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Preface

Algebraic topology studies topological spaces via algebraic invariants
like fundamental group, homotopy groups, (co)homology groups, etc.
Topological (or homotopy) invariants encode those properties of topo-
logical spaces which remain unchanged under homeomorphisms (re-
spectively, homotopy equivalences). The ultimate goal of the theory is
to classify (at least special classes of) topological spaces up to homeo-
morphism or homotopy equivalence. There are several success stories
in this direction (e.g., the classification of closed surfaces), but this
is difficult to achieve in general. Alternatively, one aims to develop
enough invariants to be able to distinguish various topological spaces.

While assuming minimal prerequisites (e.g., basic notions of alge-
bra and point set topology), these notes provide a comprehensive
introduction to algebraic topology. Topics covered here include: fun-
damental group, classification of compact surfaces, covering spaces,
homology, cohomology, Poincaré duality, higher homotopy groups,
spectral sequences, fiber bundles and classifying spaces, vector bundles,
characteristic classes and some immediate applications. This material
is intended as a two-semester graduate course, but it may also serve
as a quick reference for anyone interested in geometry, topology and
algebraic geometry.

The primary goal of these notes is to provide readers with a taste of
this beautiful subject by presenting concrete examples and applications
that motivate the abstract theory. Towards this goal, and in order to
keep the size of the material within a reasonable level, several important
results are stated without proof or their proof is only sketched, while
some of their main applications are emphasized instead. For more
complete details and further reading, one one may also consult standard
textbooks and references in geometry and topology, such as [Bott
and Tu, 1982], [Bredon, 1993], [Hatcher, 2002], [Davis and Kirk, 2001],
[Massey, 1991], [Milnor and Stasheff, 1974], [Munkres, 2000], [Munkres,
1984], [Spanier, 1966], etc.

Acknowledgements. These notes grew out of lectures given by the
author at the City University of New York (Graduate Center), University

ix



of Wisconsin-Madison, and the University of Science and Technology
of China (USTC) in Hefei, China. I would like to thank my students,
colleagues and collaborators for valuable feedback.

Madison, March 2025



FOREWORD ABOUT INVARIANTS OF SPACES

1
Foreword about invariants of spaces

As a warm-up example, let us consider the following simple example
of an invariant of a topological space with a finite number of path
components.

Example 1.0.1. If X is a topological space, let 7(X) be the number of
path components of X (by assumption, this is a positive integer). It is
easy to see thatif f: X — Y is a continuous map, then n(f(X)) < n(X).
Thus, if f is a homeomorphism, then n(X) = n(Y), so n(—) is a
topological invariant.

The invariant n(X) can be used for proving the following one-
dimensional version of Brower’s fixed point theorem:

Theorem 1.0.2. Any continuous map f: [0,1] — [0,1] has a fixed point, i.e.,
there exists x € [0,1] so that f(x) = x.

Proof. Assume, by contradiction, that f(x) # x, for any x € [0,1].
Define
r(x) = S =x .
f(x) = x|
Then r is clearly a continuous map. Moreover, the image of r is the set
{#£1}. Since f(0) # 0 we must have f(0) > 0, so (0) = 1. Similarly,
f(1) < 1,s0r(1) = —1. Hence we have a surjective continuous function

r:[0,1] = {-1,1}.
By using the invariant 7(—) on the map r, we get that

n({-1,1}) < n([0,1]),
or 2 < 1, which is clearly a contradiction. O

In the following chapters, we will associate various algebraic invari-
ants to topological spaces, e.g., the fundamental group, (co)homology
groups, etc.

1






FUNDAMENTAL GROUP

2
Fundamental group

The first non-trivial algebraic invariant we associate to a topological
space is the fundamental group. This invariant is powerful enough
to provide us with a complete topological classification of compact
surfaces (see Section 3.3).

2.1 Definition
Let X be a connected topological space. For x,y € X, consider the set

P(X,x,y) ={y:10,1] = X [7(0) = x,7(1) =y}

of all continuous paths in X from x to y. The loop space of X at x is then
defined by
Q(X,x) =P(X,x,x).

On P(X, x,y), we define the following (equivalence) relation:

Definition 2.1.1. Two paths v, € P (X, x,y) are called homotopic, denoted
as «y ~ 9, if there exists a continuous map (called a homotopy between <y and

)
F:[0,1] x [0,1] = X.
so that
(t,0) = 7(t)
(t,1) — (1)
(0,s) — x
(Ls)—y

To emphasize the homotopy F between <y and ¢, we usually use the
symbol 7y L 5. 1f we set F(t,s) = 7s(t), then a homotopy F as above
satisfies the property that 79 = 7 and y; = J, as well as 7,(0) = x,
vs(1) = y. We can represent a homotopy schematically on the unit
square as follows:

3



4 ALGEBRAIC TOPOLOGY

Vs

Y

Lemma 2.1.2. The homotopy relation ~ is an equivalence relation on the set

P(X,x,y).

Proof. The homotopy relation is:

e reflexive, i.e., v ~ 7 via F(t,s) = (t) for any s.

e symmetric: if 7y L 5, then L v via F(t,s) = F(t,1—5s).

* transitive: let ¢y Lsands & @, then 7y R @ via

Note that

H(t,0) = F(t,0) = y(¢)

H(t, L) = F(t,1) = G(t,0) = 6(¢)

2
H(t,1) = G(t,1) = ¢(t)

In order to show that H is continuous, we use the following standard
fact from point set topology: if X = AU B, with both A and B closed
subsets (or both open), and if f : X — Y is a map so that f|4 and f|p
are continuous, then f is continuous. O



Definition 2.1.3. The fundamental group of X at the basepoint x € X is

defined as the set of equivalence classes of loops at x under the homotopy
relation, i.e.,

m (X, x) = QX,x)/ ~.

In order to justify the word “group” in the above definition, we
introduce the following concatenation operation on paths in X:

Definition 2.1.4. For x,y,z € X, define

P(X,x,y) x P(X,y,z) SN P(X,x,z)

v(2t) 0<t<d
(v 8)(t) = e
d(2t—-1) ;<t<1
o v 1 5 1
2
Alternatively, one can define the path y s 6 by
1) 0stss
(rx:0) )= 7
M=) s<t<1
0 i s 0 1

Lemma 2.1.5. The concatenation of paths is consistent with the homotopy
relation, i.e., if y E o and 5 &6, then v x6 B o/ x4,

Proof. The claimed homotopy H is defined by:

HLs) F(2t,s) 0<t<}i
/8) =
G(2t—15s) Lt<t<i1
1
Yooz 4
F G
Y10

FUNDAMENTAL GROUP 5§



6 ALGEBRAIC TOPOLOGY

Corollary 2.1.6. The operation of concatenation of paths induces a binary
law on the set 11 (X, x) = Q(X,x)/ ~, by:

[v]-[6] := [y % 4]
Theorem 2.1.7. (711(X, x),-) is a group.

Proof. In order to show the associativity of the binary law, we start by
noting that
Y ks~ Y kg S,

for any s,s’ € (0,1). Indeed, this can be easily seen from the following
diagram:

0 5 1
Then, for 7,4, € Q(X, x), we have:
(y*8) %~ (v x0) sz iy~ kg (Sx1p) ~ yx (0x7)

In order to find the identity element, consider the constant loop
ex(t) = x, for all t € [0,1]. We claim that if v € P(X, x,y), then

F G
ex kY ~ Y~y key.

Indeed, we have,

G(ts) (&) o<t<sH
,8) =
y=701) <<
Y
x 5 o y
Y ey

And similarly for ey * 7y £ 7. Therefore, ¢, is the identity element in
(7'[1 (X/ X), )
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Finally, let
and set,
We claim that, yx ¥ ~ ey ~ ¥ %7, ie., [¥] is the inverse of [y] in

(m1(X, x),). Indeed, 7y * ¥ ~ ey via:

€x

(1 —5s)
Vs Ys

v X Y

Here, the homotopy H(t,s) = hs(t) between vy * ¥ and e, is given by
hs = 75 * 7s, where 75(t) is the path that equals 7y on [0,1 — s] and that
is stationary at (1 — s) on the interval [1 — s, 1], and ¥; is the inverse
path of 7.

Similarly considerations apply for 4 * ¢ ~ ey. O

Example 2.1.8. Here are some elementary examples, as well as some
which will be discussed later on:

a) If X = {x} is just a point space, then the only path (loop) in X is
the constant one, so 71(X, x) = {[ex]} is the trivial group.

b) If X is a convex subset of R", and x € X, then 711(X, x) = {[ex]}.
Indeed, for any ¢ € (X, x), the map

H(t,s) =sex + (1 —s)y(t)

is continuous, H(t,0) = (), H(t,1) = ey, so H is a homotopy from
v to ey.

c) Forn > 2, m1(S",x) = {[ex]}. This will be explained later on.

~

d) As we will see later, one has: 711(S',1) = Z = (v(t)), where
¥(t) = (cos27t,sin 27tt).

2.2 Basepoint (in)dependence

We can now ask the following:



8 ALGEBRAIC TOPOLOGY

Question 2.2.1. How does 711 (X, x) change if we change the basepoint x, i.e.,
how are 1t1(X, x) and 111 (X, y) related, for y # x?

In order to give an answer, let us assume that X is path-connected,
and let x # y be two distinct points in X. Choose a path 6 : I = [0,1] —
X in X from x to y, 6(0) = x, 6(1) = y. Note that if v € Q(X, x), then
Sxyx6€Q(X,y). It is easy to see that the assignment

Y Sxyxd

is compatible with the homotopy relation (if 7, is a homotopy starting
at 1y, then & * 75 * § is a homotopy starting at & * 7y * §), hence it descends
to a map

Oy (X, x) = m (X, y).

Proposition 2.2.2. Jy is an isomorphism.

Proof. 1t is easy to check that 8y : 711 (X, y) = m (X, x), [5] = [6 x 17 % 6]
is the inverse of dy. Moreover, d4 is a group homomorphism, since for
7,1 € m (X, x) we have:

Su([v]-[n]) = du([y*m]) = [6% (v 1) %] = [(5 %y %) * (17 %0)]
=[(6xy*x0)]-[(6xn%5)]
= 04([7]) - 4([n])

2.3 Functoriality

The next question to ask is:

Question 2.3.1. How is the fundamental group affected by continuous maps
between topological spaces?

Let f: X — Y be a continuous map, with f(x) = y. Then the

composition I = [0,1] & X 4. Y induces a map:

fo (X, x) = m(Y,y)
[7] = [f o]

It is easy to see that f, is well-defined: if 7, is a homotopy for v, then
f o s is a homotopy for f o y. Moreover, f, is a homomorphism, since

f(y(2t)) 0<t
f(6(2t—1)) F<t

Using the above definition, one gets immediately the following:

(fo'Y)*(foW):fo('Y*ﬂ):tH{

Proposition 2.3.2. The following properties hold:



LI (X,x) D (Yoy) S (Z,2), then (g0 f) = guo f.
2. (id(xy))s = idg (xx)

As a consequence, we can now show the following:
Theorem 2.3.3. 711(X, x) is a topological invariant, i.e., if

f(Xx) = (Yy)
is a homeomorphism, then
f* : 7-[1(er) - 7T1(Y,_1/>

is an isomorphism.

Proof. Let g = f~'. Since fog = id(y,), g0 f = id(x ), it follows by
the above two properties that (f.) ™' = g, (¢x) ™' = fu. O

2.4 Homotopy invariance of fundamental group

In this section, we show that the fundamental group is a homotopy
invariant.

Definition 2.4.1. Let f,g: (X, A) — (Y, B) be continuous maps of pairs,
so A C X, BCY,with f(A) C B, g(A) C B. We say that f and g
are “homotopic relative to A” (and write f ~ 4 g) if there is a continuous
map F : X x [0,1] — Y (called a homotopy) such that F(A x [0,1]) C B,
F(x,0) = f(x), and F(x,1) = g(x) forall x € X. If A = @, we say that f
is homotopic to g and write f ~ g.

Lemma 2.4.2. If f,9: (X, x0) — (Y, yo) are homotopic relative to xq, then

fo =g (X, x0) = (Y, y0)-

Proof. If f ~y, g via F, then for v € Q(X, xp) it is easy to check that
H(t,s) := F(y(t),s) is a homotopy between f oy and go . Hence
fe([]) = [fen] = [ger] = 8([7]) € m(Y, o). -

Definition 2.4.3. We say that (X, xo) and (Y, yq) are homotopy equivalent
(as pointed spaces) if there are continuous maps f: (X, xo) — (Y, yo) and
g: (Y,y0) = (X, xq) such that f o g ~y, idy and g o f ~y, idy.

The following is an immediate consequence of the above lemma:

Theorem 2.4.4. If (X, xo) and (Y, yq) are homotopy equivalent (as pointed
spaces), then 11(X, xo) = 1 (Y, o).

Definition 2.4.5. We say that X and Y are homotopy equivalent (and write
X ~Y) if there are continuous maps f : X — Y and g : Y — X such that

fogwidyandgofwidx.

FUNDAMENTAL GROUP 9



10 ALGEBRAIC TOPOLOGY

It is easy to check that homotopy equivalence is an equivalence
relation. If X and Y are homotopy equivalent, we say that they have
the same homotopy type.

To prove that the fundamental group is preserved by a homotopy
equivalence, we need the following generalization of Lemma 2.4.2.

Lemma 2.4.6. Let h: X — Y and k: X — Y be continuous maps, xo €
X, yo = h(x0), y1 = k(xo). If h ~ k, there exists a path « in Y joining yo
to y1, such that k. = ay o h, i.e., the following diagram commutes:

h
7T (X,X()) — 1 (Y/]/O)

I

m (Y, y1)

Proof. If H : X x [0,1] — Y is a homotopy between & and k, we can take
a(t) = H (xg,t). Checking the commutativity of the above diagram is a
simple exercise. O

Theorem 2.4.7. If f: X — Y is a homotopy equivalence, the induced homo-
morphism f.: 71 (X, x) — 711 (Y, f(x)) is an isomorphism, for any basepoint
xeX.

Proof. Let g: Y — X be a homotopy inverse for f. Fix xp € X and
consider the maps

(X,%0) L (Y, y0) 5 (X, x1) L (Y, 1)

where Yo = f(X()), X1 = g(yo) and = f(xl). Since gof ~ idx,
by Lemma 2.4.6 and for a suitable choice of a path & between xg
and x; in X we have that (go f). = ay is an isomorphism. Now,
(g0 f)« = 8«0 (fxy)+ is an isomorphism, which implies that g is
surjective. Similarly, (f o ¢)x = (fx, )+ © g+ is an isomorphism which
implies that g, is injective. (Here (fx,)« and (fx, )« are the maps induced
by f on the fundamental groups of the pointed spaces in the above
diagram.) Hence g, is an isomorphism. Using (go f). = ay we
conclude that,

(fro)y = () oy

so that (fx,), is also an isomorphism. O

2.5 Contractible spaces. Deformation Retracts

Definition 2.5.1. Amap f: X — Y is called nullhomotopic if f is homotopic
to a constant map. A space X is called contractible if the identity map
idx : X — X is nullhomotopic.



Example 2.5.2. The euclidean space R”, the n-dimensional disc D",
and the point space {x} are all contractible, while we will see later on
that S1, S2 are not contractible.

