The j-th Tate twist of a weight i+ 2j Hodge complex is a weight i Hodge complex. �

Corollary 4.2.2. The k-mixed Hodge complex of sheaves K•(η,m) induces a k-mixed Hodge
structure on the hypercohomology H∗(X,K•k(η0,m)).

Proof. See Remark 2.8.6. �
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Recall that if i ≥ 1, j ≥ 0, then the natural map Ri+j � Ri induces a morphism φji

of thickened complexes. Furthermore, the natural map Ri ↪→ Ri+j induces a morphism
ψij of thickened complexes.

Lemma 4.2.3. If i ≥ 1, j ≥ 0, then the following are morphisms of k-mixed Hodge complexes of
sheaves. The numbers (−j) and (−1) denote Tate twists.

(1) φji : K•(η, j + i)� K•(η, i),
(2) ψij : K•(η, i) ↪→ K•(η, i+ j)(−j),
(3) Multiplication by s, Si : K•(η, i)→ K•(η, i)(−1).

In particular, the following are morphisms of k-mixed Hodge structures:

(1) φ∗ji : H∗(X,K•k(η0, j + i))→ H∗(X,K•k(η0, i)),

(2) ψ∗ij : H∗(X,K•k(η0, i))→ H∗(X,K•k(η0, i+ j))(−j),
(3) Multiplication by s, H∗(X,K•k(η0, i))→ H∗(X,K•k(η0, i))(−1).

Proof. Recall the definition of the projection φji (at the beginning of Section 3) and the
inclusion ψij (Remark 3.1.5). Observe that φji and ψij do indeed induce morphisms
between the pseudo-morphism representatives of the two mixed Hodge complexes. It
remains to check their compatibility with the weight and Hodge filtrations. The mor-
phism φji clearly preserves both filtrations; furthermore, a morphism of k-mixed Hodge
complexes of sheaves always induces morphisms of k-mixed Hodge structures on hy-
percohomology [50, Theorem 3.18III]. It is also straightforward to check that ψij maps
W� into W�−2j and F � into F �−j . In other words, ψij : K•(η, i) → K•(η, i + j)(−j) is a
morphism of k-mixed Hodge complexes of sheaves. Pass to hypercohomology and use
that Tate twists commute with taking hypercohomology (see [50, Theorem 3.18IIi]) to
obtain the second statement.

To show part (3), we observe that Si equals the composition ψi−1,1 ◦ φ1,i−1. �

Remark 4.2.4. Later in the paper, we will be interested not in K•(η,m) itself, but rather
its translation K•(η,m)[1]. The valid analogue of Lemma 4.2.2 is that K•(η,m)[1] in-
duces a k-mixed Hodge structure on H∗(X,K•k(η0,m)[1]). Note that, by Remark 2.8.6,
H∗(X,K•k(η0,m)[1]) ∼= H∗+1(X,K•k(η0,m))(1) where a Tate twist has been taken on the
right hand side. The valid analogue of Lemma 4.2.3 is that for i ≥ 1, j ≥ 0, the following
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are morphisms of mixed Hodge structures:

φji[1]∗ : H∗(X,K•k(η0, i+ j)[1])→ H∗(X,K•k(η0, i)[1]);

ψij[1]∗ : H∗(X,K•k(η0, i)[1])→ H∗(X,K•k(η0, i+ j)[1])(−j);

(s·)∗ : H∗(X,K•k(η0, i)[1])→ H∗(X,K•k(η0, i)[1])(−1).�

5. Mixed Hodge Structures on Alexander Modules

5.1. Denotations and Assumptions. Let k = R. Let U be a smooth connected com-
plex algebraic variety of dimension n. Let f : U → C∗ be an algebraic map such that
f∗ : π1(U) → π1(C∗) is surjective. Let U f → U denote the infinite cyclic cover as in Sec-
tion 2.2. Choose a good compactification X of U with simple normal crossing divisor
D = X \ U , such that f : U → C∗ extends to an algebraic map f̄ : X → CP 1. Let

Hdg•(X logD) =
((
j∗E•U , τ�

)
,
(
Ω•X(logD),W�, F

�
)
, α
)

denote the R-mixed Hodge complex of sheaves on X of Theorem 2.9.1. We will consider
a choice of X fixed, until Theorem 5.4.7, when we prove that our constructions are
independent of this choice.

5.2. Local Systems and Thickened Real de Rham Complexes. The main result of this
subsection is Proposition 5.2.1. Throughout this section, we will let k = R. As in Sec-
tion 2.2, Let L = π!RUf , and let L have the conjugate R action. L has stalks isomorphic
to R = R[t±1] and action π1(U) → Aut(R) given by γ 7→

(
t−f∗(γ)

)
· , multiplication by

t−f∗(γ). This is a rank one local system of R-modules.
Consider L ⊗R Rm, which has stalks isomorphic to Rm = R/(t − 1)mR and action

π1(U) → Aut(Rm) given by γ 7→
(
(1 + s)−f∗(γ)

)
· , multiplication by (1 + s)−f∗(γ) (recall

that 1 + s = t). This is a rank one local system of Rm-modules.
Next, consider the thickened complex E•U (= df/f,m), given by

E0
U ⊗Rm

d0
m=d+= df/f∧⊗s−−−−−−−−−−→ E1

U ⊗Rm
d1
m=d+= df/f∧⊗s−−−−−−−−−−→ E2

U ⊗Rm → · · ·

with differential given by dm : ω ⊗ 1 7→ dω ⊗ 1 + (= df/f ∧ ω) ⊗ s. Here, = denotes the
imaginary part.

Proposition 5.2.1. Let

s̃ := exp(2πs)− 1 =
∞∑
n=1

(2πs)n

n!
∈ R∞.
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Then
E•U (= df/f,∞)s̃ := lim←−

m

(E•U (= df/f,m)s̃)

is a resolution of L ⊗R R∞, via a canonical map L ⊗R R∞ → E0
U (= df/f,∞)s̃ (defined in

Remark 5.2.6).

Note that s̃ = su, where u is a unit in R∞, so we are in the situation described by
Remark 3.1.11.

We will prove Proposition 5.2.1 at the end of this subsection. In simply connected
open sets, one can check locally that ker dkm = im dk−1

m for all k ≥ 1. Thus, E•U (= df/f,m)

is a resolution of ker d0
m, which in turn is a rank one local system of Rm-modules.

We give a description of this local system.

Lemma 5.2.2. If V ⊂ U is a small enough connected open subset (in the analytic topol-
ogy) such that f(V ) is simply-connected, then ker d0

m(V ) consists of all functions of the form
exp (− arg f ⊗ s) g(s) ∈ E0

U(V )⊗Rm, where g(s) ∈ Rm and arg can be taken to be any branch
of the argument on f(V ).

Proof. On V , the differential is given by d0
m(V )(ω ⊗ 1) = dω ⊗ 1 + (d arg(f) ∧ ω)⊗ s.

Let
∑m−1

k=0 gk ⊗ sk be an element of ker d0
m(V ). Then,

0 = d0
m

(
m−1∑
k=0

gk ⊗ sk
)

= dg0 ⊗ 1 +
m−1∑
k=1

(
dgk + gk−1d arg(f)

)
⊗ sk.

Hence, g0 = c0 ∈ R, dg1 = −c0d arg f , so g1 = −c0 arg(f) + c1 for some c1 ∈ R (choosing
a different branch of the argument will result in a different c1). Inductively, we get that

gk =
k∑
j=0

(−1)j

j!
ck−j argj(f)

for some cj ∈ R, j = 0, 1, . . . , k. Hence,
m−1∑
k=0

gk ⊗ sk =
∞∑
k=0

(
k∑
j=0

(−1)j

j!
ck−j argj f

)
⊗ sk =

=
∞∑
j=0

∞∑
k=j

(−1)j

j!
ck−j argj f ⊗ sk =

∞∑
j=0

∞∑
l=0

(
(−1)j

j!
argj f ⊗ sj

)
cls

l =

=

(
∞∑
l=0

cls
l

)
exp

(
− arg(f)⊗ s

)
=

(
m−1∑
l=0

cls
l

)
exp

(
− arg(f)⊗ s

)
,

which finishes our proof. �
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Remark 5.2.3. By the proof of the previous lemma, the elements of ker d0
m form a local

system of rank m over R. In particular, the following map is an R-linear isomorphism
for any simply connected open set V and any x ∈ V :

Γ(V, ker d0
m) −→ Rm∑m−1

k=0 gk ⊗ sk 7−→
∑m−1

k=0 gk(x)sk.�

Lemma 5.2.4. The π1(U)-action on the local system ker d0
m is given by γ 7→ exp(−2πf∗(γ)s) · ,

multiplication by exp(−2πf∗(γ)s).

Proof. The stalk of ker d0
m at any point in U is generated by exp(− arg(f) ⊗ s). A loop

γ ∈ π1(U) takes arg(f) to arg(f) + 2πf∗(γ). Thus, the action of γ ∈ π1(U) on ker d0
m is:

γ · exp(− arg(f)⊗ s) = exp (− (arg(f) + 2πf∗(γ))⊗ s)

= exp(−2πf∗(γ)⊗ s) · exp(− arg(f)⊗ s) = exp(−2πf∗(γ)s) · exp(− arg(f)⊗ s). �

Consequently, we have two rank one local systems of Rm-modules on U :

• L ⊗R Rm with action γ 7→ (1 + s)−f∗(γ) · (multiplication by (1 + s)−f∗(γ)), for all
γ ∈ π1(U).
• ker d0

m with action γ 7→ exp(−2πf∗(γ)s) · (multiplication by exp(−2πf∗(γ)s)), for
all γ ∈ π1(U).

Because these actions are distinct, L ⊗R Rm and ker d0
m are not isomorphic as local

systems of Rm-modules, but they are if one considers the twisted module structure
(ker d0

m)s̃.
The following lemma is a consequence of the discussion above.

Lemma 5.2.5. The kernel of the 0-th differential of E•U (= df/f,m)s̃ is (ker d0
m)s̃, which is iso-

morphic to L ⊗R Rm as local systems of Rm-modules.

Remark 5.2.6. We can fix a canonical isomorphism ν : L ⊗R Rm
∼= (ker d0

m)s̃ as follows.
Recall that at any x ∈ U , Lx has an R-basis {δx′} parametrized by x′ ∈ π−1(x) (see
Remark 2.2.8). For any such x′, let νx(δx′) be the unique germ g in the stalk of (ker d0

m)

at x such that g(x) = exp(−=f∞(x′) ⊗ s). Recall that according to our definitions of U f

and L in Section 2.2, the map f∞ is fixed as the projection U f ⊂ U × C→ C.
Since exp ◦f∞ = f ◦ π, we can describe ν as follows. On any simply connected neigh-

borhood V of x, let ι : V → U f be the section of π such that ι(x) = x′. Then =f∞ ◦ ι is a
branch of arg f , so

νx(δx′) = exp(−=f∞ ◦ ι⊗ s).
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Let us check that νx is an Rm-linear map on stalks.

νx(tδx′) = νx(δt−1x′) = exp(−=f∞ ◦ t−1 ◦ ι⊗ s) = exp(−=f∞ ◦ ι⊗ s+ 2π ⊗ s) =

= νx(δx′)e
2πs = νx(δx′) ∗s̃ t.

Note that, in the formula above, t is seen both as an element of Rm and as a deck
transformation.

We can see that ν, which we have defined on stalks, gives us a morphism of local
systems over Rm. Indeed, from the definition of ν, it agrees with the monodromy action
of any path γ from x to any given y ∈ U , i.e. γ · νx(δx′) = νy(δγ·x′) = νy(t

−1δx′) =

νy(γ · δx′).�

Remark 5.2.7. The proof of the claims in this remark are straightforward following the
definitions of the objects involved, so we omit them.

The thickened complex E•U
(
=df

f
,m
)

of Lemma 5.2.5 is isomorphic (as sheaves of R-

vector spaces) to the complex E•U(m)log, which is defined as E iU(m)log = E iU ⊗R Rm and
whose differential is the following, where log(1+s) represents the power series at s = 0:

dlog

(
α⊗ sj

)
= dα⊗ sj + =df

f
∧ α⊗ log(1 + s)

2π
sj.

The (R-linear) isomorphism is determined by:

E iU
(
=df

f
,m
)
−→ E iU(m)log

α⊗ sj 7−→ α⊗
(

log(1+s)
2π

)j
.

Note that the above isomorphism becomes Rm-linear if we give E•U
(
=df

f
,m
)

the twisted

Rm-module structure E•U
(
=df

f
,m
)
s̃

of Proposition 5.2.1. We will use this R-linear iden-

tification between E iU
(
=df

f
,m
)

and E iU(m)log from now on whenever it is convenient. It will
simplify our notation later, especially in Section 6.

Using Lemma 5.2.5, we see that the composition L⊗RRm
ν−→ E•U

(
=df

f
,m
)
s̃
→ E•U(m)log

is an Rm-linear quasiisomorphism, i.e. E•U(m)log is a resolution of L⊗RRm as sheaves of
Rm-modules. The resolution L/sm ηm−→ E•U(m)log is determined by the map ηm, analogous
to the map ν in Remark 5.2.6: using the same notation, ηm is given by:

(ηm)x : (L/sm)x −→ (E0
U(m)log)x

δx′ 7−→ exp(−=f∞ ◦ ι⊗ log(1+s)
2π

).
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Manipulating power series we can see the expression above as

ηm(δx′) = (1 + s)−
1

2π
=f∞◦ι =

m−1∑
i=0

(
− 1

2π
=f∞ ◦ ι
i

)
⊗ si.�

We now prove a result that will help us understand lim←−
m

(E•U (= df/f,m)s̃).

Lemma 5.2.8. Let
(
{F•m}m∈N,

{
α•m,j

}
m≥j∈N

)
be an inverse system of complexes of sheaves of

R∞-modules on a topological space that has a basis of simply connected open sets, such that the
maps αkm,j(V ) : Fkm(V ) → Fkj (V ) are surjective for all m ≥ j and for every simply connected
open set V . Suppose that F•m(V ) are exact complexes for all m ∈ N and for every simply
connected open set V . Then, lim←−mF

•
m is also an exact complex of sheaves of R∞-modules.

Proof. We need to show that the stalk of lim←−mF
•
m at every point is exact. Since U has a

basis of simply connected open sets, and since(
lim←−
m

Fkm
)

(V ) ' lim←−
m

Fkm(V )

for every k, it suffices to show that lim←−
m

F•m(V ) is exact for any simply connected open

subset V of U .
For a fixed m, the exact complex F•m(V ) gives rise to short exact sequences

0→ ker(dkm)→ Fkm(V )→ ker(dk+1
m )→ 0,

where dkm : Fkm(V )→ Fk+1
m (V ) are the differentials. By assumption, the homomorphisms

αkm,j in the inverse system lim←−
m

Fkm(V ) are surjective, so the inverse system satisfies the

Mittag-Leffler (ML) condition. Using the fact that the spaces ker(dk+1
m ) are quotients of

Fkm(V ) for all k, we can see that the restrictions αkm,j : ker(dk+1
l ) → ker(dk+1

m ) are surjec-
tive, so the inverse system lim←−

m

ker(dkm) also satisfies (ML). By [31, Chapter II, Proposition

9.1 (b)], we have exact sequences,

0→ lim←−
m

ker(dkm)→ lim←−
m

Fkm(V )→ lim←−
m

ker(dk+1
m )→ 0,

for every k. The above short exact sequences for all k induce the following long exact
sequence

· · · → lim←−
m

Fk−1
m (V )→ lim←−

m

Fkm(V )→ lim←−
m

Fk+1
m (V )→ · · · ,

thus completing the proof of the lemma. �

Now, we are ready to prove Proposition 5.2.1, the main result of this section.
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Proof of Proposition 5.2.1. The result about the resolution follows from applying Lemma
5.2.8 to the exact complex of sheaves of Rm-modules

L ⊗R Rm → E•U (= df/f,m)s̃ .

Notice that lim←−L⊗R Rm is naturally isomorphic to L ⊗R R∞. �

5.3. Local Systems and Thickened Complexes: Rational Version. We now state the
analogue of the results in Section 5.2 in the k = Q case, for the thickened complex
j−1K•∞(1⊗ f,m) constructed from the complex K•∞ of Section 2.10. In the remainder of
this section, k = Q, L is a local system of Q[t±1]-modules, dim is the i-th differential of
j−1K•∞(1⊗ f,m), and s̃2 := exp(s)− 1 ∈ R∞. Abusing notation, we will consider s̃2 as an
element of Rm or C[t±1]m for all m ≥ 1 whenever it makes sense.

As stated in Section 2.10, ϕ∞ ⊗ 1: (K•∞,W�)⊗ C → (Ω•X(logD),W�) is a filtered quasi-
isomorphism, which takes 1⊗f to 1

2πi
df
f

. So it induces a quasi-isomorphism j−1K•∞⊗C→
Ω•U . By Remark 3.3.1, this induces a quasi-isomorphism

(11) F : j−1K•∞(1⊗ f,m)⊗ C→ Ω•U

(
1

2πi

df

f
,m

)
for all m ≥ 1. One can check locally in simply connected open sets that Ω•U

(
1

2πi
df
f
,m
)

is

exact at place k for all k ≥ 1. Therefore, since C is faithfully flat over Q, ker dkm = im dk−1
m

for all k ≥ 1. Hence, j−1K•∞(1 ⊗ f,m) is a resolution of ker d0
m, which in turn is a rank

one local system of Rm-modules. Now, we give a description of this local system.

Lemma 5.3.1 (Analogue of Lemma 5.2.2). If V ⊂ U is a small enough open subset (in
the analytic topology) such that f(V ) is simply-connected, then ker d0

m(V ) is generated by
exp

(
− log(f)

2πi
⊗ 1⊗ s

)
∈ K0

∞(V ) ⊗ Rm as an Rm-module, where log is taken to be a branch
of the logarithm function which is defined on f(V ).

Proof. A direct computation shows that exp
(
− log(f)

2πi
⊗ 1⊗ s

)
∈ ker d0

m(V ). We have that

F

(
exp

(
− log(f)

2πi
⊗ 1⊗ s

)
⊗ 1

)
= exp

(
− log(f)

2πi
⊗ s
)
∈ Ω0

U ⊗ C[t±1]m,

where F is the quasi-isomorphism in equation (11). Following a similar argument as in
Lemma 5.2.2 for the thickened holomorphic de Rham complex Ω•U

(
1

2πi
df
f
,m
)

instead of

E•U
(
=
(
df
f

)
,m
)

, we get that exp
(
− log(f)

2πi
⊗ s
)

generates the kernel of the 0-th differential

of Ω•U

(
1

2πi
df
f
,m
)

.
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Let A be the Rm-module generated by exp
(
− log(f)

2πi
⊗ 1⊗ s

)
. Using the map F , we see

that the inclusion A ↪→ ker d0
m(V ) becomes an isomorphism after tensoring by C. Since

C is faithfully flat over Q, it follows that A ∼= ker d0
m(V ). �

The proof of the rest of the results in this sections follow the same steps as the proof
of their analogue results in the real case, and we will omit them.

Lemma 5.3.2 (Analogue of Lemma 5.2.4). The π1(U)-action on the local system j−1 ker d0
m

is given by γ 7→ exp(−f∗(γ)s) · , multiplication by exp(−f∗(γ)s).

Lemma 5.3.3 (Analogue of Lemma 5.2.5). The kernel of the 0-th differential of the complex
j−1K•∞ (1⊗ f,m)s̃2 is (j−1 ker d0

m)s̃2 , which is isomorphic to L ⊗R Rm as local systems of Rm-
modules.

Remark 5.3.4 (Analogue of Remark 5.2.6). We can fix a canonical isomorphism νQ : L⊗R
Rm
∼= (ker d0

m)s̃2 as follows. Recall that at any x ∈ U , Lx has an Q-basis {δx′} parametrized
by x′ ∈ π−1(x). For any such x′, let (νQ)x(δx′) be the unique germ g in the stalk of
(j−1 ker d0

m) at x such that g(x) = exp
(
−f∞(x′)

2πi
⊗ 1⊗ s

)
. On any simply connected

neighborhood V of x, let ι : V → U f be the section of π such that ι(x) = x′. Then,
νQ can be described by

(νQ)x(δx′) = exp

(
−f∞ ◦ ι

2πi
⊗ 1⊗ s

)
.

Similarly as in Remark 5.2.6, we can check that νQ is an Rm-linear map on stalks (after
twisting the Rm module structure by s̃2 in the target) and that it defines a morphism of
local systems of Rm-modules on U .�

Proposition 5.3.5 (Analogue of Proposition 5.2.1).

j−1K•∞ (1⊗ f,∞)s̃2 := lim←−
m

(
j−1K•∞ (1⊗ f,m)s̃2

)
is a resolution of L ⊗R R∞, via a canonical map L ⊗R R∞ → j−1K•∞ (1⊗ f,∞)s̃2 described in
Remark 5.3.4.

Remark 5.3.6. As stated in [50, Corollary 4.17], the adjunction map K•∞ → Rj∗j
−1K•∞ is a

quasi-isomorphism. Hence, using Remark 3.3.1 and Proposition 5.3.5, for all 1 ≤ m ≤ ∞
we get natural isomorphisms

H∗
(
X,K•∞(1⊗ f,m)s̃2

) ∼= H∗
(
U, j−1K•∞(1⊗ f,m)s̃2

) ∼= H∗(U,L ⊗R Rm).
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Furthermore for large integers m and j, the submodule TorsR∞ H
∗(U,L⊗RR∞) is shown

to be contained in H∗(U,L ⊗R Rm) as the kernel of ψ∗mj applying Lemma 3.1.8 to the
cochain complexes of these local systems.�

5.4. Thickened Complex of the Log de Rham Complex. It is easy to see that the form
df/f is an element of the intersection Γ(U,Ω1

U)∩ ker d. In fact, we have a stronger result:

Lemma 5.4.1. We have

df/f ∈ W1Γ
(
X,Ω1

X(logD)
)
∩ F 1Γ

(
X,Ω1

X(logD)
)
∩ ker d.

