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Abstract. In this paper we describe a non-local moving frame along a curve of

pure spinors in O(2m, 2m)/P , and its associated basis of differential invariants.
We show that the space of differential invariants of Schwarzian-type define a

Poisson submanifold of the spinor Geometric Poisson brackets. The resulting

restriction is given by a decoupled system of KdV Poisson structures. We define
a generalization of the Schwarzian-KdV evolution for pure spinor curves and

we prove that it induces a decoupled system of KdV equations on the invariants

of projective type, when restricted to a certain level set. We also describe its
associated Miura transformation and non-commutative modified KdV system.

1. Introduction

Given a map u : R→ R, we define the Schwarzian derivative of u as

S(u) =
uxxx
ux
− 3

2

(
uxx
ux

)2

.

Locally, one can think of u as taking values in RP1. In that case, the Schwarzian
derivative is the unique differential invariant for the projective action of SL(2) on
RP1 (defined by fractional transformations). The evolution

ut = uxS(u) = uxxx −
3
2
u2
xx

ux

is called the Schwarzian-KdV evolution. It is invariant under the projective action
of SL(2) and, when written as an evolution on the invariant S(u), it becomes the
KdV equation, the well-known completely integrable equation

S(u)t = S(u)xxx + 3S(u)xS(u).

The KdV equation is also bi-Hamiltonian, that is, Hamiltonian with respect to two
different but compatible Poisson (or Hamiltonian) structures. These two Poisson
structures can be generated using the background projective geometry of u, as in
[28]. The author called these structures geometric Poisson structures. In particular,
one of them is linked to evolutions of curves u, in the sense that any associated
Hamiltonian evolution will come from an invariant evolution of curves u(t, x) in
identically the same way KdV is obtained from the Schwarzian-KdV equation. We
say these evolution of curves are projective geometric realizations of the Hamiltonian
systems. Thus, the Schwarzian-KdV equation is a projective realization of the KdV
equation. For more information see [28].

This relation between invariant curve flows and integrable systems occurs in a
variety of different geometries for which both integrable systems and their Hamil-
tonian structures are generated by the background geometry of the flow. The best
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known example is the Vortex filament flow, an evolution of curves in R3, invariant
under the Euclidean group. When written in terms of the Euclidean natural cur-
vatures, the Vortex Filament flow becomes the Nonlinear Schrödinger equation, or
NLS ([20], [26]). That is, the Vortex filament flow is an Euclidean realization of
NLS. Other completely integrable systems also have geometric realizations, often
in different geometries. For example, the Sawada-Koterra equation has both equi-
centro affine and projective realizations and their Hamiltonian structures can be
obtained using both equi-centro affine and projective invariants ([7]). The recent
literature in this subject is extensive, with many authors finding many different
geometric realizations and linking curve evolutions, Hamiltonian structures and
background geometry to integrable systems, using many different points of view.
See for example [1], [2], [11], [12], [17], [21], [22], [25], [27], [33], [34], [35], [39], [41],
[42], a list that it is not meant to be, by any means, exhaustive.

The link between projective geometry and the periodic KdV follows from work
of Kirillov [24], Segal [40] and others. The Schwarzian has the following cocycle
property

S(f ◦ g) = g2
xS(f) ◦ g + S(g).

This allows us to use it in the definition of the action of the group diff(S1) on
the space of projective connection, as defined by the kernel of Hill’s operators
L = d

dx2 + p(x) (in fact, p(x) = 1
2S( ξ1ξ2 ) where ξi are independent solutions of

Lξ = 0). The space of projective connections can be viewed in two different ways:
as dual to the Virasoro algebra - itself a central extension of the algebra of diff(S1)
by a cocycle related to S(u); or as the space of projective invariants of curves in
RP1. This invariant space can be obtained as in [28] choosing G = SL(2) acting
projectively on RP1. Two geometric Poisson brackets are defined on this space,
namely the two Hamiltonian structures for KdV.

We will say that a differential invariant is of projective or Schwarzian type if

(1) φ∗I =
(
φ2
xI
)
◦ φ−1 + S(φ) ◦ φ−1

where by φ∗ we mean the pull-back, and where φ is a diffeomorphism of the line.
That is, the invariant behaves like the Schwarzian under changes of variable.

In [32] the author described a conjecture by M. Eastwood about differential
invariants of projective type. Eastwood conjectured that there exist invariants of
projective type for curves in Hermitian symmetric manifolds (parabolic manifolds
with |1|-gradation of the algebra) and hence a natural projective structure along
curves given by the choice of a special type of parametrization. It was conjectured
that the existence of these parametrizations indicates the existence of Hamiltonian
structures of KdV type on these invariants. Indeed, in the conformal case M =
O(p+ 1, q+ 1)/P , with P an appropriate parabolic subgroup, the two invariants of
projective type are directly connected to invariant differential operators that appear
in the work of Bailey and Eastwood (see [5] and [6]). There the authors used them to
defined conformal circles and preferred parametrization that endow the conformal
circles with a projective structure (theirs is an explicit proof of Cartan’s observation
that a curve in a conformal manifold inherits a natural projective structure, see
[9]). Furthermore, the author of [14] stated that, if for a given curve all other
non-projective invariants vanish, the curve is the orbit of the inversion subgroup of
the conformal group. The author proved in [29] that, if we use a conformal natural
moving frame, then two compatible geometric conformal Poisson brackets can be
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restricted to the space of invariants of projective type as invariants of non-projective
type vanish. The result is a complexly coupled system of KdV equations, while a
different choice of orbit results in a decoupled system of KdV equations, as in [13].
That is, in the conformal case, the Poisson brackets linked to projective structures
along the flow are restrictions of the geometric conformal Poisson brackets to an
appropriate submanifold.

A similar situation seems to exist for the Lagrangian Grassmannian in R2n where
there are n invariants of projective type defining different projective structures on
flows, much like the situation in the conformal case. In [31] the author defined
these invariants as the eigenvalues of the Schwarzian derivative of curves of La-
grangian planes. The author proved that, if an appropriate moving frame is chosen
along curves of Lagrangian planes, then as non-projective type invariants vanish,
the Lagrangian Grassmannian geometric Poisson bracket restricts to the manifold
of invariants of projective type to produce a bi-Hamiltonian structure for a de-
coupled system of n-KdV equations. She proved that the Lagrangian Schwarzian-
KdV equation for curves of Lagrangian planes is a geometric realization for this
decoupled KdV system whenever we restrict to curves for which invariants of non-
projective type vanish. She also found the Lagrangian Grassmannian analog of
a Miura transformation and an associated non-commutative modified KdV system
of equations. The Schwarzian derivative for curves of Lagrangian planes was first
defined by Ovsienko in [37] where the role of inversions in the generation of these
invariants was also described. A definition can also be found in [38] where the
interested reader can find a thorough description of projective geometry and many
of its applications.

