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Algorithmic randomness

The basic idea:
Let X ,Z ∈ 2N (thought of as infinite bit sequences).

We say that X is random relative to Z if Z cannot be used to
describe/predict/compress the bits of X .

Different formalizations of this idea yield different randomness notions.

Today:
Explore randomness notions as set-existence axioms:

“For every set Z, there is a set X that is random relative to Z.”

Questions that one might ask:
• Can randomness axioms be used to prove classical mathematical theorems?
• Our focus: How do randomness axioms relate to each other?
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For example:

(Don’t worry about what the randomness notions mean for now.)

Computable randomness (CR) versus Schnorr randomness (SR):
• Every computably random set is Schnorr random.

• Not every Schnorr random set is computably random.

• Nevertheless, every Schnorr random set computes a computably random set
(which follows from Nies, Stephan, and Terwijn).

• As randomness axioms: RCA0 ` SR⇔CR.

Martin-Löf randomness (MLR) versus computable randomness (CR):
• Every Martin-Löf random set is computably random.

• Not every computably random set is Martin-Löf random.

• As randomness axioms:
• RCA0 +MLR`CR.
• RCA0 +CR0MLR.
• In fact, RCA0 +CR0DNR.
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Reverse mathematics reminders

Formally we work in second-order arithmetic, which means the objects are
natural numbers and sets of natural numbers.

We can make sense of a lot of other objects via coding, such as:

Trees Reals numbers The topology on R Continuous functions etc.

Today’s axiom systems are:

RCA0: Sets computable from existing sets exist (formally, ∆0
1 comprehension).

Induction is restricted to Σ0
1 formulas (formally, IΣ0

1).

WKL0: Add to RCA0 the statement “every infinite subtree of 2<N has an infinite
path.”

ACA0: Every arithmetical formula defines a set.
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Martin-Löf tests and Martin-Löf randomness

Recall: For a set U ⊆ 2<N,

�U� = ⋃
σ∈U

�σ� = the open set coded by U .

A Martin-Löf test relative to Z ∈ 2N is a uniformly Z-r.e. sequence

U0,U1,U2, . . .

of subsets of 2<N such that for every n ∈N:
µ(�Un�) ≤ 2−n.

Think of a ML-test relative to Z as describing an effective null set relative to Z.

X ∈ 2N passes the ML-test (Un : n ∈N) if

X ∉ ⋂
n∈N

�Un�.

X is Martin-Löf random relative to Z if X passes every ML-test relative to Z.
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ML-randomness as a set-existence axiom

It is reasonably straightforward to phrase

“X is ML-random relative to Z”

in second-order arithmetic.

Definition
MLR is the statement

∀Z ∃X (X is ML-random relative to Z).

Can MLR be used as an axiom to prove interesting mathematical theorems?
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MLR and König’s lemma

Recall:
T ⊆ 2<N is a tree if it is closed under initial segments:

∀σ∀τ (σ ∈ T ∧τvσ→ τ ∈ T).

Tree T has positive measure if there is a rational q > 0 such that for all n∣∣{σ ∈ T : |σ| = n
}∣∣

2n ≥ q.

Weak weak König’s lemma (WWKL) is the statement “every subtree of 2<N of
positive measure has an infinite path.”

Theorem (Essentially Kučera):
RCA0 `MLR⇔WWKL.

Theorem (Yu and Simpson):
RCA0 +MLR is strictly between RCA0 and WKL0.
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Mathematical consequences of MLR

The following are all equivalent to MLR over RCA0:

• Every Borel measure on a compact Polish space is countably additive. (Yu and
Simpson)

• Versions of the Vitali covering theorem. (Brown, Giusto, and Simpson)

• A version of the monotone convergence theorem for Borel measures on
compact Polish spaces. (Yu)

• Every continuous f : [0,1] →R of bounded variation is differentiable at some
point. (Nies, Triplett, and Yokoyama)

• Every continuous f : [0,1] →R of bounded variation is differentiable almost
everywhere. (Nies, Triplett, and Yokoyama)
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Stronger randomness notions

Recall: X is ML-random relative to Z if X passes every ML-test (Un : n ∈N) relative
to Z.

