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ABSTRACT. We explore how the presence of singularities affects the geometry and topology
of complex projective hypersurfaces and of their complements.
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1. PROJECTIVE HYPERSURFACES AND THEIR COMPLEMENTS

1.1. Introduction. Generalities. Let CPn+1 be the complex projective space with homo-
geneous coordinates [x0 : x1 : . . . : xn+1]. We consider CPn+1 with its complex topology. A
homogeneous polynomial f ∈ C[x0, . . . ,xn+1] defines a projective hypersurface

V ( f ) = {x ∈ CPn+1 | f (x) = 0}.
A point x ∈V ( f ) is called singular if the tangent space of V ( f ) at x is not defined. Formally,
the singular locus of V ( f ) is:

Sing(V ( f )) = {x ∈V ( f ) | f1(x) = · · ·= fn+1(x) = 0}

where fi =
∂ f
∂xi

.
We are interested in the topology of V =V ( f ), i.e., its shape, reflected in the computation of

various topological invariants like fundamental group, Betti numbers or Euler characteristic.
For instance, let S = S2n+3 be the unit sphere in Cn+2 and let KV = S∩ V̂ be the link of f
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at the origin in Cn+2, where we denote by V̂ = {x ∈ Cn+2 | f (x) = 0} the affine cone on V .
Restricting the Hopf bundle

S1 ↪→ S2n+3→ CPn+1

to V , we get the Hopf bundle of the hypersurface V , namely

S1 ↪→ KV →V.

Using the homotopy sequence of a fibration and the fact that KV is (n−1)-connected, yields:

Proposition 1.1. The complex projective hypersurface V ⊂ CPn+1 is simply-connected for
n≥ 2 and connected for n = 1.

We also mention here the following classical result.

Theorem 1.2 (Lefschetz). Let V ⊂ CPn+1 be a complex projective hypersurface. The inclu-
sion j:V ↪→ CPn+1 induces cohomology isomorphisms

(1) j∗:Hk(CPn+1;Z)
∼=−→Hk(V ;Z) for all k < n,

and a monomorphism for k = n (regardless of the singularities of V ).

Proof. Let U =CPn+1 \V . The cohomology long exact sequence for the pair (CPn+1,V ) and
the Alexander duality isomorphism

Hk(CPn+1,V ;Z)∼= H2n+2−k(U ;Z)
show that is suffices to prove that

(i) Hi(U ;Z)∼= 0 for i > n+1,
(ii) Hn+1(U ;Z) is torsion free.

These are both consequences of the fact that U is affine of complex dimension n+ 1, and
hence, by a result of Hamm, U has the homotopy type of a CW complex of real dimension
n+1. �

Remark 1.3. In fact, it can be shown that the inclusion j : V ↪→ CPn+1 is an n-homotopy
equivalence. A similar statement holds for complete intersections.

As we will see later on, the structure of cohomology groups H i(V ;Z), for i≥ n, can be very
different from that of the projective space.

We also investigate the topology of the complement

U( f ) := CPn+1 \V ( f ),

i.e., the view of V ( f ) from the outside. This is an idea motivated by the classical Knot Theory,
where one studies embeddings of S1 into S3. The image of such an embedding is a knot K, and
S3 \K is a K(π,1)-space, i.e., all topological information about it is contained in π1(S3 \K).
The homology carries no useful information about the view of K from the outside, as H1(S3 \
K;Z) = Z. On the other hand, it is known that π1(S3 \K)∼= Z iff K is the unknot (i.e., isotopic
to the linear embedding of the circle). Knots are studied, e.g., by considering Alexander-type
invariants of the complement S3 \K, which are associated to the Z-fold covering defined by
the abelianization map π1(S3 \K)→ H1(S3 \K;Z)∼= Z.

The precise connection between Knot Theory and Hypersurface Singularities can be seen
as follows: let n = 1, and x be a point on the curve V ( f ), that is assumed to be unibranched
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at x. A small enough closed ball B in C2, centered at x, has boundary homeomorphic to S3.
Moreover V ( f )∩ ∂B is homeomorphic to S1. The corresponding knot is the unknot iff x is a
nonsingular point. If x is singular, the knotting can be studied by knot theory techniques (e.g.,
Alexander polynomial) via the local Milnor fibration of f at x.

The “local picture” of a hypersurface singularity germ is a higher-dimensional analogue of
a knot/link in S3, and is classically described by the Milnor fibration (Milnor ’68): if (X ,0)
is a hypersurface singularity germ defined at 0 ∈ Cn+1 by a reduced analytic function germ g,
then for Bε a small enough ball around 0 ∈ Cn+1, with boundary Sε , X ∩Bε is a cone over the
link K = X ∩Sε . Moreover, K is (n−2)-connected (no matter how bad the singularity at 0 is),
and for all 0 < δ � ε , there is a fibration

F = Bε ∩g−1(δ ) ↪→ Sε \K→ S1

with F a (n− s− 1)-connected manifold, where s = dimCSing(X ,0). Milnor showed that
F has the homotopy type of a finite CW complex of real dimension n. For example, in the
case of an isolated hypersurface singularity, the Milnor fibre F has the homotopy type of
a bouquet of µ(g) n-spheres, where µ(g) is called the Milnor number of g. In this case,
the Milnor fiber can be regarded as a “smoothing” of X in a neighborhood of the singular
point. Finally, if g : Cn+1→ C is homogeneous, there is a global Milnor fibration F = {g =
1} ↪→ Cn+1 \X(g)→ C∗, where X(g) = {x ∈ Cn+1 | g(x) = 0}, and it is easy to see that F is
homotopy equivalent to the Milnor fiber associated to the germ of g at the origin.

1.2. Topology of smooth complex projective hypersurfaces.

1.2.1. Diffeomorphism type. The following result states that the shape and view from outside
of a smooth projective hypersurface in CPn+1 are completely determined by its degree.

Theorem 1.4. Let f ,g ∈C[x0, . . . ,xn+1] be two homogeneous polynomials of the same degree
d, such that the corresponding projective hypersurfaces V ( f ) and V (g) are smooth. Then:

(i) The hypersurfaces V ( f ) and V (g) are diffeomorphic.
(ii) The complements U( f ) and U(g) are diffeomorphic.

Sketch of proof. The assertion follows from the fact that, given any two nonsingular degree
d hypersurfaces in CPn+1, there exists a diffeomorphism CPn+1 → CPn+1 isotopic to the
identity that restricts to a diffeomorphism of the two hypersurfaces. �

Example 1.5. The topology of a smooth projective curve (n = 1) is determined by its degree,
or equivalently, by its genus. In fact, topologically, any such curve is obtained from S2 by
attaching a number of “handles”. This number of handles is the genus. By the genus-degree
formula discussed in Example 1.8 below, we see that for d = 1 and d = 2 we get the sphere
S2 = CP1, and for d = 3 we get an elliptic curve which is diffeomorphic to the torus S1×S1.