It is a simple exercise to show the following:

Proposition 2.5.3. If X is contractible, then 11(X, xq) is trivial, for any
basepoint xo € X.

Definition 2.5.4. A space X is called simply-connected if 7t1 (X, xo) is trivial
for any xg € X.

Remark 2.5.5. A contractible space is simply-connected. The converse
is not true, e.g., we will see that S? is simply-connected, but it is not
contractible.

Proposition 2.5.6. A topological space X is simply-connected if, and only if,
there is a unique homotopy class of paths connecting any two points in X.

Proof. (=) If x,y € X and f,g: I = [0,1] — X are paths from x to y
in X, then we have the following homotopies:

frofrey~fxgrg~enxgg,

where we use the fact that § * g and f * g are loops in X at y and x,
resp., hence homotopic to the respective constant paths.

(<) Take x = y. By hypothesis, any loop 7 at x € X is in the
homotopy class of ey. O

Theorem 2.5.7. Let X be a topological space. The following are equivalent:
1. Every continuous map S* — X is homotopic to the constant map.

2. Every continuous map S' — X extends to a continuous map D> — X,
where D? is the 2-disc with boundary S'.

3. 1m1(X, xq) is trivial, for all xy € X.

Proof. (3) = (1): Elements of 711(X, xp) can be regarded as homo-
topy classes of maps (S!,s0) — (X, xp), so the assertion follows.

(1) = (2): Let f : S' — X be given. By (1), f is nullhomotopic, so
there is a map F : S' x I — X with F(e?,0) = f(e?) and F(e%,1) = cx,
with cx a constant. Define f : D2 — X by f(re!®) = F(¢'?,1 — r). Then
f is the required extension of f to D2.

(2) = (3): Let f : S' = X, f(1) = xo, be a representative for
[f] € m1(X,x0). By (2), f extends to some f : D* — X. If i : §* < D2
is the inclusion map, we have f = foi, hence f. = f. oi.. But D?is
contractible, so f. = 0 and f, = 0. Hence [f] = [f oids1] = fi([idgi]) =
0. O

FUNDAMENTAL GROUP
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12 ALGEBRAIC TOPOLOGY

Definition 2.5.8. A subset A C X is called a retract of X if there is a map
r: X — A, so that ra = idg (ie., if i : A — X is the inclusion map, then
roi=1idy). Asubset A C X is called a deformation retract if, in addition,
ior~idy.

Remark 2.5.9. If A C X is a deformation retract of X, then A is
homotopy equivalent to X.

Lemma 2.5.10. The n-sphere S" is a deformation retract of R"*1\ {0}.

Proof. Let r: X = R"™1\ {0} — S" be defined as r(x) = x/||x||. By
definition, we have r|g» = idgn. Also,ior ~idyx via H: X x [0,1] = X

defined as
x

(1= 1) + ¢ |x]|
Indeed, H is continuous, H (x,0) = x = idx(x) and H (x,1) = ﬁ
ior(x).

H(x,t) =

oo

2.6 Fundamental group of a circle

In this section, we sketch the proof of the following important result.

(More details will be given when we talk about covering spaces.)

Theorem 2.6.1. Let ¢ : Z — 111 (S1) be given by n v+ [wy], where wy : I =
[0,1] — S C R? is the loop wy(t) = (cos(27tnt),sin(27tnt)). Then ¢ is a
group isomorphism.

Proof. Let p : R — S! be defined by t + (cos(27t),sin(27tt)). Then
p1((1,0) = Z.

Let us embed the real line into IR3 as a helix via i : R < RS, t —
(cos(2mtt),sin(27t), t). Then p = pry, o i where pr,(x,y,2) = (x,y).

I
>

Figure 2.1: The map p: R — S'.



Let w, : I — R be given by t +— nt. Note that @,(0) = 0 and
@n(1) = n. Also, wy = po@y,so ¢(n) = [po@y). Infact, p(n) = [po f]
for any path f : T — R from 0 to n. Indeed @, and f are homotopic in
R via the homotopy (1 —s)@y +sf. So po @y, ~ po f.

Define the translation 7, : R — R by 7, (x) = x + m, and notice that
Wy, is a path from 0 to m and T, (@, ) is a path from m to n + m; their
concatenation is thus a path in R from 0 to # + m. We have:

¢(m +n) = [p o nsm] = [p o (Om* Tn(w0n))]
= [(po@m) * (p o Tm(wn)]
= [wm * wn] = [wn] - [w]
= ¢(m) - ¢(n),
hence ¢ is a group homomorphism.
To prove that ¢ is bijective, we need two lemmas.

Lemma 2.6.2 (path lifting). For every f : I — S' with f(0) = xo € S' and
for any %y € p~1(xo), there is a unique f : T — R such that po f = f and
f(0) = %.

(R, %o)

’
f
(,0) — )
Lemma 2.6.3 (homotopy lifting). For every homotopy fs : I — S* with
£:(0) = xo € S and for any %y € p~(x¢), there is a unique homotopy
fs: I — R such that po fs = fs and fs(0) = Zo.

, %o
y
X0

(s',

Assuming the two lemmas for now, let xy = (1,0) and choose %y = 0.
Let f: I — S! be a loop at (1,0) representing [f] € m;(S!, x0). By the
path lifting lemma, there is a path f : I — R such that po f = f and
f(0)=0€ Z. Say f(1) =n € Z, so f is a path in R from o to n. Then
¢(n) = [po f] = [f]. Since f was arbitrary, ¢ must be surjective.

Now suppose ¢(m) = ¢(n) for some m,n € Z. So [wn| = [wn],
or wy ~ wy. Let fs be a homotopy with fy = wy and fi = wy.
By homotopy lifting, there exists a homotopy fs : I — R such that
pofs = fs and f;(0) = 0. But f5(1) is independent of s, so fo(1) =
fi(1). Now fy and @, are both lifts to R of fo = wy, which start at
0. By the uniqueness of path lifting, this gives fy = @y In particular,
fo(1) = @p (1) = m. Similarly, f;(1) = @, (1) = n. Som = n. O

The path and homotopy lifting Lemmas 2.6.2 and 2.6.3 are conse-
quences of the following general lifting lemma which we prove here.

Lemma 2.6.4 (lifting). Let Y be a connected space. Given F : Y x I — S!
and F : Y x {0} — R which lifts F lyx{oy to R, there is a unique lift
F:Y x I — R of F which restricts to the given lift on Y x {0}.

FUNDAMENTAL GROUP

13
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%p\

Proof. First we define F locally, that is, on N x I for some neighborhood

Y x {0} ¢

N of a given point i € Y. Then we show the uniqueness of F on sets
of the form {yo} x I. This uniquely defines F on all of Y x I.

(Step 1) There is an open cover {U,X},x of S! so that for each &, one has
p~ 1 (Uy) = B Uﬁ, where each U/g is an open interval in R that satisfies

(Uﬂ) U, and such that p restricts to a homeomorphism between Uﬁ
and Uy. For all pairs (yo,s) € Y x I, let a be such that F(yo,s) € U,.
Since F is continuous, there is a neighborhood N; x (as,bs) of (yo,s)
so that F(Ns x (as,bs)) € U,. Since {yo} x I is compact, it can be
covered by finitely many such N; x (as,bs). We can choose a single
neighborhood N of vy and a partition of I given by 0 = sp < 51 <

- < sy = 1 so that for each i there is an a; with F(N X [s;,s;41]) C
Uy,. Assume (for induction) that F has been defined on N x [0,s;],
starting with the given lift on N x {0} for i = 0. We can extend it
to N x [s;,s;11] as follows. Recall that since F(N x [s;,s;11]) C U,
we have F(N x {s;}) C Uﬁ , for a unique B; as above. Define F on
N X [Si,SH_ﬂ by f: ( 1‘11,“1. U,Xl — Uﬁz) oF.

(Step 2) Now we show uniqueness for the case when Y is a single point.
Choose a partition of I by 0 = 59 < s1 < --- < s, = 1 so that for all
i there is an open Uy, that completely contains F([s;, s;11]). Assume
we have F and F/, two lifts of F : I — S!. We have that F(0) = F(0),
since we are choosing a specific starting point &y € R. For induction,
suppose F and F’ coincide on [0,s;]. Since F is continuous and [s;, 5;4 1]
is connected, we have that F([s;,s;;1]) is connected. Thus there is a
unique lNJﬁl, that completely contains F([s;,s;.1]). Similarly, there is a
unique Ug, O F'([s,si11])-

L; ljﬁ] CR
b
ID [Si,Si+1] Uai c st

F

Since F(s;) = F/(s;) by the induction hypothesis, and given that the sets
{u/g } are either disjoint or equal, we must have that Uﬁ = Uﬁ, Also,
p|u is a homeomorphism, so p is injective on Uﬁ and poF = poF.

Hence F=F on[sjsi11].



(Step 3) The lifts F constructed on the sets N x [ in (Step 1) are unique
by (Step 2) on each segment {y} x I, so two such lifts must agree on
their overlaps. This means, by gluing, that we get a well-defined lift
F:Y x I — R. Moreover, F is continuous since it is so on each set
N x I. Finally, F is unique by (Step 2). O

Path lifting (Lemma 2.6.2) follows from Lemma 2.6.4 by letting Y be
a single point.

For homotopy lifting (Lemma 2.6.3), let Y = [ in Lemma 2.6.4.
However, we are not being given a lift F: I x {0} — R of the homotopy
F: IxI— S' Let fy(t) = F(t,s). Thereis a unique lift F : I x {0} = R
obtained by applying the path-lifting Lemma 2.6.2 to fo: [ — S'. By
the general lifting Lemma 2.6.4, there is a then unique lift F: [ x [ — R.
So fs(t) = (t s) is a homotopy of paths lifting the homotopy f;, since
F {0y <1 and F {111 are lifts of constant paths (indeed, p o F(0,s) =
F(0,s) = F(0,0), and similarly for F(1,s)), and by uniqueness, they are
also constant paths.

2.7 Some Immediate Applications

We start with the following:
Proposition 2.7.1. S" is simply-connected if n > 2.

Proof. Let v : [0,1] — S" be a loop at x € S". We claim that there
is a loop # in the homotopy class of ¢ which is not onto, i.e., there
exists y # x with y & Im(7). Assuming this claim for now, 7 factors
as [0,1] — S"\{y} = R" — §", and since R" is contractible, it follows
that 7 ~ e,. Hence, by transitivity of the homotopy relation, we get
that ¢ ~ ey.

To prove the claim, we can proceed in several different ways:

(a) A standard fact from differential topology is that any continuous
map between differentiable manifolds contains a smooth map in its
homotopy class. Using this fact, we have v ~ 1 : [0,1] — S", where 5
is smooth. Since dim([0,1]) < dim (S§") = n > 2, every value of 7 is
critical. But by Sard’s theorem, # has a regular value. If y € 5" is such
a regular value of 7, then y & Im(7).

(b) Point-set topology approach: Let y # x. The goal is to homo-
top v away from y. This can be done as follows. Let B, be an
open ball in S around y. Note that 7 ~1(By) is open in (0,1), hence
7 1(By) = Lliea(a;, b;), with A a possibly infinite index set. Since
7~ 1(y) is compact, only finitely many intervals (a;,b;) cover 7~ 1(y).
Let (aj,bj),j € Abeso that (aj,bj) Ny~ (y) # @. Lety; := Vlaj ] © B,.
So y(a;),v(b;) € 0By = 53*1. As S;fl is path connected, there is a path
djin S;_l from - (a;) to y(b;). Since By is contractible, we then obtain
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16 ALGEBRAIC TOPOLOGY

that §; ~ < in By. Note that y ¢ Im (4;). Homotop 7 by deforming
7;j to J;, and keeping the rest of v unchanged. Repeat the process
for all j’s such that (a;,bj) Ny~ !(y) # @. We get a loop 1 ~ v with
Im(y) N {y} = @. O

Corollary 2.7.2. R? is not homeomorphic to R" if n # 2.

Proof. If n = 1 and f : R — R is a homeomorphism then we have
R2\{0} = R\{f(0)}. But R?\ {0} is path connected whereas R\{f(0)}
is not path connected. Hence R? % RR.

Now let n > 2 and f : R> — R" be a homeomorphism. Then we have,

R*\{0} = R"\{f(0)}

hence
1 (R*\{0}) = 7y (R"\{£(0)})

But we know that

Z, n=2
R" ~ Snfl — ’
m(RM\{a}) = (5" { AN
Hence f cannot be a homeomorphism if n # 2. O

Brower’s fixed point theorem
Theorem 2.7.3. Any continuous map f : D*> — D? has a fixed point.

Proof. Assume f(x) # x for all x € D?. Let r: D> — S! be defined such
that r(x) is intersection of the line joining f(x) and x with S' (with
x between f(x) and r(x), if x ¢ S' = dD?). We have rjq1 = idg, i.e.,

roi=idg fori:S' < D? the inclusion map. We have the following
commutative diagram:

Figure 2.2: The map r : D? — S.



which, on the level of fundamental groups, yields the commutative
diagram:

Z -0
Z

This yields a contradiction since the identity map of Z cannot factor
through the zero map. O

As an application of Brower’s fixed point theorem, we have the
following:

Proposition 2.7.4. Let A = (a;;) € M3(R) be a 3 x 3 matrix with non-
negative real entries a;; > 0 for all i,j € {1,2,3}. Assume det(A) # 0. Then
A has a positive real eigenvalue.

Proof. Let T : R? — RR3 be the linear map corresponding to A. Let
B =S*N{(x1,x2,x3) € R? | x1,x,x3 > 0} = D,

If x € B, then all coordinates of Tx = Ax are nonnegative, and not
all zero (since A is nonsingular and not all coordinates of x € B can
be zero). So Tx/||Tx|| € B. Let us now consider the continuous
map f: B — B defined as f(x) = Tx/||Tx||. By Brower’s fixed point
theorem, there exists xy € B so that f(xg) = x, i.e.,, Txg = ||Txo]||xo.
Setting A = ||Txgl||, we have that A is an eigenvalue of A, with A € R
and A > 0. O

Fundamental Theorem of Algebra

Theorem 2.7.5. Let f(z) = z" +a1z2" ' + -+ +a,_ 1z + a, be a complex
polynomial. Then f has a complex root, i.e., f(z) = 0 has a solution in C.

Proof. If a, = 0, then z = 0 is a solution. So we may assume a, is
nonzero.

Define F(z,t) = z" + t(a;z" ' + - - - + a,), withz € C and t € [0,1].
Clearly F is continuous, F(z,0) = z" = p,(z) and F(z,1) = f(z). So F
defines a homotopy between f : C — C and the n-th power function
P

Denote also by F its restriction to the circle C; of radius 7, i.e.,
Cr:={z € C| |z| = r}. We see that for large enough r, F is nonzero.
Indeed, for large enough r,

FG O] = 21" = [t (Jarll2" 7+ -+ )

B UTYa 1 B, 1]
—r<1 |t|<r+ +rn) >0.
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18 ALGEBRAIC TOPOLOGY

So for large r, F is a homotopy C, x I — C* = C\{0} from f to p,.