On the other hand, the case of curves of pure spinors, another Symmetric Her-
mitian case (case M = O(n, n)/P for an appropriate parabolic subgroup P ), remains
elusive. Invariants of projective type for the even dimensional case were defined in
[30], but the precise connection to KdV structures and projective structures on
flows was not clear. In [30] the author proved that no local choice of moving frame
would produce a result similar to that of the Lagrangian Grassmannian, in spite of
their algebraic similarities (the Lagrangian moving frame in [30] was local). In the
odd dimensional case the differential invariants are too involved to be effective for
this type of study (this part of the study is not published).

In this paper we find a non-local moving frame along curves of even pure spinors
and we prove that the situation in the Lagrangian Grassmannian manifold also takes
place for pure even spinors. Recall that, although the Lagrangian moving frame is
local, natural moving frames for both Riemannian and conformal manifolds are non-
local in nature. As this paper shows, the choice of an appropriate moving frame is
fundamental to establishing the connection between the projectively-induced Pois-
son structures and the geometric ones. We use a group-based definition of moving
frame introduced by Fels and Olver in [15, 16]. This definition is becoming well-
known, but not so much as to make many in the area familiar with this new concept.
Hence we have included a section on background information about group-based
moving frames. This, information on geometric Poisson brackets and a brief de-
scription of the manifold of pure spinors is included in our second section.

In section 3, Theorem 4.2, we describe an appropriate choice of non-local moving
frame and their associated basis of differential invariants. This choice is produced
using a non-local gauge of a moving frame appearing in [29], which is also described
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here. In section 4, Theorem 4.3, we prove that the spinor geometric Poisson struc-
ture can be restricted to the manifold of invariants of projective type (the manifold
where non-local invariants of non-projective type vanish) to produce a decoupled
system of m KdV Poisson structures, where n = 2m. We also prove that a second
compatible Poisson structure can be reduced to the submanifold of invariants of
projective type to produce a system of decoupled and compatible Poisson struc-
tures for KdV. In Theorem 4.4 we describe a generalization of the Schwarzian-KdV
evolution for spinors and we prove it is a spinor geometric realization for the decou-
pled system of KdV equations, as far as we restrict initial conditions to curves with
vanishing non-projective invariants. Our last theorem (Theorem 4.5) describes the
spinor Miura transformation and its associated non-commutative modified KdV for
flows of skew-symmetric matrices.

Now, it seems natural to conjecture that what is true for conformal, Lagrangian
and spinor cases, will also be true for general Symmetric Hermitian, and perhaps
parabolic manifolds. A general proof is still not apparent: the methods used rely
heavily on a proper choice of moving frame for which the vanishing of non-projective
invariants does not produce singularities in the geometric Hamiltonian vector field.
It is not clear what such a choice must be in general, but one could predict that,
once this point is cleared up, a general proof is within reach.

2. Definitions and background

2.1. Group-based moving frames and their associated differential invari-
ants. The classical concept of moving frame was developed by Élie Cartan ([8]).
A classical moving frame along a curve in a manifold M is a curve in the frame
bundle of the manifold over the curve, invariant under the action of the transfor-
mation group under consideration. This method is a very powerful tool, but its
explicit application relied on intuitive choices that were not clear on a general set-
ting. Some ideas in Cartan’s work and later work of Griffiths ([18]), Green ([19])
and others laid the foundation for the concept of a group-based moving frame, that
is, an equivariant map between the jet space of curves in the manifold and the
group of transformations. Recent work by Fels and Olver ([15, 16]) finally gave the
precise definition of the group-based moving frame. In this section we will describe
Fels and Olver’s moving frame and its relation to the classical moving frame. We
will also introduce some definitions that are useful to the study of Poisson brackets
and biHamiltonian nonlinear PDEs. From now on we will assume M = G/H with
G acting on M via left multiplication on representatives of a class. We will also
assume that curves in M are parametrized and, therefore, the group G does not act
on the parameter.

Definition 2.1. Let Jk(R,M) be the space of k-jets of curves, that is, the set
of equivalence classes of curves in M up to kth order of contact. If we denote by
u(x) a curve in M and by ur the r derivative of u with respect to the parameter
x, ur = dru

dxr , the jet space has local coordinates that can be represented by u(k) =
(x, u, u1, u2, . . . , uk). The group G acts naturally on parametrized curves, therefore
it acts naturally on the jet space via the formula

g · u(k) = (x, g · u, (g · u)1, (g · u)2, . . . )
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where by (g ·u)k we mean the formula obtained when one differentiates k times g ·u
and then writes the result in terms of g, u, u1, etc. This is the natural way for G
to act on jets and it is usually called the prolonged action of G on Jk(R,M).

Definition 2.2. A function

I : Jk(R,M)→ R
is called a kth order differential invariant if it is invariant with respect to the
prolonged action of G.

Definition 2.3. A map
ρ : Jk(R,M)→ G

is called a left (resp. right) moving frame if it is equivariant with respect to the
prolonged action of G on Jk(R,M) and the left (resp. right) action of G on itself.

If a group acts (locally) effectively on subsets, then for k large enough a moving
frame always exists on a neighborhood of a regular jet (for example, on a neighbor-
hood of a generic curve, see [15, 16] for more details).

The group-based moving frame already appears in a familiar method for calcu-
lating the curvature of a curve u(s) in the Euclidean plane. In this method one
uses a translation to take u(s) to the origin, and a rotation to make one of the axes
tangent to the curve. The curvature can classically be found as the coefficient of the
second order term in the Taylor expansion of the curve around u(s). The crucial
observation made by Fels and Olver is that the element of the group carrying out
the translation and rotation depends on u and its derivatives and so it defines a
map from the jet space to the group. This map is a right moving frame, and it
carries all the geometric information of the curve. In fact, Fels and Olver developed
a similar normalization process to find right moving frames (see [15, 16] and our
next theorem).

Theorem 2.4. ([15, 16]) Let · denote the prolonged action of the group on u(k)

and assume we have normalization equations of the form

g · u(k) = ck

where ck are constants (called normalization constants). Assume we have enough
normalization equations to determine g as a function of u, u1, . . . . Then, the solu-
tion g = ρ is a right moving frame.