Remark 1.6. The assertion of Theorem 1.4 is not valid for real projective hypersurfaces, nor
for complex affine hypersurfaces. For instance, a smooth real projective curve is a collection of
circles, but their exact numbers and relative position depends on the coefficients of the defining
polynomial. As an exercise, show that the real curves in RP2 defined by f = x2

0 + x2
1 + x2

2 and
g = x2

0− x2
1 + x2

2 are not diffeomorphic. Similarly, consider the complex affine curves in C2

given by f = x3 + y3−1 and g = x+ x2y−1. Then V ( f ) is homeomorphic to a torus with 3
deleted points, while V (g) is a punctured plane; hence b1(V ( f )) = 4 6= 1 = b1(V (g)).
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1.2.2. Euler characteristic.

Proposition 1.7. Let V ⊂CPn+1 be a degree d smooth complex projective hypersurface. Then
the Euler characteristic of V is given by the formula:

(2) χ(V ) = (n+2)− 1
d
{1+(−1)n+1(d−1)n+2}.

Proof. Since the diffeomorphism type of a smooth complex projective hypersurface is deter-
mined only by its degree and dimension, one can assume without any loss of generality that V
is defined by the degree d homogeneous polynomial: f = ∑

n+1
i=0 xd

i .
The affine cone V̂ = { f = 0} ⊂ Cn+2 on V has an isolated singularity at the cone point

0 ∈ Cn+2. Consider the affine Milnor fibration

F = { f = 1} ↪→ Cn+2 \V̂
f−→C∗,

whose fiber F is homotopy equivalent to a bouquet of µ (n+ 1)-dimensional spheres, where
µ is the Milnor number of f at the origin. Moreover, the map F → CPn+1 \V defined by

(x0, . . . ,xn+1) 7→ [x0 : . . . : xn+1]

is a d-fold cover of CPn+1 \V , so

(3) χ(F) = d ·χ(CPn+1 \V ) = d · (χ(CPn+1)−χ(V )).

Finally, the Milnor number of f at the origin in Cn+2 is given by µ = (d−1)n+2, hence

(4) χ(F) = 1+(−1)n+1(d−1)n+2.

The desired expression for χ(V ) follows from (3) and (4). �

Example 1.8. Assume n = 1, so V is smooth complex projective curve, i.e., a Riemann sur-
face. Topologically, such V is obtained from S2 by attaching a number of “handles”. This
number is called the it genus g(V ) of V , and χ(V ) = 2−2g(V ). Together with (2), this yields
the celebrated genus-degree formula:

g(V ) =
(d−1)(d−2)

2
.

1.2.3. Integral (co)homology. Betti numbers. Let V = { f = 0} ⊂ CPn+1 be a reduced com-
plex projective hypersurface of degree d. If the hypersurface V ⊂CPn+1 is moreover smooth,
then one gets by Theorem 1.2 and Poincaré duality that Hk(V ;Z)∼= Hk(CPn;Z) for all k 6= n.
The Universal Coefficient Theorem also yields in this case that Hn(V ;Z) is free abelian, and its
rank bn(V ) can be easily computed from formula (2) for the Euler characteristic of V . Hence:

Theorem 1.9. Let V ⊂ CPn+1 be a smooth hypersurface of degree d. Then the integral
(co)homology of V is torsion free, and the corresponding Betti numbers are given as follows:

(1) bi(V ) = 0 for i 6= n odd or i /∈ [0,2n].
(2) bi(V ) = 1 for i 6= n even and i ∈ [0,2n].

(3) bn(V ) = (d−1)n+2+(−1)n+1

d + 3(−1)n+1
2 .

Exercise 1.10. Show that the Betti numbers of a smooth cubic in CP3 are 1,0,7,0,1.
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1.3. Kato’s theorem. Assume now that V ( f ) ⊂ CPn+1 is a reduced degree d hypersurface.
Let f = f1 · · · fr be a square-free (irreducible) decomposition of f . Let Vi = { fi = 0}, i =
1, . . . ,r, be the irreducible components of V . Let di = deg( fi), hence d = ∑i di.

Using Lefschetz duality, one gets that

(5) H2n(V ;Z)∼= H2n(V1;Z)⊕·· ·⊕H2n(Vr;Z) = Zr.

In fact, H2n(V ;Z) ∼= H2n(V,Sing(V );Z) ∼= H0(V \ Sing(V );Z) ∼= Zr, since V \ Sing(V ) has
exactly r path-connected components, one for each irreducible component of V .

Moreover, the inclusion j : V ↪→ CPn+1 induces in degree 2n-cohomology the morphism

(6) j2n : H2n(CPn+1;Z)→ H2n(V ;Z) , a 7→ (d1a, . . . ,dra).

This can be seen from the fact that a generic line in CPn+1 intersects the hypersurface Vi in
exactly di points (i = 1, . . . ,r).

The following result complements Lefschetz’s Theorem 1.2.

Theorem 1.11 (Kato). Let V ⊂CPn+1 be a reduced degree d complex projective hypersurface
with s = dimCSing(V ) the complex dimension of its singular locus. (By convention, we set
s =−1 if V is nonsingular.) Then

(7) Hk(V ;Z)∼= Hk(CPn+1;Z) for all n+ s+2≤ k ≤ 2n.

Moreover, if j : V ↪→ CPn+1 denotes the inclusion, the induced cohomology homomorphisms

(8) jk : Hk(CPn+1;Z)−→ Hk(V ;Z), n+ s+2≤ k ≤ 2n,

are given by multiplication by d if k is even.

Proof. The statement of the theorem is valid only if n≥ s+2, so in particular we can assume
that V is irreducible and hence H2n(V ;Z)∼= Z. Moreover, the fact that j2n is multiplication by
d = deg(V ) is true regardless of the dimension of singular locus, see (6). If n = s+2 there is
nothing else to prove, so we may assume (without any loss of generality) that n≥ s+3.

Let S := S2n+3 be a small enough sphere at the origin in Cn+2, and let KV := S∩ V̂ be the
link at the origin of the affine cone V̂ = { f = 0} ⊂ Cn+2 on V . The fiber F of the Milnor
fibration

F ↪→ S\KV
f−→S1

of the singularity of V̂ at 0 ∈Cn+2 is (n− s−1)-connected (since the dimension of the singu-
larity of V̂ at 0 is (s+1)-dimensional). It then follows from the Wang sequence of the Milnor
fibration, i.e.,

→ Hk+1(S\KV ;Z)→ Hk(F ;Z) h∗−id→ Hk(F ;Z)→ Hk(S\KV ;Z)→

that Hk(S\KV ;Z) = 0 for 2≤ k≤ n− s−1. By Alexander duality, for k in the same range we
get

H2n+2−k(KV ;Z)∼= H2n+3−k(S,KV ;Z)∼= 0.