Assume, by contradiction, that f never vanishes. Define G(z,t) =
f(tz). Notice that G(z,0) = f(0) = a, and G(z,1) = f(z). Restricting
to z € C;, G provides a homotopy C; x I — C* from f to the constant
map eg,. By transitivity, it follows that the power map p,(z) = z" and
the constant map are homotopic as maps C, — C*. We thus obtain the
following commutative diagram

Z = m(Cy,1) M Z = mp(C*, 1)

N l’s’*

Z = m11(C*,ay)

with Jy the isomorphism induced from Lemma 2.4.6 by a certain path in
C* from " to a,. Let 1 denote the generator of 711 (C,, ), corresponding
to a loop at r going around the whole circle C,. Then since (ea, )« is
trivial, (es,)«(1) = 0, and since the diagram is commutative and J; is
an isomorphism, J; o (py )« must be trivial as well, so (p,)«(1) = 0. But
this contradicts the fact that (p,)«(1) = n - 1. Hence our assumption
that f never vanishes is false, so f must have a complex root. O

Exercises

1. Show that if i,/ : X — Y are homotopic and k,k’ : Y — Z are
homotopic, then k o i and k’ o i’ are homotopic.

2. Let xg and x1 be points of the path-connected space X. Show that
m1(X, xo) is abelian if and only if for every pair & and B of paths
from xp to x1, we have ay = By : m1(X,x0) — m(X,x1). (Recall
that ay : 711(X, x9) — 711(X, x1) is the group isomorphism defined by
as([7]) = [V x 7 +al)

3. Let A be a subspace of R"; let i : (A, a09) — (Y, o) be a continuous
map of pointed spaces. Show that if / is extendable to a continuous map
of R" into Y, then / induces the trivial homomorphism on fundamental
groups (i.e., . maps everything to the identity element).

4. Show that any two maps from an arbitrary space to a contractible
space are homotopic. As a consequence, prove that if X is a contractible
space, then any point in X is a deformation retract of X.

5. Show that if X and Y are path-connected spaces,and x € X,y € Y,
then 711 (X x Y, (x,y)) is isomorphic to 711 (X, x) x m1(Y,y).

6. Using the fact that the fundamental group of the circle S! is Z, show
that there are no retractions r : X — A in the following cases:



(@) X =R3, with A any subspace homeomorphic to S*.
(b) X = S! x D?, with A its boundary torus St x St

(c) X is the Mobius band and A its boundary circle.

7. Let V be a finite dimensional real vector space and W a subspace.
Compute 11 (V \ W).

8. What is the fundamental group of RIP? minus a point?

9. Let A be a real 3 x 3 matrix, with all entries positive. Show that A has
a positive real eigenvalue. (Hint: Use Brower’s fixed point theorem.)

10. (Borsuk-Ulam theorem for S?)
Given a continuous map f : S — R?, there is a point x € S? such that
f(x) = f(=x).

(Hint: show that there is no antipode-preserving map S? — S'.)

2.8 Seifert—=Van Kampen's Theorem

In this section, we explain how to compute the fundamental groups of
a space described by union of sets in terms of the fundamental groups
of these sets. We begin with a brief overview of free groups and free
products of groups, followed by the Seifert—-Van Kampen theorem.

Free Groups

Definition 2.8.1. Let G be a group, and let {x;};cy be a set of elements of
G. We say that the set {x;} ey generates the group G if every element of G
can be written as a product of powers of the elements of {x;};c;. If the family
{x;}jey is finite, we say that G is finitely generated.

Let X be a set. We want to construct a group F(X) generated by
the elements of X and which is “free”, in the sense that there are no
relations among its generators.

Definition 2.8.2. The set of words in X is the set
W(X)={w=nx]"...x|x,€X, e ==%1, ne N}
We also allow the empty word, denoted by 1 € W(X).

We endow the set of words W(X) with the binary operation of
concatenation (or juxtaposition) of words.

We next define an equivalence relation on W(X). We need the
following:
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20 ALGEBRAIC TOPOLOGY

Definition 2.8.3. Let w and w' be words in X. We say that w is equivalent
to w' by an elementary reduction (and denote it by w ~, w') if one element of

1 1

the set {w,w'} contains a subword of the form xx~! or x~1x, and the other

is obtained from it by deleting this subword.
Using this, we can define an equivalence relation on W(X) as follows.

Definition 2.8.4. Let w and w' be words in X. We say that w is equivalent
to w' (and write w ~ w') if there exist a sequence w1, . .., wy of words in X
such that

W=1W1 ~e...veWp =1

Clearly, the relation ~ defined above is reflexive, symmetric and
transitive, so it is an equivalence relation.

Remark 2.8.5. Each class of words contains a unique word of minimal

1

length (i.e., containing no subwords xx™" or x‘lx), called a reduced

word.

Definition 2.8.6. We denote by F(X) := W(X)/ ~ the set of equivalence
classes of words.

It is easy to see that the relation ~ on W(X) is consistent with
concatenation, that is, if wy, w}, wp, w) are words in X such that

wy ~ W)
Wy ~ WY

then,
Wiwy ~ Wywh.

Thus, the binary law on W(X) given by concatenation descends to
F(X). Moreover, we have:

Theorem 2.8.7. The set F(X) of equivalence classes of words, with the induced
binary operation, is a group called the free group on the set X.

The group F(X) has the following universal mapping property (UMP):
Proposition 2.8.8 (UMP). Let
i: X — F(X), x — [x]

be the map that sends every element of X to the equivalence class of the word
it defines, and let
j: X—G

be a set map from X to a group G. Then, there is a unique group homomorphism
fFX)—G

such that foi =j.



Sketch of proof. We define the map f by

S x) = ) ) € G

This turns out to be well defined and it is a homomorphism of groups.

O
Example 2.8.9. Let X = {x}. Then,
FX)={x"|neZ} =22Z.
Let G be the cyclic group of order n, that is,
G={(ala"=1).

Then,
ji X—=G, x—a

gives a homomorphism
fFX)—G
which is surjective, with ker(f) = (x"). Thus, we get that
G = F(X)/ ker(f).

More generally, if G is a group generated by a set X, we can form
the free group F(X), and there is an epimorphism

f:F(X) — G.
Therefore,
G = F(X)/ker(f) = (x € X |r € ker(f))
which gives us a presentation of G by generators (elements of X) and

relations (generators of ker(f)).

Free Products

Let H and K be groups. We form a new group H * K from them, which
is called the free product of H and K, defined as follows. First we
consider the following set of words:

W(H,K) ={$182---8n | g € Hor g; € K}.

As before, we allow the empty word denoted by 1. The concatenation
of words defines a binary law on W(H, K).
We next define an equivalence relation on W(H, K) as follows:
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Definition 2.8.10. Let w and w' be words in W(H, K). We say that w is
equivalent to w' by an elementary reduction (and denote it by w ~, w') if
one of the elements of {w, w'} contains a subword of the form ab, with both
a,b € Horbotha,b € K, and the other is obtained from it by

e replacing the subword ab by the single element of H (or K) which is the
product a-bifa # b L.
or

e removing the subword ab ifa = b~1.

Definition 2.8.11. Let w and w' be words in W(H, K). We say that w and
w' are equivalent, and write w ~ w', if there exist a sequence wy, . .., wy of
words in W(H, K) such that

W=1W) ~e...~vp W =1

Clearly, the relation ~ is reflexive, symmetric and transitive, so it is
an equivalence relation.

Definition 2.8.12. Let H x K := W(H,K)/ ~ be the set of equivalence
classes of words in W(H, K).

Remark 2.8.13. Any equivalence class contains a unique reduced word
hikihoks .. hik,

with:
hije H foralli=1,...,r

kjEK forallj=1,...,r
hi#1 foralli=2,...,r
kj;él forallj=1,...,r—1.

The equivalence relation ~ is consistent with concatenation, so the
binary law on W(H, K) descends to H * K. We have the following result.

Theorem 2.8.14. The set H x K, endowed with the operation induced from
concatenation, is a group, called the free product of H and K.

The group H * K has the following universal mapping property (UMP):
Proposition 2.8.15 (UMP). Let
i:H— HxK, h+> [H]

and
j: K— Hx*K, k+— [K]

be the maps that send every element of H (respectively, every element of K) to
the equivalence class of the word it defines, and let

p:H— G



and
g:K—G
be any pair of group homomorphisms. Then, there is a unique group homomor-
phism
f:H+xK—G

such that foi = pand f oj = g, or equivalently, such that the following
diagram is commutative.

H

K

Sketch of proof. We define the map f on the unique reduced words as

f(hikihoka .. hykr) = p(h1) - q(ky) - p(h2) - q(k2) - ... - p(hr) - q(ky) € G

This turns out to be well defined and it is a homomorphism of groups.
O

Corollary 2.8.16. The group H * K is unique up to isomorphism.

Remark 2.8.17. Free products of any number of groups can be defined
similarly.

Example 2.8.18. Let X = {xq,...,x,} be a set of n elements. We define
F:=F(x;) =Z
foralli=1,...,n. Then,
FX)=2Fhx*..«F, 2Zx..«Z=2""

Example 2.8.19. If
H = (h|r)

K= (k| re)
are presentations of H and K by generators and relations, then
HxK:= <h,k | rh,rk>.

Example 2.8.20. The group Z; * Z, is a free product, but it is not a free
group. Indeed,

Zy*xZy = (a,b| a2, b2> = {1,a,b,ab, ba, aba, bab,abab, .. .}.

FUNDAMENTAL GROUP

23



24 ALGEBRAIC TOPOLOGY

Note that a=! =a, b=! = b, so (ab)~! = ba. Let
w: ZyxZy — Zy, x — length of x mod 2.

Then w is a homomorphism of groups, and

ker(w) = (ab) 2 Z
We define the action ¢ of Z, on Z = (ab) by

¢:Zy xZ — Z, (a,ab) — a(ab)a™* = ba.

We have that (a) N (ab) = {0}. Thus, Z, « Zy = Z x Z,, a semi-direct
product.

Remark 2.8.21. For a free product ,*, Hy, each group H, is identified
with a subgroup of  *, Hy, whose elements are the identity and the
one letter words h with h € H,. We have that

{1} = m Hy,

aceA

and, for all o, B € A with o # B,
(HA\1}) N (Hp\ (1)) = @.

For a free product of an arbitrary number of groups we also have

the Universal Mapping Property, namely:
Proposition 2.8.22 (UMP). Let {@,: Hy — G}aea be a collection of

group homomorphisms, and let iy: Hy — X, Hy be the inclusion for all
« € A. Then, there exists a unique group homomorphism
¢ eaHe — G
such that, forall « € A,
QOoiy = @q.
Sketch of proof. Let hihy...h, be a word in %, Hy, with h; € Hy, for all
i =1,...,n. Define the map ¢ as:

qo(hlhz .. hn) = q)‘xl (hl) : @“2(’12) R q)“n(h”) 6 G
This turns out to be well defined and it is a group homomorphism. [

Example 2.8.23. Let

G= thXAH“

be the cartesian product of the groups Hy, « € A, and let
9p: Hp —cp Ha
be the inclusion for all B € A. Then it follows from the UMP that there

exists a unique homomorphism

.ox X
@: uceAH‘X a€EA Hy

that preserves every subgroup Hj.
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Seifert-Van Kampen Theorem

Let us now get back to calculating the fundamental group of a union of
sets.

Let X be a topological space, xp € X and let { Ay}, be open path
connected subsets of X such that

X0 € m Ay
ae]
and
X = Aw
ae]
The inclusion
jut Ag = X

induces a homomorphism
(Ja)« 2 1 (Ag, X0) — 1 (X, X0)
for all « € ], so, by the UMP, there exists a unique homomorphism
@1 w1 (Aa, x0) — (X, X0)-
For every a, B € ], with a # B, we denote by i, the inclusion
ing 1 A N Ap = Ag.

We then have a commutative diagram

}7 Aa k

Ax N Ag X
T

which induces the following commutative diagram on fundamental
groups

(izx )% 71 (A, Xo) o)
/57 %}

71 (A N Ag, X0) 71 (X, xo)

e

(iga)+ 1 (Ag, xo) Ip)s

Thus, by the way ¢ is defined, we have that

(iap)« () ((iga)(§)) " € ker()

forall & € 1 (Ax N Ap, xo), and for all o, B € J.
With the above notations, we can state the Seifert-Van Kampen
Theorem.

25



26 ALGEBRAIC TOPOLOGY

Theorem 2.8.24 (Seifert-Van Kampen). If X = |J Ay is a topological
we]
space, where Ay is a path-connected open set such that xo € Ay forall a € ],

then
1) If Aa N Ap is path-connected for all «, B € ], then
@1 w171 (Ag, x0) — (X, X0)
is surjective.

2) If Au N Ap N Ay is path connected for all a, B,y € ], then

ker(p) = N{(iup)+(§) ((iga) «(£)) 7! | & € m1(Ax N Ag, x0), 0, p € ])
(2.8.1)
where N(S) denotes the normal subgroup generated by the set S.

Proof.

1) Let f: I — X be a loop at xg € X. By the continuity of f and the
compactness of I, there exists a partition 0 =sp <51 < ... <5, =1
such that

f([si—1,8i]) C Ay
for some a; € J. Denote by A; the set Ay, and let f; := f[j, , 1- We
have that
f=fixfox...xfy

with f; a path in A;.

The set A; N A;yq is path-connected, and {xq, f(s;)} C A; N A1
Thus, there exists a path g; in A; N A;,1 from x to f(s;) for all i =
1,...,m — 1. Therefore,

[ (fix8) % (1% f2%82) % (m—1 % fin),
and note that each of the paths in parentheses is a loop at xo. Hence
1=l (81 fax &l [8m1 % ful,
where
* f1*g, is contained in Aj.
® gi* fiy1*8,,1 is contained in A; 4 foralli=1,...,m—1.
® 9m—1* fm is contained in Ay,.

Thus, if we see the classes of these loops as letters in 271 (A, x0), we
get that

fl=o([fixg] [g1% 28] - [gm—1% fm]),

and hence ¢ is surjective.
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2) Clearly, (iaﬁ)*((j)((im)*(g))’l € ker(¢) for all a, € ] and for all
& € mi(Aa N Ag, x0), 50

N = N{(iag)+ (&) (igu) (€)™ | € € ma(Aun Ag x0);, B € J) C ker(g)
Hence, we get an induced homomorphism
[ oc;] (nl(Al%/xO)) /N — nl(X/xO)

which is surjective since ¢ is.

To show that @ is injective, it suffices to show that it has a left
inverse, i.e., a homomorphism k such that kop = id. Let H :=
@ 48y (m1(Aa, x0)) /N, and let @n: 711 (Aq, x9) — H be given by the in-
clusion into the free product followed by the projection of the free prod-
uct onto its quotient by N. It is immediate to check that ¢, o (izp)+ =
@p © (ia)s+ for any & # B. With the help of the universal mapping
property, one can then construct a homomorphism k : 711 (X, xg) — H
such that k o (ju)+ = @, for any «. To show that k is a left inverse for ¢
it suffices to show that k o ¢ acts as the identity on any generator of H,
i.e., on any coset of the form gN with g an element of some 711 (Aq, x0).
But, for such a coset, w have

9(gN) = ¢(8) = (ja)«(8),
so by applying k we get
k(@(gN)) = k((ju)+(8)) = ¢u(8) = gN,

FUNDAMENTAL GROUP 27

Figure 2.3: Here, m = 2, fj is the path in
Ay := A, from xg to f(s1) and f; is the
path in Ay := Ag from f(s1) to xo
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as desired. (More details can be found Hatcher’s book, see also the
book of Munkres for the case |J| = 2.) O

Most of the time, we will work with a covering consisting of two
open subsets. In this case, one gets the following:

Corollary 2.8.25. Let X = UUV where U, V, and UNV are open path
connected subsets of X. Fix xg € UNV and consider the inclusion maps:
i ,Uc u
(/7 \
unv - u
joveoe

uv

Then
1 (U, x0) * 11 (V, xo)

N(ix(6)j«(6) "t [ § € m(UNV,x0))
Corollary 2.8.26. If U NV is simply connected, then (U UV,xy) =
(U, xg) * 111 (V, x0).