• (Un : n ∈N) is uniformly Z-r.e. with µ(�Un�) ≤ 2−n.
• X passes (Un : n ∈N) if X ∉⋂

n∈N�Un�.

Stronger randomness notions are defined by allowing more tests which capture
more sets and hence leave fewer randoms.

That is, if there are more tests, then it is harder to pass all tests.

Definition
A weak 2-test relative to Z is like a ML-test relative to Z, except we only require

lim
n→∞µ(�Un�) = 0

instead of ∀n (µ(�Un�) ≤ 2−n).
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Weak 2-randomness

A weak 2-test relative to Z is a uniformly Z-r.e. sequence (Un : n ∈N) such that
limn→∞µ(�Un�) = 0.

X is weakly 2-random relative to Z if X passes every weak 2-test relative to Z.

Definition
W2R is the statement

∀Z ∃X (X is weakly 2-random relative to Z).
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2-randomness

Basic idea:
X is 2-random relative to Z if X is ML-random relative to Z ′.

This definition works fine in ordinary math, but it’s a problem over RCA0 because
the statement

“for all sets Z, the set Z ′ exists”

is equivalent to ACA0 over RCA0.

We want to say “X is 2-random relative to Z” in a way that does not imply that Z ′
is a set.

This can be done by letting the components of a test be Σ0,Z
2 classes instead of

Σ0,Z ′
1 classes.
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Formalized 2-randomness

If T ⊆ 2<N is a tree, let [T ] denote the class of paths through T .

For q ∈Q, define µ([T ]) ≤ q if there is an n such that∣∣{σ ∈ T : |σ| = n
}∣∣

2n ≤ q.

Let Z ∈ 2N.
• A code for a Σ0,Z

2 class W is a sequence of trees (Tn : n ∈N) ≤T Z such that
T0 ⊆ T1 ⊆ T2 ⊆ ·· · .

• Define X ∈W if ∃n
(
X ∈ [Tn]

)
.

• For q ∈Q, define µ(W ) ≤ q if ∀n
(
[Tn] ≤ q

)
.

• A uniform sequence of Σ0,Z
2 classes (Wn : n ∈N) is coded by a double-sequence

of trees (Tn,i : n, i ∈N) ≤T Z.

• A 2-test relative to Z is a uniform sequence of Σ0,Z
2 classes (Wn : n ∈N) such

that ∀n
(
µ(Wn) ≤ 2−n

)
.
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More formalized 2-randomness

A 2-test relative to Z ∈ 2N is a uniform sequence of Σ0,Z
2 classes (Wn : n ∈N) such

that ∀n
(
µ(W ) ≤ 2−n

)
.

X ∈ 2N passes the 2-test (Wn : n ∈N) if X ∉⋂
n∈NWn.

X is 2-random relative to Z if X passes every 2-test relative to Z.

Definition
2-MLR is the statement

∀Z ∃X (X is 2-random relative to Z).
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Quick history

The definition of 2-randomness in terms of 2-tests is due to Kurtz.

The equivalence of 2-randomness (in terms of 2-tests) and ML-randomness relative
to 0′ is due to Kautz.

Among the first to consider 2-MLR in reverse mathematics are:
• Avigad, Dean, and Rute

• Conidis and Slaman
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Mathematical consequences of 2-MLR

RCA0 +2-MLR proves the rainbow Ramsey theorem for pairs. (Conidis and
Slaman, following Csima and Mileti)

In fact, the rainbow Ramsey theorem for pairs is equivalent to 2-DNR over RCA0.
(J. Miller)

Rainbow Ramsey theorem for pairs:
Let k ≥ 1, and let f : [N]2 →N be k-bounded: ∀n (|f −1(n)| ≤ k). Then there is an
infinite R ⊆N such that f is injective on [R]2.