Proof. We will check the stalk condition described in [50, Section 4.1]. Let x ∈ X be
given. Select an open V admitting local holomorphic coordinates (z1, . . . , zn) at x in
which D is given by z1 . . . z` = 0. By shrinking V if necessary and taking the appropriate
affine chart of CP 1, we may assume that f̄ : X → CP 1 determines by restriction a
holomorphic map f̄ |V : V → C, where

(
f̄ |V
)−1

(0) ⊂ D ∩ V . In particular, we can write
f̄ |V = za1

1 · · · z
a`
` · g for some a1, . . . , a` ≥ 0 and invertible g : V → C∗. Application of the

Leibniz rule to the following:

df

f
=
d(za1

1 · · · z
a`
` · g)

za1
1 · · · z

a`
` · g

,

where we have implicitly further restricted to U ∩ V , shows that df/f is of the desired
form on V . �

Our goal is to conduct a thickening ofHdg•(X logD) so that the hypotheses of Section
4.1 are satisfied. Recall that our pseudo-morphism α is given by the chain:

(j∗E•U , τ�) (j∗(E•U ⊗ C), τ�) (Ω•X(logD), τ�) (Ω•X(logD),W�)
j∗(id⊗1)

'
id
'

where the central map is the inclusion. As required by Section 4.1, we begin by selecting
closed global 1-forms: =(df/f) of τ1j∗E•U (where = denotes the imaginary part) and
(1/i)df/f of W1Ω•X(logD) ∩ F 1Ω•X(logD), allowable by Lemma 5.4.1. We must verify
that these two global 1-forms are cohomologous in τ1:

Lemma 5.4.2. The forms =(df/f) and (1/i)df/f are cohomologous in τ1Γ(U, E•U ⊗ C) via:

=df
f
− 1

i

df

f
= d

(
Log(|f |)
−i

)
where Log : R>0 → R is the real logarithm.



59

Proof. Since τ1Γ(U, E0
U ⊗C) = Γ(U, E0

U ⊗C) it follows that Log(|f |)
−i ∈ τ1Γ(U, E•U ⊗C). It only

remains to verify the presented equality. Note that:

=df
f
− 1

i

df

f
= −1

i
<df
f

where < denotes the real part. On the other hand, for any branch log of the complex
logarithm, we have:

d

(
Log(|f |)
−i

)
= −1

i
d(< log(f)) = −1

i
<df
f
,

as desired. �

Accounting for Remark 2.9.2, the assumptions of Section 4.1 are satisfied (as required
by assumption (3) we fix the choice Log(|f |)/(−i) as witness to =(df/f) and (1/i)df/f

being cohomologous), and we conclude:

Theorem 5.4.3. Consider the R-mixed Hodge complex of sheaves:

Hdg•(X logD) = ((j∗E•U , τ�), (Ω•X(logD),W�, F
�), α)

described in Theorem 2.9.1. Suppose m ≥ 1. Then we have a thickened triple as in Theorem
4.2.1:

Hdg•(X logD)

(
1

i

df

f
,m

)
:=

([
j∗E•U

(
= df
f
,m

)
, τ�

]
,

[
Ω•X(logD)

(
1

i

df

f
,m

)
,W�, F

�

]
, α#

)
which is an R-mixed Hodge complex of sheaves on X .

In this paper, we focus on the torsion part of the Alexander modules, but the next
Corollary shows that we have a MHS that involves (a quotient of) the free part as well.

Corollary 5.4.4. Let m, j ∈ N. Recall that we define Rm = R/(sm), where s = t − 1. The
R-vector spaces Mm := H∗(U ;L) ⊗R Rm admit natural R-mixed Hodge structures for which
the following maps are morphisms of mixed Hodge structures:

(1) The projection Mm+j �Mm.
(2) The map induced by multiplication by (log(t))j : Rm ↪→ Rm+j after tensoring, that is

(log(t))j : Mm →Mm+j(−j).
(3) Multiplication by log(t), Mm →Mm(−1).

Here log(t) represents the Taylor series centered at 0, and (−j), (−1) denote Tate twists.
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Proof. By the flatness of R∞ over R, we have

Mm = H∗(U ;L)⊗R Rm
∼= H∗(U ;L)⊗R R∞ ⊗R∞ Rm

∼= H∗(U ;L ⊗R R∞)⊗R∞ Rm.

For m ≥ 1, it turns out that the translated mixed Hodge complex of sheaves

Hdg•(X logD)

(
1

i

df

f
,m

)
[1]

is better suited for comparison to known mixed Hodge structures, so we use it to endow
Mm with a mixed Hodge structure. This will enable us to state Theorems 1.0.3 and
1.0.8 without involving Tate twists. This translated R-mixed Hodge complex of sheaves
endows, by Remark 4.2.4, R-mixed Hodge structures on the hypercohomology:

H∗(U, E•U(=df/f,m)[1])

which we fix for the rest of the proof. We will also use Lemma 4.2.3 for the maps
between these spaces.

Let s̃ = exp(2πs)−1 ∈ R∞. Then E•U (= df/f,m)s̃ is a complex of soft sheaves for all m,
since it is a complex of E0

U -modules ([16, Proposition 2.1.8]). Hence, E•U (= df/f,m)s̃
is Γ-acyclic and therefore, Proposition 5.2.1 provides isomorphisms of R∞-modules
H∗
(
U ;L ⊗R R∞

) ∼= H∗Γ (U, E•U(= df/f,∞))s̃
∼= H∗−1(U, E•U(=df/f,∞)[1])s̃.

Since every complex algebraic variety has the homotopy type of a finite CW complex
[13, p. 27], the above isomorphism yields that H∗Γ (U, E•U(= df/f,∞)) is a finitely gener-
ated R∞-module. In particular, we can apply Corollary 3.1.9: Mm is isomorphic to the
image of φm′m[1]∗ for m′ � 0. We will use that all the maps in Lemma 4.2.3 are MHS
morphisms (rather, their translations as in Remark 4.2.4). Being the image of a MHS
morphism, Mm is a sub-MHS of H∗−1(U, E•U(=df/f,m)[1])s̃. The fact that this MHS is
independent of m′ and m is a consequence of Remark 3.1.10.

Finally, we show that the maps in the statement are MHS morphisms. Note that
multiplication by log(t)

2π
in H∗−1

(
U, E•U(=df/f,m)[1]

)
s̃

corresponds to multiplication by s

in H∗−1
(
U, E•U(=df/f,m)[1]

)
. Using Remark 3.1.10: the map (1) is induced by φjm[1]∗,

the map (2) is induced by (2π)jψmj[1]∗ and (3) is multiplication by 2πs (taking into
account the different module structures). Since all three maps induce MHS morphisms
in cohomology by Lemma 4.2.3 and Remark 4.2.4, we are done. �

Corollary 5.4.5. Suppose that the action of t on TorsRH
∗(U ;L) is unipotent. The R-vector

spaces TorsRH
∗(U ;L) admit natural R-mixed Hodge structures for which multiplication by

log(t) determines a morphism of mixed Hodge structures into the −1st Tate twist.
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Proof. Since every complex algebraic variety has the homotopy type of a finite CW com-
plex [13, p. 27], the modules H∗(U ;L) are finitely generated over R. In particular, there
is an m ≥ 0 such that sm annihilates TorsRH

∗(U ;L). For such an m, TorsRH
∗(U ;L)

is canonically isomorphic to the image of the following map, since s is nilpotent by
hypothesis:

(12) Torssm
(
H∗(U ;L)⊗R R2m

)
↪→ H∗(U ;L)⊗R R2m � H∗(U ;L)⊗R Rm.

Since s and log(t) differ by a unit, Torssm H
∗(U ;L) is the kernel of the multiplication by

(log(t))m, which is a MHS morphism by Corollary 5.4.4, part (3). Hence, the inclusion
in equation (12) is a MHS morphism. The second map in equation (12) is also a MHS
morphism by Corollary 5.4.4, part (1). Therefore, the canonical isomorphism between
TorsRH

∗(U ;L) and the image of the map in equation (12) endows TorsRH
∗(U ;L) with a

MHS such that multiplication by log(t) is a morphism of MHS, as it is the restriction of
a MHS morphism. By Corollary 5.4.4, part (1), this MHS is independent of m, provided
that sm annihilates TorsRH

∗(U ;L). �

Corollary 5.4.6. The R-vector spaces TorsRH
∗(U ;L) admit canonical R-mixed Hodge struc-

tures for which multiplication by log(tN) is a morphism of mixed Hodge structures into the −1st
Tate twist. Here log is the Taylor series centered at 1, and N is chosen so that tN acts unipotently
on TorsRH

∗(U ;L).

Proof. If 1 is not the only eigenvalue of the action of t on H∗(U ;L⊗C), pick N such that
λN = 1 for all λ eigenvalue of the action of t on H∗(U ;L ⊗ C). We can reduce this case
to the one where 1 is the only eigenvalue by Lemma 2.6.3 and Remark 2.6.4, obtaining a
k-linear isomorphism TorsRH

∗(U ;L) ∼= TorsR(N)H
∗(UN ;LN). We give the left hand side

the MHS of the right hand side, which we constructed in Corollary 5.4.5. As we will see
in Theorem 5.4.8 below, this construction is independent of the choice of suitable N . �

Theorem 5.4.7 (Independence of the compactification). Suppose that the action of t on
TorsRH

∗(U ;L) is unipotent. The mixed Hodge structure on TorsRH
∗(U ;L) obtained in Corol-

lary 5.4.5 is independent of the compactification X of U such that D = X \U is a simple normal
crossing divisor, which we used to construct the mixed Hodge structure.

Proof. Suppose that X and Y are two such compactifications, called good compactifica-
tions. Let Z be a resolution of the closure of the diagonal ∆ of U × U inside of X × Y
such that Z is a good compactification of U as well. The two projections pX : Z → X and
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pY : Z → Y induce the identity on U . It suffices to show that the mixed Hodge structure
on TorsRH

∗(U ;L) obtained using Z is the same as the one obtained using X .
Let E = Z \ U . By [50, Lemma 4.12] (recalling Remark 2.8.7), we have a canonical

morphism

Hdg•(X logD)→ R(pX)∗Hdg•(Z logE).

By construction, this morphism factors through (pX)∗Hdg•(Z logE) as maps of triples.
Since

(pX)∗

(
Hdg•(Z logE)

(
1

i

df

f
,m

))
= ((pX)∗Hdg•(Z logE))

(
1

i

df

f
,m

)
,

Lemma 3.1.4 tells us that this map of triples induces a canonical morphism between
their corresponding thickenings

Hdg•(X logD)

(
1

i

df

f
,m

)
→ (pX)∗

(
Hdg•(Z logE)

(
1

i

df

f
,m

))
.

Composing with (pX)∗ of the canonical map into the Godement resolution, we get a
morphism of mixed Hodge complexes of sheaves

Hdg•(X logD)

(
1

i

df

f
,m

)
→ R(pX)∗

(
Hdg•(Z logE)

(
1

i

df

f
,m

))
.

Let jX : U ↪→ X and jZ : U ↪→ Z be the inclusions, and note that pX ◦ jZ = jX .
The [1] translation of the map of mixed Hodge complexes above induces isomorphisms
between the R-MHS on H∗(U, E•U(=df/f,m)[1]) obtained by the compactification X and
the R-MHS on H∗(U, E•U(=df/f,m)[1]) obtained by the compactification Z. Hence, the
MHS obtained on TorsRH

∗(U ;L) using these MHS on H∗−1(U, E•U(=df/f,m)[1]) for large
enough m is independent of the compactification. �

Theorem 5.4.8 (Independence of N ). The mixed Hodge structure on TorsRH
∗(U,L) obtained

in the proof of Corollary 5.4.6 is independent of the choice of cover UN used to construct it.

Proof. It suffices to show that if 1 is the only eigenvalue of the action of t on H∗(U ;L⊗C),
then the mixed Hodge structure defined on TorsRH

∗(U ;L) is the same as the mixed
Hodge structure obtained on TorsR(N) H

∗(UN ;LN), where N ≥ 1 and p : UN → U is
a degree N cover as in Section 2.6. We use the same notation from the discussion
preceding Lemma 2.6.3. In particular, we defined an isomorphism L ∼= p∗LN of sheaves
of R(N)-modules, which we will refer to as “the canonical isomorphism” throughout
the proof. By Lemma 2.6.3, this is the obvious isomorphism appearing in this situation,
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since it induces in cohomology the map coming from the isomorphism of infinite cyclic
covers.

As explained in [50, Section 4.5.1], it is possible to find smooth compactifications X of
U and Y of UN such that D := X\U and E := Y \UN are simple normal crossing divisors,
and such that p : UN → U extends to p : Y → X , and p−1(D) = E by construction. By
Remark 2.8.7, applying Rp∗ to Hdg•(Y logE)

(
1
i
dfN
fN
,m
)

yields a mixed Hodge complex
of sheaves on X .

We need to define a map of R-mixed Hodge complexes of sheaves as below. In Corol-
lary 5.4.4 we used a translation of these complexes to define the mixed Hodge structures,
which according to Remark 2.8.6 will result in a Tate twist in their cohomology groups.
We will omit the translation in this proof for brevity.

p̃ : Hdg•(X logD)

(
1

i

df

f
,m

)
→ Rp∗

(
Hdg•(Y logE)

(
1

i

dfN
fN

,m

))
.

Note that the twisted de Rham complexes on the left use the ring R, and the twisted
de Rham complexes on the right use the ring R(N) = k[t±N ]. We recall the notation
R(N)m = R(N)/((sN)m) ⊂ R, with sN = tN − 1. We define p̃ as a composition:

p̃ : Hdg•(X logD)

(
1

i

df

f
,m

)
p̂−→ p∗

(
Hdg•(Y logE)

(
1

i

dfN
fN

,m

))
→

→ Rp∗

(
Hdg•(Y logE)

(
1

i

dfN
fN

,m

))
.

The second arrow is the natural transformation p∗ → Rp∗ (it comes from the map in-
cluding a complex of sheaves into its Godement resolution and then applying p∗). For
our purposes, we do not need the object in the middle to be a mixed Hodge complex,
only the first and last. For ω ∈ E∗U defined on any open subset of U , we let:

p̂R(ω ⊗ sk) = p∗ω ⊗ (sN)k

Nk
.

where p∗ω ⊗ (sN )k

Nk ∈ E∗U
(
=dfN

fN
,m
)

. This commutes with the differential:

dm(p̂R(ω ⊗ sk)) = dm

(
p∗ω ⊗ (sN)k

Nk

)
= dp∗ω ⊗ (sN)k

Nk
+ p∗ω ∧ =df

f
⊗ (sN)k+1

Nk
;

p̂R ◦ dm(ω ⊗ sk) = p̂R

(
dω ⊗ sk + ω ∧ =df

f
⊗ sk+1

)
p∗ df

f
=N

dfN
fN=

= dp∗ω ⊗ (sN)k

Nk
+ p∗ω ∧ =dfN

fN
N ⊗ (sN)k+1

Nk+1
.
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And similarly we can define p̂C for the complex part. Using Remark 2.8.7, the filtrations
on Hdg•(Y logE)

(
1
i
dfN
fN
,m
)

induce filtrations on both its underived and derived push-
forwards, and the map between them preserves these filtrations. Then p̃ preserves the
filtrations, given that p̂ does, which is straightforward to verify.

The morphism of pseudomorphisms is the natural one, constructed using the pull-
back of forms similarly to the definition of p̃R. Hence, p̃ is a morphism of mixed Hodge
complexes of sheaves.

Taking cohomology and using Remark 5.2.6, we obtain a morphism of mixed Hodge
structures H i(U ;L ⊗R Rm) → H i(UN ;LN ⊗R(N) R(N)m). We want to show that this
morphism is related to the canonical isomorphism L ∼= p∗LN from Lemma 2.6.3.

Since E•UN (m,=dfN/fN) is a complex of soft sheaves, the map p∗E•UN (m,=dfN/fN) →
Rp∗E•UN (m,=dfN/fN) is a quasi-isomorphism. Since p̃ is a morphism of mixed Hodge
complexes, this means that p̂R induces the same morphism of MHS H i(U ;L ⊗R Rm) →
H i(UN ;LN ⊗R(N) R(N)m) as p̃R. We work with p̂R from now on.

The map p̂R is split injective. A left inverse is p̂′R : p∗E•UN (m,=dfN/fN)→ E•U(m,=df/f)

defined on open sets as follows: on an open set V ,

Γ(V ; p∗E•UN (m,=dfN/fN)) = Γ(p−1(V ); E•UN (m,=dfN/fN)).

Considering α ⊗ (sN)a ∈ E•UN (m,=dfN/fN) defined over p−1(V ), we let t act as the gen-
erator of the deck group of p : UN → U , and define

α =
1

N

N−1∑
k=0

(tk)∗α.

By construction, α is t-invariant. Therefore, we can define p̂′Rα as the unique form such
that p∗p̂′R(α) = α. We extend p̃′R to the thickening by letting p̃′R(α⊗(sN)a) = (p̃′Rα)⊗Nasa.
Direct computation shows that p̂′R ◦ p̂R = Id. We consider the following commutative
diagram, in which the horizontal arrows compose to the identity.
(13)

E0
U ⊗R Rm p∗E0

UN
⊗R R(N)m E0

U ⊗R Rm

lim←−m E
0
U ⊗R Rm lim←−m p∗E

0
UN
⊗R R(N)m lim←−m E

0
U ⊗R Rm

LU ⊗R R∞ p∗LN ⊗R(N) R(N)∞ LU ⊗R R∞.

p̂R p̂′R

p̂R p̂′R

σ

ν p∗νN

σ′

ν
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The top row of vertical arrows is induced by the limit. ν and νN are defined as (the
inverse limit of the maps) in Remark 5.2.6. Since ν and νN are isomorphisms onto the
kernel of the differential (by Proposition 5.2.1), σ and σ′ are uniquely determined as the
restrictions of p̂R and p̂′R in order to make the diagram commute.

One can check that, switching the R and R(N)-module structure respectively, the map

p̂R : E•U(=df/f,m)s̃ → p∗E•UN (=dfN/fN ,m)s̃N

is R(N)∞-linear, where s̃ = exp(2πs)−1 and s̃N = exp(2πsN)−1. Since ν and νN are R∞
and R(N)∞-linear respectively after these changes in the R and R(N)-module structures
on the de Rham complexes, we get that σ is R(N)∞-linear as well.

We will need a formula for σ′. First, recall our notation for the sections of these
sheaves. Let x ∈ U . The stalk at x of L is generated over k by elements of the form δ(x,z)

for some (x, z) ∈ U f . The stalk of p∗LN⊗R(N)R(N)m at x is the direct sum of the stalks of
p−1(x), where the stalk at (x, ez/N) is generated by sections of the form δ(x,ez/N ,z/N+2πik)

with k ∈ Z. Each element δ(x,ey ,y) must be interpreted as a section of LN around the
point (x, ey) ∈ UN ⊂ U × C∗, as in diagram (8).

We claim that σ′ is the map defined on stalks as the R-linear map satisfying

σ′δ(x,ez/N ,z/N) =
1

N
δ(x,z).

A straightforward computation shows that this map on stalks gives a well-defined map
of local systems of R(N)-modules. Another straightforward computation shows that
this is the correct formula for σ′, that is, we gave the formula that makes the bottom
right hand square commute.

Now we take hypercohomology of diagram (13), and we restrict to the torsion part of
the left half. We obtain the following diagram. Recall that σ is R(N)∞-linear, and that
TorsR∞ = TorsR(N)∞ .

HjΓ(U ; E•U ⊗R Rm) HjΓ(UN ; E•UN ⊗R R(N)m)

TorsR∞ H
j(U ;L ⊗R R∞) TorsR(N)∞ H

j(UN ;LN ⊗R(N) R(N)∞).

p̂R

σ

ν p∗νN

Suppose m is large enough. The top arrow is a MHS morphism because it comes
from a mixed Hodge complex morphism. The vertical arrows are MHS morphisms by
definition of the MHS morphism on the domains (in Corollary 5.4.6). Also, they are
injective. Therefore, σ is a MHS morphism and it is injective, since it comes from a
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split injective morphism of sheaves. Also, note that by flatness and the isomorphism
p∗LN ∼= L:

TorsR∞ H
j(U ;L ⊗R R∞) ∼= TorsRH

j(U ;L) ∼= TorsR(N) H
j(U ;L) ∼=

∼= TorsR(N) H
j(UN ;LN) ∼= TorsR(N)∞ H

j(UN ;LN ⊗R(N) R(N)∞).

In particular, these two spaces have the same dimension. So σ, which is an injection,
must be an isomorphism of MHS. Since σ′ is its right inverse, it is also an isomorphism
of MHS. Now we just need to observe that the following diagram clearly commutes (up
to multiplication by N ), where the top horizontal arrow is the canonical map as we’ve
defined it in Lemma 2.6.3:

p∗LN L

p∗LN ⊗R(N) R(N)∞ L ⊗R R∞.

∼

σ′

This shows that the canonical isomorphism p∗LN ∼= L coincides with σ′ up to multiplica-
tion by an integer constant, so the canonical isomorphism induces a MHS isomorphism:

TorsRH
∗(U ;L) ∼= TorsR(N) H

∗(UN ;LN).

This concludes the proof. �

Theorem 5.4.9 (Functoriality of the mixed Hodge structure.). Let U1 and U2 be smooth
connected complex algebraic varieties, with algebraic maps fi : Ui → C∗ such that fi induces an
epimorphism in fundamental groups for i = 1, 2, and assume that there exists an algebraic map
g : U1 → U2 that makes the following diagram commutative.

U1 U2.

C∗
f1

g

f2

Let Li be the local system of R-modules induced by fi for i = 1, 2, where k = R. Then,
the natural map TorsRH

∗(U2,L2) → TorsRH
∗(U1,L1) induced by g is a morphism of mixed

Hodge structures.

Proof. Note that L1 = g∗L2. Let N ∈ N such that the action of tN on TorsRH
∗(Ui;Li)

is unipotent, for i = 1, 2. The map g lifts to a map gN : (U1)N → (U2)N such that
(L1)N = g∗N(L2)N .
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As explained in [50, Section 4.5.1], it is possible to find smooth compactifications Xi

of (Ui)N such that Di := Xi\(Ui)N is a simple normal crossing divisor for i = 1, 2 and
such that gN extends to gN : X1 → X2, and (gN)−1(D2) = D1 by construction. By [50,
Lemma 4.12], there is a canonical morphism of mixed Hodge complexes of sheaves

(gN)∗ : Hdg•(X2 logD2)→ RgN ∗Hdg•(X1 logD1).