7T1(X, xO) =

Corollary 2.8.27. The union of two simply connected spaces is simply con-
nected, provided their intersection is nonempty and path connected.

Example 2.8.28. Let X = 5" for n > 2. Let U to be the complement of
the north pole, and let V be the complement of the south pole. Then
U, V, and UNV are all open and path connected, and U and V are
contractible. So, by Corollary 2.8.26, S" is simply connected.

Definition 2.8.29. Given two spaces X and Y with distinguished points x
and yo respectively, the wedge of X and Y is defined by:
XVY:=XUY/y

0~Yo-

Example 2.8.30. Let X, = \/'_; S! be a wedge of n circles at a single
point (called a bouquet of 1 circles). Then 7r1(X,) = Z*", that is, a free
product of n copies of Z. To see this, we proceed by induction on #.
For n = 1 we get a single circle, so the result is clear. For induction,
suppose we have shown that 71 (X, 1) = Z*(1=1)_ Let x( be the wedge
point of n circles. For each i choose p; # xg to be a point on the i-th
circle. Let

n—1

U= X,\{pn}~\ S'=X,_1and V = X,\{p2,- -, pn_1} ~ S..
i=1
Then UNV =~ {x0}, so by the Seifert-Van Kampen theorem (Corollary
2.8.25) we get that 1 (X,) = m(U) * 1y (V) = m1(U) * Z, and by the
induction hypothesis, this gives Z*("~1) x 7 =~ 7*",

Example 2.8.31. Let X = R?\{x,- -, x, }. Then X deformation retracts
to a bouquet of n circles, one going around each x;. So 1 (X) = Z*".



Example 2.8.32. Let X = R3\ {coordinate axes}. Then X deformation
retracts (via x ﬁ) to 52\ {6 points} = R?\{5 points}, where the
last identification = is by stereographic projection. Then it is clear that
m(X) = 2.

Example 2.8.33. Let X = S? U {equatorial disk ~ D?}, so SN D? =
{the equator S'}. Take U = X\ {north pole} and V = X\ {south pole},
and note that both U and V are homotopic to S%. Moreover, UNV ~ D?
which is contractible. Since U and V are simply connected, X is simply
connected.

Example 2.8.34. Let X = S?> U {north-south diameter}. Let P be a
point on the diameter different from the poles. Let Q be a point on
the sphere different from the poles. Choose U = X\{P} ~ S? and
V = X\{Q} ~ S'. Notice that UNV ~ S*\{Q} = R?. Since UNV is
simply connected, we get that 711 (X) = 711 (U) x m(V) = 0% Z = Z.

Exercises

1. Let X be the space obtained from D? by identifying two distinct
points on its boundary. Is there a retract from X to its boundary?
Explain.

2. Calculate the fundamental group of the spaces below:

(i) R3\ {x — axis and y — axis}.
(ii) The complement in R3 of a line and a point not on the line.
(iii) R3 minus two disjoint lines.
(iv) T2\ {x,y}, where x, y are two distinct points on the 2-torus.

(v) Mobius band. Are the cylinder and the Mobius band homeomor-
phic?

(vi) The complement in R3 of a line and a circle. Note: There are two
cases to consider, one where the line goes through the interior of the
circle and the other where it doesn’t. Are these two spaces homotopy
equivalent?

3. Show that RIP?> and RIP? V S® have the same fundamental group.
Are they homeomorphic?

4. For a given sequence of continuous maps

xhxBxgh.

FUNDAMENTAL GROUP 29
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define the quotient space

M := (I_I Xi % [0/1]> / ((xi, 1) ~ (fi(x:),0))
i>1

obtained from the disjoint union of cylinders X; x [0, 1] via the identifi-

cation of (x;,1) € X; x {1} with (f;(x;),0) € X;;1 x {0}. Compute the

fundamental group of M in the case when each X; is a circle S! and

fi : St — Sl is the map z + z (for each i > 1).

5. For relatively prime positive integers m and n, the torus knot Ky, , C
R3 is the image of the embedding f : S' — S! x S! C R?, f(z) =
(z",z"), where the torus S' x S! is embedded in R® in the standard

way. Compute 711 (R3 \ Ky ).



CLASSIFICATION OF COMPACT SURFACES

3
Classification of compact surfaces

The goal of this section is to show that the fundamental group is
powerful enough to classify real compact surfaces.

3.1 Surfaces: definitions, examples

Definition 3.1.1. An n-dimensional manifold with no boundary is a topologi-
cal space X such that every x € X has a neighborhood U, homeomorphic to
R".

Definition 3.1.2. A surface is a 2-dimensional manifold with no boundary.

In this section, we will work with (and classify) compact surfaces.
Let P be a polygonal region in the plane, with vertices py, p1,..
pm—1 and edges with oriented labels like in the picture below.

*7

a
p3 ! p2

pa P1

ps as Po

Going through the vertices starting at pg in counter-clockwise order
gives us a labeling scheme. In the above example, the labeling scheme is

alazal_laglazag.

From P and the labeling scheme, we get an identification (quotient)
space X with a quotient map 7r: P — X as follows:

¢ The points in the interior of P are identified only to themselves.
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e Two edges carrying the same label are identified by an orientation
preserving linear homeomorphism.

Example 3.1.3 (The torus T?). We start with the following polygonal
region,

P a P
b/\ T2 /\b
P a P
with labeling scheme aba~'b~!. First, we glue the a labels together to
get a cylinder:

A
\

Next, we glue the b labels together to get the torus T2.

Figure 3.1: Torus T2

Example 3.1.4 (The Sphere S?). From the polygonal region
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S

with labeling scheme aa~!, we get the sphere S? by gluing the a labels
together.

Example 3.1.5 (The Projective Plane RP?). From the polygonal region

P

P

with labeling scheme aa, we get the (real) projective plane RP? by
gluing the a labels together.

Example 3.1.6 (The Klein Bottle K). We start with the following polygo-

nal region:
p a p
b K b
P a P

with labeling scheme aba~1b. First, we glue the a labels together to
get a cylinder just like in Example 3.1.3, but this time, the b labels do

33
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not glue together so nicely, that is, the surface we get by gluing them
together cannot be embedded in IR®. The resulting surface is called the
Klein bottle (figure 3.2).

Proposition 3.1.7. The identification space X obtained from a polygonal
region P as above is Hausdorff and compact.

Proof. Let m: P — X be the projection, where X has the quotient
topology. Note that 7r is continuous by the definition of the quotient
topology. Since P is compact, it follows that X = 7(P) is compact.

We next show that 7 is a closed map. If C is a closed set in P,
then 71(C) is closed if and only if X\7(C) is open, or equivalently
1 (X\7(C)) is an open set in P. We have that

7 (X\7(C)) = P\r~}(7(C))

The only nontrivial identifications occur in the edges of P, which are
closed in P, and thus the intersection of C with any edge is again a
closed set. Therefore 7w~ !(7t(C)) is just the union of C and a finite
number of other closed sets. Thus, P\7~!(7r(C)) is open, and 7 is
closed.

A quotient map f: Y — Z from a compact Hausdorff space Y is
closed if and only if Z is Hausdorff, so applying this result to 7= we get
that X is Hausdorff. O

Definition 3.1.8. Let M, N be surfaces. We define the connected sum of M
and N, denoted by M#N, as follows:

M#N = (M\D;) U (N\D,)/(3D; ~ 9D5)

where D1 is a disk in M and D5 is a disk in N.

Figure 3.2: Klein bottle
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Lemma 3.1.9. If L1 and Ly are labeling schemes for M and N, then their
concatenation LiLy is a labeling scheme for M#N.

Example 3.1.10. The connected sum T?#T? of two tori has a labeling
scheme a;bja; 1bf 1{1217211; 1195 1 Indeed, let T12 be the following torus,
and D; a disk inside of it

ai

a1

and let T be the following torus, and D; a disk inside of it:

a

bz b2

as

The following polygonal regions represent T7\D; and T5\D; respec-
tively.

8D1 aDZ

To get the connected sum of the two tori, we need to glue 0D; with
dD,, and we get the polygonal region which has the labeling scheme

—-1,-1 —1,-1
a1b1a1 bl a2b2a2 bz ,

that is, the concatenation of the labeling schemes of T? and T2.

35



36 ALGEBRAIC TOPOLOGY

m by

a3 bz
by az

Definition 3.1.11. We introduce the following notation:

n times
—_—

N—
T, := T%# .. #T?

and

n times

—_—
P, := RP%#.. #RP?.

Our goal is to prove the following classification result.

Theorem 3.1.12. Any compact surface is homeomorphic to S?, T, or Py for
some n € IN.

3.2 Fundamental group of a labeling scheme

Before giving a general result, we compute the fundamental group of
the torus T2. Consider the identification space P of the torus given

given by aba~'b~1. Let 0 be some point on the interior of the square.

Define U = P\ {0} and V = B(0), a ball of radius € centered at 0. We

have that U ~ S' v S!, V is contractible, and U NV = B¢(0) \ {0} ~ S'.

Then we have:

o m(U,A)=Z+Z = (a,b)

e 1 (V,xp) is trivial

o m(UNV,xg) 2 Z = {c)

Figure 3.3: T?#T2
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b

A A

Leti: UNV < U be the inclusion map. By the Seifert-Van Kampen
Theorem,

nl(T2rx0) = nl(uer)/N<i*§ ’ C € nl(um er0)>‘

Let  be a path in T? from A to xg. Then 4 : 7ty (U, A) — 711(U, xp) is
an isomorphism mapping [y| — [6 * -y * §]. Moreover, a,b € 71 (U, A)
induce loops at xq given by @ := § xa x§ and b := & * b * §, which freely
generate 711 (U, xg). In the above notations, we have

(T2, x0) = (4,b) /N{isc).
We next note that i.c is homotopic to S+xaxbxaxbxd, and we have:

Sxaxbxaxbxé ~ (Sxa*d)*(5xbx6)*(6xaxd)x(5xbxJ)
= dxbxaxbh.
Hence 711 (T?, x0) = (a,b | aba—'b~1') 2 Z x Z.

Similar calculations yield the following theorem:

Theorem 3.2.1. If X is the identification space of a labeling scheme

€1 ,€2 €n
a1 ay” ...ay

with €; = £1 whose vertices are all identified by the projection map t: P — X,
then:

m(X) = (a1,a2,...,an | ﬂilﬂ?...af,” =1).

Example 3.2.2. If K is the Klein bottle, with labelling scheme aba=1p,
we get
7 (K) = (a,b | aba~'b =1).

So 711 (K) is not abelian.

Example 3.2.3. Consider the labeling schemes for T, and P,.

T, = T%.. .#Ti : a1b1111_1b1_1 .. .anbna,jla,;l

n—times
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P, = RP%#...RP?: ayay . ..anayn
N——_————
n—times

Notice that all vertices are identified in each labelling scheme. The
above theorem gives us:

m (Ty) = {a1,b1,...,a,, by | alblal_lbl_l ...anbna,jlb,jl =1)

i (Py) = (ay,...,an | a3 ...a% = 1)
We deduce the following:

Proposition 3.2.4. The surfaces S2, Py, T, (n € IN) have non isomorphic
fundamental groups, hence they are not homotopy equivalent nor homeomor-
phic.

Proof. First, 7t1(S?) is trivial. Next, consider 74 := 711/ [y, 711], the
abelianized fundamental group, where for a group G its commutator
subgroup is defined as [G,G] = {[a,b] = aba~'b~! | a,b € G}. We
have:

n
HTb(Tn) = <a1,b1,...,an,bn | ZaﬁLbi —a;—b; = 0>
i=1

~7x.. . xZ=27*"
N———
2n—times
nﬁb(Pn) ={(ay,...,a0, | 2(m+... +a,) =0)
An
={ay,..., 4,1, An | 2A,) =0) = Z" 1 x7/2

The assertion follows now easily. O

Recall that our goal is to show the following:

Theorem 3.2.5. Any compact surface is homeomorphic to one of S, T, or
Py, for some n € IN.

Corollary 3.2.6. If X is a simply connected compact surface, then it is
homeomorphic to S>.

One dimension higher, things are much more complicated, but we
still have the following;:

Theorem 3.2.7 (Poincaré Conjecture). If X is a simply connected closed
(i.e., compact, with no boundary) 3-manifold, then it is homeomorphic to S°.

This is false in dimension 4, since S* and S? x S? are simply con-
nected closed 4-manifolds, but they are not homeomorphic. (This fact
can be easily seen with homology or higher homotopy groups.) In
higher dimensions, one has the following important result:
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Theorem 3.2.8 (Smale, Freedman). If n > 4 then any simply-connected
closed n-manifold which is homotopy equivalent to S" is homeomorphic to S".

Before discussing the proof of the classification theorem for surfaces
(Theorem 3.2.5) it is an instructive exercise to see where the Klein bottle
and T?#RP? fit on the list. This will be done by cutting and pasting on
the labeling scheme.

Example 3.2.9. In the notation of Figure 3.4, we cut along the diagonal
labeled c and glue along a to show that

K P,

(Note that cutting and pasting do not change the homeomorphism
type.)

bzs ‘1/ zsb = bzs

Y
AN
Y
Y
AN
Y
QY a
Y
AN
Y
N
—~—
) N
<= IS
fayl

b/\
II

Y

b/\ AL <=

b

oY
4
—
_

Example 3.2.10. We next claim that
K#RP? = T*#RP? = ;.

We start by looking at RP? \ disc = S?\(2 antipodal discs)/antipodal
identification; see Figure (3.5).

Attaching a torus is likened to attaching a handle, while attaching a
Klein bottle is likened to attaching an orientation-reversing (twisted)
handle, see Figure (3.6).

Therefore, T2#RP? looks like a Mobius band with a handle attached to
it. Cutting the band away from the handle leads to the space pictured in

39

Figure 3.4: How to turn the Klein bottle

into P
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6 Figure 3.5: Removing a disc from RP?
yields a Mobius band.

Figure 3.6: Performing connected sum
/_\ with a Klein bottle.
)

.

Figure (3.7). Similarly, K#RP? looks like a Mobius band with a twisted

handle attached to it. Cutting the band between the legs of the handle
leads to the same space as in Figure (3.7). Hence the assertion follows.

Figure 3.7: T?#RP2.
e

3.3 Classification of surfaces

We begin with two results whose proofs you can find in Munkres’ book.

Proposition 3.3.1. If P is a polygonal region with an even number of edges
which are identified in pairs (i.e., a regular labeling scheme), then the quotient
space X is a compact 2-dimensional manifold.
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Theorem 3.3.2. Every 2-dimensional compact surface is homeomorphic to the
identification space of a reqular labeling scheme

The proof of the above theorem is based on the fact that each 2-
dimensional compact surface has a triangulation, and when we glue
half discs together along a common edge, we get a disc.