The direct relation between classical moving frames and group-based moving
frames is stated in the following theorem, whose proof can be found in [31].

Theorem 2.5. ([31]) Let Φg : G/H → G/H be defined by the action of g ∈ G.
That is Φg([x]) = [gx]. Let ρ be a group-based left moving frame with ρ · o = u
where o = [H] ∈ G/H is the base-point. Let ei, i = 1, . . . , n be generators of the
vector space ToG/H. Then, Ti = dΦρ(o)ei form a classical moving frame.

This theorem illustrates how classical moving frames are described only by the
action of the group-based moving frame on first order frames, while the action
on higher order frames is left out. Accordingly, those invariants determined by the
action on higher order frames will be not be found with the use of a classical moving
frame.

We will next describe the equivalent to the classical Serret-Frenet equations.
This concept if fundamental in our Poisson geometry study.
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Definition 2.6. Consider Kdx to be the horizontal component of the pullback of
the left (resp. right) Maurer-Cartan form of the group G via a group-based left
(resp. right) moving frame ρ. That is

K = ρ−1ρx ∈ g (resp. K = ρxρ
−1).

We call K the Maurer-Cartan element of the algebra (or Maurer-Cartan matrix if
G ⊂ GL(n,R)), and K = ρ−1ρx the left (resp. right) Serret-Frenet equations for
the moving frame ρ.

Notice that if ρ is a left moving frame, then ρ−1 is a right moving frame and their
Serret-Frenet equations are the negative of each other. A complete set of generating
differential invariants can always be found among the coefficients of group-based
Serret-Frenet equations generated by normalization equations, a crucial difference
with the classical picture. The following Theorem can be found in [23].

Theorem 2.7. Let ρ be a (left or right) moving frame along a curve u, determined
through a normalization process. Then, the coefficients of the (left or right) Serret-
Frenet equations for ρ contain a basis for the space of differential invariants of the
curve. That is, any other differential invariant for the curve is a function of the
coordinates of K in some basis of the algebra (its entries if G ⊂ GL(n,R)) and
their derivatives with respect to x.

There are formulas relating K directly to the invariantization of jet coordinates.
They are called recurrence formulas in [15], and the theorem below is the adaptation
of the results in [15] to our particular case.

Theorem 2.8. Assume a right invariant moving frame is determined by the nor-
malization equations (

g · u(r)
)α

= cαr

for some choices of α and r, where cr = (cαr ) (α indicates individual coordinates).
Let K = −ρxρ−1 be the left invariant Serre-Frenet equations of ρ. Let Iαr = ρ · uαr
for any r = 0, 1, 2, . . . and any α = 1, . . . ,dimM . Then K satisfies the equations

(2) (K · Ir)α = Iαr+1 − (Iαr )x ,

where the dot in K · Ir denotes the prolonged infinitesimal action of the Lie algebra
on J (r)(R,M).

Notice that Iαr = cαr whenever r and α correspond to normalization equations,
that is, Iαr are either constant or differential invariants.

Finally, if one has a group-based moving frame, then one also has a general
formula for an invariant evolution of curves in G/H, invariant under the action
of G (that is, G takes solutions to solutions). The theorem below is a simple
consequence of Theorem 2.5 and results in [36].

Theorem 2.9. ([28]) Let u(x, t) be a one parameter family of curves in G/H; let ρ
be a left group-based moving frame and let dΦρ(o)ei = Ti be an associated classical
moving frame. Then, any evolution of curves in G/H invariant under the action
of G can be written as

(3) ut = r1T1 + . . . rnTn = dφρ(o)r

where ri are differential invariants, that is, functions of the entries of K and their
derivatives, and where r = (ri).
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2.2. Geometric Poisson structures. Assume g is semisimple. One can define
two natural Poisson brackets on Lg∗ (see [10] for more information); namely, if
H,F : Lg∗ → R are two functionals defined on Lg∗ and if L ∈ Lg∗, we define

(4) {H,F}1(L) =
∫
S1
〈B
(
δH
δL

(L)
)
x

+ ad∗(
δH
δL

(L))(L),
δF
δL

(L)〉dx

where B is an invariant bilinear form that can be used to identify the algebra with
its dual (usually the trace of the product), 〈, 〉 is the natural coupling between g∗

and g (usually the trace of the product if we identify g and g∗), and where δH
δL (L)

is the variational derivative of H at L identified, as usual, with an element of Lg.
One also has a compatible family of second brackets, namely

(5) {H,F}2(L) =
∫
S1
〈(ad∗(δH

δL
(L))(L0),

δF
δL

(L)〉dx

where L0 ∈ g∗ is any constant element. Since g is semisimple we can identify g with
its dual g∗ and we will do so from now on. From now on we will also assume that
our curves on homogeneous manifolds have a group monodromy, i.e., there exists
m ∈ G such that

u(t+ T ) = m · u(t)
where T is the period. Under these assumptions, the differential invariants will be
periodic.

The following theorem is the foundation of the definition of Geometric Hamil-
tonian structures. It was proved in [31].

Theorem 2.10. Let ρ be a left or right right moving frame along a curve u, de-
termined by normalization equations. Let K be the manifold of Maurer-Cartan
matrices K for nearby curves, generated using the same normalization equations.
Then, K ∼= U/LH where U ⊂ Lg∗ is an open set, and where LH acts on U via
a gauge transformation. Furthermore, the Poisson bracket defined on Lg∗ by (4)
is reducible to the submanifold K. We call this first reduced Poisson bracket a
Geometric Poisson bracket on G/H.

The reduction of the Poisson bracket can be often found explicitly through alge-
braic manipulations. Indeed, if an extension H of h is constant on the gauge leaves
of LH, then its variational derivative will satisfy

(6)
(
δH
δL

(K)
)
x

+ [K,
δH
δL

(K)] ∈ h0

where h0 ⊂ g∗ is the annihilator of h, and where K is any Maurer-Cartan element.
This relation is often sufficient to determine δH

δL (K) completely and with it the
reduced Poisson bracket. The reduced Poisson bracket will be defined through the
application of (4) to two such extensions.

The Poisson bracket (5) does not reduce in general to this quotient. When it
does, it indicates the existence of an associated completely integrable system, as
we will see. The geometric Poisson bracket above is directly related to invariant
evolutions through our next theorem. Assume

(7) ut = W (u, u1, u2, . . . )

is an evolution of curves invariant under the action of the group. Assume (7) induces
an evolution of the form

(8) kt = Q(k,k1,k2, . . . )
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on a generating system of differential invariants of the flow u(t, x). We say that (7)
is a G/H-geometric realization of the flow (8).