By construction, this morphism factors trough (gN)∗Hdg•(X1 logD1) as maps of triples.
Since

(gN )∗

(
Hdg•(X1 logD1)

(
1

i

d(f1)N
(f1)N

,m

))
= ((gN )∗Hdg•(X1 logD1))

(
1

i

d(f1)N
(f1)N

,m

)
,

and using that (gN)∗(f2)N = (f1)N , Lemma 3.1.4 tells us that this map of triples induces
a canonical morphism between their corresponding thickenings

Hdg•(X2 logD2)

(
1

i

d(f2)N
(f2)N

,m

)
s̃N

→ gN ∗

(
Hdg•(X1 logD1)

(
1

i

d(f1)N
(f1)N

,m

))
s̃N

.

Composing with (gN)∗ of the canonical map into the Godement resolution (and twisting
the R(N)m-module structure by s̃N ), we get a morphism of mixed Hodge complexes of
sheaves

Hdg•(X2 logD2)

(
1

i

d(f2)N
(f2)N

,m

)
s̃N

→ RgN ∗

(
Hdg•(X1 logD1)

(
1

i

d(f1)N
(f1)N

,m

))
s̃N

.

Therefore, after [1] translating the above morphism, we see that the canonical mor-
phism induced by g:

TorsRH
∗(U2,L2)→ TorsRH

∗(U1,L1)

is a morphism of R-mixed Hodge structures. �

Theorem 5.4.10 (Q-MHS). The mixed Hodge structure on TorsRH
i(U ;L) defined for k = R

in Corollary 5.4.6 comes from a (necessarily unique) mixed Hodge structure defined for k = Q.

Proof. In this proof, let k = Q and therefore R = Q[t±1]. We start by proving the theorem
in the case where the action of t on H∗(U ;L) is unipotent. Let s̃2 := exp(s)− 1 = Σ∞n=1

sn

n!
.

Similarly one obtains a Q-mixed Hodge complex: recalling the notation of Section 2.10
for m ≥ 1, we select the thickened triple:

Hdg•(X logD)

(
1

2πi

df

f
,m

)
s̃2

:=

([
K•∞ (1⊗ f,m) , W̃�

]
,

[
Ω•X(logD)

(
1

2πi

df

f
,m

)
,W�, F

�

]
, ϕ∞#

)
s̃2
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which also satisfies the hypotheses of Section 4.1, therefore is a Q-mixed Hodge complex
of sheaves on X .

Using Remark 5.3.6, we see that the translated mixed Hodge complex

Hdg•(X logD)

(
1

2πi

df

f
,m

)
s̃2

[1]

induces Q-mixed Hodge structures on H∗(U ;L⊗R Rm) ∼= H∗−1(X,K•∞(1⊗ f,m)[1])s̃2 for
which multiplication by log t is a morphism of mixed Hodge structures into the −1st
Tate twist, because it is induced by Sm[1] (multiplication by s) on the complex level
(recall Lemma 4.2.3). For large enough m, this Q-MHS on H∗(U ;L ⊗R Rm) induces a
Q-MHS on TorsRH

∗(U ;L) via the map of sheaves of R-modules L → L⊗R Rm, just like
we had in the case of R coefficients (as in the proof of Corollary 5.4.5).

Let LR := L⊗Q R, seen as a local system of R[t±1]-modules. Our goal is to see that the
R-MHS on H∗(U ;L⊗RRm)⊗QR ∼= H∗(U ;LR⊗R[t±1] R[t±1]/(sm)) induced by the Q-MHS
on H∗(U ;L⊗RRm) coincides with the R-MHS on H∗(U ;LR⊗R[t±1] R[t±1]/(sm)) obtained

using the real mixed Hodge complex of sheaves Hdg•(X logD)
(

1
i
df
f
,m
)
s̃
[1]. Indeed,

this will imply our claim about the Q and R-MHS on TorsRH
i(U ;L).

Using the definitions of the filtrations on the thickened complex (Section 3.2), it is
straightforward to check that the following map is an isomorphism of bi-filtered com-
plexes

(14)
Gm :

(
Ω•X(logD)

(
1

2πi
df
f
,m
)
,W�, F

�
)
−→

(
Ω•X(logD)

(
1
i
df
f
,m
)
,W�, F

�
)

ω ⊗ sj 7−→ (2π)jω ⊗ sj

for all m ≥ 1. Recalling the definitions of the mixed Hodge complexes of sheaves
involved, our claim follows if we show that the following two maps are the same in the
derived category. The first map is the composition

(Rj∗L ⊗R Rm)⊗Q C
Rj∗νQ⊗QC−−−−−−→ Rj∗j

−1K•∞(1⊗ f,m)⊗Q C
∼=←− K•∞(1⊗ f,m)⊗Q C

ϕ∞⊗1−−−→ Ω•X(logD)

(
1

2πi

df

f
,m

)
Gm−−→ Ω•X(logD)

(
1

i

df

f
,m

)
,

which (after a [1] translation) endows the cohomology of L⊗RRm with a Q-MHS. ϕ∞
is defined in Section 2.10 and it induces a map on thickenings via Lemma 3.1.4; and νQ
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is defined in Remark 5.3.4. The second morphism is the composition

(j∗LR ⊗R[t±1] R[t±1]/(sm))⊗R C j∗ν⊗RC−−−−→ j∗E•U
(
=df
f
,m

)
⊗R C

exp(Log(|f |)
−i )∧

−−−−−−−−→ j∗E•U
(

1

i

df

f
,m

)
⊗R C

∼=←− Ω•X(logD)

(
1

i

df

f
,m

)
which (after a [1] translation) endows the cohomology of L⊗R[t±1] R[t±1]/(sm) with an

R-MHS. Note that the two domains are canonically identified. Instead of proving that
those two maps are the same, we will prove that the (post) composition of them with
the quasi-isomorphism given by inclusion Ω•X(logD)

(
1
i
df
f
,m
) ∼=−→ j∗E•U

(
1
i
df
f
,m
)
⊗R C

give us the same map in the derived category. Note that we are now dealing with two
maps from Rj∗(L ⊗R Rm) ⊗Q C to Rj∗E•U

(
1
i
df
f
,m
)

(the sheaves involved are j∗-acyclic).
Since Rj∗ is fully faithful, it suffices to check that these two maps of sheaves of C-vector
spaces are the same on stalks at points in U .

L ⊗R Rm ⊗Q C
νQ⊗QC−−−−→ j−1K•∞(1⊗ f,m)⊗Q C ϕ∞⊗1−−−→ j−1Ω•X(logD)

(
1

2πi

df

f
,m

)
Gm−−→ j−1Ω•X(logD)

(
1

i

df

f
,m

)
∼=−→ E•U

(
1

i

df

f
,m

)
⊗R C,

L ⊗R[t±1] R[t±1]/(sm))⊗R C ν⊗RC−−−→ E•U
(
=df
f
,m

)
⊗R C

exp(Log(|f |)
−i ⊗s)∧

−−−−−−−−−−→ E•U
(

1

i

df

f
,m

)
⊗R C

Now, it is a straightforward computation to check that the image of δx′ in E•U
(

1
i
df
f
,m
)
⊗R

C is exp(−f∞◦ι
i
⊗ s) via both those two maps, where x ∈ U , x′ ∈ π−1(x) and ι is a section

of π defined on a simply connected neighborhood of x that takes x to x′. Hence, we
have proved the theorem in the case when t acts unipotently on H∗(U ;L).

In the case where the action is not unipotent, let UN be as in Remark 2.6.4. Then we
have the isomorphism H i(U ;L)⊗Q R ∼= H i(UN ;LN)⊗Q R which is defined over Q. The
right hand side has a MHS defined over Q, and therefore the left hand side’s MHS is
also defined over Q. �

Corollary 5.4.11. The MHS on TorsRH
i(U ;L) defined for k = Q is independent of the com-

pactification, independent of N , and functorial (as in Theorems 5.4.7, 5.4.8, and 5.4.9).

Proof. This is a consequence of the faithful flatness of R over Q: the R-MHSs determine
the MHSs over Q, and all the maps involved in the statements and proofs are defined
over Q as maps of vector spaces. �
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Note that, in view of Proposition 2.4.1, results of this section also yield the following
result, which motivated our paper (Theorem 1.0.2):

Corollary 5.4.12. The Q-vector spaces A∗(U f ;Q) := TorsRH∗(U
f ;Q) admit natural Q-mixed

Hodge structures, so that multiplication by log tN is a morphism of mixed Hodge structures into
the −1st Tate twist. Here log is the Taylor series centered at 1, and N is chosen so that tN acts
unipotently on A∗(U f ;Q).

Proof. By Remark 2.2.3, we have a canonical isomorphism Hi(U
f ;Q) ∼= Hi(U ;L). We use

Proposition 2.4.1 to identify TorsRHi(U ;L) with the dual MHS of TorsRH
i+1(U ;L). The

dual of multiplication by t (resp. log(tN)) is multiplication by t (resp. log(tN)), so we
obtain the dual MHS morphism:

log(tN) : A∗(U
f ;Q)(1) =

(
TorsRH

i+1(U ;L)(−1)
)∨k −→ (

TorsRH
i+1(U ;L)

)∨k
= A∗(U

f ;Q).

It suffices to apply the Tate twist (−1) to this map. �

Remark 5.4.13. Let us give an overview of where the MHS on TorsRH
i+1(U ;L) comes

from. First, we pass to a finite cover UN → U such that the action of tN on TorsRH
i+1(U ;L)

is unipotent. Lemma 2.6.3 provides an isomorphism between the Alexander modules
of UN and U , so it suffices to give the former a MHS. Let us denote UN = U .

Let k = R. We consider the shift of the thickening of the Hodge-de Rham complex
Hdg•(X logD)

(
1
i
df
f
,m
)

[1], which is a mixed Hodge complex of sheaves by Theorem 5.4.3.

Hence, its ith cohomology, H iΓ(U ; E•U(=df/f,m)[1]), carries an R-mixed Hodge struc-
ture. For every m, we have a map ν[1] : L⊗RRm[1]→ E0

U(=df/f,m)[1] as in Remark 5.2.6.
This map makes the right hand side into a soft resolution of L ⊗R Rm[1], providing
an isomorphism H∗(U ;L ⊗R Rm) ∼= H∗−1Γ(U ; E•U(=df/f,m)[1]), which we use to give
H∗(U ;L ⊗R Rm) a MHS.

Following the proof of Corollary 5.4.4, the MHS on H∗(U ;L)⊗ Rm is the unique one
that makes the following injective (for m� 0) map into a MHS morphism:

H∗(U ;L)⊗Rm ↪→ H∗(U ;L ⊗R Rm).

Following the proof of Corollary 5.4.5, the MHS on TorsRH
∗(U ;L) is the unique one

that makes the following injective (for m� 0) map into a MHS morphism:

TorsRH
∗(U ;L) ↪→ H∗(U ;L)⊗Rm.

Combining the two, we get that the MHS on TorsRH
∗(U ;L) is the unique one that

makes the following injective (for m � 0) map into a MHS morphism, for k = R and
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also k = Q by Theorem 5.4.10:

TorsRH
∗(U ;L) ↪→ H∗(U ;L ⊗R Rm).

Note that the image of TorsRH
∗(U ;L) in H∗(U ;L ⊗R Rm) is the kernel of ψ∗mm, by

Corollary 3.1.9.�

5.5. Dependence on the function. We have seen that the construction of the mixed
Hodge structure is well-defined, but we have made a somewhat arbitrary choice of the
map f∞ : U f → C. We will now see that changing this choice (and even changing f )
gives an isomorphic MHS. Note that these are MHS’s on the same vector space, so they
can be isomorphic but unequal.

Proposition 5.5.1 (Dependence on the function). Let c ∈ C. Consider the function f̃ =

e2πcf , and consider the following diagram:

U f̃ C

U f C

U C∗

U C∗.

f̃∞

π̃ exp

f∞

π

(x,z) 7→(x,z+2πc)

χ +2πc

exp

f

e2πc

f̃

Let L = π!kUf ,L′ = π̃!kU f̃ . χ induces an isomorphism χL : L = π!kUf
∼= π̃!χ!kUf = π̃!kU f̃ =

L′. Let TorsRH
i(U ;L) (resp. TorsRH

i(U ;L′)) be the mixed Hodge structure obtained from
Corollary 5.4.6 using the function f (resp. f̃ ). Then χL ◦ t=c induces an isomorphism of MHS
TorsRH

i(U ;L)→ TorsRH
i(U ;L′), where

t=c =
m−1∑
j=0

(
=c/N
j

)
(tN − 1)j.

Here N,m are any natural numbers for which the action of (tN − 1)m is 0 (in which case the
above expression doesn’t depend on N,m).

Proof. On sections, χL is given by δ(x,z) 7→ δ(x,z+2πc). Let us start with the case where the
only eigenvalue of the action of t on TorsRH

i(U ;L) is 1.
Let m be large enough so that (t− 1)m annihilates TorsRH

i(U ;L). First, E•U(=df
f
,m) =

E•U(=de2πcf
e2πcf

,m) has a canonical structure of a mixed Hodge complex independent of c.
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Let

νf : L ⊗R Rm → E0
U

(
=df
f
,m

)
; νf̃ : L′ ⊗R Rm → E0

U

(
=df
f
,m

)
be constructed as in Remark 5.2.6. Explicitly: for (x, z) ∈ U f and ι a local section of π
such that ι(x) = (x, z), we have that χ ◦ ι is a section of π̃. Note that f̃∞ ◦ χ = f∞ + 2πc,
so:

νf̃ ◦ χL(δ(x,z)) = νf̃ (δ(x,z+2πc)) = exp(−=f̃∞ ◦ χ ◦ ι⊗ s) = e−2π=c⊗s exp(−=f∞ ◦ ι⊗ s)

= νf (t
−=cδ(x,z)).

In other words, νf̃ ◦ χL = νf ◦ t−=c. Recall that νf is not Rm-linear unless we change the
Rm-module structure. In the notation from Remark 3.1.11, we see that ·e2π=c⊗s = ∗s̃t=c,
so, since s̃ = exp(2πs) − 1, multiplication by e−2π=c⊗s on E0

U(=df
f
,m) corresponds to

multiplication by t−=c on L ⊗R Rm.
The maps νf and νf̃ are used to give mixed Hodge structures to H i(U ;L ⊗R Rm) and

H i(U ;L′ ⊗R Rm), respectively. This shows that the following is a MHS isomorphism:

χL ◦ t=c : H i(U ;L ⊗R Rm)→ H i(U ;L′ ⊗R Rm).

By Remark 5.4.13, the MHS on TorsRH
i(U ;L) is constructed as a sub-MHS of H i(U ;L⊗R

Rm) by the map induced by R → Rm. This means that χL ◦ t=c is a MHS morphism
TorsRH

i(U ;L)→ TorsRH
i(U ;L′).

We now turn to the case where t is not unipotent. As in Remark 2.6.4, let N be such
that tN is unipotent, which will correspond to deck transformations for the degree N
cyclic cover.

Let ŨN = {(x, z) ∈ U × C∗ | f̃(x) = zN}. We can draw the maps in Diagram (8) for
both (U, f) and (U, f̃), and they will be connected by the following isomorphisms:

U f U fN
N UN U

U f̃ ŨN
f̃N

ŨN U.

θN

χ z 7→z+2πc

πN

χ′ z 7→z+2πc/N

p

χN z 7→e2πc/Nz

θ̃N π̃N p̃

Let LN = (πN)!kUfNN
,L′N = (π̃N)!k

ŨN
f̃N

. Let tN = tN be the deck transformation on

the cohomology of LN . Applying the already proven result in the unipotent case
to UN and c′ = c/N , we have that χLN ◦ t

−=c/N
N is an isomorphism of MHS between

TorsR(N) H
i(UN ;LN) and TorsR(N) H

i(ŨN ;L′N). Now, tN = tN and the horizontal maps
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θN give isomorphisms of MHS (Lemma 2.6.3 and Theorem 5.4.8), so we have the desired
result. �

Corollary 5.5.2. If the action of t on TorsRH
i(U ;L) is semisimple, then the MHS on the

Alexander module is independent of f∞.

Proof. If the action of t is semisimple, then in the Taylor series of t=c we may take m = 1,
so t=c = Id. Proposition 5.5.1 implies that χL is a MHS isomorphism for any c ∈ C. �

Remark 5.5.3. In particular, if the action of t on TorsRH
i(U ;L) is semisimple, then taking

c = i in Corollary 5.5.2, we conclude that the MHS is preserved by deck transformations.�

Remark 5.5.4. The converse of Corollary 5.5.2 holds as well, see Proposition 7.0.5.�

6. The geometric map is a morphism of MHS

The goal of this section is to prove the following result (Theorem 1.0.3 in the intro-
duction). We use all the notations of Section 2.2.

Theorem 6.0.1. The covering space map π : U f → U induces a map in homology

Hi(π) : TorsRHi(U
f ; k)→ Hi(U ; k)

and the k-dual of Hi(π) is a map in cohomology

H i(π) : H i(U ; k)→ TorsRH
i+1(U ;L).

Both are morphisms of mixed Hodge structures.

The MHS’s on TorsRH
i+1(U ;L) and TorsRHi(U ;L) are the ones in Corollary 5.4.6 and

Corollary 5.4.12, respectively. H i(U ; k) is endowed with Deligne’s MHS, and Hi(U ; k) is
endowed with its dual MHS. Before proving Theorem 6.0.1 in Section 6.2 we have to do
some preliminary work.

6.1. Maps between local systems. Let R be as in Section 2.2, and let Rm = R
smR

. We
work with local systems of R-modules on U . For such a local system F , we will abbre-
viate F ⊗R Rm to F/sm. We make k into a sheaf of R-modules by letting s act as 0. For
any R-module M (or sheaf of R-modules), we will denote by M the conjugate structure
as in Remark 2.2.5. Throughout the whole section, the derived functor RHomR(·, R) (or
RHomR(·, R)) will be abbreviated ·∨.

The covering map π induces a map in homology Hi(U
f ; k) → Hi(U ; k). From Re-

mark 2.2.3, there is a canonical isomorphism of R-modules Hi(U ;L) ∼= Hi(U
f ; k). As
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discussed in Remark 2.2.9, the same is not true for cohomology in general, see Corol-
lary 2.4.5 for the hypotheses needed to have such isomorphism in cohomology. Re-
stricting the map induced by π in homology to the torsion, we get that π induces a
map

Hi(π) : TorsRHi(U ;L)→ Hi(U ; k).

Taking the dual as k-vector spaces, and using the isomorphism Res from Definition 2.4.3,
we obtain a map H i(U ; k)→ Ext1

R(TorsRHi(U ;L), R). Finally, the Universal Coefficients
Theorem (as in Remark 2.3.4) gives us an isomorphism

Ext1
R(TorsRHi(U ;L), R)→ TorsRH

i+1(U ;L).

Precomposing with the inverse of this isomorphism, we get that the covering space map
π induces a map

H i(π) : H i(U ; k)→ TorsRH
i+1(U ;L).

We will use the notation Hi(π) and H i(π) from now on to refer to these maps, as well as
Hi(πN) and H i(πN) for the analogous definition using πN (as in Section 2.6) instead of
π. The goal of this section is to realize both as the maps in (co)homology arising from
maps of local systems (Propositions 6.1.1 and 6.1.3).

Corollary 2.4.5 justifies the notation H i(π). Indeed, in its proof, we see that under
the identification we are using, and under the condition that Hi(U

f ; k) is a torsion R-
module, H i(π) (as defined by us) is indeed the map H i(U ; k) → H i(U f ; k) induced in
cohomology by π (the dual of the map induced in homology).

Proposition 6.1.1. Let πL : L → L
s

∼−→ k be determined by πL(δ(x,z)) = 1 for all (x, z) ∈
U f ⊂ U × C. Up to the identification Hi(U

f ; k) ∼= Hi(U ;L) (Remark 2.2.3), the two maps
Hi(U ;L)→ Hi(U ; k) induced in homology by π and πL coincide.

Proof. This is a straightforward computation given the isomorphism C•(U ;L) ∼= C•(U
f ; k)

of Remark 2.2.3. From the definitions, all we need is to show that the following diagram
is commutative:

C•(U
f ; k) C•(U ;L) = C•(U

f ; k)⊗R R

C•(U ; k) C•(U ; k) = C•(U
f ; k)⊗R k.

∼

π πL:Lx=R→k

∼

We can check directly that a chain c ∈ Ci(U f ; k) is mapped to π∗(c) ∈ C•(U ; k) via both
paths. �
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Our next goal is to find a map (in the derived category) of local systems k[−1] → L
that will induce H i(π) in cohomology.

Let us fix the free resolution L s−→ L of k (see the maps below), so that πL becomes a
composition as the left hand diagram below (the bottom row sits in degree 0):

0 L 0 L L

L L k; L 0.

s

1

s π∨L
1

πL

πL

Let π∨L be defined by applying RHomR(·, R) to πL. If we identify k with L s−→ L as above,
then it corresponds to the right hand map of complexes above (recall that we have fixed
a way of identifying HomR(L, R) ∼= L, as in Remark 2.2.8).

Remark 6.1.2. Let πL : L → k be the result of conjugating πL. This induces a quasi-
isomorphism RHomR(k,R) ∼= k[−1] by using the resolution L s−→ L above:

RHomR(k,R) ∼= (L s−→ L) ∼= k[−1],

where L s−→ L sits in degrees 0 and 1 and the last ∼= is given by the map πL. Defini-
tion 2.4.3 provides another such isomorphism:

RHomR(k,R) ∼= Ext1
R(k,R)[−1]

Res−−→
∼
Homk(k, k)[−1] ∼= k[−1].

Since Aut(k) ∼= k∗ (both in the abelian and the derived categories), these two isomor-
phisms differ by mutiplication by a nonzero constant (as maps in the derived category
of sheaves of R-modules on U ). This constant turns out to be 1, keeping in mind Re-
mark 2.4.4. For all our purposes, it will not matter which constant this is, so we will
omit the computation.�

We have two exact triangles, where we are using ·∨ to denote the functorRHomR(·, R).
(15)

0 0 L L 0 0 L L

L L L 0; L L L 0.

πL

1

s −π∨L[1] πL

1

s −π∨L[1]
s 1 s 1

Note that the labeling on the maps is consistent with ·∨ = RHom(·, R). Below, the first
diagram represents π∨L, the second diagram is π∨L[1] and the third diagram is the same
map, after the isomorphism

(
L s−→ L

)
∼=
(
L −s−→ L

)
that is IdL in degree 0 and − IdL in
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degree −1 (which is the identity morphism in the derived category).

deg = 0 L L L L L L

L 0 deg = 0 L 0 deg = 0 L 0

1

s

1

−s

−1

s

We will identify k with its free resolutions, hence our naming of the maps above, with
a slight abuse of notation.