The arguments involved in the following classification of labelling
schemes provides the algorithm needed to identify any surface in the
list S, T,,, P, n € N).

Theorem 3.3.3. A polygonal region of a regular labeling scheme is homeomor-
phic to a standard labelling scheme, i.e., one of the following:

e §2:gq71

o T, :abia; byt .. apbua; by
e P, :ajaqazay...aay

Proof. Edges are of two kinds:

e firstkind: a...a”!

e second kind: a...a

Here are the steps involved in the cut and paste algorithm.

Step 1: Adjacent edges of the first kind can be removed. (See Figure
(3.9), where the edge labeled a is removed.)

Step 2: All vertices get identified to one vertex.

In Figure (3.10), we cut along the edge labeled ¢ and glue along a.
The effect is that the equivalence class of the vertex Q (consisting of
vertices identified to Q) is reduced by 1, while that of P is increased by
1.

Repeat until only one vertex labelled Q is left, and then we use Step
1 to remove it. Repeat this procedure until only one equivalence class
of vertices is left.

Figure 3.8: Every point has a neighbor-
hood homeomorphic to a disc.
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Figure 3.9: Step 1: Removing adjacent
edges of the first kind.

Y=

Figure 3.10: Step 2: identifying all ver-

Q c P tices.
a b
P
Q
=
c b
a Q P

Figure 3.11: Step 3: Making two Type II
edges adjacent.
= c c
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Step 3: Make any pair of edges of second kind adjacent. (See Figure
(3-11)))

Here we cut along the edge ¢ and, after flipping one of the two
pieces obtained, we glue along a. After removing the interior label 4,
we created the subword cc, which corresponds to a pair of adjacent
edges of second kind.

Step 4: If a is an edge of the first kind, then there are two edges of the
first kind which alternate: ...a...a'...a"1...a'" " ...,

If this is not the case, the the edges of the region connecting the
vertices P in Figure (3.12) only get identified to edges from the same
region. The same applies for the region between the vertices labeled Q.
But then the endpoints of the edge a cannot be identified, contradicting

Step 2.

Q Q

b -
p Q

P P

Step 5: Any two pairs of the first kind can be made consecutive. See
Figure (3.13).

Figure 3.12: Step 4.

Figure 3.13: Step 5: Two pairs of the first
kind being made consecutive.
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Here we first cut along ¢ and glue along b, then cut along 4 and glue
along a.

At this point, the labeling scheme corresponds to a connected sum

of RP?’s and T?'s. If there is no RP?, then we get a T, for some n € IN.

Otherwise, we proceed as in the following step.

Step 6: Transform ...ccaba~'b~!...into...P;....

This was already explained geometrically in Example 3.2.10. We
sketch here the corresponding cut and paste procedure. It should be
clear at this point that we can just ignore the rest of the surface. See
Figure (3.14). The idea is to convert a...a ! into a...a, so one gets 3
pairs of edges of the second kind, and apply Step 3 (see Figure (3.15)).

f f

In Figure (3.14), we cut along 4 and glue along c. In Figure (3.15),

Figure 3.14: Making all sides have the
same orientation: cut along d, glue along
c.

Figure 3.15: Completing Step 6.
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we first cut along e and glue along b, then cut along f and glue along a,
and finally cut along g and glue along d. O

Exercises

1. There are six ways to obtain a compact surface by identifying pairs
of sides in a square. In each case determine what surface one obtains.

2. The following labeling schemes describe two dimensional surfaces:
e abc b la"lc
e abc 'clba

o ajap - - - anal_laz_l e an_l
In each case determine what standard surface it is homeomorphic
to.

3. Consider the space X obtained from a seven-sided polygonal region
by means of the labeling scheme abaaab~'a~!. Show that 71 (X) is the
free product of two cyclic groups.

4. Let X be the quotient space obtained from an eight-sided polygonal
region P by means of the labeling scheme abcdad ~'cb=!. Let m: P — X
be the quotient map.

e Show that 7t does not map all the vertices of P to the same point of
X.

¢ Determine the space A = 7t(Bd P) (the boundary of P), and calculate
its fundamental group.

¢ Calculate the fundamental group of X. (Hint: first transform the
labeling scheme into a standard one by cutting and pasting opera-
tions.)

¢ What surface is X homeomorphic to?

5. Let X be a space obtained by pasting the edges of a polygonal region
together in pairs.

e Show that X is homeomorphic to exactly one of the spaces in the
following list: S2, P2, K, T,, T, #P2, T,#K, where K is the Klein bottle
and n > 1.

¢ Show that X is homeomorphic to exactly one of the spaces in the fol-
lowing list: S2, P2, Ky, T, P?#Ky,, where Ky, is the m-fold connected
sum of K with itself and m > 1.
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6. Let A be the annulus in the plane consisting of the set
A:={(x,y) eR?|1<x®+y* <4}

Let S denote the surface obtained from A by identifying antipodal
points of the inner circle and by identifying antipodal points of the
outer circle. Compute 71(S) and write S as a connected sum of tori
and projective planes.

7. Let X be the topological space obtained by identifying by parallel
translation the opposite edges of a solid regular hexagon. Calculate the
fundamental group of X.



4
Covering spaces

In this chapter we introduce covering spaces and show how they can be
used for computing fundamental groups. In addition, we will use the
fundamental group as a tool for studying covering spaces.

4.1 Definition. Properties

Definition 4.1.1. A map p: E — B is called a covering if
(a) p is continuous and onto.

(b) For all b € B, there exists an open neighborhood U of b which is “evenly
covered”, i.e., p’l (U) = Uy Va, where the V, are disjoint and open, and
plv,: Vo — U is a homeomorphism for each w.

Example 4.1.2. It is easy to check that the following maps are coverings.
(i) p: R — S, t s 27t
(i) idx: X — X.
@) p: Xx{1,...,n} = X, (x,k) — x.
(iv) p: St — S, z s 2"
(v) p: S — RP", x — [x], the quotient map identifying antipodal
points of S".
(vi) p: C = C*, z— €~
(vii) Products of covering maps are covering maps, i.e., if p;: E; — B;,i =

1,2, are coverings, then p; x p2: E; X E; — By X By is a covering.

Remark 4.1.3. 1. A covering map is open and locally a homeomor-
phism.

2. Not any local homeomorphism is a covering, e.g., p : R} — st
t — 2. Hence a restriction of a covering map does not have to be
a covering.
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3. If p: E — B is a covering, then each fiber p~1(b), b € B, is discrete.

Definition 4.1.4. Let p1: Ey — B, p2: Ep — B be two coverings. We say
that py and py are equivalent if there exists a homeomorphism f: E; — E
such that py o f = p.

Remark 4.1.5. The equivalence of coverings is an equivalence relation.
In this chapter we elaborate on the following;:
Problem 4.1.6. Classify all coverings of a space B (up to equivalence).

The proof of the following lemma is a simple exercise in point set
topology.

Lemma 4.1.7. If p: E — B is a covering, By C B, and Eo := p~'(By), then
plE,: Eo — Bo is a covering.

Example 4.1.8. We know from Example 4.1.2 that p: R? — T? is a
covering. Overlay the integer lattice on IR?, and identify each square
with a torus in the usual way. Let pg = (1,0) € S!, and let By = S! x
{po} U {po} x S'. Then p~1(By) = R x ZUZ x R, and the restriction
of p to this space is a covering over By.

Theorems 4.1.9 and 4.1.10 are generalizations from the case of the
covering p: R — S!, with similar proofs.

Theorem 4.1.9 (Path lifting property). Let p: E — B be a covering, by € B,
and ey € p~Y(bo). If v: I — B is a path in B starting at by, then there is a
unique lift Ye,: I — E such that %,,(0) = eo.

Theorem 4.1.10 (Homotopy lifting property). Let p: E — B be a covering,
by € B, and ey € p~'(by). Let F: I x I — B be a homotopy with by :=
F(0,s) for all s € I. Then there is a unique lift F: I x I — E of F such that

F(0,s) =ep foralls € I.

Corollary 4.1.11. If 71, y2 are paths in B starting at by which are homotopic
by some homotopy F, then (71)e, £ (72)eo- In particular, these lifts have the

same endpoints: (71)e,(1) = (72) e, (1).
Definition 4.1.12. Let by € B. For eg € p~'(by), define
Pey: 1(B,bo) — p~* (bo)
[’Y] — ’780(1)

Theorem 4.1.13. The map ¢, defined above is onto if E is path-connected,
and it is injective if E is simply connected.



Proof. By Corollary 4.1.11, the map ¢,, is well-defined.

Suppose that E is path-connected. Let e; € p~1(by), and let 6 be a
path in E from ey to e;. Then ¢ := pod: I — B is a loop in B at by.
Hence ¢ is a lift of +y starting at ey, and we have ¢, ([7]) = F¢, (1) =
0(1) = e1, so ¢, is surjective. Note that the equality 7,(1) = (1)
comes from the uniqueness of lifts (Theorem 4.1.9).

Now suppose E is simply connected. Let 1,72 be loops in B at
bo such that ¢e,([71]) = ¢e,([72]) = e1. By definition, this means that
(71)e (1) = (72)e, (1). To show that ¢, is injective, we must show that
Y1 ~ 72. Since E is simply connected, there is a unique homotopy
class of paths from ey to e1, s0 (71)e, ~ (72)e, by some homotopy
F. This gives a homotopy po F: I x I — B from po (71)e, = 71 to
p o (72)e, = Y2, which shows that ¢, is injective. O

Example 4.1.14. It is very easy to check that the antipodal identification
yields a covering map p: S — RP". For n > 2, §" is path-connected
and simply connected. Then by Theorem 4.1.13,

D, : 1 (RP", bg) — p~* (bo)

is a bijection. Since the fiber p~!(by) has only two elements, we must
have that 7r1 (RIP", by) = Z/2Z as a group isomorphism.

27tit

Example 4.1.15. Let p: R — S, t s ¢?™!. Since R is both simply

connected and path-connected, Theorem 4.1.13 yields that
¢eo 1T (Sl,bo) — Z

is a bijection. To show that the groups are isomorphic, we need to show
that ¢, is a homomorphism. Let 7,6 € m1(SY, by), and let 7, 5o be
their lifts in R starting at 0. Let 79(1) = n € Z and do(1) = m € Z. By
definition, ¢¢, ([v]) = 1, ¢¢,([6]) = m. Hence we need to show that

Peo([7] - [6]) = m +m.

We have

P (7] 0]) = ey ([ %)) = (7% 0)o(1) = (o *57)(1) = 5(1)

=n-+m,

where we set 6*(t) = n + dy(t) so that 6*(0) = n, 6*(1) = n + m. Thus,
¢e, is @ homomorphism and therefore an isomorphism.

Proposition 4.1.16. If p: E — B is a covering and B is path-connected, then
for by, by € B there is a bijection p~1(by) — p~1(by).

Proof. Let 7y be a path in B from by to b; (which exists since B is path-
connected). Define the bijection f,: p~1(by) — p~1(b1) by eg > Fe, (1)-
It has the inverse (f,) ! = f5. O
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Proposition 4.1.17. Let E be path connected, p: E — B a covering, and
p(eg) = by. Then p: m1(E,e0) — m1(B,bo) is injective. Further, if e is
changed to some other point e; € p~'(by), then the images under p. of the
groups 111(E, eq) and 71t1(E, e1) are conjugate in 7t1(B, by).

Proof. Let v1,72 € m(E,ep) with pi([71]) = p«([72])- Then poy; ~
p © 72 by some homotopy F. By homotopy lifting (Theorem 4.1.10), we
have that (p071)e, ~ (P ©72)e,, which implies that 97 ~ 7,, by the
uniqueness of lifts. Indeed, for i = 1,2, both 7; and (p/c?_ﬂ)eo are lifts
of p o v; starting at ey, so they must coincide. Thus, p. is injective.

Now let e; be a different point in the fiber of p over by. Let Hy =
p«m1(E,e0), H = p«m1(E,e1). We want to show these are conjugate
subgroups. First let § be a path in E from ¢j to e;. Then the following
diagram commutes:

71 (E, e0) ——— 711(B, bo)

o Jteo)s

P«
nl(El 31) —— 7-[1 (B/ b())

Note that J4 is an isomorphism since E is path connected. So Hy and
(p 0 6)4H; are conjugate subgroups via [p o d]. O

Theorem 4.1.18. Let E be path-connected, p: E — B a covering map, by € B
and ey € p~1(bg). Let H := p.71(E,e0) < 711(B,by). Then:

(a) A closed path vy in B based at by lifts to a loop in E at ey if and only if
[v] € H.

(b) ¢ey: H\7t1(B,bo) — p~1(bo), [v] = e, (1) is a bijection. In particular,
#p~" (bo) = [m (B, bo) : parr(E,e0)],
with # denoting cardinality.

Proof. Part (a) is immediate. For (b), we first show that ¢, is well-
defined, i.e., if [0] € H, then ¢, ([0] - [7]) = e, ([7]). We have

Pe([6] - [7]) = e ([0 7]) = (6% )y (1) = (g * T, (1)) (1)
= ’7&,0(1) (1).

By part (a), since [§] € H, we have that ,(1) = ep. Thus, '7530(1)(1) =
Yeo (1) = e, ([7]), 5O @e, is well defined. From Theorem 4.1.13 we know
that ¢, is onto, so it remains to show that it is injective.

Suppose that ¢, ([71]) = ¢e,([72]). By definition, this means that
(71)eo(1) = (72)ey(1). Thus, (71)e, * (72)e, is a loop in E based at
eo, which in turn is a lift of 1 *73. By (a), [y1 *72] € H. Finally,

[71] = [71 * 72 % 72] = [11*72] - [12]. Since [11 *72] € H, the cosets of
71 and 7, coincide. Thus, ¢, is injective. O




Theorem 4.1.19 (Lifting Lemma). Let E, B, Y be path-connected and locally
path-connected spaces." Let p: E — B be a cover, by € B, eg € p~(bp),
and f: Y — B a continuous map such that f(yo) = bg. Then there exists
alift f:Y — Eof f (e, po f = f) such that f(yo) = eg if and only if
femti(Y,y0) € parti(E, o).

_ (Eeo)
Hf. T Jp
(Y,0) —— (B, by)

Proof. The “==" direction is clear from po f = f.

For the “<=" direction, let y € Y, and we need to define f(y). Let
a be a path in Y from yo to y. Then f o« is a path in B starting at by.
Define £(y) = (F o &)y(1). We have (po f)(y) = po (f o a)e(1) =
(foa)(1) = f(y). Thus, f is a lift of f. It is also immediate that

f(yo) = eo. _
Next we need to show f is well defined (i.e., independent of «).
If B is another path in Y from o to y, then a x B € m11(Y,yp), so

fo(axpB) e fum(Y,yo) C pxmr1(E, ep). It follows from Theorem 4.1.18

that (f o (a % B))e, is a loop at ey. Note that f o (a*B) = (foa)* (f o B).
Then we have

(F o @By = (Fom)ey = (F o B) g, 0y = o (FoB) g,

—

= (foa), * (foﬁ)(f/&?)eo(l)

—_~—

This means that (f;;c)eo(l) = (fgf%)eo(l), hence the definition of f
does not depend on the choice of «.