Equivalently,

(9) Hk(KV ;Z) = 0 for n+ s+3≤ k ≤ 2n.
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The cohomology Gysin sequences for the diagram of fibrations

S // CPn+1

KV

OO

// V

OO

yield commutative diagrams (with Z-coefficients):

(10)

H2`+1(S) −−−→ H2`(CPn+1)
ψ−−−→∼=

H2`+2(CPn+1) −−−→ H2`+2(S)y j2`
y j2`+2

y y
H2`+1(KV ) −−−→ H2`(V )

ψV−−−→∼=
H2`+2(V ) −−−→ H2`+2(KV )

Here, ψ is the cup product with the cohomology generator a ∈ H2(CPn+1;Z), and similarly,
ψV is the cup product with j2(a). For n+ s+2≤ 2`≤ 2n−2, it follows from (9) that both ψ

and ψV are isomorphisms. Once we show that H2n−1(V ;Z) = 0, the assertion about jk follows
by decreasing induction on `, using the fact mentioned at the beginning of the proof that j2n is
given by multiplication by d. To show H2n−1(V ;Z) = 0, use the above Gysin sequence to get

0 = H2n(KV ;Z)−→ H2n−1(V ;Z) ψV−→ H2n+1(V ;Z) = 0,

thus completing the proof. �

Corollary 1.12. Let V ⊂CPn+1 be a projective hypersurface which has the same Z-cohomology
algebra as CPn. If n≥ 2, then V is isomorphic as a variety to CPn.

Example 1.13. Consider the cuspidal curve C = x2y− z3 = 0 in CP2. The projection of C
from the singular point [0 : 1 : 0] onto CP1 is a homeomorphism, so C and CP1 have the same
cohomology algebra (but of course C is not isomorphic as a variety to CP1). This shows that
the assumption n≥ 2 in the above corollary is essential.

As we will see later on, the structure of cohomology groups H i(V ;Z), for i= n, . . . ,n+s+1,
can be very different from that of the projective space. Furthermore, as already observed by
Zariski in 1930s, the Betti numbers of V ( f ) depend on the position of singularities.

Example 1.14. Let

V6 = { f (x,y,z)+w6 = 0} ⊂ CP3

be a sextic surface, so that f defines a plane sextic C6 with only six cusp singular points. If the
six cusps of C6 are situated on a conic in CP2, e.g., f (x,y,z) = (x2 + y2)3 +(y3 + z3)2, then
b2(V6) = 2. Otherwise, b2(V6) = 0. This phenomenon is explained by the fact that, while the
two types of sextic curves are homeomorphic, they cannot be deformed one into the other.

1.4. Topology of projective hypersurface complements: computation of first homotopy
and homology group, relation to Milnor fiber.
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1.4.1. Fundamental group. If V = { f = 0} ⊂ CPn+1 is a hypersurface with complement

U = CPn+1 \V,

let us assume that s = dimSing(V )≤ n−2. Then the Milnor fiber F of f at the origin in Cn+2

is simply-connected, so the d-fold covering F →U is the universal covering for U . It follows
that

π1(U)∼= Z/dZ
and

πi(U) = 0 for i = 0 or 2≤ i≤ n− s−1.

1.4.2. First homology group. Assume now that V ( f ) ⊂ CPn+1 is reduced, i.e., f = f1 · · · fr
is a square-free polynomial, with irreducible components Vi = { fi = 0}, i = 1, . . . ,r. Let
di = deg( fi), i = 1, . . . ,r. Let U = CPn+1 \V . Then

Proposition 1.15.
H1(U ;Z)∼= Zr−1⊕Z/gcd(d1, . . . ,dr)Z.

Proof. By Alexander duality, there is an isomorphism

H1(U ;Z)∼= H2n+1(CPn+1,V ;Z).
The cohomology long exact sequence of the pair (CPn+1,V ) yields

H2n(CPn+1,Z) j2n

→ H2n(V,Z)→ H2n+1(CPn+1,V ;Z)→ 0,

with j : V ↪→ CPn+1 the inclusion map. The assertion follows now from (5) and (6), i.e.,

H2n(V ;Z)∼= H2n(V1;Z)⊕·· ·⊕H2n(Vr;Z) = Zr,

and the projection of j2n on H2n(Vi;Z) is given by multiplication by di. �

Corollary 1.16. If X ⊂ Cn+1 is an affine hypersurface with r irreducible components, then

H1(Cn+1 \X ;Z)∼= Zr.

Proof. Apply the previous result to V = X̄∪H∞⊂CPn+1, where X̄ is the projective completion
of X and H∞ = CPn+1 \Cn+1 is the hyperplane at infinity. �

1.4.3. Further relation to Milnor fiber. We need the following:

Lemma 1.17. If V = { f = 0} ⊂ CPn+1 is a degree d reduced projective hypersurface, the
inclusion map j:V ↪→ CPn+1 induces momomorphisms

(11) jk:Hk(CPn+1;C)� Hk(V ;C) for all k with 0≤ k ≤ 2n.

Proof. Exercise. �

In particular, the long exact sequence for the cohomology of (CPn+1,V ) breaks into short
exact sequences:

(12) 0−→ Hk(CPn+1;C)−→ Hk(V ;C)−→ Hk+1(CPn+1,V ;C)→ 0.

On the other hand, the Alexander duality yields isomorphisms:

(13) Hk+1(CPn+1,V ;C)∼= H2n+1−k(U ;C).
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If F = { f = 1} is the affine Milnor fiber of the homogeneous polynomial f , with the corre-
sponding monodromy homeomorphism h (which is given by multiplication by a primitive dth
root of unity), then one has as above the identification U = F/〈h〉, and hence

(14) H∗(U ;C)∼= H∗(F ;C)h∗,

the fixed part under the homology monodromy operator. Combining (12), (13) and (14), one
gets the following useful consequence.

Corollary 1.18. A hypersurface V = { f = 0} ⊂ CPn+1 has the same C-cohomology as CPn

if and only if the monodromy operator

h∗: H̃∗(F ;C)−→ H̃∗(F ;C)
acting on the reduced C-homology of the corresponding affine Milnor fiber F = { f = 1}, has
no eigenvalue equal to 1.

Example 1.19. The hypersurface Vn = {x0x1 · · ·xn + xn+1
n+1 = 0} has the same C-cohomology

as CPn. However, it can be shown that the Z-cohomology groups of Vn may contain torsion.