Proposition 6.1.3. The map H i(U ; k) → TorsRH
i+1(U ;L) induced by π∨L in cohomology

coincides with H i(π). In other words, the following diagram commutes. The dotted arrow is the
desired map computed in two different ways.

Hi+1(U ; k∨) Hi(U ; k) Homk(Hi(U ; k), k)

Hi+1(U ;L) ⊇ TorsRHi+1(U ;L) Ext1R(Hi(U ;L),R) Homk(TorsRHi(U ;L), k).

Hi(π∨L)

Res
∼

UCTk

∼

Hom(Hi(π),k)

UCTR

∼
Res

∼

Here “UCT” stands for the maps defined in 2.3.3, and Res (abusing notation) is the canonical
isomorphism induced by the isomorphism of R-modules Res of Definition 2.4.3. Here we only
assume that U is a topological space and f : U → C∗ is a continuous map.

Proof. Throughout this proof, all homology and cohomology groups will be on the space
U , so we will ommit it for brevity. Also, k is always viewed as the R-module R/sR, via
the map sending 1 to 1.

The naturality of tensor-hom adjunction in the definition of UCTR in Lemma 2.3.3
tells us that the following diagram commutes:

Ext1
R(Hi(k), R) H i+1(k∨) = H i(Ext1

R(k,R)) = H i+1(C•(k∨))

Ext1
R(Hi(L), R) TorsRH

i+1(L).

Ext1
R(Hi(πL),R)

UCTR
∼

Hi(π∨L)

UCTR
∼

Recall Remark 6.1.2. For the purposes of the map H i(π∨L), k∨ is seen as the bounded
complex L s−→ L, sitting in degrees 0 and 1. Recall that, by truncation, we also identified
k∨ with Ext1

R(k,R)[−1].
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In view of the diagram above, this lemma is equivalent to the commutativity of the
following diagram:

H i+1(k∨) H i(k) Homk(Hi(k), k)

Ext1
R(Hi(k), R) Ext1

R(Hi(L),R) Homk(TorsRHi(L), k).

Res
∼

UCTk
∼

Hom(Hi(π),k)UCTR ∼

Ext1
R(Hi(πL),R)

Res

∼

We claim that the following diagram of isomorphisms commutes:

(16)
H i+1(k∨) Ext1

R(Hi(k), R)

H i(k) Homk(Hi(k), k).

Res

UCTR

Res

UCTk

Let us write the complexes representing these (co)homology groups, like in Definition
2.3.1 and Remark 2.3.2. We will draw a commutative diagram with the corresponding
maps between complexes. Let C•(k) be as in Remark 2.3.2. Note that the coefficients
are constant, so we can take Ũ = U in the definition. Then, C•(k) = C•(U,R)⊗R k. The
proof amounts to looking at the diagram (17).

(17)

Hi+1(k∨) Hom•R(C•(U,R), (F•)∨x )[1] Hom•R(C•(F•), R)[1] Ext1R(Hi(k), R)

Hom•R(C•(U,R),Hom•R(F•x ,K/R)) Hom•R(C•(F•),K/R)

Hom•R(C•(U,R),HomR(k,K/R)) Hom•R(C•(k),K/R), HomR(Hi(k),K/R)

Hi(k) Hom•R(C•(U,R),Homk(k, k)) Hom•k(C•(k), k) Homk(Hi(k), k).

a

Res

UCTR

t-h

β

c

β

t-h

t-h

ρ

Hom•R(C•(U,R), res∗)

ρ

res∗

b

β

res∗

a

UCTk

t-h
b

The four corners and the arrows between them coincide with those of diagram (16).
F• := R

s−→ R (in degrees [−1, 0]) is a free resolution of k, and ρ : F• → k is the cor-
responding quasi-isomorphism (we’ve abused notation by labeling ρ the maps that
are induced by ρ after applying some functors). Note that (F•)∨[1] is a resolution of
Ext1

R(k,R) = Ext1
R(k,R) (recall that we are using M to denote the constant sheaf with

stalk M ). Similarly, β : K/R → R[1] is defined as in Definition 2.4.3, and we’ve labeled
β the arrows that are induced by β. The arrows “t-h” represent tensor-hom adjunction.
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First, note that the “inside” rectangle made of solid straight arrows is commutative.
The top two squares commute by the naturality of tensor-hom adjunction, and the bot-
tom square can be seen to commute by a direct calculation. The dashed lines are not
maps, rather they represent the cohomology of the corresponding complex. We would
like to show that the maps drawn “outside” in cohomology are induced by the maps of
complexes depicted in the diagram.

The lines labeled “a” are obtained by simply taking the cohomology, by definition
(together with identifying Homk(k, k) = k). The lines labeled “b” and “c” arise in the
universal coefficient theorem. The b’s come from the obvious map H i(Hom•A(B•, C)) →
HomA(H i(B•), C) for any ring A, any A-module C and any complex B• of A-modules.

The line “c” is obtained from the universal coefficient theorem. We claim that the
following diagram commutes:

H i+1(Hom•R(C•(F•), R) Ext1
R(Hi(C•(F•)), R)

H i(Hom•R(C•(F•), K/R) HomR(Hi(C•(F•)), K/R)

c

β

b

β

Note that ρ induces the identity in cohomology, so we are ignoring its role above. The
fact that this diagram commutes follows from following the proof of Lemma 2.3.3.

This, together with the definitions, shows that the maps “inside” the diagram (17)
induce in cohomology the maps “outside”, which correspond to diagram (16). Now, the
commutativity of diagram (16) follows from the commutativity of the “inside” diagram
(17).

After having proved that the diagram (16) commutes, the desired statement is equiv-
alent to proving that the following diagram commutes:

Ext1
R(Hi(k), R) Ext1

R(Hi(L), R)

Homk(Hi(k), k) Homk(TorsRHi(L), k).

Ext1
R(Hi(πL),R)

Res∼ Res∼
Homk(Hi(π),k)

But now using the naturality of the “Res” isomorphism, this is equivalent to Hi(π) =

Hi(πL), which is the content of Proposition 6.1.1. �

6.2. Proof of Theorem 6.0.1. We use all the notations of Section 6.1: we have the map
πL from Proposition 6.1.1, and its dual π∨L, where we are still writing ·∨ = RHomR(·, R).
We will identify k∨ ∼= k[−1] as in Remark 6.1.2. For a (sheaf of) R-modules M , we may
abbreviate M

sm
:= M ⊗R Rm.
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Remark 6.2.1. Since R is faithfully flat over Q, it suffices to prove the claim when k = R.
For the rest of this section, we will only deal with real coefficients.�

Remark 6.2.2. LetN ∈ N be a natural number such that the action of tN on TorsRH
i(U ;L)

is unipotent, and consider the N -fold cover UN of U as in Lemma 2.6.3 and Remark 2.6.4.
It suffices to show that the map in cohomologyH i(πN) : H i(UN ;R)→ TorsRH

i+1(U ;L)

is a MHS morphism, from which the result follows, since UN → U is an algebraic map,
and therefore it induces a MHS morphism in cohomology. Throughout the whole proof
we will denote U := UN , f := fN , π = πN and assume that the t-action on TorsRHi(U ;L) is
unipotent for all i.�

Proof of Theorem 6.0.1. In Corollary 5.4.12, the MHS on TorsRHi(U
f ;R) is defined as the

dual of the MHS defined on TorsRH
i+1(U ;L), via a series of isomorphisms:

(TorsRH
i+1(U ;L))∨

Res∼= Ext1
R(H i+1(U ;L), R)

UCTR∼= TorsRHi(U ;L) ∼= TorsRHi(U
f ;R).

We consider the projection φm = (φU)m : L → L
sm

, which arises from R → Rm after
tensoring with L. We are interested in φm ◦ π∨L : R∨U → L

sm
, where πL is defined as in

Proposition 6.1.1. As in Remark 6.1.2, we identify R∨U with RU [−1]. By Proposition 6.1.3,
it is enough to prove that H i(π∨L) : H i(U ;R)→ TorsRH

i+1(U ;L) is a MHS morphism.
We will prove the theorem in a series of lemmas. We will state them all, then we

will prove the theorem using them, and after that we will include the proofs of all the
lemmas in order.

Lemma 6.2.3. Let X be a good compactification of U , such that D := X\U is a normal crossing
divisor, as in Section 2.8 and [50, Definition 4.1]. Let j : U ↪→ X be the inclusion.

There is a morphism of mixed Hodge complexes AHdg : Hdg•(X logD) →
Hdg•(X logD)

(
1
i
df
f
,m
)

[1] given, in the real part, by j∗AR, where:

AR : E•U −→ E•+1
U ⊗Rm

α 7−→
(
=df

f
∧ α
)
⊗ 1,

in the complex part, by

AC : Ω•X(logD) −→ Ω•+1
X (logD)⊗Rm

ω 7−→
(

1
i
df
f
∧ ω
)
⊗ 1.



80 ELDUQUE, GESKE, HERRADÓN CUETO, MAXIM AND WANG

Being a morphism of mixed Hodge complexes, it induces a MHS morphism on the cohomology.

H i(A) : H i(U ;R)→ H i+1

(
U ;
L
sm

)
.

Here A is the composition:

RU → E•U
AR−→ E•U

(
=df
f
,m

)
[1] ∼= E•U(m)log[1]

η−1
m−→ L

sm
[1],

where ηm is as in Remark 5.2.7. Note that A is in principle just a morphism in the derived
category of sheaves of R-vector spaces.

Lemma 6.2.4. Let φm,C∗ , π∨L,C∗ , AC∗ ,LC∗ ,LC∗ be defined analogously to φm, π∨L, A,L,L in the
particular case where U = C∗ and f = Id. There is a constant c ∈ R \ {0} such that

(φm,C∗ ◦ π∨L,C∗)[1] = c · AC∗ : RC∗ −→
LC∗

sm
[1].

These are equal as maps in the derived category of sheaves of R-vector spaces. In particular, AC∗

comes from a map in the derived category of sheaves of R-modules, after restriction of scalars.

Lemma 6.2.5. Here AU = A, LU = L, etc. We have two commutative diagrams, whose
horizontal arrows are isomorphisms:

f−1RC∗ RU f−1RC∗ RU

f−1LC∗
sm

[1] LU
sm

[1]; f−1LC∗
sm

[1] LU
sm

[1].

f−1AC∗ AU f−1(φm,C∗◦π∨L,C∗ )[1] (φm,U◦π∨L,U )[1]

The bottom arrow comes from the (dual of) the base change isomorphism f−1LC∗ = f−1 exp! RC
∼=

π!f
−1
∞ RC

∼= π!RUf = LU . The isomorphism f−1RC∗ → RU sends 1 to 1.
In particular, there is a constant c ∈ R \ {0} for which

cAU = φm,U ◦ π∨L,U .

These are equal as maps in the derived category of sheaves of R-vector spaces. In particular, AU
comes from a map in the derived category of sheaves of R-modules, after restriction of scalars.

The proof of all the lemmas in order can be found below. Before, let us show how to
prove the theorem.

By Lemma 6.2.3, A induces a MHS morphism H i(U ;R) → H i+1(U ; L
sm

), and by
Lemma 6.2.5, φm ◦ π∨L is its multiple. Therefore, φm ◦ π∨L induces a MHS morphism in
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cohomology as well. Now, since the image of a torsion module must lie in the torsion,
there is a unique map as follows, which we will also denote H i(π∨L):

H i−1(U ;R) H i(U ;L) H i(U ; L
sm

)

TorsRH
i(U ;L)

Hi(π∨L)

∃!

Hi(φm)

ι

By Remark 5.4.13, ι is a MHS morphism. Since H i(π∨L) : H i−1(U ;R) → TorsRH
i(U ;L)

amounts to restricting the codomain of H i(φm ◦ π∨L) : H i−1(U ;R) → H i(U ; L
sm

) to a sub-
MHS, it is itself a MHS morphism.

Proof of Lemma 6.2.3. Let us recall the filtrations:

τkE•U
(
=df
f
,m

)
[1] =

⊕
j

τk+2j+2E•U ⊗ R〈sj〉;

WkΩ
•
X(logD)

(
1

i

df

f
,m

)
[1] =

⊕
j

Wk+2j+2Ω•X(logD)⊗ C〈sj〉;

F pΩ•X(logD)

(
1

i

df

f
,m

)
[1] =

⊕
j

F p+j+1Ω•X(logD)⊗ C〈sj〉.

One can easily check that both components of AHdg respect the filtrations above.
We must define a morphism of pseudomorphisms that makes the definition of AHdg

on the real and complex part agree. Let us start by recalling the definitions. The pseu-
domorphism in the definition of Hdg•(X logD) is given in (10). According to the con-
struction in Theorem 4.2.1, the pseudomorphism used in Theorem 5.4.3 is:

j∗E•U
(
=df
f
,m

)
↪→ j∗E•U

(
=df
f
,m

)
⊗R C

exp(Log(|f |)
−i ⊗s)

−−−−−−−−−→ j∗E•U
(

1

i

df

f
,m

)
⊗R C

∼=←− Ω•X(logD)

(
1

i

df

f
,m

)
.

This is followed by the identity map of Ω•X(logD)
(

1
i
df
f
,m
)

, where the domain has the
filtration induced by τ� and the target has the filtration induced by W�. If we extend
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the pseudomorphism in the obvious way it will not define a morphism of pseudomor-
phisms in the sense of [50, 3.16], namely the following diagram does not commute:

(18)

E•U ⊗R C E•U ⊗R C

E•U
(
=df

f
,m
)
⊗R C[1] E•U

(
1
i
df
f
,m
)
⊗R C[1].

= df
f
∧· 1

i
df
f
∧·

exp(Log(|f |)
−i ⊗s)

Instead, it commutes up to a homotopy h : E•U ⊗R C → E•U
(

1
i
df
f
,m
)
⊗R C, given by the

following equation.

h(α) =
exp

(
Log(|f |)
−i ⊗ s

)
α− α

s
=
∑
j≥0

sj
(

Log(|f |)
−i

)j+1

(j + 1)!
α.

A direct computation shows that indeed we have the desired homotopy (recall that the
shifted differential on the target is d[1] = −d):

(−dh+ hd)(α) =
1

i

df

f
∧ α− exp

(
Log(|f |)
−i

⊗ s
)
=df
f
∧ α.

Hence, the diagram (18) commutes in the (filtered) homotopy category, so in particu-
lar it commutes in the filtered derived category. Therefore, we have defined a morphism
of mixed Hodge complexes in the sense of [11, 8.1.5], but not necessarily in the stricter
sense of [50, 3.16]. Nonetheless, since the diagram commutes up to homotopy, the dia-
gram in hypercohomology will commute, which is enough to show that AR induces a
MHS morphism in hypercohomology following [50, 3.18].

Note that the sheaves involved in the R part are soft. We now take global sections in
the R part, to get an induced map in cohomology for all i:

H i(A) : H i(U ;R)→ H i+1Γ

(
U ; E•U

(
=df
f
,m

))
∼= H i+1Γ (U ; E•U(m)log) .

Since it comes from a map of mixed Hodge complexes, it is a morphism of MHS.

Equivalently, we can define the composition A : RU → E•U → E•U(m)log
η−1
m−→ L

sm
, which

gives us a morphism of MHS:

H i(U ;R)→ H iΓ(U ; E•U)→ H i+1Γ(U ; E•U(m)log)
η−1
m−→ H i+1

(
U ;
L
sm

)
.

Indeed, the first and third arrows are MHS morphisms since they are used to define
the MHS on H i(U ;R) and H i+1(U ;L/sm), respectively. Note that η−1

m is the inverse
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of a quasi-isomorphism, so it exists in the derived category and it induces maps in
cohomology. �

Proof of Lemma 6.2.4. First, recall that RHom•DbR(C∗)(RC∗ , ·) (morphisms in the derived cat-
egory of sheaves of R-vector spaces on C∗) and H•(C∗, ·) are both the derived functor of
global sections, so HomDbR(C∗)

(
RC∗ ,

LC∗
sm

[1]
)
∼= H1

(
C∗; LC∗

sm

)
. Let us show that this space

is one-dimensional.
Using [16, Example 2.5.7], H1(C∗;LC∗/s

m) is isomorphic to the cokernel of T − Id

acting on the stalk of LC∗/s
m, where T is the monodromy action of the generator of

π1(C∗). This generator acts as t−1 = (1+s)−1 ∈ Rm. We can see directly that t−1−1 equals
s up to multiplication by a unit in Rm (namely −t), so its cokernel is one-dimensional.

This shows that (φm,C∗ ◦ π∨L,C∗)[1] and AC∗ are scalar multiples of each other as long as
they are both nonzero (as classes of maps in the derived category).

Let us show that φm,C∗ ◦ π∨L,C∗ 6= 0. First, recall that π∨L,C∗ : RC∗ [−1] → LC∗ is the roof
diagram:

0 LC∗ LC∗

RC∗ LC∗ 0.

s

=

Seeing π∨L,C∗ ∈ HomDbR(C∗)
(
RC∗ ,LC∗ [1]

) ∼= Ext1
R(RC∗ ,LC∗) as the class of an extension, the

roof diagram shows that it corresponds to the short exact sequence 0→ LC∗
s−→ LC∗ →

RC∗ → 0. Note that for our purposes it doesn’t matter which surjection LC∗ → RC∗ we
use. Using the Yoneda product (see [44, III.5, III.6]), φm,C∗ ◦ π∨L,C∗ is the extension class
in Ext1

R(R, L
sm

) given by the pushout of this short exact sequence by φm,C∗ , i.e. the class
of the following short exact sequence:

0 L L R 0

0 L
sm

L
sm+1 R 0.

s

φm,C∗ φm+1,C∗

s
p

Since L
sm+1 is indecomposable, the sequence is not split. Therefore φm,C∗ ◦ π∨L,C∗ 6= 0.

To see that 0 6= AC∗ , we can see that the image of 1 ∈ H0(C∗;R) is =dz
z
6= 0 ∈

H1Γ
(
C∗, E•C∗

(
=dz

z
,m
)) ∼= H1(C∗; L

sm
), so AC∗ 6= 0. �
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Proof of Lemma 6.2.5. We want to show that the following diagram is commutative:

(19)

f−1RC∗ f−1LC∗ [1] f−1LC∗
sm

[1]

RU LU [1] LU
sm

[1].

f−1π∨L,C∗ [1] f−1φm,C∗ [1]

π∨L,U [1] φm,U [1]

For the right hand square, we see that it commutes because it amounts to tensoring the
isomorphism f−1LC∗ → LU with the map R→ Rm.

Let us apply ·∨ = RHomR(·, R) to the left hand square. Note that, for locally constant
sheaves of R-modules, pullback is restriction of scalars on the stalks from R[π1(C∗)] to
R[π1(U)], so there is a natural isomorphism of π1(U, x)-modules:

(f−1HomR(F ,G))x ∼= (HomR(Ff(x),Gf(x)))R[π1(U)]
∼= HomR((Ff(x))R[π1(U)], (Gf(x))R[π1(U)]) ∼=

∼= HomR((f−1F)x, (f
−1G)x) ∼= HomR(f−1F , f−1G)x.

Applying this to resolutions by locally constant sheaves of free R-modules, we have that
there is also a natural isomorphism f−1RHom•R(F•,G•) ∼= RHom•R(f−1F•, f−1G•) for
bounded complexes of locally constant sheaves. Therefore, showing that the left hand
square above commutes is equivalent to showing that the following square commutes,
obtained by applying ·∨[1]:

f−1RC∗ f−1LC∗ = f−1 exp! RC

RU LU = π!RUf .

f−1πL,C∗

πL,U

π!f
−1
∞ ∼=f−1 exp!

We can see that on a stalk (LU)x for some x ∈ U , the generators δ(x,z) (as in Remark 2.2.8)
are all mapped to f−11 ∈ f−1RC∗ via both paths. Therefore, the square commutes and
so does its dual.

We consider now the following diagram, where ηm is the map in Remark 5.2.7:

f−1RC∗ f−1E•C∗(m)log[1] f−1(LC∗/s
m)[1]

RU E•U(m)log[1] LU/sm[1]

f−1(ηm,C∗◦AC∗ )

f∗

ηm,C∗

π!f
−1
∞ ∼=f−1 exp!

ηm,U◦AU
ηm,U

The arrow f ∗ is induced by sending α ⊗ sj ∈ E iC∗(m)log defined on an open set V to
f ∗α⊗ sj ∈ E iU(m)log defined on f−1(V ). Just from the definitions we can see that the left
hand square commutes, taking into account that f ∗z = f .
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Let us see that the right hand square commutes. Note that applying section 2.2 to the
special case f = IdC∗ , the stalk of LC∗ at some y ∈ C∗ is generated by sections of the form
δỹ for ỹ ∈ C such that eỹ = y. Let us look at the stalk at x ∈ U , and let z ∈ C be such that
(x, z) ∈ U f . Then δz ∈ (LC∗/s

m)f(x). Since f∞ maps (x, z) ∈ U f to z ∈ C, the image of
f−1δz in the stalk of LU/sm is δ(x,z). Now, let l̃og be a local branch of the logarithm such
that l̃og(f(x)) = z. Then, (IdU , l̃og◦f) : U → U f ⊂ U×C is a local section of π mapping x
to (x, z) (it is only defined on a neighborhood V of x small enough that f(V ) is contained
in the domain of l̃og). Then, from Remark 5.2.7, ηm,C∗(δz) = exp

(
−=l̃og

2π
⊗ log(1 + s)

)
, so

taking the image by f ∗ we obtain

f ∗ ◦ ηm,C∗(δz) = exp

(
−=l̃og ◦ f

2π
⊗ log(1 + s)

)
= ηm,U(δ(x,z)),

as desired.
We have shown that both diagrams in the lemma commute. Now, we claim that there

is some c ∈ R \ {0} for which the vertical arrows in this commutative diagram coincide:

f−1RC∗ [−1] RU [−1]

f−1LC∗
sm

LU
sm
.

c·f−1AC∗f−1(φm,C∗◦π∨L,C∗ )

∼

c·Aφm◦π∨L

∼

By Lemma 6.2.4, there exists some c ∈ R \ {0} for which the left hand vertical ar-
rows coincide. By the discussion above, this implies that the right hand vertical arrows
coincide as well. �

This concludes the proof of Theorem 6.0.1. �

Remark 6.2.6. Suppose that the action of t on all cohomology groups TorsRH
i+1(U ;L)

is unipotent and that m is large enough that (t − 1)m annihilates TorsRH
i+1(U ;L). The

map A : R→ L/sm[1] used in the proof of Theorem 6.0.1 induces a map in cohomology
H i(A) : H i(U ;R) → H i+1(U ;L/sm) which factors (up to some c ∈ R \ {0}) into the
following R-linear morphisms of MHS:

H i(U ;R) H i+1
(
U ; L

sm

)
.