It remains to show that fvis continuous. Let y € Y, and let U be
a path connected evenly covered neighborhood of f(y) € B, which
exists by the locally path-connected assumption. Let V' be the slice
in p~1(U) which contains f(y). By the continuity of f, there is some
path-connected neighborhood of y, say W, in Y such that f(W) C U.
Then f(W) C V (since f(W) is path-connected and contains f(y)) and
f|w = (plv)~'o flw. Hence fis continuous on W. Continuity on Y

follows from local continuity just proved. O
Corollary g4.1.20. If Y is simply connected, then such a lift always exists.

Proposition 4.1.21 (Lift uniqueness). If Y is connected and fy, fo: Y — E
are two lifts as in the previous theorem (i.e., coinciding at yo € Y), then

fi=fa

Proof. Let A= {y e Y| fi(y) = faly)} # @. We will show A = Y by
proving that A is both open and closed. Let ¥ € Y, and let U be an
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evenly covered neighborhood of f(y) in B. Then we have p~!(U) =
I_I,Xl~l,x such that p|aa: f[a — U is a homeomorphism. Let l~11, flz be
the slices containing f1(y) and f>(y), respectively. Since the f; are
continuous, there is a neighborhood N of y such that fl( ) € U; and
fz( ) c U, Ify ¢ A, we have fi(y y) # fa(y), hence U; # Uy, so
U, NU, = @. This means that f1 75 fz on N, so A is closed. On the
other hand, if fl( ) = fz( ), then U; = Uy, which implies that f1 = fz
on N (since pfl = pfz = f, and p is injective on U; = U,). Thus, A is
open. O

4.2 Covering transformations

In this section, all spaces are assumed path-connected and locally path-
connected.

Definition 4.2.1. If p: E — B, p' : E' — B are coverings, a homomorphism
of coverings h : (E,p) — (E',p’) is a continuous map h : E — E’ such that

ploh=np.

Definition 4.2.2. An isomorphism (or equivalence) of coverings is a homo-
morphism of coverings which is also a homeomorphism.

Theorem 4.2.3. Let p: E — B, p' : E' — B be coverings of B with p(eg) =
p'(ey) = by € B. Then there is an equivalence of coverings h : E — E/,
h(ep) = e if and only if H = p.(m1(E,e9)) and H' = pl (1 (E',¢f))) are
equal as subgroups:

(E',e))

3 T lp,

(E,e0) —— (B,bo)

Proof. “==": If h : E — E’ is an equivalence with h(ey) = ¢, then
hi(m1(E,e0)) = mi(E,e)). Apply pl and, using p’ oh = p, we get
H=H.

“«=": Assume H = H'. Since H C H’, we get by the lifting lemma
(Theorem 4.1.19) that there exists & : (E,eg) — (E',ep) with h(ep) = e,
p'oh = p. Reversing the roles of p and p’, we get that H C H
implies the existence of a lift k : (E’,e() — (E,eg) of p’ with pok = p/,
k(ey) = ep. Consider the diagram:

/Eeo

Eeo Bbo



Since po (koh) = (pok)oh = p’ oh = p, we have that ko h and idg
are lifts of p that agree at ¢p. So, by the uniqueness of lifts, k o h = idE.
By similar reasoning on p’, we get that h o k = idp:. O

Proposition 4.2.4. If h,k : (E,p) — (E',p’) are homomorphisms of cover-
ings p, p’ of B such that h(e) = k(e) for some e € E, then h = k.

Proof. Consider the set A = {e € E | h(e) = k(e)}. It is easy to see that
A is both open and closed, hence it is all of E. O

Remark 4.2.5. If E = E' and p = p/, an equivalence of p interchanges
points in the fiber over each b € B. Such a self-equivalence is called an
automorphism of (E, p), or a deck transformation.

Definition 4.2.6. The deck transformations form a group under composition
of maps, called the deck group of (E, p), and denoted D(E, p).

An immediate consequence of Theorem 4.2.3 is the following:

Corollary 4.2.7. If p: E — B is a covering and p(e1) = p(ea), then there is
h € D(E, p) with h(ey) = ey if and only if p.7t1(E,e1) = p«711(E, €2).

Moreover, Proposition 4.2.4 implies the following:

Corollary 4.2.8. If h € D(E, p) so that h(x) = x for some x € E, then
h = idg.

We can now generalize Theorem 4.2.3 as follows:

Theorem 4.2.9 (Main Theorem). Let p : E — Band p’' : E' — B be
covering maps. Let p(eg) = p'(e}) = bo. The covering maps p and p'
are equivalent if and only if the subgroups H = p.m1(E,e0) and H =
plmi(E',e}) are conjugate in 111 (B, by).

Proof. “=—": Assume we have an equivalence h: E — E’, and let
h(ep) = ej. By the previous theorem, H = p, i (E,¢g) equals H" =
p.1(E',€})). By changing ¢/l to any ¢) € p'~ ' (by) we know that H” is
conjugate to H' = p/,t1(E’, ¢})). So H and H’ are conjugate.

“«=":1f H = p,m1(E,ep) and H' = p, ;1 (E’,¢})) are conjugate, we
need the following

Lemma 4.2.10. Let p: E — B be a covering, p(ey) = by, and H =
p«mt1(E, ep). Given any subgroup K C m1(B,bg) conjugate to H, there
isan ey € p~1(bg) such that K = Hy = p.m(E, e1).

Proof. As K and H are conjugate in 711(B, by), there is a loop « at by
in B such that H = [a] - K- [a] 1. Let @, be a lift to E of « under p,
starting at e, let e = @, (1). Then H = [po &g, - Hy - [po @] ' So
K = Hj since p o &, = «. O
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Using Lemma 4.2.10, there is e; € p~!(bp) such that p, 7y (E/,ef)) =
H' = p.1(E, e1). By the lifting property (Theorem 4.1.19), there is an
equivalence & : E — E’, thus finishing the proof of Theorem 4.2.9. [

Definition 4.2.11. A covering p : E — B is called a universal covering map
if E is simply connected. In this case, E is called a universal cover of B.

In view of Theorem 4.2.9, we get the following consequence.

Corollary 4.2.12. If a universal cover of B exists, it is unique up to equivalence
of coverings, since the conjugacy class of the trivial subgroup in any group
has only one element.

Example 4.2.13. Let B be the Mobius band, with 771 (B) = Z. Conjugacy
classes of subgroups of Z are given by nZ for n € IN. An even integer n
yields an n-fold covering of B by the cylinder S! x I with (z,t) — (2", t).
An odd n yields an n-fold covering of B by the Mébius band under the
same map.

4.3 Universal Covering Spaces

In this section we investigate when a path connected, locally path
connected space B has a universal cover.

Definition 4.3.1. A topological space B is called semi-locally simply connected
if, for any b € B, there is a neighborhood Uy, of b such that the inclusion
i: Uy, < B induces a trivial homomorphism i, : 11 (Uy, b) — 71(B, b).

Example 4.3.2. If B is simply-connected, then B is semi-locally simply
connected.

In this section, we discuss the following:

Theorem 4.3.3. A topological space B has a universal cover if and only if B
is path connected, locally path connected and semi-locally simply connected.

The proof of the implication “==" of Theorem 4.3.3 follows from
the following.

Proposition 4.3.4. Let p : E — B be a covering map, p(eg) = by. Assume
E is simply-connected. Then there exists a neighborhood U of by such that
the inclusion i : U — B induces a trivial homomorphism i : 7r1(U, by) —
701 (B, bo)

Proof. Let U be an evenly covered neighborhood of by and let U be
the slice of p~!(U) containing eg. Let f be a loop in U at by. Since
Plg: U — U is a homeomorphism, f lifts to a loop f in U at €. Since E
is simply-connected, there is a path homotopy F from f to the constant
loop in E at ey. Then po F is a homotopy in B from po f = f to the
constant loop in B at by. O



The proof of the converse implication “<=" of Theorem 4.3.3 follows
from the following.

Theorem 4.3.5. Let B be path connected, locally path connected and semi-
locally simply connected. Let by € B and H C m1(B,by) a subgroup.
Then there is a covering p: E — B and a point eg € p~'(by) such that
P*T[l(E,E(]) =H.

Sketch of proof. Let P be the set of all paths in B starting at by. Define
an equivalence relation on P by a ~ B if a(1) = (1) and [a * B] € H.
Let o be the equivalence class of a € P. Consider the set

E={a*|acP}.

Define p: E — B by p(a®) = a(1). Then p is surjective since B is
path-connected. Furthermore, one can define a topology on E so that p
becomes a covering map. (Details are left as an exercise.) O

Example 4.3.6. The infinite earring has no universal cover, since it is not
semi-locally simply connected. The infinite earring is the space

X:UC;«I,

n>1

where C,, is the circle of center (1/7,0) and radius 1. We claim that

if U is any neighborhood of 0 € X, then i,: 771(U,0) — m1(X,0) is
nontrivial. Indeed, given #, there is a retraction r: X — C;;, defined by
mapping each circle C; (i # n) to 0, and as the identity on C,. Choose
n large enough so that C, C U, and consider the following diagram
with the induced homomorphisms on fundamental groups.

e

Cp —— X m1(Cn, 0) —— m(X,0)
\ ! ]
m (U, 0)

Since r4 o jx = idz, we get that j, is injective. From j, = is o ks, we
deduce that 7, cannot be trivial.

COVERING SPACES
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4.4 Group actions and covering maps

In this section we study in more depth the relation between the fun-
damental group of the base of a covering on the one hand, and deck
transformations of the covering on the other hand. All spaces are again
path connected and locally path connected.

Theorem 4.4.1. If p: E — B is a covering with p(ey) = by and
H = p.m(E,e9) C m1(B,by),

then
D(E,p) ¥ N(H)/H,

where N(H) = {g € m1(B,by) | gHg ! = H} is the normalizer of H.
(Recall that N(H) is the largest subgroup of G which contains H as a normal
subgroup.)

Proof. Recall that
¢: H\m(B,bg) = F := p~ ' (bo)
is a bijection. Define a map

¥: D(E,p) = F, (h) = h(eo)-

Since each h € D(E, p) is uniquely determined by its value on ey, it
follows that 1 is injective. The assertion follows from the following two
facts:

(i) Im(y) = ¢ (N(H)/H).
(ii) ¢"1oy:D(E,p) — N(H)/H is a group isomorphism.

For (i), recall that ¢ is defined as follows: given a loop « in B
at by, we set ¢([a]) = ej, where ey = @, (1) and @, is the lift of
« to E starting at eyg. The assertion in (i) is then equivalent to the
following statement: there is h € D(E, p) with h(ep) = e; if and only if
[«] € N(H). By the Lifting Lemma (Theorem 4.1.19), such & exists if and
only if H = H' := p,(71(E,e;)). Moreover, we have [a] - H' - [a] ! = H.
Hence h exists if and only if [«] - H - [] 7! = H, which is the same as
] € N(H).

For (ii), we only need to show that ¢! o ¢ is a homomorphism, as
it is already bijective. So let h,k: E — E be covering transformations,
with h(ep) = e; and k(eg) = ep. Then ¢p(h) = e7 and (k) = ey. Let 7,0
be paths in E from e to e and ey, respectively. Then, if « = p oy and
B =pod, weget

Y([a]H) = e, ([B]H) = e2.



Now let e3 = h(k(ep)), so that p(h o k) = e3. We need to show that

Y([wx BIH) = e3.

Since ¢ is a path from e to e;, then ko ¢ is a path from h(ey) = e to
h(ez) = h(k(ep)) = e3. So v * (h o) is a path from ey to e3. Also note
that

po(yx(hod))=(poy)*(pohod)=axp,

s0 7y * (h o) is a lift of a * B. Thus ¢([a * B]H) = e3, as desired. O
Corollary 4.4.2. If m1(E,e) = 0, then D(E, p) = m1(B, p(e)).

Definition 4.4.3. A covering p : E — B is called reqular if p. 711 (E, ) is a
normal subgroup of 7t1(B, p(e)), for any e € E.

Example 4.4.4. If 7r1(B) is abelian, any covering of B is regular.
We leave the following as an exercise.

Proposition 4.4.5. A covering p : E — B is regular if and only if the deck
group D(E, p) acts transitively on the fibers of p, that is, for all e1,e; € E
with p(e1) = p(ex) = b € B, there exists h € D(E, p) such that h(ey) = ej.

Corollary 4.4.6. If p : E — B is reqular, then
D(E,p) = m(B, p(e))/p«mui(E,e).

Remark 4.4.7. The universal cover p : E — B of B is regular (since the
trivial subgroup is normal) and D(E, p) = 71(B) acts transitively on
each fiber of p. Hence E/D(E,p) = E/m(B) = B.

Example 4.4.8. Let p : R — S! be the covering t — exp(27it). We have
that
DR,p)={t—t+n|necZ} =27

Example 4.4.9. Consider the covering R? — T2 defined as p x p and p
as in the previous example. The deck group is in this case

{(t,s) — (t+n,s+m)|nmeZ} ~ 72

Example 4.4.10. Let p : S> — RRP? be the covering defined by the
antipodal identification. Then D(RR, p) = {+id} since 711 (RP?) &= Z /2
is abelian.

Let X be a topological space, and G a subgroup of Homeo(X),
the group of homeomorphisms of X. Then G acts on X, i.e., there
is a continuous map G x X — X given by (g,x) — g-x = g(x).
Let [x] = {gx | § € G} be the orbit of x. Consider the orbit space
X/G:={[x] | x € X}.

COVERING SPACES
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Example 4.4.11. Consider the cylinder X = S! x [0,1]. Let h,k: X — X
be homeomorphisms defined by h(x,t) = (—x,t), k(x,t) = (—x,1—t).
Obviously, &, k are elements of order two in the group Homeo(X). Let
Gy = (h) and G, = (k). It is easy to see that X/G; = X, while X/G; is
a Mobius band.

Definition 4.4.12. Say that G acts freely on X if whenever g - x = x for some
x € X, we have g = eg, the identity element of G.

Definition 4.4.13. The group G acts properly discontinuous on X if for any
x € X, there is an open neighborhood Uy of x such that gU, N Uy = @ for
all g # eg. (Hence, gUy NhUy =D ifh # g € G.)

The following result is left as an exercise.

Proposition 4.4.14. If X is Hausdorff and G is a finite group of homeomor-
phisms of X acting freely on X, the action of G is properly discontinuous.

The main result of this section is the following.

Theorem 4.4.15. Let X be a path-connected, locally path-connected topological
space, and G < Homeo(X). Then mw: X — X/G is a covering if and only
if G acts properly discontinuous on X. Moreover, if this is the case, the deck
group D(X, 1) of the covering is isomorphic to G and the covering is reqular.

Proof. We first show that 77 is an open map. Let U C X be open and
show that 77(U) is open in X/G. Since X/G has the quotient topology,
7(U) is open in X/G if and only if 7~1(7r(U)) is open in X. By the
definition of 7t, we have

() = J sU
geG

Since each g € G is a homeomorphism of X, gU C X is open for every
g, s0 m1(7t(U)) is open in X.

We now prove the “<=" direction. Assume G acts properly discon-
tinuous (p.d.) on X, and show that 7t is a covering map.