2. VANISHING CYCLES AND APPLICATIONS

2.1. Nearby and vanishing cycles. Specialization. Let f :X →D⊂C be a proper holomor-
phic map defined on a complex analytic variety X , where D is a small disc at the origin. Let
Xt = f−1(t) be the fiber over t ∈D. For x ∈ X0, let B̊ε,x be an open ball of small enough radius
ε in X , centered at x. (If X is singular, such a ball is defined by using an embedding of the germ
(X ,x) in a complex affine space.) Then for |t| non-zero and sufficiently small, Fx = B̊ε,x∩Xt
is a (local) Milnor fiber of f at x.

This local Milnor information at points in X0 = f−1(0) has been sheafified by Grothendieck
and Deligne, who defined nearby and vanishing cycle complexes of sheaves ψ f AX , resp., ϕ f AX
(where A is a ring of coefficients, e.g., Z or a field, and AX is the constant sheaf with stalk A
on X). More precisely, the stalk at x ∈ X0 of the cohomology sheaves of these complexes is
computed as:

H k(ψ f AX)x ∼= Hk(Fx;A) and H k(ϕ f AX)x ∼= H̃k(Fx;Z).
If, moreover, X is smooth, then since the Milnor fiber at a smooth point of X0 is contractible,
the vanishing cycle complex is supported only on Sing(X0).

Since f is proper, the (hyper)cohomology groups of these complexes fit into the following
specialization sequence:

(15) · · · −→ Hk(X0;A)−→ Hk(Xt ;A)−→ Hk(X0;ϕ f AX)−→ ·· ·
for t ∈ D∗. So, just like in the local case, the vanishing cycle complex measures the change in
topology under the specialization map sp : Xt → X0. Moreover, if A is a field, using the fact
that the fibers of f are compact, the corresponding Euler characteristics are well defined and
one gets

(16) χ(Xt) = χ(X0)+χ(X0,ϕ f ZX),

with
χ(X0,ϕ f AX) := χ

(
H∗(X0;ϕ f AX)

)
.
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Assume next that the fibers of f are complex algebraic varieties, like in the situations con-
sidered below. Then χ(X0,ϕ f AX) can be computed in terms of a stratification of X0, by using
the additivity and multiplicativity properties of the Euler characteristic. For instance, if X is
nonsingular and S is a stratification of X0 such that ϕ f AX is S -constructible, one gets:

Lemma 2.1.

(17) χ(X0,ϕ f AX) = ∑
S∈S

χ(S) ·µS,

where
µS := χ

(
H ∗(ϕ f AX)xS

)
= χ

(
H̃∗(FxS ;A)

)
is the Euler characteristic of the reduced cohomology of the Milnor fiber FxS of f at some point
xS ∈ S.

Example 2.2 (Isolated singularities). In the above notations, assume moreover that X is non-
singular and the zero-fiber X0 has only isolated singularities.

Assume dimCX = n+1. Then, for x∈ Sing(X0), the corresponding Milnor fiber Fx'
∨

µx
Sn

is up to homotopy a bouquet of n-spheres, and the stalk calculation for vanishing cycles yields:

Hk(X0;ϕ f AX)
∼=

⊕
x∈Sing(X0)

H k(ϕ f AX)x =

{
0, k 6= n,⊕

x∈Sing(X0) H̃n(Fx;A), k = n.

Then the long exact sequence (15) becomes the following specialization sequence:

0−→ Hn(X0;A)−→ Hn(Xt ;A)−→
⊕

x∈Sing(X0)

H̃n(Fx;A)

−→ Hn+1(X0;A)−→ Hn+1(Xt ;A)−→ 0,

for t ∈ D∗, together with isomorphisms

Hk(X0;A)∼= Hk(Xt ;A) , for k 6= n,n+1.

Taking Euler characteristics, one gets for t ∈ D∗ the identity:

χ(Xt) = χ(X0)+ ∑
x∈Sing(X0)

χ(H̃∗(Fx;A)) = χ(X0)+(−1)n
∑

x∈Sing(X0)

µx

or, equivalently,

(18) χ(X0) = χ(Xt)+(−1)n+1
∑

x∈Sing(X0)

µx.

2.2. Vanishing cycles for a family of complex projective hypersurfaces and applications.
Let V = { f = 0} ⊂ CPn+1 be a reduced complex projective hypersurface of degree d. Fix a
Whitney stratification S of V and consider a one-parameter smoothing of degree d, namely

Vt := { ft = f − tg = 0} ⊂ CPn+1 (t ∈ C),
for g a general polynomial of degree d. Note that, for t 6= 0 small enough, Vt is smooth and
tranversal to the stratification S . Let

B = { f = g = 0}
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be the base locus of the pencil. Consider the incidence variety

VD := {(x, t) ∈ CPn+1×D | x ∈Vt},

with D a small disc centered at 0 ∈C so that Vt is smooth for all t ∈D∗ := D\{0}. Denote by

π:VD→ D

the proper projection map, and note that V = V0 = π−1(0) and Vt = π−1(t) for all t ∈ D∗. In
what follows we will write V for V0 and use Vt for a “smoothing” of V .

By definition, the incidence variety VD is a complete intersection of pure complex dimension
n+1. It is nonsingular if V =V0 has only isolated singularities, but otherwise it has singulari-
ties where the base locus B of the pencil { ft}t∈D intersects the singular locus Σ := Sing(V ) of
V .

In what follows we give applications of the vanishing cycle complex ϕπAVD
associated to

the projection π .

2.2.1. Euler characteristic of an arbitrary complex projective hypersurface. Consider the
specialization sequence (15) for π , namely:

(19) · · · −→ Hk(V ;A)
spk

−→ Hk(Vt ;A) cank
−→ Hk(V ;ϕπAVD

)−→ Hk+1(V ;A)
spk+1

−→ ·· ·

Here, the maps spk are the specialization morphisms in cohomology, while the maps cank are
called “canonical” morphisms.

Recall that the stalk of the cohomology sheaves of ϕπAVD
at a point x ∈V are computed by:

H j(ϕπAVD
)x ∼= H̃ j(Bx∩Vt ;A),

where Bx denotes the intersection of VD with a sufficiently small ball in some chosen affine
chart Cn+1×D of the ambient space CPn+1×D (hence Bx is contractible). Here Bx∩Vt = Fπ,x
is the Milnor fiber of π at x. Let us now consider the function

h := f/g:CPn+1 \W → C

where W := {g= 0}, and note that h−1(0) =V \B with B=V ∩W the base locus of the pencil.
If x ∈V \B, then in a neighborhood of x one can describe Vt (t ∈ D∗) as

{x | ft(x) = 0}= {x | h(x) = t},

that is, as the Milnor fiber of h at x. Note also that h defines V in a neighborhood of x /∈B. Since
the Milnor fiber of a complex hypersurface singularity germ does not depend on the choice of
a local equation, we can therefore use h or a local representative of f when considering Milnor
fibers of π at points in V \B. We will therefore use the notation Fx for the Milnor fiber of the
hypersurface singularity germ (V,x).