TorsRH
i+1(U ;L)

cHi(A)

Hi(π) Hi+1(φm)



86 ELDUQUE, GESKE, HERRADÓN CUETO, MAXIM AND WANG

Indeed: by Lemma 6.2.5, there is a c for which cA = φm ◦π∨L. By Proposition 6.1.3, π∨L in-
duces the map H i(π) in cohomology (which is a MHS morphism by Theorem 6.0.1); and
by Remark 5.4.13, H i+1(φm) is the injection used to define the MHS on TorsRH

i+1(U ;L),
so in particular it is also a morphism of MHS.

From the relation between A and AR described in Lemma 6.2.3, we have that H i(AR) =

H i(A), up to identifying the cohomology of the domain and target local systems with
that of the global sections of the corresponding sheaf of cdgas. Recall that these identi-
fications are morphisms of MHS by definition.�

7. Consequences of Theorem 6.0.1

We start by identifying some properties of the maps induced by covering spaces in
homology and cohomology.

Let N ∈ Z>0, and let p : UN → U be the N -fold cover described in Section 2.6. The
covering space π : U f → U factors through p : UN → U by πN : U f → UN . Recall that the
deck transformation of πN is tN .

Proposition 7.0.1. The kernel of the map Hj(πN) : TorsRHj(U ;L)→ Hj(UN ; k) is (tN − 1) ·
TorsRHj(U ;L). The image of Hj(πN) : Hj(UN ; k)→ TorsRH

j+1(U ;L) is the (tN −1)-torsion
of the target, namely

Tors(tN−1)H
j+1(U ;L) := {a ∈ TorsRH

j+1(U ;L) | (tN − 1)a = 0}.

Proof. We use a similar argument to [48, Assertion 5]. We consider the short exact
sequence of chain complexes of R-modules

0→ C•(U
f ; k)

·(tN−1)−−−−→ C•(U
f ; k)

(πN )∗−−−→ C•(UN ; k)→ 0,

where t acts on both U f and UN by deck transformations. It gives us a long exact
sequence in homology (the Milnor sequence), from which we get the exact sequence

Hj(U ;L)
·(tN−1)−−−−→ Hj(U ;L)

Hj(πN )−−−−→ Hj(UN ; k).

This in turn tells us that the following sequence is exact

TorsRHj(U ;L)
·(tN−1)−−−−→ TorsRHj(U ;L)

Hj(πN )−−−−→ Hj(UN ; k),

which implies the assertion about the kernel of Hj(πN). We take Homk(·, k) of the above
exact sequence and get the exact sequence

Hj(UN ; k)
Hj(πN )−−−−→ Homk(TorsRHj(U ;L), k)

·(tN−1)−−−−→ Homk(TorsRHj(U ;L), k).
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from which we get the claim about the image of Hj(πN). �

The following corollary is a direct consequence of Proposition 7.0.1. It says that, if the
monodromy action is semisimple, the MHS on TorsRH

j+1(U ;L) (resp. TorsRHj(U ;L)) is
determined by Hj(πN) and Deligne’s MHS on Hj(UN ; k) (resp. by Hj(πN) and Deligne’s
MHS on Hj(UN ; k), which is the dual MHS of Hj(UN ; k)).

Corollary 7.0.2. Suppose that the t-action on TorsRH
j+1(U ;L) (equiv. on TorsRHj(U ;L)) is

semisimple for some j, and let N be such that the action of tN on TorsRHj(U ;L) is unipotent.
ThenHj(πN) : Hj(UN ; k)→ TorsRH

j+1(U ;L) is a surjective morphism of MHS. Equivalently,
Hj(πN) : TorsRHj(U ;L)→ Hj(UN ; k) is an injective morphism of MHS.

Remark 7.0.3. Let A be a torsion R-module which is annihilated by tN − 1. Then, there
is a canonical isomorphism

A1 ⊕ A6=1
∼= A

where A1 = ker(A
·(t−1)−−−→ A) and A6=1 = ker(A

·(tN−1+...+t+1)−−−−−−−−−→ A).�

Corollary 7.0.4 (of Corollary 7.0.2). Suppose that the t-action on TorsRH
j+1(U ;L) (equiv.

on TorsRHj(U ;L)) is semisimple for some j. Then, multiplication by t induces a MHS mor-
phism from TorsRH

j+1(U ;L) (equiv. on TorsRHj(U ;L)) to itself. In particular, we have MHS
isomorphisms

TorsRH
j+1(U ;L) ∼= TorsRH

j+1(U ;L)1 ⊕ TorsRH
j+1(U ;L) 6=1

and
TorsRHj(U ;L) ∼= TorsRHj(U ;L)1 ⊕ TorsRHj(U ;L)6=1

Proof. We write the proof in the cohomology case. Let N be such that the action of tN on
TorsRHj(U ;L) is unipotent. Since t acts on UN by deck transformations, and UN → U

is an algebraic covering map, we get that the deck transformation corresponding to t is
actually an algebraic map, so multiplication by t on Hj(UN) is a morphism of MHS. The
result follows from the commutativity of the following diagram and the fact that all the
arrows except for the bottom one are known to be morphism of MHS.

Hj(UN ; k) Hj(UN ; k)

TorsRH
j+1(U ;L) TorsRH

j+1(U ;L).

t

Hj(πN ) Hj(πN )

t

The last statement about the direct sum decomposition follows from Remark 7.0.3. �
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The converse to Corollary 7.0.4 also holds.

Proposition 7.0.5. Suppose that the t-action on TorsRH
j+1(U ;L) (equiv. on TorsRHj(U ;L))

is a MHS morphism for some j. Then, the action of t is semisimple.

Proof. Let H = TorsRH
j+1(U ;L). Let N be such that tN is unipotent (and a morphism of

MHS on H). By Corollary 5.4.6, log(tN) is a morphism H → H(−1) (viewed as a power
series around tN = 1). Therefore, we have a MHS H with a nilpotent morphism of MHS
θ := log(tN) : H → H(−1) such that exp(θ) : H → H is also a MHS morphism. We want
to prove that θ = 0. For this it is enough to show that ker θ = ker θ2, so we can assume
that θ2(H) = 0. Therefore, exp(θ) = 1 + θ. Since 1 + θ is a MHS morphism, then θ is as
well.

Therefore, we have to show that if θ : H → H and θ : H → H(−1) are MHS mor-
phisms, then θ = 0. This is a direct consequence of [50, Corollary 3.6], where it is shown
that a MHS morphism preserves the weight filtration strictly. Consider the image MHS
θ(H) ⊆ H . Then,

Wk(θ(H)) := WkH ∩ θ(H) = θ(WkH) = θ(Wk+2H) ∀k ⇒ Wk(θ(H)) = Wk+1(θ(H)) ∀k.

Since the filtration Wk is finite, for k � 0, 0 = W−k(θ(H)) = Wk(θ(H)) = θ(H). �

Corollary 7.0.4 and Proposition 7.0.5 together give us Theorem 1.0.5 in the introduc-
tion, which is stated in homological notation.

7.1. Relationship with the cup and cap products. Consider the real component
j∗E•U

(
= df

f
,m
)

of the R-mixed Hodge complex of sheaves Hdg•(X logD)
(

1
i
df
f
,m
)

used
to endow the torsion part of the Alexander modules with a MHS. The differential of
E•U
(
= df

f
,m
)

involves a wedge with = df
f

. Wedging real differential forms corresponds
to cup products in cohomology, which loosely suggests a relation between Alexander
modules and the cup (and cap) products arising from the thickened complexes. In this
section, we explore this relation and make it explicit.

Proposition 7.1.1. Let N be such that the action of tN on TorsRH
j+1(U ;L) is unipotent.

Let gen ∈ H1(C∗;Z) ∼= Z be a generator. We consider gen as an element of H1(C∗; k), and
f ∗N(gen) ∈ H1(UN ; k). There exists an arrow (the dashed one) that makes the following diagram
a commutative diagram of morphisms of MHS (and of R-modules, if t acts on UN by deck
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transformations). Up to multiplication by a nonzero constant, it is induced by πL : L → k.

Hj(UN ; k) Hj+1(UN ; k)(1).

TorsRH
j+1(U ;L)

f∗N (gen)^

Hj(πN )

Here (1) denotes the Tate twist, and f ∗N(gen) ^ denotes the cup product by f ∗N(gen). Moreover,
if the t-action on TorsRH

j+1(U ;L) is semisimple, the dashed arrow is injective.

Proof. To make notation simpler, we may replace UN by U , fN by f , πN by π and as-
sume that the action of t on TorsRH

∗(U ;L) is unipotent. Let m ∈ N be the minimum
natural number such that (t− 1)m annhilates TorsRH

i+1(U ;L). Note that the t-action on
TorsRH

i+1(U ;L) is semisimple if and only if m = 1.
We continue the rest of the proof in the case when k = R, from which the case k = Q

will follow. Let AHdg : Hdg•(X logD) → Hdg•(X logD)
(

1
i
df
f
,m
)

[1] be as in Lemma

6.2.3, which induces a map of MHS Hj(AR) : Hj(U)→ Hj+1Γ(U ; E•U(=df/f,m)).
Note that =df/f = f ∗(=dz/z), so there exists a non-zero constant b ∈ R∗ such that

f ∗(gen) = b=df/f . Let φ∗m−1,1 be the map induced in cohomology, corresponding to the
map E•U(=df/f,m) → E•U(=df/f, 1) ∼= E•U coming from the projection Rm → R1. Note
that φ∗0,1 is the identity map. By Lemma 4.2.3, φ∗m−1,1 is a MHS morphism. Let c ∈ R∗

be as in Remark 6.2.6. By Remark 6.2.6, we get the following commutative diagram of
morphisms of MHS, which finishes the proof.

Hj(U) ∼= HjΓ(U ; E•U) HjΓ(U ; E•U(=df/f, 1)[1]) ∼= Hj+1(U)(1)

TorsRH
j+1(U ;L) HjΓ(U ; E•U(=df/f,m)[1]) ∼= Hj+1(U ;L/sm).

f∗(gen)^=b·(=df/f^)

Hj(AR)
Hj(π)

1
c
·Hj+1(φm)

b·φ∗m−1,1[1]

�

Remark 7.1.2. We have not used it in the proof above, but the cup product Hm(Y ; k)⊗
H1(Y ; k)→ Hm+1(Y ; k) is a morphism of MHS for every algebraic variety Y ([50, Corol-
lary 5.45]). The Tate twist in the target of the horizontal map in the commutative
diagram above agrees with the fact that gen has weight 2 in H1(C∗;R) (the MHS on
H1(C∗;R) is pure of type (1, 1)).�
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The following result follows from Corollary 7.0.2 and Proposition 7.1.1. The result in
homology, which already appeared in the introduction as Theorem 1.0.6A, follows from
taking Homk(·, k) in the commutative diagram of Proposition 7.1.1.

Corollary 7.1.3. Let N be such that the action of tN acts unipotently on TorsRH
j+1(U ;L).

Let gen ∈ H1(C∗;Z) ∼= Z be a generator. We consider gen as an element of H1(C∗; k),
and f ∗N(gen) ∈ H1(UN ; k). Suppose that the t-action on TorsRHj(U ;L) (equivalently, on
TorsRH

j+1(U,L)) is semisimple. Then,

• TorsRH
j+1(U,L) is isomorphic, both as MHS and as R-modules, to the image of the cup

product map

Hj(UN ; k)
f∗N (gen)^
−−−−−−→ Hj+1(UN ; k)(1).

• TorsRHj(U ;L) is isomorphic, both as MHS and as R-modules, to the image of the cap
product map

Hj+1(UN ; k)(−1)
_f∗N (gen)
−−−−−−→ Hj(UN ; k)

Here H∗(UN ; k) are endowed with Deligne’s MHS, and H∗(UN ; k) are endowed with the dual of
Deligne’s MHS in cohomology.

7.2. Relationship with Deligne’s MHS on the generic fiber. Let F be a generic fiber
of f : U → C∗ (as in Definition 2.5.1), and let N be chosen such that the action of tN on
TorsRH

j+1(U ;L) is unipotent. Let i : F ↪→ U be the inclusion. As in Section 2.5, F lifts
to UN and U f via maps iN and i∞, making the following diagram commutative, where
the vertical arrows are covering space maps.

U f

UN

F U.

πN

π

p

i

iN

i∞

Note that, in homology, the composition iN = πN ◦ i∞ factors through TorsRHj(U
f ; k) ∼=

TorsRHj(U ;L). Hence, we get

(20) Hj(F ; k) TorsRHj(U ;L) Hj(UN ; k),
Hj(i∞)

Hj(iN )

Hj(πN )
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and taking Homk(·, k) and the appropriate identifications, we get

(21) Hj(UN ; k) TorsRH
j+1(U ;L) Hj(F ; k).

Hj(πN )

Hj(iN )

Hj(i∞)

Here Hj(i∞) and Hj(i∞) are surjective and injective respectively by Proposition 2.5.3
and Remark 2.5.4.

Note that Hj(iN) and Hj(iN) are MHS morphisms, since iN is an algebraic map. Re-
call that Hj(πN) and Hj(πN) are MHS morphisms by Theorem 6.0.1. If the monodromy
is semisimple, Corollary 7.0.2 tells us that Hj(πN) and Hj(πN) are injective and surjec-
tive respectively. The information in this paragraph and the commutativity of the two
diagrams above tell us that Hj(i∞) and Hj(i∞) are also MHS morphisms.

Corollary 7.2.1. Let N be such that the action of tN on TorsRH
j+1(U ;L) is unipotent. Suppose

that the t-action on TorsRHj(U ;L) (equivalently, on TorsRH
j+1(U,L)) is semisimple. Then,

we have the following commutative diagrams, where all the arrows are morphisms of MHS.

Hj(F ; k) TorsRHj(U ;L) Hj(UN ; k),
Hj(i∞)

Hj(iN )

Hj(πN )

and

Hj(UN ; k) TorsRH
j+1(U ;L) Hj(F ; k).

Hj(πN )

Hj(iN )

Hj(i∞)

Therefore, TorsRHj(U ;L) (resp. TorsRH
j+1(U ;L)) is isomorphic as MHS to the image of the

MHS morphism Hj(iN) (resp. Hj(iN)).

Note that Theorem 1.0.6B is an immediate consequence of the statement in homology
of Corollary 7.2.1.

Remark 7.2.2. In general, the MHS on F depends on the specific choice of the fiber,
even if F is generic. Corollary 7.2.1 above tells us that the map induced by a lift of
the inclusion of the generic fiber F of f into the infinite cyclic cover U f induces a MHS
morphism in both homology and cohomology for any choice of generic fiber F .�

Corollary 7.2.3. The t-action on TorsRHj(U ;L) (equivalently, on TorsRH
j+1(U ;L)) is semisim-

ple if and only if for any generic fiber F ⊂ U f , the induced map in homology
Hj(i∞) : Hj(F ; k) → TorsRHj(U

f ; k) is a MHS morphism (equivalently, the dual map
Hj(i∞) : TorsRH

j+1(U ;L)→ Hj(F ; k) is a MHS morphism).
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Proof. The forward direction is Corollary 7.2.1. For the converse, consider an inclusion
or a fiber i∞ : F → U f and the deck transformation t : U f → U f . Consider the induced
maps in homology:

Hi(F ; k) TorsRHi(U
f ; k) ⊆ Hi(U

f ; k)

Hi(F ; k) TorsRHi(U
f ; k) ⊆ Hi(U

f ; k).

i∞

t

t◦i∞

The horizontal arrows are surjections by Proposition 2.5.3, and by hypothesis they are
MHS morphisms. Therefore, the map “t” must be a MHS morphism as well. By Propo-
sition 7.0.5, this implies that t is semisimple. �

Let f ∈ C[x1, . . . , xn] be a weighted homogeneous polynomial, and let U =

Cn \ {f = 0}. In this case, we have a global Milnor fibration f : U → C∗. Moreover, as-
sume that f : U → C∗ induces an epimorphism on fundamental groups, which happens
if and only if the greatest common divisor of the exponents of the distinct irreducible
factors of f is 1. Let F be a fiber of f : U → C∗, and let i∞ : F ↪→ U f be a lift of the inclu-
sion i : F ↪→ U . Note that, since f : U → C∗ is a fibration, i∞ is a homotopy equivalence,
so it induces isomorphisms Hj(F ; k) → Hj(U

f ; k) for all j, which are compatible with
the t-action (see Lemma 2.5.2). Moreover, the t-action on F comes from an algebraic
map F → F of finite order, so the t-action on Hj(F ) and Hj(F ) is semisimple. Applying
Corollary 7.2.1, we have arrived at the following result.

Corollary 7.2.4 (The Alexander modules recover the MHS on the global Milnor fiber).
Let f ∈ C[x1, . . . , xn] be a weighted homogeneous polynomial, and let U = Cn \ {f = 0}.
Assume that f : U → C∗ induces an epimorphism in fundamental groups. Let F be a fiber of
f : U → C∗, and let i∞ : F ↪→ U f be a lift of the inclusion i : F ↪→ U . The map

TorsRH
j+1(U ;L)→ Hj(F ; k)

induced by i∞ is a MHS isomorphism, where Hj(F ; k) is endowed with Deligne’s MHS.

7.3. Dimca-Libgober and Liu’s MHS. In this section, we recall other MHS on Alexan-
der modules in the literature, and we show that the MHS that we consider in this paper
generalizes them.

Let F be a generic fiber of f : U → C∗, as in Definition 2.5.1. Let π : U f → U be
the covering space induced by f∗ : π1(U) � Z, Let i : F ↪→ U be the inclusion, and let
i∞ : F ↪→ U f be a lift of i, as in Section 2.5.
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We make the following assumption in this section.

Assumption 7.3.1. Fix j ≥ 0, and suppose that π∗ : Hj(U ;Q)→ Hj(U f ;Q) is an epimor-
phism, and (i∞)∗ : Hj(U f ;Q)→ Hj(F ;Q) is a monomorphism.

Endow Hj(U ;Q) and Hj(F ;Q) with Deligne’s MHS. Under Assumption 7.3.1, we
have the following commutative diagram:

Hj(U ;Q) Hj(U f ;Q)

Hj(F ;Q)

i∗

π∗

(i∞)∗

Remark 7.3.2. Since i∗ is a map of MHS, we can endow Hj(U f ;Q) with a unique MHS
such that both π∗ and (i∞)∗ are maps of MHS. Indeed, the image of i∗ is a sub-MHS of
Hj(F ;Q) that is identified through (i∞)∗ with Hj(U f ;Q).�

Setting 7.3.3. In their paper [19], Dimca and Libgober consider the following setting:
Let W ′ = W ′

0 ∪ . . . ∪ W ′
m be a hypersurface arrangement in PN for N > 1, where W ′

j

is a hypersurface of degree dj defined by the equation gj = 0, where gj is a reduced
homogeneous polynomial. Let Z ⊂ PN be a smooth complete intersection of dimension
n > 1 which is not contained in W ′, and let Wj = W ′

j ∩ Z for j = 0, ...,m be the
corresponding hypersurface in Z. Let W = W0 ∪ . . . ∪ Wm denote the corresponding
hypersurface arrangement in Z. Moreover, assume that the following three conditions
hold:

• All the hypersurfaces Wj are distinct, reduced and irreducible; moreover W0 is
smooth.
• The hypersurface W0 is transverse in the stratified sense to T = W1 ∪ . . . ∪Wm,

i.e., if S is a Whitney regular stratification of T , then W0 is transverse to any
stratum S ∈ S.
• d0 divides the sum

∑m
j=1 dj , say dd0 =

∑m
j=1 dj .

The complement M = Z\W0 is a smooth affine variety. Let Y be the hypersurface
Y = M ∩ T in M . The authors consider the variety U = M\Y , with the map

f : U −→ C∗

x 7−→ g1(x)·...·gm(x)
g0(x)d

.

By [19, Theorem 1.2], the generic fiber of this map is connected.
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Remark 7.3.4. Note that, in this setting, U is an affine variety of dimension n, so it has
the homotopy type of a finite n-dimensional CW-complex, which implies that Hj(U f ,Q)

is a free R-module for j = n, and 0 if j > n. Moreover, by [19, Corollary 1.6], Hj(U f ,Q)

is annihilated by td − 1 (and therefore is R-torsion and semisimple) for j < n.�

Let p : Ud → U be the d-fold cover of U obtained as the pullback by f of the map
g : C∗ → C∗ given by z 7→ zd, as exemplified by the following commutative diagram:

Ud C∗

U C∗.

p

fd

g

f

Note that F is the generic fiber of fd as well. Let πd : U f → Ud be the covering space
such that π = p ◦ πd, and let id be a lift of i to Ud. Note that i∞ can be considered to be a
lift of id.

Remark 7.3.5 (Dimca and Libgober’s MHS). By [19, Theorem 1.5], (πd)
∗ : Hj(Ud;Q) →

Hj(U f ;Q) is an epimorphism for all j < n. By [19, Corollary 1.3], (i∞)∗ : Hj(U f ;Q) →
Hj(F ;Q) is an isomorphism if j < n− 1 and a monomorphism if j = n− 1. This means
that if we switch U for Ud and π for πd, we are under the conditions of Assumption 7.3.1.
Hence, there is a unique MHS on Hj(U f ;Q) that makes π∗d and (i∞)∗ into morphisms
of MHS for j < n, and this MHS is the one that Dimca and Libgober construct in [19]
(recall Remark 7.3.2).�

In [41], Liu considers a particular case of the situation described above, which was
initially studied in [45]. In his setting, N = n, W ′

0 is the hyperplane at infinity and
Z = Pn. Then, U is the affine complement of a hypersurface transversal at infinity,
and f induces the linking number homomorphism in fundamental groups. That is, the
image by f∗ of a positively oriented meridian around each of the irreducible components
Wj of X gets mapped to 1 ∈ Z, for j = 1, . . . ,m. He recovers Dimca and Libgober’s
MHS with a completely different approach, using nearby cycles.