Assume that g = m⊕ h and assume ς : G/H → G to be a section that identifies
ToG/H with m. Our following theorem finds geometric realizations for any Geo-
metric Hamiltonian flow, Hamiltonian with respect to the reduced Poisson bracket.

Theorem 2.11. ([31]) Assume that K is described by an affine subspace of Lg∗.
Let h : K → R be a Hamiltonian functional such that, if H : Lg∗ → R is an
extension of h, constant on the leaves of LH under the gauge action. Let δH

δL (k) =
δH
δL (k)m + δH

δL (k)h be the components defined by the splitting of the algebra. Then

ut = dΦρ(o)dς(o)−1 δH
δL

(k)m

is a geometric realization of the reduced Hamiltonian system with Hamiltonian func-
tional h. Notice that this evolution is of the form (3) with

(9)
δH
δL

(k)m = dς(o)r.

Equation (9) is often referred to as the compatibility condition. To finish this
section we will give a brief description of the flat manifold of pure spinors.

2.3. The manifold of pure spinors. The manifold of pure spinors can be repre-
sented as the homogeneous space O(n, n)/P = M where O(n, n) is defined as the
subgroup of GL(2) preserving the matrix

J =
(
I 0
0 −I

)
.

In a neighborhood of the identity O(n, n) can be described as matrices factoring as
g = g1g0g−1 with

(10)

g1 = g1(Z) =
(
I + Z −Z
Z I − Z

)
, g−1 = g−1(Y ) =

(
I + Y Y
−Y I − Y

)

g0 = g0(Θ) = 1
2

(
Θ + Θ−T Θ−T −Θ
Θ−T −Θ Θ + Θ−T

)
,

where Z and Y are skew symmetric matrices in GL(n), and where Θ ∈ GL(n,R).
This factorization follows the gradation of the algebra as in [29]. The parabolic
subgroup P is given by P = G1 · G0, where Gi is the subgroup of matrices of
the form gi. i = 1, 0,−1. Therefore, we can locally identify O(n, n)/P with skew
symmetric matrices (in our notation Y ) in GL(n,R), or with G−1. This will be our
section ς : M → O(n, n). Since we are working on a homogeneous manifold, the
action of O(n, n) on M is determined by the relation gu = (g ·u)h, with g ∈ O(n, n),
u and g · u ∈ G−1, and h ∈ H. This relation completely determines the action to
be

(11) g · u = Θ(u+ Y )
(
Θ−T + 4ZΘ(u+ Y )

)−1
.
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The associated Lie algebra decomposition is given by g = g1 ⊕ g0 ⊕ g−1, with gi
being the Lie algebra associated to Gi and Vi ∈ gi, i = 1, 0,−1, given by

(12)

V1 = V1(z) =
(
z −z
z −z

)
, V−1 = V−1(y) =

(
y y
−y −y

)

V0 = V0(C) = V0(A−B) =
(
A B
B A

)
where z, y, A are skew symmetric matrices, and B is a symmetric matrix. Notice
that −B and A are the symmetric and skew-symmetric components, respectively,
of C = A−B. The commutation relations of the algebra are given by

[V−1(y), V1(z)] = 4V0(yz), [V1(z), V0(C)] = V1(zC + CT z)

[V0(C), V−1(y)] = V−1(Cy + yCT )

3. Moving frame and differential invariants for even spinor curves

3.1. Spinor moving frame. The study of differential invariants for even spinors
was carried out in [29] through a process of normalization that can be summarized
as follows. Assume g = g1(Z)g0(Θ)g−1(Y ).

Zeroth order normalization. The zero order normalization equation is simply

g · u = c0 = 0

which is readily solved choosing Y = −u.
First order normalization. The first order normalization equations are obtained

differentiating the action g · u to obtain g · u1, and restricting to previous normal-
izations results. The equation is given by

g · u(1) = Θu1

(
Θ−T + 4ZΘ(u+ Y )

)−1

− Θ(u+ Y )
(
Θ−T + 4ZΘ(u+ Y )

)−1
4ZΘu1

(
Θ−T + 4ZΘ(u+ Y )

)−1

= Θu1ΘT = c1 = J.

This equation determines Θ up to an element of the symplectic group Sp(2m). We
write Θ as Θ = θµ for some θ ∈ Sp(2m) to be determined by later normalizations.

Second order normalizations. We will now skip some lengthy but straightforward
calculations. If we differentiate once more the action and substitute the values
we have obtained in previous normalizations we obtain the second normalization
equation to be

(13) g · u(2) = Θu2ΘT − 8JZJ = c2 = 0.

This equation solves for Z in terms of Θ, which we still have to determine com-
pletely. That is

(14) Z =
1
8
JΘu2ΘTJ.

Third order normalizations. These equations are again obtained differentiating
a third time and substituting previous values of the frame. It is given by

(15) g · u(3) = θµ

(
u3 −

3
2
u2u
−1
1 u2

)
µT θT = c3
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We call

(16) S(u) = µ

(
u3 −

3
2
u2u
−1
1 u2

)
µT

the skew-symmetric Schwarzian derivative of u, unique up to the action of an el-
ement of the symplectic group. Notice that µu1µ

T = J and so µ can be viewed
as a skew-symmetric square root of u1. The expression S(u) is the skew-symmetric
version of the Lagrangian Schwarzian derivative, first introduced by V. Ovsienko in
[37]. The normal form of a skew-symmetric matrix S under this action of Sp(2m)
is

θSθT = D =
(

0 D
−D 0

)
where, if ±aki are the eigenvalues of S, then D is the diagonal matrix having ak
down the diagonal (see [29] for details). We choose c3 = D for the choice S = S(u).

The differential invariants of a generic curve in O(2m, 2m)/H have all order
three or higher and the entries of the matrix D generate all differential invariants
of third order for u. We call the entries of D the differential invariants of projective
or Schwarzian Stype for curves in O(2m, 2m)/H. They clearly satisfy property (1).
For more details, please see [29].