It is a well known fact that the projection π has no vanishing cycles along the base locus B
(in fact, by integrating a controlled vector field, it can be shown that the Milnor fiber of π at a
point in B is contractible.) In view of the above discussion, we get from (16):

χ(Vt) = χ(V )+χ(V \B,ϕhAVD
).(20)

Therefore, Lemma 2.1 yields the following result.
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Theorem 2.3 (Parusinśki-Pragacz). Let V = { f = 0} ⊂ CPn+1 be a reduced complex projec-
tive hypersurface of degree d, and fix a Whitney stratification S of V . Let W = {g = 0} ⊂
CPn+1 be a smooth degree d projective hypersurface which is transversal to S . Then

(21) χ(V ) = χ(W )− ∑
S∈S

χ(S\W ) ·µS,

where
µS := χ

(
H̃∗(FxS ;A)

)
is the Euler characteristic of the reduced cohomology of the Milnor fiber FxS of V at some
point xS ∈ S.

Example 2.4 (Isolated singularities). If the degree d hypersurface V ⊂ CPn+1 has only iso-
lated singularities, one gets by (21) and Proposition 1.7 the following formula for the Euler
characteristic of V :

(22) χ(V ) = (n+2)− 1
d
{1+(−1)n+1(d−1)n+2}+(−1)n+1

∑
x∈Sing(V )

µx.

In particular, if V is a projective curve (i.e., n = 1), then the Betti numbers of V are computed
as: b0(V ) = 1; b2(V ) = r, with r denoting the number of irreducible components of V (e.g.,
see (5)); finally, (22) yields that

(23) b1(V ) = r+1+d2−3d− ∑
x∈Sing(V )

µx.

2.2.2. Vanishing (co)homology and integral (co)homology of projective hypersurfaces; Betti
numbers estimates (in the range not covered by Kato’s theorem). For a singular degree d
reduced projective hypersurface V , consider a one-parameter smoothing Vt together with the
incidence variety VD and projection map π:VD→ D, as in the previous section. We note that
since the incidence variety VD = π−1(D) deformation retracts to V = π−1(0), it follows readily
that

Hk(V ;ϕπAVD
)∼= Hk+1(VD,Vt ;A).

These groups are call the vanishing cohomology groups of V , and they will be denoted by
Hk

ϕ(V ). In particular, the groups Hk
ϕ(V ) are the cohomological version of the vanishing ho-

mology groups
Hgk (V ) := Hk(VD,Vt ;Z)

introduced and studied by Siersma-Tibăr.
Properties of vanishing cycles together with vanishing results of Artin type can be used to

prove the following result, which generalizes the situation of Example 2.2 as well as results of
Siersma-Tibăr for 1-dimensional singularities.

Theorem 2.5 (M.-Tibăr-Păunescu). Let V ⊂ CPn+1 be a degree d reduced projective hyper-
surface with s = dimCSing(V ). Then

(24) Hk
ϕ(V )∼= 0 for all integers k /∈ [n,n+ s].

Moreover, Hn
ϕ(V ) is a free abelian group.
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By the Universal Coefficient Theorem, we get the concentration degrees of the vanishing
homology groups Hgk (V ) of a projective hypersurface in terms of the dimension of its singular
locus (proved by Siersma-Tibăr for 1-dimensional singularities):

Corollary 2.6. With the above notations and assumptions, we have that

(25) Hgk (V )∼= 0 for all integers k /∈ [n+1,n+ s+1].

Moreover, Hgn+s+1(V ) is free.

An immediate consequence of Theorem 2.5 and of the specialization sequence (19) is the
following result on the integral cohomology of a complex projective hypersurface.

Corollary 2.7. Let V ⊂CPn+1 be a degree d reduced projective hypersurface with a singular
locus of complex dimension s. Then:

(i) Hk(V ;Z)∼= Hk(Vt ;Z)∼= Hk(CPn;Z) for all integers k /∈ [n,n+ s+1].
(ii) Hn(V ;Z)∼= Ker (cann) is free.

(iii) Hn+s+1(V ;Z)∼= Hn+s+1(CPn;Z)⊕Coker (cann+s).
(iv) Hk(V ;Z)∼= Ker (cank)⊕Coker (cank−1) for all integers k ∈ [n+1,n+ s], s≥ 1.

In particular,

bn(V )≤ bn(Vt) =
(d−1)n+2 +(−1)n+1

d
+

3(−1)n +1
2

,

and

bk(V )≤ rk Hk−1
ϕ (V )+bk(CPn) for all integers k ∈ [n+1,n+ s+1], s≥ 0.

Remark 2.8. One can easily formulate the homological counterpart of the above corollary,
which in particular yields that Hn+s+1(V ;Z) is free. Note also that, since Hk(Vt ;Z) is free for
all k, Ker (cank) is also free. So the torsion in Hk(V ;Z) for k ∈ [n+ 1,n+ s+ 1] may also
come from the summand Coker (cank−1).

The ranks of the (possibly non-trivial) vanishing (co)homology groups can be estimated in
terms of the local topology of singular strata and of their generic transversal types by making
use of homological algebra techniques (e.g., the hypercohomology spectral sequence). Such
estimates can be made precise for hypersurfaces with low-dimensional singular loci. Con-
cretely, as special cases of Corollary 2.7, one recasts Siersma-Tibăr’s result for s ≤ 1, and in
particular Dimca’s computation for s = 0. Concerning the estimation of the rank of the highest
interesting (co)homology group, we get:

Theorem 2.9 (M.-Tibăr-Păunescu). Let V ⊂ CPn+1 be a degree d reduced projective hy-
persurface with a singular locus of complex dimension s. For each connected stratum Si ⊆
Sing(V ) of top dimension s in a Whitney stratification of V , let Fti denote its transversal
Milnor fiber with corresponding Milnor number µti . Then:

(26) bn+s+1(V )≤ 1+∑
i

µ
t
i ,

and the inequality is strict for n+ s even.
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In fact, the inequality in (26) is deduced from

(27) bn+s+1(V )≤ 1+ rk Hn+s
ϕ (V ),

together with

(28) rk Hn+s
ϕ (V )≤∑

i
µ
t
i ,

and the inequality (27) is strict for n+ s even. Note that if s = 0, i.e., V has only isolated
singularities, then µti is just the usual Milnor number of such a singularity of V .