Corollary 7.3.6 (of Corollary 7.2.1). Suppose U and f are as in Setting 7.3.3. Under the
isomorphism given by Corollary 2.4.5, the MHS on TorsRH

j+1(U ;L) constructed in this paper
coincides with the MHS on Hj(U f ;Q) constructed in [19] , for 0 ≤ j ≤ n− 1.

7.4. Bounding the weights. In this section we prove the following result, which was
already stated in the introduction as Theorem 1.0.4 (using homological instead of coho-
mological notation).
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Theorem 7.4.1. If k /∈ [i, 2i] ∩ [i, 2n− 2], then

GrWk TorsRH
i+1(U ;L) = 0,

where n is the dimension of U .

Before the proof, we will discuss some consequences. In the context of Alexander
modules realized by an algebraic map (as considered in this paper), the following corol-
lary improves on [4, Proposition 1.10], as the bound below is the ceiling of half the
bound in loc. cit.

Corollary 7.4.2. Every Jordan block of the action of t on TorsRHi(U
f ; k) (respectively, on

TorsRH
i+1(U ;L)) has size at most min{d(i+ 1)/2e, n− b(i+ 1)/2c}. (Here, Jordan blocks are

considered over the algebraic closure of the field k.)

Proof. Let K = min{d(i+1)/2e, n−b(i+1)/2c}. We will start by showing the corollary in
the case where the action of t is unipotent. By Corollary 5.4.6, log(t) =

∑∞
j=0(−1)j−1 (t−1)j

j

is a morphism of MHS into the (−1)st Tate twist, i.e.

log(t)Wk TorsRH
i+1(U ;L) ⊆ Wk−2 TorsRH

i+1(U ;L).

Theorem 7.4.1 implies:

log(t)K TorsRH
i+1(U ;L) = log(t)KWmin{2i,2n−2}TorsRH

i+1(U ;L) ⊆

⊆ Wmin{2i−2K,2n−2−2K}TorsRH
i+1(U ;L) ⊆ Wi−1 TorsRH

i+1(U ;L) = 0.

This shows that log(t)K annihilates the whole module TorsRH
i+1(U ;L). Since log(t)/(t−

1) is a unit in k[[t − 1]], this implies that (t − 1)K = 0 as well. Therefore, all its Jordan
blocks have size at most K, as desired.

The general case can be reduced to the unipotent case as described in Section 2.6
through the following isomorphism of R(N)-modules, where R(N) = k[t±N ]

TorsRH
i+1(U ;L) = TorsR(N) H

i+1(U ;L) ∼= TorsR(N) H
i+1(UN ;LN).

The action of tN is then unipotent on TorsR(N) H
i+1(UN ;LN), so it has Jordan blocks of

size at most K, i.e. (tN − 1)K = 0. Therefore, the minimal polynomial of t acting on
TorsRH

i+1(U ;L) divides (tN − 1)K , so the multiplicity of any root is at most K. �

Using the canonical isomorphisms of R-modules

TorsRH
i+1(U ;L) ∼= Homk(TorsRHi(U ;L), k)
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(obtained from the composition Res−1 ◦UCTR) and TorsRHi(U ;L) ∼= TorsRHi(U
f ; k),

we obtain the analogous statement to Corollary 7.4.2 for the t action by deck transfor-
mations on TorsRHi(U

f ; k). In particular, if i = 1, we obtain the following.

Corollary 7.4.3. If U is an algebraic variety and f : U → C∗ is an algebraic map inducing
epimorphisms on fundamental groups and inducing an infinite cyclic cover U f , then the t-action
on H1(U f ; k) is semisimple.

Remark 7.4.4. Let f : C2 → C be a polynomial function such that f−1(0) is reduced and
connected. Let U = C2 \ f−1(0), and we use the same letter f to denote the induced
map f : U → C∗. By [19, Corollary 1.7], the action of t on H1(U f ; k) is semisimple.
The corollary above generalizes this result, not only to algebraic varieties U that are
not affine connected curve complements, but also to connected curve complements in
which the corresponding f is given by a non-reduced polynomial, or even a rational
function.�

Remark 7.4.5. The bound in Theorem 7.4.1 is sharp in the sense that for any k ∈ [i, 2i]∩
[i, 2n − 2], GrWk TorsRH

i+1(U ;L) can be nonzero. If U = F × C∗, where F is a smooth
algebraic variety and f is the projection, then U f ∼= F×C, which is homotopy equivalent
to F . Therefore, it is straightforward to check that t − 1 annihilates the Alexander
module, and in this case the map F → U f induces a MHS isomorphism in cohomology
by Corollary 7.2.1.

For example, we can let F = En1 × (C∗)n2 , where E is an elliptic curve. In this case,
using the Künneth formula (which is a MHS morphism by [50, Theorem 5.44]), we will
have:

GrWk H
i(F ; k) 6= 0⇔

{
GrW2i−kH

2i−k(En1 ; k) 6= 0;

GrW2k−2iH
k−i((C∗)n2 ; k) 6= 0

}
⇔ k ∈ [i, 2i] ∩ [2i− 2n1, n2 + i].

Varying n1, n2 ∈ Z≥0 with n1 + n2 = dimF = n− 1, one can have nonzero graded pieces
for any weight k ∈ [i, 2i] ∩ [i, 2n− 2].�

Proof of Theorem 7.4.1. First, we claim that it suffices to prove the theorem assuming
that t acts unipotently on TorsRH

i+1(U ;L). For a general U , we let N be such that
tN acts unipotently on TorsRH

i+1(U ;L) and we proceed as in Lemma 2.6.3 to ob-
tain UN , fN ,LN . By Remark 5.4.13, there is a MHS isomorphism TorsRH

i+1(U ;L) ∼=
TorsRH

i+1(UN ;LN). Therefore, if the statement of Theorem 7.4.1 holds for (UN , fN),
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it will hold for (U, f). From now on, we will assume that U = UN , and that t acts
unipotently on TorsRH

i+1(U ;L).
Let s = t − 1 ∈ R, and let Rm = R

(sm)
. We work with local systems of R-modules on

U . For such a local system F , we will abbreviate F ⊗R Rm to F/sm. We make k into a
sheaf of R-modules by letting s act as 0. Recall the notation M from Remark 2.2.5.

Consider the following map of short exact sequences, with πL defined in Remark 6.1.2.
Later we will assume that m is large enough that sm annihilates TorsRH

i(U ;L) for all i.

(22)
0 L L k 0

0 L
sm

L
sm+1 k 0.

s

φm

πL

φm+1 =

ψm1 φm1

Here φj is induced by the projection R → Rj after tensoring with L. Since the vertical
arrows are surjections, the arrows in the bottom row are uniquely determined as the
arrows closing the diagram. By the discussion in Section 6.1, concretely from (15), the
top row can be completed to an exact triangle with connecting map −π∨L[1] : k → L[1].

Let us see that the bottom row can be completed to an exact triangle with the con-
necting map −(φm ◦ π∨L)[1]. Recall that φm is the result of tensoring the quotient map

R → Rm by L. Using the map φj ,
(−1)

L sj−→
(0)

L becomes a free resolution of L/sj , as in the
following diagram:

L 0

L L
sj
.

sj

φj

Recall from the definition of π∨L that φm ◦ π∨L is given by the diagram below, on the
left. Therefore, −φm ◦ π∨L[1] is given by the middle diagram. We apply an isomorphism
of resolutions which induces the identity on k, we have −φm ◦ π∨L[1] represented in a
different way by the rightmost diagram:

0 L 0 L 0 L

deg = 0 L L L L L L

L 0 deg = 0 L 0 L 0

sm −sm −sm

1

s

−1

−s −1

1

s

1
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We can check that the short exact sequence together with the connecting map can be
lifted (uniquely up to homotopy) to the following diagram:

L
sm

L
sm+1 k L

sm
[1]

0 0 0 L

L L L L

L L L 0.

ψm1

∼=

φm1

∼=

−(φm◦π∨L)[1]

∼= ∼=

−sm

sm

1

sm+1

sm

s

1

s 1

To see that this is an exact triangle we need to find a quasiisomorphism between the
free resolution of L/sm+1 and the cone C := Cone(−φm ◦π∨L : k[−1]→ L/sm), compatible
with the maps coming from L/sm and going to k (i.e. the maps using the resolutions).
Note that we are resolving k[−1] by L −s−→ L, the shift of the resolution above. Here is

the quasiisomorphism: the map ? is given by the matrix

(
sm −1

0 s

)
.

L/sm C L/sm+1 k

L L ⊕ L L L

L L ⊕ L L L

∼= ∼= ∼= ∼=

sm

(1,0)t

?

(1,0)

∼=

sm

sm+1 s

(1,0)t (s,1) 1

From this diagram, we automatically see that the quasiisomorphism is compatible with
the map from Lm. For the map to k, the map C → k above should coincide with the
projection on the first coordinate, which is realized by the following homotopy:

L ⊕ L L

L ⊕ L L

(sm,0)

(0,1)

? s

(s,1)

(0,1)

(−1,0)
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So the short exact sequences in (22) can be filled in to exact triangles in the derived
category, using the maps −π∨L[1] : k → L and −(φm ◦π∨L)[1] : k → L/sm. Note that clearly,
these will create a map between triangles.

Therefore, we have the following map of cohomology long exact sequences, given in
the two bottom rows below.

(23)

H i(U ; k) TorsRH
i+1(U ;L) TorsRH

i+1(U ;L) H i+1(U ; k)

H i(U ; k) H i+1(U ;L) H i+1(U ;L) H i+1(U ; k)

H i(U ; k) H i+1(U ; L
sm

) H i+1(U ; L
sm+1 ) H i+1(U ; k).

π∨L

=

s πL

=

π∨L

=

s

φm

πL

φm+1 =

φm◦π∨L s φm1

We are abusing notation by using the same letters to denote the maps of (the derived
category of) sheaves and their induced maps in cohomology.

From now on, assume that m is large enough that sm annihilates TorsRH
i+1(U ;L).

By Remark 3.3.2, the maps TorsRH
∗(U ;L) → H∗(U ;L/sm) induced by φm (the com-

position of the two central vertical arrows above) are injective. Also, note that on
TorsRH

i+1(U ;L), s and log(t) = log(1 + s) differ by a unit, namely the Taylor poly-
nomial of degree m−1 of s

log(1+s)
, and therefore their kernel and cokernel coincide. This

means that the bottom row in the diagram above will remain exact if we replace s by
log(t). We have the following commutative diagram, formed by the first and last rows
of equation (23).
(24)

H i(U ; k) TorsRH
i+1(U ;L) TorsRH

i+1(U ;L)(−1) H i+1(U ; k)

H i(U ; k) H i+1(U ; L
sm

) H i+1(U ; L
sm+1 )(−1) H i+1(U ; k).

π∨L

=

log t

φm

πL

φm+1 =

π∨L log t φm1

We make the following claims:

(1) π∨L is a MHS morphism (Theorem 6.0.1 together with Proposition 6.1.3).
(2) log t is a MHS morphism (note the Tate twist), by Corollary 5.4.6.
(3) φm and φm+1 are MHS morphisms (Remark 5.4.13).
(4) φm1 is a MHS morphism. This follows from Lemma 4.2.3. The Tate twist is due to

the fact that the MHS on the cohomology L/s comes from the shifted Hodge-de
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Rham complex, as in Remark 5.4.13. Remark 2.8.6 tells us that shifts of mixed
Hodge complexes result in Tate twists in their cohomologies.

(5) It follows that πL = φm1 ◦ φm+1 is a MHS morphism.
(6) The top row is exact. This is a straightforward verification.

We have now arrived at the following exact sequence of mixed Hodge structures:

H i(U ; k)
π∨L−→ TorsRH

i+1(U ;L)
log(t)−−−→ TorsRH

i+1(U ;L)(−1)
πL−→ H i+1(U ; k).

Taking the associated graded sequence for the weight filtration, we obtain the following
exact sequence of pure Hodge structures for any k:

GrWk H
i(U ; k)

π∨L−→ GrWk TorsRH
i+1(U ;L)

log(t)−−−→ GrWk−2 TorsRH
i+1(U ;L)

πL−→ GrWk H
i+1(U ; k).

By [10, Corollaire 3.2.15], the nonzero graded pieces of the weight filtration of H i(U ; k)

are in the interval [i,min{2i, 2n}]. Therefore, if either k ≥ min{2i+3, 2n+1} or k ≤ i−1,
we have an isomorphism

GrWk TorsRH
i+1(U ;L)

log(t)∼=
(
GrWk−2 TorsRH

i+1(U ;L)
)

(−1).

Since the MHS are finite dimensional, these groups must be 0 for k � 0 and k � 0,
which implies that

GrWk TorsRH
i+1(U ;L) = 0 unless k ∈ [i,min{2i, 2n− 2}].

�

8. Semisimplicity for proper maps

Let k = Q. In this section, assuming that f : U → C∗ is proper, we will prove that the
torsion part Ai(U f ;Q) of the Alexander module Hi(U

f ;Q) is a semisimple R-module,
that is, the t-action on Ai(U

f ;Q) is semisimple, for all i ≥ 0.

Theorem 8.0.1. Let U be a smooth complex algebraic variety, and let f : U → C∗ be a proper
algebraic map. Let L be the rank one R = Q[t±1]-local system on U defined as in Section 2.2.
Then TorsRH

i(U ;L) is a semisimple R-module.

Since the operations of taking the conjugate R-module structure and taking the Q-
vector space dual preserve semisimplicity, the following is an immediate consequence
of Proposition 2.4.1 and the above theorem.
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Corollary 8.0.2. Under the assumptions of Theorem 8.0.1, the torsion part Ai(U f ;Q) of the
homology Alexander module Hi(U

f ;Q) is a semisimple R-module, for all i ≥ 0.

In the rest of this section, we prove Theorem 8.0.1.
Let LC∗ be the tautological rank one R-local system on C∗. Under the natural isomor-

phism R ∼= Q[π1(C∗)], the monodromy action is the natural π1(C∗)-action on Q[π1(C∗)].
Then L ∼= f−1(LC∗) as R-local systems.

By the projection formula, we have

H i(U ;L) ∼= H i(U ; f−1(LC∗)) ∼= Hi(C∗, Rf∗(QU)⊗Q LC∗).

Since U is smooth and f is a proper map, the decomposition theorem of [2] yields
that the push-forward Rf∗(QU) decomposes as

Rf∗(QU) ∼=
⊕
λ∈Λ

Pλ[dλ],

where Λ is a finite index set, dλ ∈ Z, and each Pλ is a simple Q-perverse sheaf on C∗.
Therefore, to prove Theorem 8.0.1, it suffices to show the following proposition, which
is essentially a special case of the theory of the Mellin transformation developed by
Gabber-Loeser [25].

Proposition 8.0.3. If P is a simple Q-perverse sheaf on C∗, we have:

(1) Hi(C∗;P ⊗ LC∗) = 0 for i 6= 0;
(2) H0(C∗;P ⊗LC∗) is a simple R-module when P is smooth (i.e., the shift of a local system

on C∗), and a free R-module when P is not smooth.

Here, we recall that an R-module is simple if it does not contain any proper nonzero
R-submodule. Since R = Q[t±1], an R-module is simple if and only if it is a finite
dimensional Q-vector space and it is a simple Q-representation of Z.

Before proving the above proposition, we need a few lemmas.

Lemma 8.0.4. Let P be a simple Q-perverse sheaf on C∗, and let Q ⊂ k be a field extension.
Then P ⊗Q k is a semisimple k-perverse sheaf. Moreover, P is smooth if and only if one of the
simple summands of P ⊗Q k is smooth.

Proof. Since P is a simple perverse sheaf, it is either a skyscraper sheaf or it is isomorphic
(after a shift of degree one) to the intermediate extension of a simple local system on
a Zariski open subset of C∗. After a field extension, a simple local system becomes
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at worst semisimple. Since taking intermediate extension commutes with taking field
extension, the first half of the lemma follows.

The “only if” part of the second half is obvious. To show the “if” part, we first assume
that the field extension Q ⊂ k is Galois. Then its Galois group acts transitively on the
simple summands of P ⊗Q k. Thus, in this case, the second half of the lemma follows.
In general, we can take a further field extension Q ⊂ k ⊂ k′, such that Q ⊂ k′ is Galois.
Then the second part holds for P ⊗Q k

′, which implies that it also holds for P ⊗Q k. �

Lemma 8.0.5. Let k be a field, and let Pk be a simple k-perverse sheaf on C∗. If H−1(C∗;Pk) 6= 0,
then Pk ∼= kC∗ [1].

Proof. By the natural isomorphism

H−1(C∗;Pk) ∼= Hom(kC∗ [1],Pk),

if H−1(C∗;Pk) 6= 0, then there exists a nontrivial map between kC∗ [1] and Pk. Since both
kC∗ [1] and Pk are simple perverse sheaves, it follows that they are isomorphic. �

Proof of Proposition 8.0.3. Case 1. Assume P is smooth. In this case, P ∼= L[1] for a simple
Q-local system L on C∗. As in [16, Example 2.5.7], we have natural isomorphisms of R-
modules

Hi(C∗;P ⊗ LC∗) ∼= H i+1(C∗;L⊗Q LC∗) ∼=

0 if i 6= 0

VL if i = 0,

where VL is the R-module associated to the monodromy representation of L, and ·
denotes the conjugate R-module structure, with t acting by t−1 (see Remark 2.2.5). By
the equivalence of categories between Q-local systems on C∗ and Q[Z]-modules, the
local system L is simple if and only if VL is simple. Evidently, VL is simple if and only
if VL is simple. Thus, in this case, the proposition follows.
Case 2. Assume P is not smooth. Let p : C∗ → pt be the projection to a point. We claim
that there is a natural isomorphism

(25) Rp∗(P ⊗Q LC∗)
L
⊗R R/m ∼= Rp∗(P ⊗Q LC∗ ⊗R R/m),

where m is a maximal ideal of R and
L
⊗ denotes the derived tensor product. In fact,

take a complex of injective sheaves I• on C∗ representing P ⊗Q LC∗ and take a free
resolution F • of the R-module R/m. Then the total complex of Γ(C∗, I•) ⊗R F • is a
complex representing both sides of (25).
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Let k := R/m and let Lk := LC∗ ⊗R R/m. Then Lk is a rank one k-local system on C∗.
By Lemma 8.0.4,

P ⊗Q Lk ∼= (P ⊗Q k)⊗k Lk

is a semisimple k-perverse sheaf on C∗. By the support condition for perverse sheaves
we have that Hi(P⊗QLk) = 0 for i < −1. Thus, the hypercohomology spectral sequence
yields that Hi(C∗;P ⊗Q Lk) = 0 for i < −1. Additionally, by Lemma 8.0.5, Hi(P ⊗Q

Lk) = 0 for i ≤ −1. On the other hand, we get by Artin’s vanishing theorem that
Hi(C∗;P ⊗Q Lk) = 0 for i ≥ 1. Therefore,

dimkH0(C∗;P ⊗Q Lk) = χ(C∗;P)

is independent of the choice of the maximal ideal m of R.
By the isomorphism (25) and the universal coefficient theorem for cochain complexes,

we have the following short exact sequence

0→ Hi(C∗;P ⊗Q LC∗)⊗R k → Hi(C∗;P ⊗Q Lk)→ TorR1 (Hi+1(C∗;P ⊗Q LC∗), k)→ 0.

The results in the previous paragraph then yield that, for any maximal ideal m of R, we
have

Hi(C∗;P ⊗Q LC∗)⊗R R/m = 0 for all i 6= 0,

and

TorR1 (Hi(C∗;P ⊗Q LC∗), R/m) = 0 for all i 6= 1.

Thus, Hi(C∗;P ⊗Q LC∗) = 0 for all i 6= 0 and H0(C∗;P ⊗Q LC∗) is free. �

As a consequence of Corollary 8.0.2, we get the following purity result (Theorem 1.0.7
in the introduction).

Corollary 8.0.6. If f : U → C∗ is a proper algebraic map, then Ai(U f ;Q) carries a pure Hodge
structure of weight −i.

Proof. The generic fiber F of the proper morphism f : U → C∗ between smooth complex
algebraic varieties is a complete smooth algebraic variety, whose rational homology and
cohomology groups have pure Hodge structures. By Corollary 8.0.2 and Corollory 7.2.1,
Ai(U

f ;Q) is a quotient of the weight −i pure Hodge structure on Hi(F ;Q), which proves
our claim. �
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Remark 8.0.7. If f : U → C∗ is a projective submersion of smooth complex algebraic
varieties, then f is a fibration, and let F denote its fiber. In this case, the semisimplicity
of Ai(U f ;Q) = Hi(U

f ;Q) ∼= Hi(F ;Q) is a direct consequence of Deligne’s decomposition
theorem [9, 10] (compare with [4, Remark 1.12]). Indeed, Deligne’s theorem implies
that the local systems Rif∗QU are semisimple on C∗, or equivalently, the monodromy
representation on H i(F ;Q) is semisimple. The semisimplicity of Ai(U f ;Q) follows then
by using Lemma 2.5.2.�

9. Relation to the Limit MHS

In this section, we compare the mixed Hodge structure on TorsRH
∗(U ;L) with the

limit mixed Hodge structure on the generic fiber of f (as recalled in Section 2.11).
Throughout this subsection assume the ground field k = Q, that the algebraic map f : U → C∗

is in addition a proper map with generic fiber F , and that the good compactification f̄ : X → CP 1

of f has the property that f̄−1(0) is reduced.
Let i : E → X denote the inclusion of the reduced divisor f̄−1(0).

Remark 9.0.1. Under the above assumptions, the monodromy of TorsRH
∗(U,L) is unipo-

tent, see [50, Corollary 11.19].�

Remark 9.0.2. Let f : U → C∗ be a proper map. Recall the notations of the beginning of
Section 2.6. By [34, Semi-stable Reduction Theorem], there is a finite cover UN → U for
some N such that fN : UN → C∗ is also a proper map, and there is a compactification
f̄N : X → CP 1 satisfying the conditions that we assume throughout this subsection.
Further, by loc. cit. X \ UN = (fN)−1({0,∞}).