For x € X, let U be a neighborhood of x such that g N U = @ for
all ¢ # eg. We claim that 77(U) is an evenly covered neighborhood of
[x] € X/G. Indeed,

o 1N m(U)) = Ugec U, and all {gU},cc are disjoint open sets in X.

* 7|y : gU — 7r(U) is a homeomorphism. Indeed, 7t[¢; is continu-
ous, open, and it is clearly onto. Moreover, if 7w(gx1) = 7t(gx7) for
x1,x3 € U, then there is ¢’ € G with ¢'¢x; = gxp, or g71¢’¢x1 = x7.
But since h'UNU = @ for all h # e, one must have that ¢~ '¢’¢ = eg,
or §' = eg. In particular, gx; = gxy, thus proving the injectivity of
ﬂ‘gu.



To prove the “=" direction, assume that 77 is a covering map, and
show that the action of G on X is p.d.

Let x € X be arbitrary, and let V, be a neighborhood of [x] = 7(x)
which is evenly covered by 7. In particular, n’l(Vx) = U, Ugx, with
7|u, : Uy = Vy a homeomorphism, for any a. Let U, be the “slice”
containing x. We claim that for any g # e, we have gU, N U, = @. If
not, there is y € gU, N Uy, hence y, ¢~ 'y € U, are distinct (note that g
and its inverse are covering transformations). But since [y] = [¢71y],
this contradicts the injectivity of 7z|y;,. Hence G acts p.d. on X.

Finally, we show that if 77 is a covering map, then G is its deck group
and 7 is regular.

First, any ¢ € G is a homeomorphism of X and mog = m, so
G C D(X, rt). Conversely, if h € D(X, ) with h(xq) = xp, then since
moh = 1t we get that 7t(x1) = 7t(x7). In particular, there is ¢ € G such
that gx; = xp. Since g is also a covering transformation and # and g
agree on x1, we have by uniqueness that h = ¢ € G.

The covering 7 is regular since G acts transitively on the fibers
of 7. Indeed, if x1,x, € 7 1([x]), then [x;] = [x2], hence there is
g € G =D(X, ) with gx; = x5. O

Using the above theorem and Corollary 4.4.2, we get the following.

Corollary 4.4.16. If X is simply connected and G acts properly discontinu-
ously on X, then m1(X/G) = G.

Example 4.4.17. If G is finite and acts freely on a Hausdorff space X,
then we know by Proposition 4.4.14 that G acts properly discontinuous,
so m: X — X /G is a covering with D(X, ) = G.

The following two results are left as exercises.

Proposition 4.4.18. If p: E — B is a cover (not necessarily regular), then
D(E, p) acts properly discontinuous on E.

Proposition 4.4.19. Any regular cover of B is of the form E/G, where E is
the universal cover of B and G acts properly discontinuous on E.

We conclude this chapter with some computations that follow easily
from the above results.

Example 4.4.20. The action of Z? on R? by translation (Example 4.4.9)
is properly discontinuous. So, since R?/Z2 = T2, we have that R? is a
universal cover of T? and 71 (T?) = Z2.

Example 4.4.21. The action of Z on R? by no (x,y) = (n+x,y) is
also properly discontinuous. The quotient space, R?/Z is an infinite
cylinder, S1 x IR. Thus we have that R? is the universal cover of S x R,
and the fundamental groups of the cylinder is Z.

COVERING SPACES
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Example 4.4.22. The action of Z on R?2by no (x,y) = (n+x, (—=1)"y) is
again properly discontinuous. The quotient space IR?/Z is the Mobius
band, which makes R? the universal cover of the Mobius band and the
fundamental group of the Mobius band is Z.

Example 4.4.23. This example focuses on spaces called lens spaces.
Regard S?**1 as a subspace of C"*! in the usual way. Let Z/q C
C* be the g-th roots of unity. Define an action of Z/q on S?**! by
¢ol(z1,...,zn11) = (€21,82y,...,{™+ 2, 1). This action is free if and
only if ged(r;,q) = 1, for all i. Assume this is the case, and define

L(p;r2,73,...,1ns1) = ST/ 2Z/4.
Since the action of Z /g is free, we have that
7S s L(pira, . Tagt)

is a covering map with D(S*"*1, r) =2 Z/q. Since, for n > 1, S>**1 is
simply-connected, it is a universal cover of L( P2, 73, .., Tni1), SO Iin
particular 71y (L(p; 12, ..., 1ut1)) = Z/4.

Exercises

1. Show that the map p : S' — S!, p(z) = z" is a covering. (Here we
represent S! as the set of complex numbers z of absolute value 1.)

2. Let p : E — B be a covering map, with E path connected. Show that
if B is simply-connected, then p is a homeomorphism.

(i) Show that if n > 1 then any continuous map f : " — S! is nullho-
motopic.

(ii) Show that any continuous map f : RIP> — S! is nullhomotopic.

(i) Classify all coverings of the M&bius strip up to equivalence.

(ii) Show that every covering of the Mobius strip is homeomorphic to
either R?, S! x R or the M&bius strip itself.

(i) Show that the torus T? is a two-fold cover of the Klein bottle.

(ii) Is it possible to realize the Klein bottle as a two-fold cover of itself?
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(iii) Find the universal cover of the Klein bottle.

6. Let p : E — B be a covering map with E simply-connected. Show that
given any covering map r : Y — B, there is a covering map g: E — Y
such that roq = p.

7. Show that if G is a finite group with a fixed-point free action on a
Hausdorff space X, the quotient map p : X — X/G is a covering.

8. Let Zg act on S = {(z,w) € C%, |z]*> + |w|* = 1} via (z,w)
(ez,ew) , where € is a primitive sixth root of unity. Denote by L the
quotient space S®/Z.

(i) What is the fundamental group of L?
(ii) Describe all coverings of L.

(iii) Show that any continuous map L — S! is nullhomotopic.






5
Homology

Homology of a topological space X yields a collection of topological
invariants of X called homology groups which, roughly speaking, define
and categorize “holes” in a manifold. We first define singular homology
and study its properties. We then introduce CW complexes and define
their cellular homology, and show that in this context singular homol-
ogy and cellular homology coincide. Basic knowledge of homological
algebra will be assumed throughout this section.

5.1 Singular Homology

Definition 5.1.1. The standard n-simplex is the set

n
A" = {(to,...,tn) e R"| Zti =1t2>0, Vl}z
i=0

1=
i.e., the convex span of the standard basis of R" 1.

Definition 5.1.2. An n-simplex is the convex span in R"™ of n 41 points,
Vg, ..., 0y that do not lie in a hyperplane of dimension less than n (ie.,
U] — 0o, ..., 0y — g are linearly independent).

Given n + 1 vectors vy, ..., v, as in the definition of the n-simplex,
we write [0y, ..., v,] for the n-simplex that they generate, and we call
the v;’s the vertices.

Note that there is a canonical linear homeomorphism from A" to any
n-simplex [vy, ..., v,] defined by:

n
A — [Uo,.‘.,vn], (to, .., ty) — Ztﬂ),’.
i=0

If we delete one vertex from the n-simplex [vy, . .., v,], the remaining
n vertices span a (n — 1)-simplex, called a face of [vy, ..., v,]. The union
of all faces is called the boundary of [vy,...,v,]. We denote faces by
[vo, ..., Ti,...,0n], 1 =0,...,n, where 7; indicates that v; is a deleted
vertex.
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Definition 5.1.3. A singular n-simplex in a topological space X is a continu-
ous map o : A" — X.

We use the word “singular” because the image of such a map can
have “singularities”.

Let C,(X) be the free abelian group with basis the singular n-
simplices in X, i.e.,

Cu(X) = {Znim |njez, op: N* - X continuous},
i
where each formal sum ) ; n;0; is finite, i.e., all but finitely many n; are
zero. We call an element of C,(X) an n-chain in X.
We define boundary maps

Ot Cu(X) = Couy (X)

as follows. Since C,(X) is the free abelian group on the singular
n-simplices of X, it suffices to define the map d,, on the singular »n-
simplices, and then extend it by linearity to all of C,(X). If 0 : A" — X
is such an n-simplex, we set

-

an(o-) = (71)110-'[170,...,17,',“.177,]'

=0

A crucial lemma, whose proof is by a direct calculation using the
definition, is the following.

Lemma 5.1.4. For every n, we have that d, 0 9,41 = 0.
We often abbreviate the above fact as 9> = 0.

Definition 5.1.5. We call Co(X) = {Cy(X), 0}, o the singular chain
complex of X.

Note that both Im(9,,11) and ker(9d,) are subgroups of the abelian
group C,(X). The above lemma yields that Im(9,,,1) is a subgroup of
ker(9y,). Hence we can make the following.

Definition 5.1.6. The n-th singular homology group of X is defined by:
Hy(X) :=ker(9,)/ Im(941).

It is clear by definition that H,(X) is a homeomorphism invariant.
Moreover, as we will see later, homology is in fact a homotopy invariant.

Definition 5.1.7. We introduce the following notations:
(i) Z, = ker(9y) is the group of n-cycles.

(i) By :=1Im(9y41) is the group of n-boundaries.



We next prove some immediate consequences of the definition of
homology.

Proposition 5.1.8. Let xq be a point. Then,

Hy(xo) = {Z, n=0

0, n>0.
Proof. For every n, there is a unique map o, : A" — xp. So C,(xp) is

the free abelian group generated by o}, hence it is isomorphic to Z.
Now,

On(on) =

M-

i=0 0,_1, niseven,n #0.

‘ 0, is odd

So we get the chain complex:
Sz z572%7 50
Taking homology of this complex yields the desired result. O

Proposition 5.1.9. Suppose X is a space and { X } yc 4 are the path connected
components of X. Then, Hy(X) = €D Hu(Xa).
acA

Proof. Since A" is path connected and an n-simplex ¢ : A" — X is a
continuous map, we have that Im(c) C X, for some a. Therefore, we
get a decomposition

Cu(X) = @ Cu(Xa).

The boundary maps preserve this decomposition, i.e., 9(Cy(Xy)) C
Cy—1(X4). Hence ker(d,) and Im(9,,41) split similarly as direct sums
and the result follows. O

Proposition 5.1.10. If X # @ is path connected, then Hy(X) = Z. More
generally, Hy(X) = @, Z, where X = U, Xy is the union of X into its path
connected components.

Proof. From
Cr(X) & Co(x) 2 0

and dyg = 0, we get that Hy(X) = Co(X)/ Im(91). Define the augmenta-
tion map

G:CO(X) — Z

Zniai — an‘
i i
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The map € is clearly onto. We claim that if X is path connected then
ker(e) = Im(d7). This will then imply that Hy(X) = Z.
Let o : A — X be a singular 1-simplex. Then,

6(81(0')) = 6(0’[01] 70’[170]) =1-1=0.

Therefore, Im(d1) C ker(e). Next, suppose that e(};n;0;) = 0, ie,
Y_in; = 0. Here, the 0;’s are singular 0-simplices, i.e., points of X. Let
xo be a basepoint in X and let ¢y be the corresponding 0-simplex with
image xp = 0y(vp). Since X is path connected, for every i, there exists a
continuous path 7; : I — X from xg to 0;(vg). The unit interval I is Al.
So, we can regard T; € C(X) and 91(7;) = 0; — 0p. Hence,

d1 (Z”liTi) =Y nio; =Y njog =Y njo; — <Z ni) oo =Y _no,
i i i i i i
which shows that ker(e) C Im(9y). O

Definition 5.1.11. The reduced homology groups of X, Hy(X), are the
homology groups of the augmented chain complex of X defined as:

SO B B X)) Sz o,

where € is the augmentation map defined in Proposition 5.1.10 as €()_; n;jo;) =
Yin.

The above complex is a chain complex since, as shown above, we
have € 0 d; = 0. Moreover, this formula also shows that € induces an
onto map Cy(X)/Im(d;) = Ho(X) — Z with kernel Hy(X). Therefore,

Ho(X) 2 Hy(X) o Z

and it is clear that for n > 1, we have that H,(X) = PNIn(X) So one
does not get any new information from the reduced homology groups,
but they allow us to state results in a cleaner way. For example, if xg is
a point, then the previous proposition can be restated as H,(xg) = 0
for all n.

5.2 Homotopy Invariance

In this section we show that the homology groups are homotopy invari-
ants.

Let f: X — Y be a continuous map. Then, we have an induced
homomorphism

fi: Ca(X) = Cu(Y)
defined by f4(Yn;0;) = Y n;(f o ;).

Lemma 5.2.1. f3 is a chain map, i.e., f40, = Oy f4.
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Proof. It suffices to show that this equality holds for a singular n-
simplex o.

700D = fo (D15, )

O

We therefore get the following diagram with commutative squares:

9y M 9y
e Cut(X) 2 (X)) —2 Gy (X) 2

|5 |5 |5

3 \ 0,
D Gt (Y) L Cu(Y) =2 Gy (Y) 2l

Corollary 5.2.2. f4 takes n-cycles to n-cycles.
Proof. 1f 9,,(c) =0, then 0,,(f4(0)) = f#(9u(c)) = f4(0) = 0. O
Corollary 5.2.3. f4 takes boundaries to boundaries.

Proof. Suppose 0 = 9;,41(17). Then

fu(0) = fa(On41(n)) = dur1(fu(n)).

Therefore, we get the following corollary.

Corollary 5.2.4. The map f: X — Y induces a homomorphism f.: H,(X) —
H, (Y) for every n.

More generally, a chain map between chain complexes induces ho-
momorphisms between the homology groups of the two complexes.
From the properties of the map f3, we get the following proposition.

Proposition 5.2.5.(a) If X 5y Ly Zare maps, then (f 0 ¢)x = fx 0 s

() (idx)s = idy, x)
We are ready to state our main theorem.

Theorem 5.2.6. If f,g: X — Y are homotopic maps, then they induce the
same homology homomorphisms f. = g«: Hy(X) — Hy(Y) for every n.

Before proving the theorem, let us state some important conse-
quences (deduced using Proposition 5.2.5):
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Corollary 5.2.7. If f: X — Y is a homotopy equivalence, then f.: Hy(X) —
Hy(Y) are isomorphisms for every n.

Corollary 5.2.8. If X is contractible, then H,(X) = 0 for every n.

Proof of Theorem 5.2.6. Let F: X x I — Y be the homotopy between f
and g. We will define an operator P: C,(X) — C,,41(Y), called a prism
operator, such that

OP +P0 =gy — f (%)

Once defined, this will then show that gy and f have the same effect on
homology. For, if & € C,,(X) is a cycle, then by (x), we get that g4(a) —
fu(a) = 9P(a) + Po(w) = 0P (). Since fy and g4 differ by a boundary,
they are homologous, so when quotient out by the boundaries, we get
that f.([¢]) = g«([a]) in homology.

It suffices to define P(c), for o: A" — X a singular n-simplex, and
then we can extend P by linearity. We have the following maps:

id
A1 D 1 By

In order to define P(c), the idea is to divide A" x I into a linear
combination of (n + 1)-simplices.