Example 2.10 (Singular quadrics). Let n and q be integers satisfying 4≤ q≤ n+1, and let

fq(x0, . . .xn+1) = ∑
0≤i, j≤n+1

qi jxix j

be a quadric of rank q := rk(Q) with Q = (qi j). The singular locus Σ of the quadric hypersur-
face Vq = { fq = 0} ⊂ CPn+1 is a linear space of complex dimension s = n+1−q satisfying
0 ≤ s ≤ n− 3. The generic transversal type for Σ = CPs is an A1-singularity, so µt = 1. A
direct calculation shows that if the rank q is even (i.e., n+ s+1 is even), then bn+s+1(Vq) = 2,
and hence the upper bound in (26) is sharp.

Exercise 2.11. Compute the integral cohomology of the quadric hypersurface Vq = { fq =

0} ⊂ CPn+1 from the previous example.

Let us remark that if the projective hypersurface V ⊂ CPn+1 has singularities in codimen-
sion 1, i.e., s = n− 1, then using (5) we get bn+s+1(V ) = b2n(V ) = r, where r denotes the
number of irreducible components of V . In particular, Theorem 2.9 yields the following:

Corollary 2.12. If the reduced projective hypersurface V ⊂ CPn+1 has singularities in codi-
mension 1, then the number r of irreducible components of V satisfies the inequality:

(29) r ≤ 1+∑
i

µ
t
i .

Remark 2.13. Note that if the projective hypersurface V ⊂CPn+1 is a Q-homology manifold,
then the Lefschetz isomorphism (3.4) and Poincaré duality over the rationals yield that bi(V )=
bi(CPn) for all i 6= n. Moreover, bn(V ) can be deduced by computing the Euler characteristic
of V , as in Theorem 2.3.

The computation of Betti numbers of a projective hypersurface which is a rational homol-
ogy manifold can be deduced without appealing to Poincaré duality by using the vanishing
cohomology instead, as the next result shows:

Proposition 2.14 (M.-Tibăr-Păunescu). If the projective hypersurface V ⊂ CPn+1 is a Q-
homology manifold, then Hk

ϕ(V )⊗Q ∼= 0 for all k 6= n. In particular, in this case one gets:
bi(V ) = bi(Vt) = bi(CPn) for all i 6= n, and bn(V ) = bn(Vt)+ rkHn

ϕ(V ).

Example 2.15. Let V = { f = 0} ⊂ CP4 be the 3-fold in homogeneous coordinates [x : y : z :
t : v], defined by

f = y2z+ x3 + tx2 + v3.
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The singular locus of V is the projective line Σ = {[0 : 0 : z : t : 0] | z, t ∈ C}. By (3.4), we
get: b0(V ) = 1, b1(V ) = 0, b2(V ) = 1. Since V is irreducible, (5) yields: b6(V ) = 1. We are
therefore interested to understand the Betti numbers b3(V ), b4(V ) and b5(V ).

V has a Whitney stratification with strata:

S3 :=V \Σ, S1 := Σ\ [0 : 0 : 0 : 1 : 0], S0 := [0 : 0 : 0 : 1 : 0],

giving V a two-step filtration V ⊃ Σ⊃ [0 : 0 : 0 : 1 : 0].
The transversal singularity for the top singular stratum S1 is the Brieskorn type singularity

y2 + x3 + v3 = 0 at the origin of C3 (in a normal slice to S1), with corresponding transversal
Milnor number µt1 = 4. So Theorem 2.9 yields that b5(V ) ≤ 5, while Corollary 2.7 gives
b3(V )≤ 10. As we will indicate below, the actual values of b3(V ) and b5(V ) are zero.

It can in fact be shown that the hypersurface V is in fact a Q-homology manifold, so it
satisfies Poincaré duality over the rationals. In particular, b5(V ) = b1(V ) = 0 and b4(V ) =
b2(V ) = 1. To determine b3(V ), it suffices to compute the Euler characteristic of V , since
χ(V ) = 4− b3(V ). Let us denote by Y ⊂ CP4 a smooth 3-fold which intersects the Whitney
stratification of V transversally. Then (2) yields that χ(Y ) =−6 and we have by Theorem 2.3
that

(30) χ(V ) = χ(Y )−χ(S1 \Y ) ·µt1 −χ(S0) · (χ(F0)−1),

where F0 denotes the Milnor fiber of V at the singular point S0. By local inspection it can be
shown that F0 ' S3∨S3. So, using the fact that the general 3-fold Y intersects S1 at 3 points,
we get from (30) that χ(V ) = 4. Hence b3(V ) = 0. Moreover, since H3(V ;Z) is free, this also
shows that in fact H3(V ;Z)∼= 0.

Exercise 2.16. Compute the integral cohomology and vanishing cohomology groups of the
projective cone on the projective curve C = {xyz = 0} ⊂ CP2.

At this end, we mention here the following supplement to the Lefschetz hyperplane sec-
tion theorem for hypersurfaces, which can be used to give a new (inductive) proof of Kato’s
Theorem 1.11 (without using the connectivity of the Milnor fiber):

Theorem 2.17 (M.-Tibăr-Păunescu). Let V ⊂ CPn+1 be a reduced complex projective hyper-
surface with s = dimSing(V ) the complex dimension of its singular locus. (By convention, we
set s =−1 if V is nonsingular.) Let H ⊂CPn+1 be a generic hyperplane (i.e., transversal to a
Whitney stratification of V ), and denote by VH :=V ∩H the corresponding hyperplane section
of V . Then

(31) Hk(V,VH ;Z) = 0 for k < n and n+ s+1 < k < 2n.

Moreover, H2n(V,VH ;Z) ∼= Zr, where r is the number of irreducible components of V , and
Hn(V,VH ;Z) is (torsion-)free.

Proof. The long exact sequence for the cohomology of the pair (V,VH) together with (5) yield
that:

H2n(V,VH ;Z)∼= H2n(V ;Z)∼= Zr.

Moreover, we have isomorphisms:

Hk(V,VH ;Z)∼= Hk
c (V

a;Z),
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where V a := V \VH . Therefore, the vanishing in (31) for k < n is a consequence of the Artin
vanishing theorem for the n-dimensional affine variety V a. Note that vanishing in this range is
equivalent to the classical Lefschetz hyperplane section theorem.

Since V is reduced, we have that s < n. If n = s+1 then n+ s+1 = 2n and there is nothing
else to prove in (31). So let us now assume that n > s+1. For n+ s+1 < k < 2n, we have the
following sequence of isomorphisms:

Hk(V,VH ;Z)∼= Hk(V ∪H,H;Z)
∼= H2n+2−k(CPn+1 \H,CPn+1 \ (V ∪H);Z)
∼= H2n+1−k(CPn+1 \ (V ∪H);Z),

(32)

where the first isomorphism follows by excision, the second is an application of the Poincaré-
Alexander-Lefschetz duality, and the third follows from the cohomology long exact sequence
of a pair. Set

M = CPn+1 \ (V ∪H),

and let L = CPn−s be a generic linear subspace (i.e., transversal to both V and H). Then, by
transversality, L∩V is a nonsingular hypersurface in L, transversal to the hyperplane at infinity
L∩H in L. Therefore, M∩L = L\ (V ∪H)∩L has the homotopy type of a wedge

M∩L' S1∨Sn−s∨ . . .∨Sn−s.