Note that the eigenvalues of the action of tN in TorsR(N) H
∗(UN ,LN) will be all 1 by

Remark 9.0.1. Recall also that the way we induced TorsRH
∗(U ;L) with a MHS was using

the natural isomorphism of R(N)-modules TorsRH
∗(U ;L) ∼= TorsR(N) H

∗(UN ,LN) of
Lemma 2.6.3. Hence, the only meaningful conditions we are assuming in this subsection
is that the map f : U → C∗ be proper.�

We wish to relate the mixed Hodge structure on TorsRH
∗(U ;L) with the limit mixed

Hodge structure on H∗(E;ψf̄Q) discussed in Section 2.11. In fact, we will identify mor-
phisms of mixed Hodge complexes of sheaves that realize this relationship.
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We compare the subsequent pair of mixed Hodge complexes. On the one hand,
Theorem 5.4.10 provides us for m ≥ 1:

Hdg•(X logD)

(
1

2πi

df

f
,m

)
=

([
K•∞ (1⊗ f,m) , W̃�

]
,

[
Ω•X(logD)

(
1

2πi

df

f
,m

)
,W�, F

�

]
, ϕ∞#

)
On the other hand, Theorem 2.11.1 offers us, independent of m:

ψ
Hdg
f = i−1

([
Tot C̃•,•, W̃ (M)�

]
,
[

TotA•,•,W (M)�, F
�
]
, ϕ∞

)
.

Our first goal is to show that, pre-application of i−1, the second triple is a quotient of a
translation of the first, as long as m is large enough.

We obtain our map of triples from the quotient maps (up to a sign):

(−1)`Φ`
Q(m) :

m−1⊕
j=0

K`+1
∞ ⊗Q〈sj〉 →

m−1⊕
j=0

K`+1
∞ /W̃jK`+1

∞

(−1)`Φ`
C(m) :

m−1⊕
j=0

Ω`+1
X (logD)⊗C C〈sj〉 →

m−1⊕
j=0

Ω`+1
X (logD)/WjΩ

`+1
X (logD)

where ` and m ≥ 1 denote integers. We define Φ`
Q(∞),Φ`

C(∞) using the same formulas.
If m ≥ dimX then the codomains of the above maps are (Tot C̃•,•)` and (TotA•,•)`

respectively, because the filtrations W̃� and W� fill out at index dimX (this is where
boundedness of filtrations is important). This enables us to, assuming m ≥ dimX (or
even m =∞), define natural surjections

ΦQ(m) : K•∞(1⊗ f,m)[1]→ Tot C̃•,•

and

ΦC(m) : Ω•X(logD)

(
1

2πi

df

f
,m

)
[1]→ TotA•,•.

The compatibility with differentials Φ(m) ◦ d[1] = (d′ + d′′) ◦ Φ(m) follows by definition,
where d′ and d′′ are the differentials on the double complexes.

Lemma 9.0.3. Suppose m ≥ dimX . Then:

Φ(m) : Hdg•(X logD)

(
1

2πi

df

f
,m

)
[1]→

([
Tot C̃•,•, W̃ (M)�

]
,
[

TotA•,•,W (M)�, F
�
]
, ϕ∞

)
is a (surjective) map of triples.
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Proof. The commutativity ΦC(m) ◦ ϕ∞# = ϕ∞ ◦ ΦQ(m) follows from the definitions.
We next verify that filtrations are preserved for the C-component of the triple. The

same arguments apply to the Q-component as well.
The W [1]�-filtered subcomplex indexed by integer i is:[

Wi+1Ω•X(logD)

(
1

2πi

df

f
,m

)]
[1] =

m−1⊕
j=0

[
Wi+2j+1Ω•X(logD)

]
[1]⊗C C〈sj〉

which is mapped under ΦC(m) into W (M)i (TotA•,•). The F [1]�-filtered subcomplex
indexed by integer p is:[

F p+1Ω•X(logD)

(
1

2πi

df

f
,m

)]
[1] =

m−1⊕
j=0

[
F p+j+1Ω•X(logD)

]
[1]⊗C C〈sj〉

=
m−1⊕
j=0

[
Ω≥p+j+1
X (logD)

]
[1]⊗C C〈sj〉

which is mapped under ΦC(m) into F p (TotA•,•). �

The adjunction Id → i∗i
−1 applied to

([
Tot C̃•,•, W̃ (M)�

]
,
[

TotA•,•,W (M)�, F
�
]
, ϕ∞

)
gives us a surjective map of triples

Ad:
([

Tot C̃•,•, W̃ (M)�

]
,
[

TotA•,•,W (M)�, F
�
]
, ϕ∞

)
→ i∗ψ

Hdg
f̄

Note that, since i is proper, i∗ = i! is an exact functor, so we may identify i∗ with Ri∗.
Composing Φ(m) with the adjunction Ad, we immediately get the following.

Corollary 9.0.4. Suppose m ≥ dimX . Then:

Ad ◦Φ(m) : Hdg•(X logD)

(
1

2πi

df

f
,m

)
[1]→ i∗ψ

Hdg
f̄

is a surjective morphism of mixed Hodge complexes of sheaves. It satisfies the equality:

Φ(m) ◦ Sm[1] = Θ ◦ Φ(m)

where Sm is multiplication by s (as in Lemma 4.2.3), and Θ is defined in Section 2.11.

Proof. The equality is obtainable by expanding definitions. �

Recall that we defined the MHS on H∗+1(U ;L ⊗ Rm) using the [1] shift of the thick-
ened Hodge complex Hdg•(X logD)

(
1

2πi
df
f
,m
)
s̃2

. Twisting the R-module structure and

taking global hypercohomology in Corollary 9.0.4, we get:
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Corollary 9.0.5. For sufficiently large m,

Ad ◦Φ(m) : Hdg•(X logD)

(
1

2πi

df

f
,m

)
s̃2

[1]→ i∗ψ
Hdg
f̄

induces a morphism of Q-mixed Hodge structures:

Φ∗ : TorsRH
∗+1(U ;L)→ H∗(E;ψf̄Q)

which is also an R-module homomorphism.

Proof. Let k = Q, and m ≥ dimX . Since Θ corresponds to multiplication by log(t), and
multiplication by s on Hdg•(X logD)

(
1

2πi
df
f
,m
)

corresponds to multiplication by log(t)

on Hdg•(X logD)
(

1
2πi

df
f
,m
)
s̃2

, Corollary 9.0.4 tells us that

Ad ◦Φ(m) : Hdg•(X logD)

(
1

2πi

df

f
,m

)
s̃2

[1]→ i∗ψ
Hdg
f̄

induces the following morphism of mixed Hodge structures and R-modules in hyper-
cohomology:

H∗+1(U ;L ⊗R Rm)→ H∗(E;ψf̄Q).

which we denote by Φ(m)∗.
The torsion submodule TorsR∞ H

∗+1(U ;L ⊗R R∞) is contained in H∗+1(U ;L ⊗R Rm)

as the kernel of ψmj[1]∗ for sufficiently large m and j (Remark 5.3.6). And because the
monodromy action is unipotent (Remark 9.0.1), the torsion submodule is isomorphic to
TorsRH

∗+1(U ;L) as R-modules. Stitching these observations together, for sufficiently
large m the morphism Ad ◦Φ(m) induces an R-module morphism:

Φ∗ : TorsRH
∗+1(U ;L)→ H∗(E;ψf̄Q)

Recall Remark 3.1.10 and the proof of Corollary 5.4.5, where we see that the MHS
constructed on TorsRH

∗+1(U ;L) is independent of m, for m sufficiently large. Indepen-
dence of the map Φ∗ of large enough m is determinable through examination of the
maps between the various thickened complexes associated to their inverse limit struc-
ture. �

Let D and D∗ be an open disk and a punctured open disc centered at 0 in C, res-
pectively. Let T := (f)−1(D) ⊂ X and T ∗ := f−1(D∗) ⊂ U . Assume further that D is
sufficiently small such that

f|T ∗ : T ∗ → D∗
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is a fibration. Note that by Remark 9.0.2, we can assume that X\U contains only vertical
divisors, so T\E = T ∗. Recall that by definition, ψf = i−1 ◦ R(j ◦ π)∗ ◦ (j ◦ π)−1, where,
abusing notation, π is seen as a map π : (T ∗)f → T ∗, j is seen as j : T ∗ ↪→ T , and i is
seen as i : E ↪→ T . We will use this notation in the rest of this section.

Remark 9.0.6. In [50, §11.2.2], a different infinite cyclic cover is chosen in place of (T ∗)f ,
which we will denote (̃T ∗)f , namely replacing the exponential map in (1) by the map
z 7→ e2πiz. We can fix the canonical isomorphism

(T ∗)f = {(x, z) ∈ T ∗ × C | f(x) = ez} −→ (̃T ∗)f = {(x, z) ∈ T ∗ × C | f(x) = e2πiz}
(x, z) 7−→

(
x, z

2πi

)
.

This allows us to identify (T ∗)f with (̃T ∗)f , and we will do so implicitly for the remain-
der of the section.�

In the following definition, we describe a map which has the same domain and target
as the MHS morphism Φ∗ of Corollary 9.0.5, but is defined explicitely in cohomology
and in a more geometric and down-to-earth way.

Definition 9.0.7. The map r∗ : TorsRH
∗+1(U ;L) ↪→ H∗(E;ψf̄Q) is defined as the follow-

ing composition

TorsRH
∗+1(U ;L) ↪→ H∗+1(T ∗;L) ∼= H∗((T ∗)f ;Q)

∼=−→ H∗(E;ψf̄Q).

Here, the first map is given by the restriction from U to T ∗ (hence the name r∗), and was
shown to be injective in Remark 2.5.4. The isomorphism H∗+1(T ∗;L) ∼= H∗((T ∗)f ;Q) is
given by Corollary 2.4.5 and was already described in Remark 2.5.4. Finally, the map
H∗((T ∗)f ;Q)→ H∗(E;ψf̄Q) is given by the adjunction Id→ i∗i

−1 applied to R(j ◦π)∗(j ◦
π)−1Q

T
= R(j ◦ π)∗Q(T ∗)f

. The map H∗((T ∗)f ;Q) → H∗(E;ψf̄Q) is an isomorphism
because by [33, Remark 2.6.9],

H∗(E;ψf̄Q) ∼= lim−→
V⊇E

H∗(V ;R(j ◦ π)∗Q(T ∗)f
),

where the limit is taken over open sets V . Since f is proper, every such V contains
an open set of the form T = (f)−1(D), for D a small enough disk around 0. The
isomorphism follows from the fact that all sufficiently small tubes T are fibrations over
the disk, so they are homotopy equivalent to each other.

Note that, up to the natural identification H∗((T ∗)f ;Q) ∼= H∗(E;ψf̄Q) given by ad-
junction and the natural identification (TorsRH∗(U

f ;Q))∨Q ∼= TorsRH
∗+1(U ;L) given in
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Proposition 2.4.1, the map r∗ is just the dual as Q-vector spaces of the mapH∗((T ∗)f ;Q)�

TorsRH∗(U
f ;Q) given by the inclusion of infinite cyclic covers (T ∗)f ⊂ U f . Moreover, r∗

allows us to see the MHS on the TorsRH
∗+1(U ;L) as a sub-MHS of the limit MHS on

H∗(E;ψf̄Q) for all ∗, as exemplified in the following result.

Theorem 9.0.8. The maps r∗ and Φ∗ are equal up to multiplication by a rational constant. In
particular,

r∗ : TorsRH
∗+1(U ;L) ↪→ H∗(E;ψf̄Q)

is a morphism of MHS and of R-modules.

Proof. In order to prove this theorem, we must first recall how the hypercohomology
of TotA•,• is identified with the nearby cycle cohomology in [50], sections 11.2.4 and
11.2.5.

First, note that since π is a covering map, we can see that π∗ is exact by checking
over an open cover of U . Therefore, there are natural isomorphisms H∗((T ∗)f ;C) ∼=
H∗(T ∗;Rπ∗C) ∼= H∗(T ∗; π∗C). We define the complex Ω•T (logE)[f∞] := Ω•T (logE) ⊗C

C[f∞], where the differential is given by letting df∞ = df
f

and using the Leibniz rule. By
[50, Theorem 11.16] and the discussion preceding it, we have quasi-isomorphisms:

i−1Rj∗π∗C(T ∗)f
∼
↪−→ i−1Rj∗π∗Ω

•
(T ∗)f

∼←−↩ i−1Ω•T (logE)[f∞].

The right hand arrow is given by pulling back forms and seeing f∞ as f∞ : (T ∗)f ⊆
U f → C.

Next, combining Theorem 11.16 and the discussion in 11.2.5 in loc. cit., we conclude
that there is a quasiisormophism as follows:

i∗i
−1Ω`

T (logE)[f∞]
∼−→ (TotA•,•)` =

`+1⊕
p=0

Ω`+1
T (logE)

WpΩ
`+1
T (logE)∑

j

(f∞)jωj 7−→ (−1)`
1

2πi

df

f
∧ ω0 ∈

Ω`+1
T (logE)

W0Ω`+1
T (logE)

.

(26)

We should note that the 1
2πi

in the formula above does not appear in [50] but it needs
to appear here due to the difference in our conventions regarding Tate twists. As men-
tioned in Section 2.8, Tate twists in loc. cit. are defined using powers of 2πi. The rational
part of ψHdg

f̄
is defined in loc. cit. using Tate twists, and the extra 1

2πi
in (26) is necessary

for that quasiisomorphism to also be defined with rational coefficients, following our
conventions. Needless to say, both conventions give rise to the same MHS.
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Let us fill the following commutative diagram. The diagonal arrow is defined above.

(27)

Ω•T (logE)[f∞] i∗i
−1Ω•T (logE)[f∞]

Ω•+1
T (logE)

(
1

2πi
df
f
,∞
)

[1] i∗i
−1Ω•+1

T (logE)
(

1
2πi

df
f
,∞
)

[1] TotA•,•.

i−1`i∗

i−1`i∗ Φ`C(∞)

One can check directly that the map
∑

j(f∞)jωj 7→ 1
2πi

df
f
∧ ω0 ⊗ 1 ∈ Ω•T (logE) ⊗ R∞

makes the diagram commute and it induces a map of complexes (taking into account
that d[1] = −d on the target).

Consider now the following diagram, which includes the maps explained above. The
thickened complex is a resolution of L ⊗R R∞ using Proposition 5.2.1. The arrow π∨L is
the one in Proposition 6.1.3.
(28)

Rj∗CT ∗ Rj∗π∗C(T ∗)f → i∗i
−1Rj∗π∗Ω

•
(T ∗)f i∗i

−1Ω•T (logE)[f∞]

Rj∗L[1]⊗R R∞
∼−→ Ω•T (logE)

(
1

2πi
df
f
,∞
)

[1] i∗i
−1Ω•T (logE)

(
1

2πi
df
f
,∞
)

[1].

π∨L

π−1`π∗ ∼

We are going to show that it commutes up to multiplication by a nonzero real con-
stant. Before we show this, let us explain why the commutativity (up to constant)
of this diagram finishes the proof. Identifying Hj(E;ψfC), Hj(E; Ω•T (logE)[f∞]) and
Hj(T ; TotA•,•) through the quasiisomorphisms between the corresponding complexes
that we have described above, taking hypercohomology in the commutative diagrams
(27) and (28) yields the following commutative (up to a non-zero constant) diagram.
Note that we can identify Hj+1(T ∗;L⊗RR∞) with Hj+1(T ∗;L) naturally, since the latter
is annihilated by sm for some m, using Remark 9.0.2.

Hj(T ∗;C) Hj((T ∗)f ;C) Hj(E,ψfC) Hj(T ; TotA•,•)

Hj+1(T ∗;L) Hj+1
(
E; Ω•T (logE)

(
1

2πi
df
f
,∞
))

.

Hj(π∨L)

π∗ i−1`i∗

i−1`i∗

Hj(Φ`C(∞))
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If the above commutes (up to a scalar), we incorporate to this diagram arrows given by
the inclusion of T ∗ in U in the left side.
(29)

Hj(U ;C) Hj(T ∗;C) Hj((T ∗)f ;C) Hj(E,ψfC)

TorsRH
j+1(U ;L) Hj+1(T ∗;L) Hj+1

(
E; Ω•T (logE)

(
1

2πi
df
f
,∞
))

.

Hj(π∨L) Hj(π∨L)

π∗ i−1`i∗

Hj(Φ`C(∞))

Let us recall why Hj(π∨L) : Hj(U ;C) → TorsRH
j+1(U ;L) is surjective. By Theorem

8.0.1, TorsRH
j+1(U ;L) is a semisimple R-module. Recall that, in this section, we have

made the assumption that the monodromy action on TorsRH
j+1(U ;L) is unipotent (Re-

mark 9.0.1). The surjectivity now follows from Proposition 6.1.3, which shows that
Hj(π∨L) is the dual of the map induced by U f → U , and Corolary 7.0.2, which shows
that if t acts as the identity on TorsRH

j+1(U ;L), this map is surjective.
We also note that, by Proposition 6.1.3, we have the following commutative diagram,

where the vertical arrow comes from Proposition 2.4.1. The vertical isomorphism ap-
pears in Definition 9.0.7.

Hj(T ∗;C) Hj((T ∗)f ;C)

Hj+1(T ∗;L).
Hj(π∨L)

π∗

∼=

Using the diagram above, the map Hj(U ;C) → Hj(E;ψfC) in (29) given by the com-
position of all the arrows in the top row is none other than (r∗ ⊗ C) ◦Hj(π∨L). The map
TorsRH

j+1(U ;L) → Hj(E;ψfC) in (29) given by the composition of all the arrows in
the bottom row and the vertical arrow on the right is none other that Φ∗ ⊗ C: recall
that when we defined Φ∗ in the proof of Corollary 9.0.5, we showed that by defini-
tion it is induced by ΦQ(∞) taking cohomology and using our identifications. Further,
by Lemma 9.0.3 ΦC(∞) and ΦQ(∞) ⊗ C induced the same morphism in cohomology
TorsRH

j+1(U ;L ⊗ C) → Hj(E;ψfC). The commutativity (up to non-zero constant) of
(29) implies that for some c ∈ R \ {0}, c · (r∗ ⊗ C) ◦ Hj(π∨L) = (Φ∗ ⊗ C) ◦ Hj(π∨L). The
surjectivity of Hj(π∨L) implies that c · (r∗ ⊗Q C) = (Φ∗ ⊗Q C). Finally, the fact that C is
fully faithful over Q implies that c · r∗ = Φ∗ and c must actually be a rational number, as
desired.

To conclude the proof, we want to show that diagram (28) commutes up to a real
constant. We use the de Rham resolution to identify CT ∗ with Ω•T ∗ , and similarly on
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(T ∗)f . Then, the commutativity of (28) is reduced to the commutativity of (30) below.
We are denoting by ? the map of de Rham complexes induced by π∨L, and we explain
below why the dashed arrow ω 7→ 1

i
df
f
∧ ω is indeed induced by π∨L.

(30)

i∗i
−1Ω•T (logE)

Ω•T (logE)
π−1`π∗−−−−→ Rj∗π∗Ω

•
(T ∗)f i∗i

−1Rj∗π∗Ω
•
(T ∗)f

∼←− i∗i
−1Ω•T (logE)[f∞]

i∗i
−1Ω•T (logE)

(
1
i
df
f
,∞
)

[1] i∗i
−1Ω•T (logE)

(
1

2πi
df
f
,∞
)

[1].

IdΩ•
T

(logE)

i−1`i∗

(Id→i∗i−1)◦?

ω 7→ 1
i
df
f
∧ω ∑

(f∞)jωj 7→ 1
2πi

df
f
∧ω0

G−1
∞

First, a direct computation shows that the inclusion of Ω•T (logE) in Ω•T (logE)[f∞] makes
the top portion of the above diagram commute. Therefore, the composition (in the de-
rived category) of the middle row is the inclusion Ω•T (logE) ↪→ Ω•T (logE)[f∞] composed
with the adjunction map Id→ i∗i

−1.
Next, consider the map ? induced by π∨L, which is the complexification of the map

π∨L appearing in Lemma 6.2.5. By this Lemma (up to a real constant and taking the
inverse limit as m → ∞), π∨L corresponds to the map of real de Rham complexes
A : E•T → E•T

(
=df

f
,∞
)

[1] given by α 7→ =df
f
∧ α. By Lemma 6.2.3 and its proof, the

complexification of this map of real de Rham complexes induces in the logarithmic de
Rham complexes the map ω 7→ 1

i
df
f
∧ ω : Ω•T ∗(logE)→ Ω•T ∗(logE)

(
1
i
df
f
,∞
)

[1] (these are
maps in the derived category, in particular, two homotopic maps are equal, as in the
proof of Lemma 6.2.3).

The map G∞ is the inverse limit of the maps Gm defined in the proof of Theo-
rem 5.4.10. Namely, its inverse is given by

G−1
∞ (ω ⊗ sj) = (2π)−jω ⊗ sj.

As in the proof of Theorem 5.4.10, a straightforward computation shows that the fol-
lowing diagram commutes. Recall that νQ (resp. ν) is defined in Remark 5.3.4 (resp.
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Remark 5.2.6).

L L ⊗Q C⊗R R∞ Ω•T (logE)
(

1
i
df
f
,∞
)

K•∞(1⊗ f,m) Ω•T (logE)
(

1
2πi

df
f
,∞
)νQ

ν⊗C

G−1
∞

ϕ∞

Using this diagram, we see that the lower left triangle in (30) commutes, since up to the
resolutions above it is the following diagram:

CT ∗

L L.
π∨L

π∨L

Finally, it follows that (30) commutes up to real constant, by a computation on the
remaining triangle. �

Corollary 9.0.9. Let f : U → C∗ be a fibration. Then, the map

r∗ : TorsRH
∗+1(U ;L)→ H∗(E;ψf̄Q)

of Definition 9.0.7 is an isomorphism of MHS for all ∗. In other words, the MHS described in
Corollary 5.4.6 coincides with the limit MHS.

Proof. If f is a fibration, the inclusion T ∗ ↪→ U is a homotopy equivalence, so H∗(U ;L) is
R-torsion, and the monomorphism TorsRH

∗+1(U ;L) ↪→ H∗+1(T ∗;L) in Definition 9.0.7
is actually an isomorphism. �

The content of Theorem 1.0.8 is the result of combining Theorem 9.0.8 and Corol-
lary 9.0.9 in homological notation (dualizing via Corollary 2.4.5).

10. Examples and open questions

10.1. Hyperplane arrangements. Let n ≥ 2. Let f1, . . . , fd be degree 1 polynomials in
C[x1, . . . , xn] defining d distinct hyperplanes and let f = f1 · . . . ·fd. The zeros of f define
a hyperplane arrangement A of d hyperplanes in Cn. Let U ⊂ Cn be the corresponding
arrangement complement.