Fourth order normalization equations. The isotropy subgroup pf D is given by
elements of Sp(2m) with a factorization of the form

d =
(
I D1

0 I

)(
D2 0
0 D−T2

)(
I 0

D3 I

)
where the three matrices Di, i = 1, 2, 3 are diagonal. They are the part of the
moving frame still to be determined. The fourth normalization equations, after
simplifications, are given by

(17) g · u(4) = dθµ
(
u4 − 2(u3u

−1
1 u2 + u2u

−1
1 u3) + 3u2u

−1
1 u2u

−1
1 u2

)
µT θT dT = c4.

If m > 3, a total of 3m normalizations can be performed in (17). That means
we will have 3m fifth order differential invariants appearing in the positions of
ρ · u(5) corresponding to the normalized positions chosen in ρ · u(4). This implies
the existence of m third order invariants, 2m(m − 2) fourth order invariants and
3m fifth order invariants.

If m ≤ 3 one needs to go higher to normalize entries in the fifth order normaliza-
tion equations. In those cases we also obtain sixth order invariants corresponding
to the normalized fifth order entries in ρ · u(5) as located in ρ · u(6). For m = 1
we are in the RP1 case. For m = 2 one can check that we have two differential
invariants of projective type, two of fifth order and two of sixth order. For m = 3
one has three third order differential invariants, four fourth order ones, seven fifth
order and one sixth order. For more details, please see [29].

The next section describes the Maurer-Cartan matrix associated to this moving
frame. This matrix was also described in [29], but here we will use a different, more
effective, method to find it.

3.2. Serret-Frenet equations and a generating set of differential invari-
ants. One could, in principle, attempt to find the Maurer-Cartan matrix directly;
after all ρxρ−1 = K and we have determined ρ above. This is what we did in [29].
Instead we will relate the entries of K to the normalization equations and hence
to the normalization constants. This way we obtain directly the matrix K without
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having to differentiate ρ, while we illustrate the use of the recursion relations (2)
in the proof of the theorem. Different choices of normalization equations yield dif-
ferent shapes of the Maurer-Cartan matrix. If one wants to do any type of further
study of invariants, having Serret-Frenet equations that are as simple as possible is
essential (our choice of normalization constants was done with this in mind).

Theorem 3.1. Let u be a generic curve in O(2m, 2m)/H. Let ρ be the moving
frame determined above. Then, the (left-invariant) Serret-Frenet equations associ-
ated to ρ are given by ρ(ρ−1)x = −ρxρ−1 = K, with K equals

(18) K = V−1(J) + 1
8V1(D) + V0(K0),

and where K0 is of the form

(19) K0 =
(
R1 R2

R3 −RT1

)
∈ Sp(2m)

with R2 and R3 symmetric. The matrix R contains in the entries off the diagonals
of Ri, i = 1, 2, 3, a generating set of independent fourth order differential invariants
and also 3m normalized (constant) entries. The diagonals of Ri, i = 1, 2, 3 contain
a set of 3m independent and generating differential invariants of order 5 for m > 3
and of order 5 and higher if m ≤ 3.

Proof. Using Theorem 2 together with the normalizations used in the previous
section we can completely determine K. Let V = V1(z) + V0(C) + V−1(y) be any
element of the Lie algebra given as in (12). The action (11) and its prolongations
induce an infinitesimal action of the Lie algebra on u given by

V · u = Cu+ uCT − 4uzu+ y.

V · u(1) = Cu1 + u1C
T − 4(u1ẑu+ uẑu1).

V · u(2) = Cu2 + u2C
T − 4 · 2u1ẑu1 + F2

V · u(3) = Cu3 + u3C
T − 4 · 3(u2ẑu1 + u1ẑu2) + F3,

where F2 and F3 are terms that vanish whenever u = 0. Assume K = V1(K1) +
V0(K0)+V−1(K−1) and recall that c0 = 0, c1 = J , c2 = 0, c3 = D and c4 has fourth
order independent invariants off its diagonals, except for 3m normalized constant
entries.

Then, according to (2) for r = 0, the matrix K must satisfy the equation

(20) K0c0 + c0K
T
0 − 4c0K1c0 +K−1 = K−1 = c1 = J.

For r = 1, K must satisfy

(21) K0c1 + c1K
T
0 = K0J + JKT

0 = c2 = 0.

This requires K0 to be symplectic.
For r = 2, K satifies

(22) K0c2 + c2K
T
0 − 8c1K1c1 = −8JK1J = c3 = D.

From here we obtain K1 = 1
8D.

If r = 3, we get

(23) K0c3 + c3K
T
0 − 12(c2K1c1 + c1K1c2) = K0D +DKT

0 = c4 − (c3)x.

If we denote

K0 =
(
R1 R2

R3 −RT1

)
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with R2 and R3 symmetric, then

K0D +DKT
0 =

(
DR2 −R2D R1D−DR1

RT1 D−DRT1 R3D−DR3

)
= c4 − (c3)x.

This system allows us to solve for all entries in K0, other than those in the diago-
nals of Ri. These determined entries are fourth order independent generators and
3m normalized entries. Notice that from this equation we can also conclude that
the block diagonals of c4 and (c3)x are equal, since the LHS of the equation has
vanishing diagonals. For simplicity we are using c4 and I4 interchangeably. Since
not all entries in I4 are normalized we should use I4 instead of c4. This should
create no confusion, these entries are either constant or differential invariants.

We have now found all possible entries other than the diagonals of Ri, i = 1, 2, 3.
But we know two important facts: there are 3m fifth (or higher) order (functionally)
independent and generating differential invariants that have not been found yet, and
the entries of K generate all possible differential invariants. Hence, we can conclude
that the remaining entries in the block diagonals of K0 are fifth (or higher) order
independent generators.

The proof of the Theorem is now concluded. �

4. De-coupled KdV Hamiltonian structures and the Schwarzian-KdV
evolution of even pure spinors

The original Schwarzian-KdV evolution is an evolution for maps u : R → R
described by the equation

(24) ut = uxS(u)

where S(u) = uxxx

ux
− 3

2

(
uxx

ux

)2

is the Schwarzian derivative of u. This evolution
is invariant under the projective group PSL(2,R) and so it can be written as an
evolution of S(u), which is the generating projective differential invariant. If we
call k = S(u), then whenever u satisfies (24), k satisfies the KdV equation (hence
the name)

kt = kxxx + 3kkx.
This evolution was generalized to curves of Lagrangian subspaces in R2n (under
the action of the symplectic group) in [30]. In the Lagrangian case, Ovsienko
([37]) defined the Schwarzian derivative of a curve of Lagrangian planes. In [30]
we proved that its eigenvalues generate all Lagrangian differential invariants of
projective type. We defined the Schwarzian-KdV evolution for Lagrangian planes
and we proved that, as non-projective type invariants vanished and if u evolved
following the Schwarzian-KdV evolution, the projective-type invariants evolved fol-
lowing a decoupled system of KdV equations. Furthermore, for a particular choice
of normalization constants (the equivalent of a particular choice of invariants), as
non-projective differential invariants vanished, the Lagrangian geometric Poisson
bracket restricts to a decoupled system of KdV Poisson structures. That is, La-
grangian projective differential invariants constitute a Poisson submanifold of K.