Thus, by the Lefschetz hyperplane section theorem (applied s+1 times), we obtain:

Hi(M;Z)∼= Hi(M∩L;Z)∼= 0

for all integers i in the range 1 < i < n− s. Substituting i = 2n+ 1− k in (32), we get that
Hk(V,VH ;Z)∼= 0 for all integers k in the range n+ s+1 < k < 2n. �

Remark 2.18. An interesting fact about the shape of projective hypersurfaces is the following
result of Dimca-Papadima. Let H be a hyperplane in CPn+1 that is transversal to V ( f ). Then
Dimca-Papadima showed that the affine part V a( f ) = V ( f ) \H is homotopy equivalent to a
bouquet of n-spheres. The number of spheres in this bouquet depends only on V (and not on
the defining polynomial f ), and is called the polar degree of f . It was originally introduced as
the topological degree of the Gauss map

grad : CPn+1 \Sing(V )→ CPn+1

and conjectured (by Dolgachev) to to a topological invariant of V .
Of course, the difficult problem (as indicated by the above theorem) is to glue the informa-

tion on V a( f ) and V ( f )∩H in order to obtain useful information about V ( f ).

3. ALEXANDER MODULES OF HYPERSURFACE COMPLEMENTS

In this section, we give a brief overview of global analogues of the Milnor fibration, together
with a local-to-global analysis.
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3.1. Definition. Preliminaries. Let X = { f = f1 · · · fr = 0} ⊂ Cn+1 be a reduced, degree
d hypersurface in general position at infinity (i.e., the hyperplane H∞ at infinity in CPn+1 is
transversal in the stratified sense on the projective completion X̄ of X). Set

M = Cn+1 \X = CPn+1 \ (X̄ ∪H∞).

Then H1(M)∼= Zr (cf. Corollary 1.16), generated by meridian loops γi about the non-singular
part of each irreducible component Xi of X . (Note the similarity with link theory.)

The homotopy type of M can described as in Sect. 1.4.1 (or by using the Lefschetz hyper-
plane section theorem) as follows.

Proposition 3.1 (Libgober). With the above notations and assumptions, if X has no codimen-
sion 1 singularities, then:

(33)

{
π1(M) = Z
πi(M) = 0, for 1 < i≤ n− s−1, s = dimCSing(X).

Let Mc be the infinite cyclic cover of M corresponding to the kernel of the total linking
number homomorphism lk : π1(M)→ Z, lk(γi) = 1, i = 1, . . . ,r. Under the action of the deck
group Z, each Hi(Mc;Q) becomes a Γ :=Q[t, t−1]-module, called the i-th Alexander modules
of the hypersurface complement. One should think of Mc as a global counterpart of the Milnor
fibration.

Since Γ is PID, torsion Γ-modules have well-defined associated polynomials (also called
orders).

Since M is affine of complex dimension n+ 1, it is homotopy equivalent to a finite CW-
complex of dimension n+1. This implies that each Hi(Mc;Q) is of finite type over Γ (but not
over Q). Moreover,

(34)

{
Hi(Mc;Q)∼= 0 for i > n+1
Hn+1(Mc;Q) is free over Γ

The goal is to get interesting information about Hi(Mc;Q), i≤ n.
If X is non-singular, then (33) yields that Mc is the universal cover of M and

H̃i(Mc;Z)∼= 0 for i < n+1

The case of a hypersurface X with only isolated singularities (including at infinity, though
we restrict here to transversality at infinity), was considered by Libgober, following a sugges-
tion by Mumford. Libgober proved that the only interesting Alexander module, Hn(Mc;Q), is
a torsion Γ-module. Moreover, if

∆n(t) := orderHn(Mc;Q),

then ∆n(t) has all zeros among roots of unity of order d, and it divides (up to a factor (t−1)r−1)
the product:

∏
x∈Sing(X)

∆x(t)

of the local Alexander polynomials associated to the isolated singularities of X . So ∆n depends
on the local type of singularities. The fact that ∆n(t) is cyclotomic already imposes strong re-
strictions on the type of groups that can be fundamental groups of hypersurface complements,
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given partial answers to a question of Serre. For instance, the group of the figure eight knot
(with ∆(t) = t2−3t +1) cannot be of the form π1(C2 \X).

Example 3.2. Let C̄ ⊂ CP2 be a degree d irreducible curve having only nodes and cusps as
singular points. Let C = C̄ \L for L a generic line. If d 6= 0 (mod 6), the above divisibility
result implies that ∆C(t) = 1.

Example 3.3 (Zariski-Libgober). If C̄ ⊂ CP2 is an irreducible sextic having only cusps sin-
gularities, then the global Alexander polynomial ∆C(t) of the curve C is either 1 or a power of
t2− t +1. There are two distinct cases:

(1) if C̄ is in “special position”, i.e., the 6 cusps are on a conic, then ∆C(t) = t2− t + 1
(and π1(C2 \C) = B3).

(2) if C̄ is in “general position”, i.e., the cusps are not on a conic, then ∆C(t) = 1 (and
π1(C2 \C) is abelian).

So the global Alexander polynomials also depend on the position of singularities.

3.2. Non-isolated singularities. Libgober’s work has been generalized to the non-isolated
singularities case by the lecturer, using intersection homology, perverse sheaves, etc. Follow
up work was done by Dimca-Libgober, Liu, etc.

Theorem 3.4 (M.). For i≤ n, Hi(Mc;C) is a finitely generated semi-simple torsion C[t, t−1]-
module (hence a finite dimensional C-vector space), which is annihilated by td − 1. (Recall
that d = deg f .)

Proof. Let S∞ be a (2n+1)-sphere in Cn+1 of a sufficiently large radius (i.e., the boundary of
a small tubular neighborhood in CPn+1 of the hyperplane H∞ at infinity). Denote by X∞ :=
S∞∩X the link of X at infinity, and by M∞ = S∞ \X∞ the corresponding complement. Let Mc

∞

be the infinite cyclic cover of M∞ defined by the composition

lk∞ : π1(M∞)→ π1(M)
lk→ Z.

Note that M∞ is homotopy equivalent to T (H∞) \ (X̄ ∪H∞), where T (H∞) is the tubular
neighborhood of H∞ in CPn+1 for which S∞ is the boundary. Then a classical argument based
on the Lefschetz hyperplane theorem yields that the homomorphism πi(M∞)→ πi(M) induced
by inclusion is an isomorphism for i < n and it is surjective for i = n. It follows that

πi(M,M∞) = 0 for i≤ n,

hence M has the homotopy type of a CW complex obtained from M∞ by adding cells of
dimension≥ n+1. So the same is true for any covering, and in particular for the corresponding
infinite cyclic coverings. So the group homomorphisms

(35) Hi(Mc
∞;C)→ Hi(Mc;C)

are isomorphisms for i < n and surjective for i = n. Since these group homomorphisms are
induced by an inclusion map, they are in fact C[t, t−1]-module homomorphisms.