Definition 10.1.1. The rank of a hyperplane arrangement A in Cn is the maximal codi-
mension of a non-empty intersection of some subfamily of A. We say that A is an
essential hyperplane arrangement if its rank is equal to n.
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Remark 10.1.2 (Reducing to the case where A is essential). Suppose that A has rank
l < n. By [36, Proposition 6.1], there exists an affine subspace L of dimension l such that
UL := U ∩ L (seen in Cl) is an essential hyperplane arrangement complement, and the
inclusion UL ↪→ U is a homotopy equivalence. Let fL be the restriction of f : U → C∗ to
UL.

The functoriality of the MHS (Theorem 5.4.9), as well as the homotopy invariance of
cohomology with local systems, ensures that the map

TorsRH
j(U ;L)→ TorsRH

j(UL;LL)

induced by inclusion is a MHS isomorphism between cohomology Alexander modules
for all j, where LL is the local system induced by fL. Therefore, the study of the MHS
on TorsRH

j(U ;L) for A a hyperplane arrangement can be reduced to the case where A
is an essential hyperplane arrangement.�

Remark 10.1.3 (The cohomology groups of the infinite cyclic cover.). Let A be an essen-
tial hyperplane arrangement in Cn defined by the zeroes of a reduced polynomal f . Let
U be the corresponding arrangement complement, and L the local system on U induced
by f : U → C∗. By [24, Theorem 4], we have that Hj(U ;L) is a torsion R-module for all
j < n, a free R-module for j = n, and 0 for j > n. Hence, by Proposition 2.4.1 and
Corollary 2.4.5, we have canonical isomorphisms

TorsRH
j+1(U ;L) ∼= Hj(U f ; k)

for 0 ≤ j < n, and

TorsRH
j+1(U ;L) ∼= 0

for j ≥ n. We use this canonical isomorphism to endow Hj(U f ; k) with a MHS, for
0 ≤ j ≤ n − 1. In this section, we will talk about the MHS on Hj(U f ; k) instead of the
isomorphic MHS on TorsRH

j+1(U ;L), both to simplify the notation and to highlight the
geometric nature of the situation.�

Remark 10.1.4 (Connectivity of the fiber). Let A be an essential arrangement of d hy-
perplanes in Cn defined by the zeros of a reduced polynomial f of degree d, with n > 1.
Then, by [15, Theorem 2.1] (and the discussion following it), the generic fiber of f is
connected.�
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By Corollary 7.4.3, the t-action on H1(U f ; k) is semisimple, so by Corollary 7.0.4, we
have an isomorphism of MHS H1(U f ; k) ∼= H1(U f ; k)1 ⊕ H1(U f ; k)6=1. The goal of this
section is to arrive at the following result.

Theorem 10.1.5. Let A be an arrangement of d hyperplanes in Cn defined by the zeros of a
reduced polynomial f of degree d, for n ≥ 2. Assume that not all the hyperplanes of A are
parallel, or equivalently, that the rank of A is greater than or equal to 2. Then,

(1) H1(U f ; k)1 is a pure Hodge structure of type (1, 1), and has dimension d− 1.
(2) H1(U f ; k) 6=1 is a pure Hodge structure of weight 1.

Remark 10.1.6 (The Alexander polynomial of an essential line arrangement). The first
Alexander polynomial ∆1(t) of an essential line arrangement is defined as the order of
the torsion R-module H1(U ;L) ∼= H1(U f ; k), or equivalently, as a generator of the 0-th
Fitting Ideal of the R-module H1(U ;L). Hence, it is well defined up to multiplication
by a unit of R. Since H1(U ;L) is semisimple, ∆1(t) determines the R-module structure
of both H1(U ;L) and H1(U f ; k), its dual as a vector space.

Note that Theorem 10.1.5 tells us that the first Alexander polynomial of an essential
line arrangement complement determines the Hodge numbers of H1(U f ; k).�

If A is a central hyperplane arrangement (f is a homogeneous polynomial), f de-
termines a global Milnor fibration with fiber F , so Hj(U f ; k) ∼= Hj(F ; k) for all j. In
particular, Hj(U f ; k) is a finite dimensional vector space for all j, so by Remarks 10.1.2
and 10.1.3, Hj(U f ; k) = 0 for all j ≥ rank A. Hence, Corollary 7.2.4 and Remark 10.1.3
tell us that the isomorphism Hj(U f ; k) ∼= Hj(F ; k) is a MHS isomorphism for all j. Thus,
Theorem 10.1.5 is a direct generalization of parts (1) (in the case j = 1) and (3) of the
following result regarding central hyperplane arrangements, which can be found in [17,
Theorem 7.7]. Note that the last assertion in the result below follows from the second
to last one.

Theorem 10.1.7 ([17], Theorem 7.7). LetA be a central hyperplane arrangement in Cn defined
by a homogeneous reduced polynomial f . Let F denote its (global) Milnor fiber, given by the
equation f = 1.

(1) Hj(F ; k)1 is a pure Hodge structure of type (j, j) for any j ≤ n− 1.
(2) GrW2jH

j(F, k) 6=1 = 0 for any j ≤ n− 1.
(3) H1(F ; k)6=1 is a pure Hodge structure of weight 1.
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Before we prove Theorem 10.1.5, we need the following lemma regarding the MHS
on the generic fiber of f .

Lemma 10.1.8. Let A be an essential line arrangement in C2, given by the zeros of a reduced
polynomial f of degree d. Let c ∈ C be generic, and let F = f−1(c) ⊂ C2. Then

dim GrW2 H
1(F ; k) = d− 1.

Proof. By generic smoothness and Remark 10.1.4, F is a smooth connected curve, whose
genus we will denote g. Let F be its closure in CP 2, and let F̃ be the normalization of F .
By [10, Corollaire 3.2.15 and Corollaire 3.2.17], the mixed Hodge structure on H1(F ; k)

has W0H
1(F ; k) = 0, W2H

1(F ; k) = H1(F ; k) and W1H
1(F ; k) is the image of H1(F̃ ; k).

The latter has dimension 2g, and the map H1(F̃ ; k) → H1(F ; k) is injective, since F is a
punctured genus g orientable surface. Let #p be the number of punctures. Then:

dim GrW2 H
1(F ; k) = dim

H1(F ; k)

W1H1(F ; k)
= (2g + #p− 1)− 2g = #p− 1.

So all we need to show is that #p = d. Take the set of points at infinity {pi} := f−1(0)\C2.
Let ri be the number of lines of the arrangement passing through pi. Locally around pi,
the closure of {f = 0} has an ordinary singularity of multiplicity ri. The fibers F are
the curves in the pencil generated by {f = 0} and d · L∞, where L∞ denotes the line
at infinity. Since the multiplicity of d · L∞ at pi is d > ri (because the arrangement is
essential), all the fibers F have ordinary singularities of multiplicity ri at pi. This means
that F̃ has ri many branches over pi, and this is all we need: #p =

∑
i ri = d. �

Now, we can finally prove Theorem 10.1.5.

Proof of Theorem 10.1.5. This result deals with the MHS on H1(U f ; k) ∼= (H1(U ;L))∨k . In
light of Remark 10.1.2, we see that to study H1(U f ; k), it suffices to consider the case
in which A is an essential hyperplane arrangement. After intersecting with enough
generic hyperplanes, we can and will assume in this proof that A is an essential line
arrangement in C2, by a Lefschetz type argument.

Let us start by proving that H1(U f ; k)1 is a pure Hodge structure of type (1, 1). By
Proposition 7.0.1, the map H1(U ; k) → H2(U ;L) ∼= H1(U f ; k) induced by the covering
space map π : U f → U is surjective onto the (t − 1)-torsion of H1(U f ; k). Since the t-
action on H1(U f ; k) is semisimple, we get that H1(U ; k) → H1(U f ; k)1 is a surjective
MHS morphism, and the purity result follows from the fact that Hj(U ; k) is a pure
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Hodge structure of type (j, j) for all U affine hyperplane arrangement complement, by
[52].

Now, we prove that dimkH
1(U f ; k)1 = dimkH1(U f ; k)1 = d − 1. We start with the

Milnor long exact sequence (already discussed in Proposition 7.0.1)

· · · → H1(U f ; k)
t−1→ H1(U f ; k)→ H1(U ; k)

∂→ H0(U f ; k)
t−1→ H0(U f ; k)→ H0(U ; k)→ 0.

Since U f and U are connected, dimkH0(U f ; k) = 1 = dimkH0(U ; k), so H0(U f ; k)
t−1→

H0(U f ; k) is the zero map.
Now, since H1(U f ; k) is a semisimple R-module, then H1(U f ; k)/(t − 1)H1(U f ; k) ∼=

H1(U f ; k)1. Hence, the Milnor long exact sequence gives us the short exact sequence

0→ H1(U f ; k)1 → H1(U ; k)→ H0(U f ; k)→ 0.

Since dimkH1(U ; k) = d, this finishes our proof of the equality

dimkH
1(U f ; k)1 = dimkH1(U f ; k)1 = d− 1.

Recall that, by Theorem 7.4.1, GrWj H
1(U f ; k) = 0 for all j 6= 1, 2. Let F ⊂ U be a

generic fiber of f . By Corollary 7.2.1, the map

H1(U f ; k) ↪→ H1(F ; k)

induced by inclusion is a morphism of MHS. We know H1(U f ; k)1 is pure Hodge struc-
ture of weight 2 and dimension d− 1. By Lemma 10.1.8 and the inclusion above, we get
that GrW2 H

1(U f ; k)6=1 = 0, concluding our proof. �

In light of Theorem 10.1.5 and Remark 10.1.6, one might wonder in which cases the
MHS of H1(U f ; k) is pure. If d > 1, this amounts to H1(U f ; k)6=1 = 0, or equivalently,
∆1 = (t − 1)d−1, where ∆1 is the first Alexander polynomial of the line arrangement
complement. One can find sufficient conditions for ∆1 = (t − 1)d−1 in [24, Theorem 6],
for example, which translated to the notation of this paper reads as follows.

Proposition 10.1.9 ([24], Theorem 6). Let A = {L1, . . . , Ld} be an essential line arrangement
of d lines in C2, and, after reordering, let B = {L1, . . . , Ll} be the set of lines in A such that for
each line in B no other line in A is parallel to it, where 0 ≤ l ≤ d. Suppose that B 6= ∅. If for
every m > 2, there exists a line in B with no points of multiplicity divisible by m, then ∆1 is a
power of t− 1, or equivalently,

H1(U f ; k) = H1(U f ; k)1
∼= kd−1

is pure of type (1, 1).
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In particular, if there exists a line in B with only double points, the hypotheses of this propo-
sition are satisfied.

By Proposition 10.1.9, we know that there are many examples of essential line ar-
rangements such that H1(U f ; k)6=1 = 0 and H1(U f ; k) is pure of type (1, 1). Here are
some examples illustrating Theorem 10.1.5 and Remark 10.1.6, in which the MHS is not
pure.

Example 1. Consider a central line arrangement of d lines, i.e., defined by the equation
xd = yd. A simple application of the Thom-Sebastiani theorem yields that the Alexander
polynomial of the complement is

∏
α,β(t−αβ) = (td−1)d−2(t−1), where the product runs

over nth roots of unity α, β, with α 6= 1, β 6= 1. Hence, the non-zero Hodge numbers of
H1(U f ; k) are h1,1 = d− 1, h0,1 = h1,0 = (d−1)(d−2)

2
.

By Corollary 7.2.4, we have an isomorphism of MHS H1(U f ; k) ∼= H1(F ; k), where F is
the global Milnor fiber of the homogeneous polynomial f . If d = 3, the MHS (not just the
Hodge numbers) on H1(U f ; k) is determined as follows. The closure F of F in CP 2 is the
elliptic curve whose j-invariant is 0, and F is F with three points removed. Following
the proof of Lemma 10.1.8, we have the MHS isomorphism H1(U f ; k) 6=1

∼= H1(F ; k).

Example 2 (A non-central line arrangement with non-trivial H1(U f ; k)6=1). Let A be the
line arrangement defined by the zeros of f(x, y) = x(x− 1)y(y − 1)(x+ y − 1).

The Alexander polynomial is (t− 1)4(t2 + t+ 1). Hence, the non-zero Hodge numbers
of H1(U f ; k) are h1,1 = 4, h0,1 = h1,0 = 1.

We end this section with several open questions regarding the MHS on Alexander
modules for hyperplane arrangement complements.

Question 1. Is Hj(U f ; k) a semisimple R-module for j > 1?

If the question above had a positive answer, then Corollary 7.0.4 would give us a MHS
isomorphism Hj(U f ; k) ∼= Hj(U f ; k)1 ⊕ Hj(U f ; k)6=1. In that case, Hj(U f ; k)1 would be
pure of type (j, j), like part (1) of Theorem 10.1.7, and the proof would be the same
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as the j = 1 case in Theorem 10.1.5. Moreover, it would make sense to ask if the
generalization of part (2) of Theorem 10.1.7 holds, namely,

Question 2. Assume Hj(U f ; k) is a semisimple R-module. Is GrW2jH
j(U f ; k)6=1 = 0?

10.2. Future directions. Open questions. In addition to the questions already men-
tioned in Section 10.1, we list here several open problems we hope to address in the
future. Most of these are motivated by corresponding results for the (co)homology of
the Milnor fiber Fx associated to a complex hypersurface singularity germ f : (Cn, x)→
(C, 0). We aim to globalize such statements by replacing the (co)homology of the Milnor
fiber Fx with the torsion part

A∗(U
f ;Q) := TorsRH∗(U

f ;Q)

of the homology Alexander modules associated to an algebraic map f : U → C∗.

10.2.1. Semisimplicity. We begin with the following.

Question 3. Let ts denote the semisimple part of the t-action on A∗(U
f ;Q). Is ts a

morphism of MHS?

This question is a generalization of our result from Corollary 7.0.4, which provides
an affirmative answer in the case t = ts. It is motivated by the corresponding results for
the semisimple part of the monodromy operator acting on the Milnor fiber cohomology,
and, respectively, on the cohomology of the generic fiber of a proper family f : U → ∆∗

over a punctured disc (see [49, Théorème 15.13]).
It would also be interesting to find examples of pairs (U, f), with U a smooth con-

nected complex algebraic manifold and f : U → C∗ an algebraic map, for which Ai(U f ;Q)

is not a semisimple R-module for some i. In many of the algebraic situations consid-
ered in this paper, we have in fact that Ai(U f ;Q) is semisimple for all i. This applies, in
particular, to the following cases:

• When f : U = Cn \{f = 0} → C∗ is induced by a complex polynomial f : Cn → C
which is transversal at infinity (see [19, 45]), e.g., f could be a homogeneous
polynomial. More generally, Ai(U f ;Q) is semisimple in the case of Setting 7.3.3
(see [19]).
• When f : U → C∗ is a projective submersion of smooth complex algebraic vari-

eties, the semisimplicity of Ai(U f ;Q) is a consequence of Deligne’s decomposi-
tion theorem (see Remark 8.0.7).
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• When f : U → C∗ is a proper algebraic map, the semisimplicity of Ai(U f ;Q) is
a consequence of the decomposition theorem of Beilinson-Bernstein-Deligne [2]
(see Corollary 8.0.2).

Let us also point out here that the semisimplicity property does not hold in general
in the local situation, that is, for the monodromy operator acting on the (co)homology
of the Milnor fiber associated to a complex hypersurface singularity germ (see, e.g., the
discussion in [37, Section I.9]).

10.2.2. Finite type invariants. Despite the fact that (unlike the Milnor fiber of a hyper-
surface singularity germ) the infinite cyclic cover U f is not in general a CW complex
of finite type, one can associate finite type invariants to U f (or better said, to the pair
(U, f)) in terms of the R-torsion part A∗(U f ;Q) of the Alexander modules. For instance,
one can define:

• Betti numbers: bi(U, f) := dimQAi(U
f ;Q).

• mixed Hodge numbers: hp,q,i(U, f) := dimCGr
p
FGr

W
p+qAi(U

f ;C).
• spectral pairs: if the semisimple part ts of the t-action is a MHS morphism (e.g.,

if t = ts), let hp,q,iα (U, f) denote the dimension of the λ-eigenspace for the ts-
action on GrpFGr

W
p+qAi(U

f ;C), where λ = exp(2πiα) and α ∈ [0, 1). The collection
{hp,q,iα (U, f)} forms the spectral pairs of the ts-action on the MHS Ai(U f ;Q).

In future work, we aim to investigate such finite-type invariants of the pair (U, f); com-
pare with [42] for a special case.

In the case when U is the complement of an essential hyperplane arrangement, it
is also natural to ask about the combinatorial nature of such finite type invariants on
Ai(U

f ;Q). This question is motivated by similar open problems in the case of central
arrangements, where, for instance, it is still unknown if the Betti numbers of the associ-
ated Milnor fiber are determined by the intersection lattice of the arrangement. See, e.g.,
[42] for results on the case of complements of line arrangements which are transversal
at infinity, and also [6], [18], [58] for the combinatorial invariance of the Hodge spectrum
of a central arrangement and variants of this result.

10.2.3. Motivic realization. Motivated by connections between the Igusa zeta functions,
Bernstein–Sato polynomials and the topology of hypersurface singularities, Denef and
Loeser introduced in [12] the motivic Milnor fiber of a hypersurface singularity germ.
This is a virtual variety endowed with an action of the group scheme of roots of unity,
from which one can retrieve several invariants of the (topological) Milnor fiber, such
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as the Euler characteristic, Hodge spectrum, etc. More generally, to any (finite type)
infinite cyclic cover associated to a punctured neighborhood of a divisor on a smooth
quasiprojective variety, one attached in [27, 28] a motivic infinite cyclic cover. This is an
element in the Grothendieck ring K0(Varµ̂C) of complex algebraic varieties endowed with
a good action of the group scheme µ̂ of roots of unity, whose Betti realization recovers
(upon taking degrees) the Euler characteristic of the (topological) infinite cyclic cover
of the punctured neighborhood (see [27, Proposition 4.2]). In the terminology of [27,
Section 4], we can therefore ask the following.

Question 4. With U and f : U → C∗ as above, does there exist an element in (a certain
localization of) K0(Varµ̂C), whose Betti realization yields

∑
i(−1)i[Ai(U

f ;Q)] ∈ K0(V aut
Q )?

Under the semisimplicity assumption for the t-action, a similar question can be asked
about the Hodge realization of such a motive.

Here, K0(V aut
Q ) denotes the Grothendieck ring of the category of finite dimensional

Q-vector spaces endowed with a finite order automorphism (which in our case is given
by the semisimple part of the t-action).

10.2.4. Mixed Hodge module realization. To each complex algebraic variety X , M. Saito
[51] associated an abelian category MHM(X) of algebraic mixed Hodge modules on
X , in such a way that Deligne’s category of mixed Hodge structures is recovered as
mixed Hodge modules over a point space. Mixed Hodge modules are extensions in
the singular context of (admissible) variations of mixed Hodge structures, and can be
regarded, informally, as sheaves of mixed Hodge structures. Hypercohomology groups
of a variety, with coefficients in a complex of mixed Hodge modules, are naturally
endowed with mixed Hodge structures.

In recent decades, Saito’s theory has been very successful at constructing mixed
Hodge structures on new entities (e.g., on intersection cohomology groups of complex
algebraic varieties), as well as recovering previously known such structures (see, e.g.,
[46, Chapter 11] for an overview). It is therefore natural to ask the following.

Question 5. Given the pair (U, f) as before, can one recover the mixed Hodge structures
on A∗(U

f ;Q) via Saito’s mixed Hodge module theory?

For instance, motivated by Corollary 3.1.9, one can try to define a (complex of) mixed
Hodge module(s) whose underlying rational complex is L ⊗R Rm, and such that the
map ψm,m : L ⊗R Rm ↪→ L⊗R R2m comes from a map in DbMHM(U). Then for m � 0,
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the torsion part of the cohomology Alexander modules would inherit the MHS on the
kernel of this map in cohomology induced from ψm,m.

Let us just note here that the limit mixed Hodge structure of Section 9 has such a
mixed Hodge module realization. This is due to the fact that the nearby cycle functor
of constructible sheaves lifts to the derived category of bounded complexes of mixed
Hodge modules. Therefore, one can ask the following.

Question 6. Is the comparison map of Theorem 9.0.8 induced by a map of complexes
of mixed Hodge modules?

10.2.5. Comparison to the limit mixed Hodge structure in the nonproper case. Under certain
assumptions on f , a limit mixed Hodge structure can be defined even if the map f : U →
C∗ is not proper, see [54, Section 5] and also [22, 23]. It would therefore be interesting
to see if Theorem 1.0.8 holds without the properness assumption; we hope to address
this general situation in future work.

10.2.6. Generalizations to other algebraic maps. Let f : X → Y be an algebraic map of
connected complex algebraic varieties. Any such map is homotopy equivalent to a
fibration over Y . The fiber of this fibration, denoted by Ef , is called the homotopy
fiber of f . For instance, if Y is an aspherical space and f induces an epimorphism on
π1, then Ef is the covering space of X defined by the kernel of π1(X) → π1(Y ). In
[30], Hain proved that if the cohomology groups of Ef are finite dimensional and π1(Y )

acts unipotently on them, then H∗(Ef ;Q) have natural mixed Hodge structures. This
suggests generalizations of our results to allow singularities as well as to more general
algebraic maps.

Question 7. Can Theorem 1.0.2 be generalized to arbitrary complex algebraic varieties
U?

Question 8. Does Theorem 1.0.2 generalize to other algebraic maps f : X → Y ?

Let f : X → Y and Ef be defined as above. Each cohomology group H i(Ef ;Q) has
natural Q[π1(Y )]-module structure. If H i(Ef ;Q) is Noetherian, then it contains a unique
maximal Q[π1(Y )]-submodule that is a finite dimensional Q-vector space and which is
a natural generalization to the torsion part of the Alexander module considered in this
paper. We can therefore ask whether this submodule admits a natural mixed Hodge
structure.
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10.2.7. Coverings which are not realized by algebraic maps. The fact that the epimorphism
ξ : π1(U) → Z is realized by an algebraic map f : U → C∗ plays an essential role in
proving the results of this paper. It is however natural to investigate (variants of) our
original Question 1.0.1 in more topological contexts when an algebraic realization of ξ
is not readily available (e.g., if U is a smooth complex projective variety).
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