Over RCA0, 2-MLR+BΣ0
2 is equivalent to a version of the dominated convergence

theorem for Borel measures on compact Polish spaces. (Avigad, Dean, and Rute)

Dominated convergence theorem:
Let X be a compact Polish space, and let µ be a Borel measure on X . Let
(fn : n ∈N), f , and g be members of L1(X ) such that (fn : n ∈N) converges to f
pointwise and is dominated by g. Then (

∫
fn : n ∈N) converges to

∫
f .
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2-MLR versus W2R

RCA0 +2-MLR is strictly between ACA0 and RCA0 +W2R (and not above WKL0).

Theorem (Nies and S.)
RCA0 +W2R0 2-MLR.
In fact, RCA0 +W2R0 2-DNR.

The immediate impulse is to use van Lambalgen’s theorem: X ⊕Y is random if
and only if X is random and Y is random relative to X .

Therefore, if X =⊕
n∈NXn is random, then each Xi is random relative to

⊕
n<i Xn.

So we can build a model of randomness from the columns of X .

However, van Lambalgen’s theorem does not hold for weak 2-randomness.

So instead use van Lambalgen for ML-randomness, plus the fact that if X ⊕Y has
hyperimmune-free degree and Y is ML-random relative to X , then Y is also
weakly 2-random relative to X .
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Implications among randomness notions mentioned so far

Arrows indicate implications over RCA0.

None of the arrows reverse. (Except the CR⇔ SR arrow, of course!)

ACA0

2-MLR

W2RWKL0

MLR

CR⇔ SR

RCA0
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Quick slides on the first-order strength of 2-MLR

As far as I know, an exact characterization of the first-order consequences of
RCA0 +2-MLR is still an open problem.

Measure first-order strength via induction, bounding, and cardinality schemes:

BΣ0
2 ⇒ CΣ0

2 ⇒ IΣ0
1

• IΣ0
1 is the induction scheme for Σ0

1 formulas.

• CΣ0
2 is a scheme saying that if ϕ(x,y) is Σ0

2 and defines an injection, then the
range is unbounded.

• BΣ0
2 is the bounding scheme

(∀n < a)(∃m)ϕ(n,m) →∃b(∀n < a)(∃m < b)ϕ(n,m)

for Σ0
2 formulas ϕ.
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Quick slides on the first-order strength of 2-MLR

What is known:
• RCA0 +2-MLR`CΣ0

2. (Conidis and Slaman)

• RCA0 +BΣ0
2 +2-MLR is Π1

1-conservative over RCA0 +BΣ0
2. (Conidis and

Slaman)

• RCA0 +2-MLR0BΣ0
2. (Slaman)

So the first-order consequences of RCA0 +2-MLR are strictly between those of
RCA0 and RCA0 +BΣ0

2.

Also, there are more recent results by Belanger, Chong, Wang, Wong, and Yang
establishing a better upper bound on the first-order consequences of RCA0 +2-MLR.
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Plain complexity and incompressibility

Let CZ (σ) denote the plain Kolmogorov complexity of a string σ ∈ 2<N relative
to a set Z ∈ 2N.

Slogan: CZ (σ) is the length of the shortest Z-description of σ.
• Fix a universal oracle Turing machine U
(computing a partial function 2<N→ 2<N for each oracle).

• Define CZ (σ) to be |τ| for the shortest τ such that UZ (τ) =σ.

Definition
X is infinitely often CZ-incompressible if

∃b ∃∞m
(
CZ (X�m) ≥ m−b

)
.
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Characterizing 2-randomness in terms of incompressibility

Recall: X is infinitely often CZ -incompressible if ∃b ∃∞m
(
CZ (X�m) ≥ m−b

)
.

Theorem (Nies, Stephan, and Terwijn; J. Miller indep. for ⇒)
X is 2-random relative to Z ⇔ X is infinitely often CZ -incompressible.

Theorem (Nies and S.)
The equivalence between 2-randomness relative to Z and infinitely often
CZ -incompressibility is provable in RCA0.

That is:

RCA0 `∀Z ∀X
(
X is 2-MLR relative to Z ⇔ X is infinitely often CZ -incomp.

)
This is nice because infinitely often CZ -incompressibility is easy to formalize in
second-order arithmetic, but 2-randomness relative to Z is not.
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Comments on the proof

Focus on the direction
X is 2-random relative to Z ⇒ X is infinitely often CZ -incompressible.