In view of (35), it suffices to prove that the Alexander modules at infinity Hi(Mc
∞;C) (i≤ n)

are torsion semi-simple C[t, t−1]-modules, which are annihilated by td − 1. For this we note
that M∞ is a circle fibration over H \ X̄ ∩H, which is homotopy equivalent to the complement
in Cn+1 to the affine cone over the projective hypersurface X̄ ∩H = { fd = 0}, where fd is
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the top degree monomial (of degree d) of f . Hence the infinite cyclic cover Mc
∞ is homotopy

equivalent to the Milnor fiber { fd = 1} of fd , so Hi(Mc
∞;C) (i ≤ n) is a torsion finitely gen-

erated C[t, t−1]-module. Moreover, since the monodromy of the Milnor fibration mentioned
above is of finite order d (and hence semisimple), it also follows that these Alexander modules
at infinity in the range i≤ n are semi-simple and annihilated by td−1. �

Definition 3.5. For i≤ n, the order, ∆i(t) of Hi(Mc;Q) is the characteristic polynomial of the
generating covering transformation, and is called the i-th global Alexander polynomial of the
hypersurface X .

Corollary 3.6. rankΓHn+1(Mc;Q) = (−1)n+1χ(M) = pol(X̄), where pol(X̄) is the polar de-
gree of the projectivisation of X.

As a consequence of Theorem 3.4, we get.

Corollary 3.7. The zeros of ∆i(t), i≤ n, are roots of unity of order d.

Remark 3.8 (Affine cone on projective hypersurface arrangements in CPn). If X is defined
by a degree d homogeneous polynomial f , then there is a Γ-module isomorphism:

Hi(Mc;Q)∼= Hi(F ;Q),

where F = f−1(1) is the fiber of the global Milnor fibration M = Cn+1− f−1(0)
f→ C∗ asso-

ciated to the homogeneous polynomial f , and the module structure on Hi(F ;Q) is induced by
the monodromy action. Hence zeros of the global Alexander polynomials of X coincide with
the eigenvalues of the monodromy operators acting on the homology of F . Since the mon-
odromy homeomorphism has finite order d, all these eigenvalues are roots of unity of order d.
So a polynomial in general position at infinity behaves much like a homogeneous polynomial.

Since Hi(Mc;Q) is a finite dimensional Q-vector space for i≤ n, it is natural to investigate
the existence of mixed Hodge structures on these Alexander modules. We have:

Theorem 3.9 (Dimca-Libgober, Liu). For i≤ n, there is a mixed Hodge structure on Hi(Mc;Q).

3.2.1. Divisibility. In this section we explain how the global Alexander invariants of a hyper-
surface can be understood in terms of local topological information around the singularities.

Let S be a Whitney stratification of X , i.e. a decomposition of X into disjoint connected
non-singular subvarieties {Sα}, called strata, such that X is uniformly singular along each
stratum. This yields a Whitney stratification of the pair (Cn+1,X), with S the set of singular
strata. Fix S ∈S a k-dimensional stratum of (Cn+1,X). A point p ∈ S has an associated link
pair (S2n−2k+1(p),K(p)), defined as before in a normal slice to the stratum. The link pair has
constant topological type along S, denoted by (S2n−2k+1,K). This is a singular algebraic link,
and has an associated local Milnor fibration:

Fk ↪→ S2n−2k+1 \K→ S1

with fibre Fk and monodromy hk : Fk→ Fk. Let

∆
k
j(t) = det(tI− (hk)∗ : H j(Fk;Q)→ H j(Fk;Q))

be the j-th local Alexander polynomial associated to S.
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Theorem 3.10 (M.). Fix an arbitrary irreducible component of X, say X1, and fix i≤ n. Then
the zeros of ∆i(t) are among the zeros of polynomials ∆k

j(t), associated to links of strata S⊂X1,
such that n− i≤ k = dimS ≤ n, and j is in the range 2n−2k− i≤ j ≤ n− k. Moreover, if X
has no codimension 1 singularities and is a rational homology manifold, then ∆i(1) 6= 0.

Remark 3.11. 0-dim strata of X only contribute to ∆n, 1-dim strata contribute to ∆n and ∆n−1
and so on.

Corollary 3.12 (Vanishing of Alexander polynomials). Let X be a degree d hypersurface in
general position at infinity, which is rationally smooth and has no codimension 1 singularities.
Assume that the local monodromies of link pairs of strata contained in some irreducible com-
ponent X1 of X have orders which are relatively prime to d (e.g., the transversal singularities
along strata of X1 are Brieskorn-type singularities, having all exponents relatively prime to
d). Then ∆i(t)∼ 1, for 1≤ i≤ n.

Exercise 3.13. Compute the Alexander polynomials for X = {y2z+ x3 + x2 + v3 = 0} ⊂ C4.

Remark 3.14 (Projective hypersurface arrangements). Applying the divisibility result of The-
orem 3.10 to the case when X is the affine cone over a projective hypersurface arrangement
in CPn (i.e., X is defined by a homogeneous polynomial), we get a similar result for the
characteristic polynomials Pq(t) (q ≤ n− 1) of monodromy operators of the Milnor fiber of
the arrangement, thus upper bounds for the multiplicities of eigenvalues of the monodromy
operators.

Corollary 3.15 (Triviality of monodromy). If λ 6= 1 is a d-th root of unity such that λ is not
an eigenvalue of any of the local monodromies corresponding to link pairs of singular strata
of Y1 in a stratification of the pair (CPn,Y ), then λ is not an eigenvalue of the monodromy
operators acting on Hq(F ;Q) for q≤ n−1.

Remark 3.16. Let Pq(t) be the characteristic polynomial of the monodromy operator hq :
Hq(F ;Q)→ Hq(F ;Q), with F the Milnor fiber of the homogeneous polynomial f . The poly-
nomials Pq(t), q = 0, · · · ,n, are related by the formula:

n

∏
q=0

Pq(t)(−1)q+1
= (1− td)−χ(F)/d

where χ(F) is the Euler characteristic of the Milnor fiber. Therefore, it suffices to compute
only the polynomials P0(t), · · · ,Pn−1(t) and the Euler characteristic of F .

Example 3.17. If
⋃s

i=1Yi is a normal crossing divisor at any point x ∈ Y1, the monodromy
action on Hq(F ;Q) is trivial for q≤ n−1.
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