In [29] we showed that no local choice of moving frame produces these integrable
evolutions in the pure even spinor case (by local we mean depending on u and its
derivatives, as are the results of a normalization process). Indeed, we showed that
no matter what choice of normalization equations we have, the only constant values
of non-projective differential invariants that could be preserved by the flow are
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zeroes. And as the non-projective invariants vanish, the evolution of the projective
invariants blows up. In this section we will show that there exists a non-local
choice of moving frame such that the Lagrangian situation can be replicated also in
the manifold of pure spinors. This non-local moving frame will effectively remove
the higher order invariants from the diagonals of the matrix K0 and will place
invariants in the current normalized entries. That way all entries of K0, other than
the constant diagonals, will be generators.

4.1. Non-local moving frame. In this section we will prove that there exists
a non-local element of the group, we will call it g, such that when we gauge the
matrix K by g, we obtain a Maurer-Cartan matrix Kn with vanishing diagonals
in R. The entries of the Maurer-Cartan matrix will still form a basis for the
differential invariants meaning that all other differential invariants are functions
of the derivatives of the non-local ones. The fifth order invariants placed in those
diagonals will be transformed and moved into the 3m normalized entries in R,
while the other entries will also be modified. Furthermore, Kn will also form an
affine subspace of g. We remark here that given a random non-local gauge, there is
no guarantee that the new Maurer-Cartan matrix will have generating entries (the
result in [23] applies only to moving frames generated by local normalizing sections.
Although the result could be also true for a general gauge, no such theorem has been
proven yet). Therefore, once we gauge, generating properties need to be re-checked.

Lemma 4.1. There exists an element g, not necessarily in LG, but perhaps with
a monodromy, such that

g−1gx + g−1Kg

has g0-component with vanishing diagonals.

Proof. Let us choose

(25) Θd =
(
I 0
d3 I

)(
d1 0
0 d−1

1

)(
I d2

0 I

)
where di are diagonal matrices to be determined. The element g will preserve both
V−1(J) and V1(D), and a straightforward calculation shows that if K is given as in
(18), and g = g0(Θd) as in (10), then

g−1gx + g−1Kg = V−1(J) +
1
8
V1(D) + V0(Kn)

where Kn = Θ−1
d K0Θd + Θ−1

d (Θd)x. The matrix Kn can be written explicitly as

Kn =
(
Y d2Y + d−1

1 (d1d2)x + d−1
1

(
d2(R1d1 + d1d3R2) + d−1R2

)
X −Y

)
where X = −d2

1

(
(d3)x +R3 + d3(R1 +RT1 ) + d2

3R2

)
and Y = −d2X + d−1

1 (d1)x +
R1 + d3R2.

If we want the diagonals of Kn to vanish, we need di to satisfy the differential
equations

(d1)x +
(
Rd1 +Rd2d3

)
d1 = 0

(d2)x +Rd2d
−2
1 = 0

(d3)x +Rd3 + 2Rd1d3 +Rd2d
2
3 = 0
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where Rdi represents the diagonal component of the matrix Ri. This system is
clearly (non-locally) solvable since the last equation is a Riccati equation, and once
it is solved the other two can be trivially and explicitly integrated. This system
can also we written as block-diagonals of the system (Θd)x +K0Θd = 0. �

Theorem 4.2. If di, i = 1, 2, 3, are chosen as solutions of the system above,
the Maurer-Cartan matrix Kn = g−1gx + g−1Kg has vanishing diagonals and its
entries generate all differential invariants of even spinor curves. Furthermore, Kn

describes an affine subspace of o(2m, 2m).

Proof. We chose the equations to ensure that the diagonals vanish, but we still
need to show that the remaining matrix has generating entries and forms an affine
subspace. Recall that

ρ−1 · u4 = c4

and recall that c4 has 3m normalizing constants in its entries. This normalizations
were achieved through the equation (17)

dS4d
T = c4

where S4 depends uniquely on derivatives of u, and where d is of the same type as
Θd (that is, block diagonal). The normalizations in c4 were chosen to ensure that
this equation has full rank on d, that is, to guarantee that d is uniquely determined
by the normalizing equations. This also implies that if we use the normalization
entries in d−1c4d

−T = JdTJc4JdJ , or in dTJc4Jd, one should be able to solve for
all non-constant entries of d.

The recursion relation (23) can be re-written as

[K0, JD] = J(c4 −Dx).

If we conjugate by Θd as in (25), and using that Θ−1
d = −JΘT

d J , after some short
calculations we obtain

[Θ−1
d K0Θd, JD]J = Dx + JΘT

d c4ΘdJ = Dx + Θ−1
d Jc4JΘ−Td .

Therefore, if the normalized entries in ΘT
d Jc4JΘd generate all entries of Θd, so do

the ones located on the other side of the equality. Notice that the invariants in D
are located in the diagonals of the Maurer-Cartan equation, while c4 is normalized
off-diagonals. They do not interfere in the functional generation of the entries of
Θd. Notice also that we are choosing d = Θ−Td to make this argument. From here
we conclude that using the normalized entries of Θ−1

d K0Θd and the entries of D,
we can generate all the invariants that Θd generates.

Finally, we can readily check that using the non-normalized entries in the differ-
ent blocks of Θ−1

d K0Θd, and using the already generated D and Θd, we can also
functionally generate all other invariants. Indeed, if Θ−1

d K0Θd and Θd are both
known, we can certainly generate K0 off the diagonals. Therefore, all off-diagonal
entries will be generators, and since the are the same in number as the previous
basis of non-projective invariants, they are also functionally independent. Together
with D they form a basis for the space of invariants and, therefore Kn generates an
affine subspace.

�

Now that we have the proper Serret-Frenet equations, we can prove that the
Geometric Poisson structure restricts to the manifold of projective-type differential
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invariants (defined by D) as K0 → 0. Notice that we will understand this as a limit
statement since R = 0 is geometrically not well-defined. Additionally, once we solve
for Θd, the resulting invariants are not periodic any longer, but they rather have
a monodromy element associated to them. Therefore, the remaining results should
be understood as algebraic formal statements. This same situation took place in
the conformal case ([29]) when natural non-local frames were chosen and some of
the invariants were made to vanish.

