Topology of very affine manifolds

Laurentiu Maxim

(joint work with Yongqiang Liu and Botong Wang)

University of Wisconsin-Madison

Laurentiu Maxim

Definition

A complex algebraic variety X is very affine if it is isomorphic to an irreducible closed subvariety of $(\mathbb{C}^*)^N$, for some N.

Very affine manifolds are intensely studied in algebraic geometry, topology, tropical geometry and algebraic statistics.

Example (Essential hyperplane arrangement complements)

If $\mathcal{A} = \{H_1, \cdots, H_d\} \subset \mathbb{C}^n$ is a hyperplane arrangement, then:

- $M_{\mathcal{A}} := \mathbb{C}^n \setminus \bigcup_{i=1}^d H_i$ is affine,
- $M_{\mathcal{A}}$ is very affine $\iff \mathcal{A}$ is essential.

Example (Toric hyperplane arrangement complements)

If $\mathcal{A} = \{T_1, \cdots, T_d\} \subset (\mathbb{C}^*)^n$ is a toric hyperplane arrangement (i.e., a finite collection of codimension-one subtori), then $M_{\mathcal{A}} := (\mathbb{C}^*)^n \setminus \bigcup_{i=1}^d T_i$ is very affine.

Theorem (Gabber-Loeser '96, Kapranov-Franecki '00, Huh '13, etc)

If X is a very affine manifold of complex dimension n, then X satisfies the signed Euler characteristic property, i.e.,

 $(-1)^n \cdot \chi(X) \ge 0.$

- the signed Euler characteristic property *fails* if X is *singular*.
- all known proofs use sophisticated language (characteristic cycles, perverse sheaves, etc.)
- motivating question: what is the *topological* reason for the signed Euler characteristic property?

- Let $\xi:\pi_1(X) o \mathbb{Z}$ be a non-zero homomorphism
- ξ ∈ Hom(H₁(X), ℤ) ≅ H¹(X, ℤ) ≅ [X, S¹], so ξ has a homotopy representative f_ξ : X → S¹
- Let $X^{\xi}
 ightarrow X$ be the corresponding infinite cyclic cover
- non-proper Morse theory of Palais-Smale yields:

Theorem (Liu-M.-Wang '17)

Let X be an n-dimensional connected very affine manifold, and let $\xi : \pi_1(X) \to \mathbb{Z}$ be a generic homomorphism with homotopy representative $f_{\xi} : X \to S^1$. Then:

- the infinite cyclic cover X^ξ is homotopy equivalent to a finite CW-complex with (possibly infinitely) many n-cells attached.
- 3 if the mixed Hodge structure on $H^1(X)$ is pure of type (1,1), there exists a subcomplex $X_0 \subseteq X$ such that
 - $f_{\xi}|_{X_0}$ is a fibration whose fiber is of finite homotopy type,
 - X is homotopy equivalent to X₀ with (-1)ⁿχ(X) n-cells attached.

The purity assumption is satisfied for *complements of essential* hyperplane arrangements and, resp., *complements of toric* hyperplane arrangements (and also for any very affine manifold X having a smooth compactification \bar{X} with $b_1(\bar{X}) = 0$).

- Let $\xi : \pi_1(X) \to \mathbb{Z}$ be a non-zero homomorphism with infinite cyclic cover $X^{\xi} \to X$
- $\mathrm{Deck}(X^{\xi}/X)\cong\mathbb{Z}$ acts on X^{ξ} , so $H_i(X^{\xi},\mathbb{Z})$ becomes a $\mathbb{Z}[t^{\pm}]$ -module
- $H_i(X^{\xi},\mathbb{Z})$ is the *i*-th integral Alexander module of (X,ξ)

Corollary (Finite generation of integral Alexander modules)

Let X be an n-dimensional very affine manifold. For a generic group homomorphism $\xi : \pi_1(X) \to \mathbb{Z}$, the corresponding integral Alexander modules $H_i(X^{\xi}; \mathbb{Z})$ are finitely generated abelian groups for any $i \neq n$.

Corollary (Signed Euler characteristic property)

If X is an n-dimensional very affine manifold, then

 $(-1)^n \cdot \chi(X) \ge 0.$

To any pair (X, ξ) as above, one can associate *Novikov-Betti* numbers $b_i(X, \xi)$ and *Novikov-torsion numbers* $q_i(X, \xi)$.

Corollary (Vanishing of Novikov homology)

Let X be an n-dimensional very affine manifold, and fix a generic epimorphism $\xi : \pi_1(X) \to \mathbb{Z}$. Then $b_i(X, \xi) = q_i(X, \xi) = 0$ for any $i \neq n$, and $b_n(X, \xi) = (-1)^n \cdot \chi(X)$.

If Γ is a countable group, and the pair (X,ξ) is as above, an epimorphism $\alpha : \pi_1(X) \to \Gamma$ is called ξ -admissible if ξ factors through α . To an admissible pair (X, α) , one associates L^2 -Betti numbers $b_i^{(2)}(X, \alpha)$.

Corollary (Vanishing of L^2 -Betti numbers)

Let X be an n-dimensional very affine manifold with $H^1(X)$ pure of type (1,1), and fix a generic epimorphism $\xi : \pi_1(X) \to \mathbb{Z}$. Then, for any ξ -admissible epimorphism $\alpha : \pi_1(X) \to \Gamma$, we have: $b_i^{(2)}(X, \alpha) = 0$ for all $i \neq n$, and $b_n^{(2)}(X, \alpha) = (-1)^n \cdot \chi(X)$.

Definition (Denham-Suciu-Yuzvinsky '15)

Let X be a connected finite CW complex, with $H := H_1(X, \mathbb{Z})$. X is an *abelian duality space of dimension n* if the following two conditions are satisfied:

(a)
$$H^i(X, \mathbb{Z}[H]) = 0$$
 for $i \neq n$,

(b) $H^n(X, \mathbb{Z}[H])$ is a (non-zero) torsion-free \mathbb{Z} -module.

Abelian duality spaces are useful for understanding *cohomology jump loci* $\mathcal{V}^i(X)$ defined as:

$$\mathcal{V}^i(X) = \{
ho \in \operatorname{Char}(X) \mid H^i(X, L_{
ho})
eq 0 \},$$

where L_{ρ} is the rank-one \mathbb{C} -local system on X associated to the representation $\rho \in \operatorname{Char}(X) = \operatorname{Hom}(H, \mathbb{C}^*)$.

Theorem (Denham-Suciu-Yuzvinsky '15, Liu-M.-Wang '17)

The cohomology jump loci of an abelian duality space X of dimension n satisfy the following properties:

(i) Propagation property: $\mathcal{V}^n(X) \supseteq \mathcal{V}^{n-1}(X) \supseteq \cdots \supseteq \mathcal{V}^0(X)$.

(ii) Codimension lower bound: $\operatorname{codim} \mathcal{V}^{n-i}(X) \ge i$, for any $i \ge 0$. (iii) Generic vanishing: $H^i(X, L_{\rho}) = 0$ for ρ generic and all $i \ne n$.

(iv) Signed Euler characteristic property:

 $(-1)^n \cdot \chi(X) \ge 0,$

with equality if and only if $\mathcal{V}^n(X) \neq \operatorname{Char}(X)$.

(v) Betti property: $b_i(X) > 0$, for $0 \le i \le n$, and $b_1(X) \ge n$.

Theorem (Liu-M.-Wang '18)

Let X be an n-dimensional very affine manifold. Then X is an abelian duality space of dimension n. In particular,

 $(-1)^n \cdot \chi(X) \ge 0.$

Laurentiu Maxim

Thank you !