Main problem: Avoid using BΣ0
2!

Secondary consideration: Give a direct proof in terms of 2-tests.

BΣ0
2 tends to creep into arguments about computations relative to Z ′:
• Obtaining initial segments of Z ′ only requires bounded Σ0

1 comprehension.

• Obtaining initial segments of an arbitrary ∆0,Z
2 set requires bounded ∆0

2
comprehension, which is equivalent to BΣ0

2.

The original proofs think of 2-MLR as MLR-relative-to-Z ′:
• J. Miller’s proof uses prefix-free complexity relative to Z ′.

• Nies, Stephan, and Terwijn’s proof uses the low basis theorem and
MLR-relative-to-Z ′.
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Comments on the proof

We follow a proof by Bauwens, based on a proof by Bienvenu, Muchnik, Shen, and
Vereshchagin.

The crux is the following lemma.

Lemma (Conidis)
Let q ∈Q and let (Un : n ∈N) be uniformly Z-r.e. sets such that ∀n (µ(�Un�) ≤ q).
Then for every p > q, there is a Z ′-r.e. set V such that

µ(�V �) ≤ p and ∀n0

( ⋂
i≥n0

�Ui� ⊆ �V �
)

.

Supposing some X is not infinitely often CZ -incompressible, the lemma is used to
build a test capturing X .
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Comments on the proof

We give a version of the lemma in RCA0.

Lemma (RCA0; Nies and S.)
Let q ∈Q and let (Un : n ∈N) be uniformly Z-r.e. sets such that ∀n (µ(�Un�) ≤ q).
Then for every p > q, there is a Σ0,Z

2 class V such that

µ(�V �) ≤ p and ∀n0

( ⋂
i≥n0

�Ui� ⊆ V

)
.

The basic idea is:

replace
⋃

n0∈N

⋂
i≥n0

�Ui� with V = ⋃
n0∈N

bi⋂
i=n0

�Ui�

for an appropriate sequence b0 < b1 < b2 < ·· · .

Z ′ can compute the bi’s, but we want to avoid using Z ′.
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Balanced randomness and h-weak Demuth randomness

Let h : N→N.

An h-weak Demuth test relative to Z is like an ML-test relative to Z, except you
may change your mind about index of the nth component Un h(n)-many times.

X is h-weakly Demuth random relative to Z if X weakly passes every h-weak
Demuth test relative to Z.
(In the context of Demuth randomness, the pros say ‘weakly passes’ instead of ‘passes’ to mean ‘not in the intersection of the test.’)

X is balanced random relative to Z if X weakly passes every O(2n)-Demuth test
relative to Z.

Definition
For h provably total in RCA0, h-WDR is the statement

∀Z ∃X (X is h-weakly Demuth random relative to Z).

BR is the statement

∀Z ∃X (X is balanced random relative to Z).
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MLR versus BR

MLR versus BR:
• Every balanced random set is Martin-Löf random.

• Not every Martin-Löf random set is balanced random.

• Yet if X = X0 ⊕X1 is ML-random, then either X0 or X1 is balanced random
(Figueira, Hirschfeldt, Miller, Ng, Nies).

The original proof of the last item uses van Lambalgen’s theorem and traceability
notions (specifically, ω-r.e.-tracing).

We give a new direct proof that is easy to implement in RCA0. Therefore:

Theorem (Nies and S.)
RCA0 `MLR⇔BR.
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MLR versus h-WDR and rates of growth

Recall:
• BR is (informally) O(2n)-WDR.
• RCA0 `MLR⇔BR.

If h(n) grows faster than n 7→ kn for every k, then h-WDR is stronger than MLR.

Theorem (Nies and S.)
Let h : N→N be such that:

• h eventually dominates n 7→ kn for every k

• RCA0 ` h is total.
Then RCA0 +MLR0 h-WDR. In fact, WKL0 0 h-WDR.

To prove this:
• Build a model of WKL0 in which ∀X ∃k (X is kn-r.e.).
• If h eventually dominates kn, then no kn-r.e. set X is h-WDR.
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Thank you!

Thank you for coming to my talk!
Do you have a question about it?
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