Theorem 4.3. Let {, }R be the Geometric Poisson bracket obtained when we reduce
the bracket (4) to the affine subspace K defined by matrices K as in (18) with
R = Rn defined by the non-local gauge. Then, the bracket restricts to the K-
submanifold K0 = 0 to produce a decoupled system of KdV-Hamiltonian structures.
Furthermore, for the choice L0 = V1(J), the bracket (5) reduces also to the K-
submanifold K0 = 0 to produce a second compatible Hamiltonian structure for KdV.

Proof. Since we do know that structure (4) reduces to K, and any gauged transfor-
mation of it will do so, we simply need to show that the reduction can be restricted
to K0 = 0. For that we assume f, h : K → R to be two Hamiltonian functionals
with f depending on the entries of D only and h being independent of D. We will
show that their bracket at K0 = 0 vanishes. After this, we will calculate the bracket
of two Hamiltonians that depend on the entries of D only. The result will be the
restriction of the Geometric Poisson bracket to D.

Using Theorem 2.10, we can describe how the geometric Poisson bracket is de-
fined. As with any quotient reduction, since K ∼= U/LP the reduced Poisson bracket
is explicitly obtained extending the Hamiltonian functionals f, h to operators on
U ⊂ Lg∗ that are constant on the leaves of LP . If H is such an extension of h,
infinitesimally the extension property translates into

(26)
(
δH
δL

(L)
)
x

+ [K,
δH
δL

(L)] ∈ p0

(similarly with f), where p is the parabolic algebra (it corresponds to y = 0 in (12))
and p0 is its annihilator. Here we will use the trace of the product as our invariant
bilinear form, and hence we are identifying the dual of the algebra with the algebra
itself (the dual of the entry (i, j) will be the entry (j, i)). Therefore, p0 corresponds
to a vanishing −1 and 0 component; that is, y = 0, C = 0 in (12). If we split both
K and δH

δL (L) according to the gradation, δH
δL (L) = V−1(H−1) + V0(H0) + V1(H1),

then equation (26) becomes

(H−1)x − JH
T
0 −H0J = 0(27)

(H0)x −
1
2
H−1D − 4JH1 = 0(28)

where we are already assuming K0 = 0 already. Along the proof we will see that
restricting to K0 = 0 early on does not alter the result since the rank of our
equations is maximal and remains so as K0 vanishes.

Assume first that f depends only on D. Let F is any extension constant on the
leaves of LP , and assume we decompose F0 into symplectic and non-symplectic
part (F s0 = 1

2 (F0 + JFT0 J) and Fns0 = 1
2 (F0 − JFT0 J)). Then, since off-diagonal

elements in K0 are all higher order invariants and f is independent from K0, we
can conclude that F s0 is block-diagonal. Furthermore, we can also conclude that
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F−1 = δ̃f + f−1, where

δ̃f =
(

0 −δf
δf 0

)
with δf = diag( δfδki

), while f−1 has zero block-diagonals. Let us use (27) for F .
The first equation can be written as

2Fns0 J = (F−1)x.

The second equation splits into symplectic and non symplectic components. They
are given by

(Fns0 )x + 4JF1 −
1
4

(F−1D − JDF−1J) = 0

(F s0 )x −
1
4

(F−1D + JDF−1J) = 0

Now, since F s0 is block diagonal, the second equation implies f−1 = 0 (and as a
consequence Fns0 = − 1

2 (δ̃f)xJ). The second equation also solves for the block-
diagonal F s0 , namely

F s0 =
1
4

(
d

dx
)−1

(
δ̃fD − Jδ̃fDJ

)
= C

since all D, δ̃f and J commute. The matrix C is constant, and block diagonal.
Notice that CTD − DC = 0. On the other hand, the first equation solves for F1,
which is given by

F1 =
1
8

(δ̃f)xx −
1
8
Jδ̃fD.

Notice that the +1 component of the equation (26) will now be given by

(F1)x +
1
8

(F0D +DFT0 ) = −1
8

(
(−δ̃f)xxx + J(δ̃fD)x + J(δ̃f)xD

)
.

This matrix is block-diagonal, with (1, 2) block given by 1
8 ((δf)xxx + (Dδf)x + (δf)xD).

Assume next that h does not depend on D. This will imply that H−1 has zero
diagonal in the (1, 2) and (2, 1) blocks. On the other hand, the reduced bracket is
defined as

{f, h}R(k) =
∫
S1

tr
((

(F1)x +
1
8

(F0D +DFT0 )
)
H−1

)
dx.

This bracket vanishes since H−1 has zero diagonals, while its companion is diagonal.
Finally, if both f and h depend on D only, then their bracket becomes

{f, h}R(k) =
∫

tr
((

(F1)x +
1
16

(F0D +DFT0 )
)
H−1

)
dx

= −1
8

∫
S1

(
−(δ̃f)xxx + J

(
δ̃fD

)
x

+ J(δ̃f)xD
)
δ̃h dx.

whose block-diagonal defines the decoupled system of KdV structures− 1
4

(
d
dx3 + D d

dx + d
dxD

)
for the entries of D.

The second bracket (5) can be seen to reduce directly. If we calculate the bracket
of two functionals using the extensions as above, we obtain

{f, h}0(k) =
∫

tr
(
δF
δL

(L)[V1(J),
δH
δL

(L)]
)
dx = 3

∫
tr ((δf)xδh) dx.
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This is a decoupled system of the KdV Poisson structures d
dx , companion to our

previous Hamiltonian structure. �

Finally, we will define the Schwarzian-KdV evolution for spinor curves and we
will show that, as K0 → 0, the evolution induced on D by the curve evolution
becomes indeed a decoupled system of KdV equations.

Consider the differential equation

(29) ut = u3 −
3
2
u2u
−1
1 u2.

We call this equation the Spinor Schwarzian-KdV evolution.

Theorem 4.4. Let u(t, x) be a flow solution of the Schwarzian-KdV evolution.
Then, the level set Rn = 0 is preserved by this evolution. Furthermore, let D be
the diagonal matrix representing the invariants of projective-type for the flow. If
Rn → 0, then D satisfies

Dt = −1
2
Dxxx + 3DxD,

that is, a decoupled system of KdV equations.

We can rephrase this theorem as stating that (29) is a spinor realization of a
de-coupled system of KdV equations, as far as we restrict the initial conditions to
the submanifold K0 = 0.

Proof. The first step of this proof is to check that the spinor Schwarzian-KdV
equation can be written as

(30) ρ̃−1
−1(ρ̃−1)t = Ad(ρ̃0)r

where r = V−1(D) ∈ g−1, and where ρ̃ = ρ̃−1ρ̃0ρ̃1 is the splitting of the left moving
frame according to the factorization inverse to (10). Indeed, a straightforward
conjugation shows us that

ρ̃−1
−1(ρ̃−1)t = (V−1(u))t = Ad(ρ̃0)r = −V−1(Θ−1DΘ−T )

where we have used that the left moving frame is the inverse to the right moving
frame, and hence ρ̃0 = g0(Θ−1), Θ defining the right moving frame. Notice that Θ
is found gauging the one we originally found using normalizations. We are abusing
notation here when we denote both local and non-local factors with the same letter.
We hope this will not be confusing.

Recall that Θ was chosen to satisfy the first and third order normalization equa-
tions

Θu1ΘT = J, Θ
(
u3 −

3
2
u2u
−1
1 u2

)
ΘT = D

And since the gauge preserved these components, the same condition is true for the
non-local Θ. From here,

ut = Θ−1DΘ−T = u3 −
3
2
u2u
−1
1 u2.

Finally, we need to use the compatibility conditions (9), proved in [28]. We can
conclude that the evolution induced on the Maurer-Cartan matrix by (30) is the
reduced Hamiltonian evolution with V−1(δ̃h) = r = V−1(D), or δh = D.
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Finally, the level K0 = 0 is preserved by the Schwarzian-KdV equation because it
is preserved by the corresponding Hamiltonian evolution, as we saw before. When
r = V−1(D) we obtain a decoupled system of KdV equations.

This process relating invariant evolutions to geometric Hamiltonians is general
for any invariant evolution. But we can also calculate directly the evolution of the
invariants. Although this is not necessary for the proof of this theorem, it will be
convenient in the proof of our next theorem.

Assume N = ρ̃−1ρ̃t, where ρ̃ = ρ−1 is the left moving frame (ρ is the right one
as previously given), and where ρ̃t is induced on ρ̃ by (29). Since K = ρ̃−1ρ̃x,
compatibility conditions (or the horizontal component of the pullback by ρ̃ of the
structure equations) are given by

Kt = Nx + [K,N ].

This equation splits according to gradation as

V−1(J)t = 0 = (V−1(N−1))x + [V−1(J), V0(N0)] + [V0(K0), V−1(N−1)]
(V0(K0))t = (V0(N0))x + [V0(K0), V0(N0)] + [V−1(J), V1(N1)]

+ [V1(K1), V−1(N−1)]
(V1(K1))t = (V1(N1))x + [V1(K1), V0(N0)] + [V0(K0), V1(N1)].

As K0 → 0 (an assumption we make from now on), the first equation become

0 = (N−1)x − (N0J + JNT
0 ),

and if we split N0 = Ns
0 +Nns

0 into symplectic and non-symplectic parts, then

(31) Nns
0 = −1

2
(N−1)xJ.

The second equation can be written as

(32) (K0)t = (N0)x + [K0, N0]− 1
2
N−1D + 4JN1.

Let us assume that N−1 is block diagonal (we will show shortly it indeed is). Using
the non-symplectic part of (32), we get

0 = (Nns
0 )x −

1
2
N−1D + 4JN1

which solves for N1

(33) N1 = −1
8

(J(N−1)xxJ + JN−1D) .

The third equation can be written as

(34)
1
8
Dt = (N1)x +

1
8

(DN0 +NT
0 D),

and from here we can conclude: 1) Ns
0 is block diagonal; and 2) D evolves according

to
Dt = (N−1)xxx − (N−1D)x − (N−1)xD.

This results on our decoupled system of KdV whenever N−1 = r = D. Indeed, the
author proved in [28] that, if we use our formulation for the curve evolutions, then
N−1 = r for any Hermitian symmetric case.
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Using this data in the symplectic component of (32) we conclude that (K0)t = 0
and, therefore, K0 = 0 is preserved by the evolution. We also conclude

(35) Ns
0 = C

where C is constant and block diagonal. The value of C will depend on the initial
conditions. �

Notice that the proof of this theorem shows that, assuming initial conditions are
restricted to vanishing non-projective invariants, for any choice of block-diagonal
r, the equation ut = Θ−1rΘ−T is a spinor realization of the Hamiltonian system
with Hamiltonian operator δh = r. In this sense there is nothing special about the
choice r = D.

Theorem 4.5. Let Z be given by the right moving frame. Then, as K0 → 0

(36) D = 8(−Zx + 4ZJZ),

and if u evolves according to (29), then Z satisfies the following system

(37) Zt = Zxxx − 42 · 3(ZJZJZx + ZxJZJZ) + [Z,C]

where C is given by (35).

If [Z,C] = 0 (for example, when C = 0), then Z evolves following a non-
commutative and skew-symmetric modified KdV system. In that case, we call the
transformation (36) the spinor Miura transformation. Notice that the appearance
of C cannot be avoided as Z = 1

8JΘu2ΘTJ does not need to be block diagonal. C
appears once non-local terms are introduced.

Proof. We can use directly the fact that K = −ρxρ−1 and N = −ρtρ−1, and the
definition of ρ to find the following relations

K0 = −4JZ −ΘxΘ−1

K1 = −Zx − 4ZJZ − ZΘxΘ−1 − (ΘxΘ−1)TZ
N−1 = r

N0 = −4rZ −ΘtΘ−1

N1 = −Zt − 4ZrZ − ZΘtΘ−1 − (ΘtΘ−1)TZ.

As K0 → 0 we also have relations (31), (33) and (35). If K0 = 0, we can use the
first equation to obtain ΘxΘ−1 = −4JZ and from here get an expression for K1,
namely

K1 = −Zx + 4ZJZ.

Since K1 = 1
8D, this gives the transformation (36). The evolution for Z can equally

be found from the last equation using (33). After a short simplification one gets

Zt = −4ZJrJZ − 1
2

(ZJrx + rxJZ)− 1
8

(rxx − rJr) + [Z,C]

where we are assuming r is block diagonal so that it commutes with J . Now, one
only needs to choose r = D = 8K1 = 8(−Zx + 4ZJZ) and substitute it in this
equation to obtain the final equation (37). �
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