For example, the following picture shows how to divide A! x I into
two 2-simplices. If we let [vg, v1] be the simplex Al x {0}, and we let
[wo, w1] be the simplex at Al x {1}, then we can write A! x I as the
union [vg, wo, w1] U [vg, v1, w1].

wo w1

(%] 01

The following picture shows shows how to divide A? x I into three
3-simplices. If we let vy, v1,v5] be the simplex A% x {0}, and we let
[wo, w1, w,] be the simplex at A2 x {1}, then A% x I can be written as
the union [Uo, wo, W1, ZUZ] U [Uo, Z)],ZU],'LUQ] U [Uo,vl, Uy, ZUQ].



where we let A" x {0} = [vg,...,v4], A" X {1} = [wy, ..., wy], with v;
and w; having the same image under the projection A" x I — A".
We define

As we discussed earlier, if we can just show that (%) holds, we're
done. We will sketch the proof of this fact below. We will see that
dP corresponds to the boundary of the prism, gs corresponds to the
top of the prism, f3 corresponds to the bottom of the prism, and P9

1
wo o

w1

~

~

(4]

n

A" x ] = U[vo,...,vi,wi,..

i=0

n

P(O’) = Z(*l)iPo (O'Iid)“vo,.

i=0

corresponds to the sides of the prism.

01

It is an instructive exercise for the reader to show that

. /wi’l]/

e 05, Wiy, Wy ]

= Z (_1)j(_1)i1: © (U’ id)‘[vo,...,@,...,Ui,zu,v,...,wn]

0<j<i<n

+ Y (-1y"(=1)'Fo(o,id)

0<i<j<n

| [UO,...,vi,wi,...,wj,...,wn]

The terms with i = j in the two sums cancel, except for

and

Fo (U/ id)‘[@,wo,...,wn] =800 = g#(O')

—Fo (0,id)|,,.onm) = —f o0 = —f4(0).

The terms with i # j in the sum for dP(c) are exactly —Pd(0).

O

Definition 5.2.9. A map P which satisfies property (x) is called a chain

homotopy between gy and fy.
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More generally, if (C,,ds) and (D.,ds) are two chain complexes
with two chain maps i,k : Co — D, such that there exists a map (i.e.,
chain homotopy) P : C;, — D, satisfying Pd 4+ 0P = h — k, then it
follows as in the above proof that & and k induce the same map on
homology. The chain homotopy condition says that the two ways of
going around the parallelogram from C, to D,, add up to & — k.

Cn-i—l n—1 yo

At

: ” Dn-i—l > Dn ” Dn—l yoe

5.3 Homology of a pair

Given a space X and a subspace A C X, define
Cn(X,A) :=Cu(X)/Cyn(A),

called the set of relative n-chains. Since d: C,,(X) — C,_1(X) takes
Cu(A) to C,_1(A), we get induced boundary maps 9: C,(X,A) —
Cn_1(X, A). Since 9> = 0 on C,,(X), we have that 3> = 0 on C,(X, A).
Therefore, we get a chain complex {C.(X, A), ds }, whose homology is
called the relative homology of the pair (X, A), and is denoted H, (X, A).
Then, the natural question to ask is, how does the homology of the pair
(X, A) relate to, or can be computed from, the homologies of X and
and A.

This question is addressed by the following general construction. Let

0= Ae 5 Be L Co—0

be a short exact sequence of chain complexes. This means that we have
the following diagram, where every square commutes.

0 Auit Byt —— Cpp1 —— 0
[ b

0 Ay, —— B, —L ¢, 0
[ b b

0 Ay 1 — B, —15Cy ——0



For every n, we have homomorphisms
Ha(As) 22 Hy(Bs) 25 Hy(Co).

We are going to define a map 0: H,(Cs) — H,_1(As), called a connect-
ing homomorphism.

Let ¢ € C, be a cycle representative for « € H,(C,). Then, since
j is surjective, there exists b € B, such that ¢ = j(b). Therefore, we
have that 9(b) € B,,_1. By the commutativity of the diagram, we know
that j(d(b)) = 9(j(b)) = 9(c) = 0, since c is a cycle. Therefore, d(b) €
kerj = Im i. So, there exists a (unique, since i is injective) a € A,_4
with d(b) = i(a). We show that a is a cycle. Since i(d(a)) = d(i(a)) =
d(d(b)) = 0, and since i is injective, this implies that d(a) = 0. Finally,
we define o(«) = [a] € H,_1(A.), which is clearly a homomorphism.

The next step is to show that this assignment is independent of all
choices.

(i) First, a is uniquely determined by 9d(b), since i is injective.

(ii) Next, suppose we choose b’ € B, such that j(b') = c. Then, b/ — b €
kerj = Im i. So, there exists a' € A, such that b’ —b = i(a).
Therefore,

=4

|
~
—
x
~—
+
~.
QU
—
[
~
~—
~—

So we see that changing b to b’ amounts to changing a by a homolo-
gous cycle a + 9(a’). In particular, [a] = [a+ 9(a’)] € H,—1(A).

(iii) Finally, suppose we choose a different representative for the class
[«]. So, if instead of ¢ we use ¢ + d(¢’) for some ¢’ € C,,;1. But then,
¢ =j(b') for some V' € B, ;1. So,

c+a(c") =c+a(j(t)))
=c+j(a(b"))
= j(b+a(b"))
So then, b will be replaced by b + 9(b’), which leaves d(b) unchanged,
hence a unchanged.
One can use the connecting homomorphism 0 just defined to prove
the following statement.
Theorem 5.3.1. The sequence

e Hu(A) 5 Hu(Bo) B Ha(Co) 2 Hy 1 (Ad) — -

is exact.
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Proof. This is a routine check. We will show exactness of this diagram
at the step H,(C,) LN H,_1(As) = H,_1(B.). The other two steps are
exercises for the reader.

1. Im 0 C keri,: for a as in the definition of 9, we have: i.(d(«a)) =
ix([a]) = [9(b)] = O.

2. keri, CIma: letae A, 1 withd(a) =0and i([a]) =0 € H,_1(B.).
Then, i(a) = d(b) for some b € B,. But then, d(j(b)) = j(o(b)) =
j(i(a)) = 0,since joi = 0. Thus, j(b) is a cycle. From the construction
of the connecting homomorphism, we have that [a] = 9([j(b)]). Thus,
[a] € Imo.

O

Let f: (X,A) — (Y,B) be a continuous map f: X — Y such that
f(A) C B. Then f induces f3: C4(X) — Cu(Y) so that f4(Cy(A)) C
Cu(B) for all n. So we get an induced homomorphism

fu: Cu(X, A) — Cu(Y, B).

Because fz0 = dfy on C,(X), this identity also holds for the induced
maps on the quotients. Therefore we get induced homomorphisms on
homology f.: Hy(X, A) — H,(Y,B) for all n.

From the definition of relative chains, one also has that C,(X,?) =
Cu(X). So, let (X, A) be a pair of spaces with A C X. Therefore, we
have a short exact sequence of chain complexes coming from natural
maps on the level of topological spaces:

0= Ce(A) = Co(X) = Co(X,A) — 0
Theorem 5.3.1 then yields the following result.

Theorem 5.3.2. Let X be a topological space and let A be a subspace of X.
Then, there is a long exact sequence:

<o+ = Hy(A) = Hpy(X) = Hy(X,A) —» Hy, 1(A) — - -

We list below a few more consequences of Theorem 5.3.1.

There is a long exact sequence for the reduced homology of a pair
(X, A). This is associated to the “augmented” short exact sequence for
(X, A):

—
(2
<;
(2]

o+—N
o+—N



Corollary 5.3.3. There is a long exact sequence for reduced homology of a
pair (X, A):

oo — Hy(A) — Hy(X) — Hu(X,A) — H,_1(A) — - -

Remark 5.3.4. In particular, if xy € X, the long exact sequence for
reduced homology of the pair (X, x¢) yields:

H,(X) = Hy(X, x0)

for all n.

Corollary 5.3.5. There is a long exact sequence for the homology of a triple
(X,A,B), where BC A C X:

-+ — Hy(A,B) — Hy(X,B) — Hy(X,A) — H,_1(A,B) — - --
Proof. Start with the short short exact sequence of chain complexes
00— Ce(A,B) —— Co(X,B) —— Co(X,A) —— 0

where maps are induced by inclusions of pairs, then take the associated
long exact sequence for homology as in Theorem 5.3.1. O

We next discuss properties of homology of pairs of spaces.

Proposition 5.3.6. If f,g: (X, A) — (Y, B) are homotopic through maps of
pairs (X, A) — (Y, B), then f. = g : Hy(X, A) — Hy(Y, B) for all n.

Proof. The prism operator P: C,(X) — C,41(Y) defined in Theorem
5.2.6, which satisfies dP + P9 = g — f4, takes C,(A) into C,11(B) by
construction. So we get a prism operator on quotients P : C, (X, A) —
Cn+1(Y, B) which satisfies dP + Pd = gs — f# on C,(X, A). Hence f#
and gy have the same effect on H, (X, A) for all n. Thatis, f, = g« :
H,(X,A) — H,(Y,B) for all n. O

The next result is very important in homology calculations.

Theorem 5.3.7 (Excision Theorem). Given subspaces Z C A C X so that
Z C int(A), the inclusion (X \ Z, A\ Z) — (X, A) induces isomorphisms

Hn,(X\Z,A\Z) — Hy(X, A)

for all n. Equivalently, if A,B C X are such that X = int(A) Uint(B), the
inclusion (B, AN B) — (X, A) induces isomorphisms

Hy(B,ANB) = Hy(X, A)

for all n.
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Remark 5.3.8. To see that the two statements of the Excision Theorem
are equivalent, just take B= X\ Z (or Z = X\ B). Then ANB = A\ Z,
and the condition Z C int(A) is equivalent to X = int(A) Uint(B).

Proof of Excision Theorem 5.3.7 (Sketch). Given a topological space X, let
U = {U,}; be a collection of subspaces of X whose interiors cover X.
Let

CHU(X) = {er‘n:]ni‘]’i | me Z>0/ni S Zlai S CH(X)/
such that Vi, 3j with ¢;(A") C U;}.

Then Cn”(X) < Cy(X). Furthermore, 9, : Cy(X) — C,_1(X) induces

boundary maps 9, on C¥(X) satisfying 9> = 0. So we get a chain

complex {C¥(X), d. } whose nth homology group is denoted by HY (X).
By subdividing simplices, it can be shown that the map

H{(X) = H(X)

induced by the inclusion is an isomorphism for all n. In fact, the
inclusion i : C¥(X) < C,(X) is a chain homotopy equivalence. That is,
there exists a chain map p : C,(X) — CY(X) such that ip and pi (the
latter of which is precisely the identity map) are both chain homotopic
to the identity map. So there exists P: C,(X) — C,41(X) such that
oP + Pd = id — ip.

For proving the Excision Theorem, we take &/ = {A, B}, and we
let C,(A + B) denote C%(X). Every operator appearing in 9P + P9 =
id — ip takes chains in A to chains in A, so we can factor out the
chains in A to conclude that the inclusions C,(A + B)/Cy(A) —
Cu(X)/Cu(A) = Cu(X,A) also induce isomorphisms on homology.
But the map C,(B,ANB) = C,(B)/Cy(ANB) — Cy(A+B)/Cyn(A)
induced by the inclusion is also an isomorphism since both quotient
groups are free with basis the singular n-simplices in B that do not lie
in A. Combining these statements, we obtain the desired isomorphisms

o~

H,(B,ANB) — Hy(X,A)
induced by inclusion. O

We will next discuss some applications of excision.

The first such application is the Suspension Theorem for homology.
For a space X, define its suspension £X to be the quotient of X x [—1,1]
obtained by identifying X x {—1} to one point and X x {1} to another
point. For example, if X = S", then £X = §"*1.

Theorem 5.3.9 (Suspension Theorem). Let X be a topological space , with
suspension 2.X. There are isomorphisms

H;(X) = H1(2X), foralli>0.



nsl >~ g2

Proof of Suspension Theorem. Let 7 : X x [—1,1] — XX be the quotient
map. Let 2, X = 71 (X x [—%,1]), letS X =7 (X x [-1, i]), let § =
(X x {—1}), and let N = 71 (X x {1}). Then we have the following;:

1. Hi(ZX) = H;(ZX,S).
2. H;(XX,S) = H;(XX,2_X). This can be seen in two ways:

(a) We observe that ~_ X deformation retracts to S and apply homo-
topy invariance for the homology of a pair.

(b) H;(X-X,S) = 0 by the long exact sequence for reduced homology
of the pair (£_X,S). Then the long exact sequence for homology
of the triple (£X,X_X, S) gives the desired isomorphism.

3. H;(2X,X_X) = H;(X4+ X, X). This follows by excising int(X_ X) and
using homotopy invariance for the homology of a pair.

4. Hi(Z:X,X) = H;_1(X) by applying the long exact sequence for
reduced homology of the pair (£, X, X) and the fact that £, X is
contractible.

O

Z, i=n

Corollary 5.3.10. H;(S") = { 0, i
, i #n.

Proof. We use induction on n > 0. Hy(S°) = Z because S¥ is two
points. For i > 0, H;(8°) = H;(S%) = H;({-1}) ® H;({1}) = 0. So
the statement holds for S0. Assume it holds for §". If i = 0, we know
H;(S"1) 22 0 because 5" is connected. If i > 0, then H;(S"*1) =
H;_1(S") by the Suspension Theorem. So if i = 1 -+ 1, then this group
is isomorphic Z, and if i # n + 1 then this group is 0, by the induction
hypothesis. O
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Theorem 5.3.11 (Brower). If U C R™ and V C R" are nonempty homeo-
morphic open sets, then m = n.

Proof. For all x € U and for all k € Z, we have Hy (U, U\ {x}) =
Hi (R™,R™\ {x}) by applying the second version of the Excision The-
orem with X = R", B = U, and A = R" \ {x}. Combining this with
the long exact sequence for the reduced homology of (R”, R™ \ {x})
and the fact that R \ {x} is homotopy equivalent to S”~!, we obtain
forallx € Uand all k € Z:

H (U, U\ {x}) & He (R",R™\ {x}) = H1 (R"\ {x})

~ _ Z, k=m

Similarly, if y € V, we have for all k € Z:

Z, k=n

Hk(V,V\{y})g{ 0, k#n.

Butif f: U — V is a homeomorphism, then f: U\ {x} — V\ {f(x)}
is a homeomorphism. Hence f induces isomorphisms

Hi (U U\ {x}) = Hy (V,V\ {f(x)})

for all k € Z. Therefore, m = n. O

Remark 5.3.12. If X is a topological space, x € X, and U C X is an
open neighborhood of x, then for all n € Z, the Excision Theorem
yields that

Hy (X, X\ {x}) = Hy (U, U\ {x}).

In particular, for all n € Z, the group H, (X, X \ {x}) depends only on
the topology of a neighborhood of x. Therefore these homology groups
are called the local homology groups of X at x. They can be used to check
when a map f : X — Y is not a local homeomorphism.

We can now extend Brower’s fixed point theorem to arbitrary dimen-
sions.

Theorem 5.3.13 (Brower’s Fixed Point Theorem). (i) The boundary 0D"
of the n-disc D" is not a retract of D".

(ii) Any continuous map f : D" — D" has a fixed point.

Proof. (i) Assume by contradiction that there exists a retraction r: D" —
aD" = S"~1. Then, if i: S"~! < D" is the inclusion, we have roi =



idgn1. By functoriality, for all k € Z we have (roi), = ryo0i, =
idﬁk(snfl)' If k = n — 1 we obtain:

o~

Z = H, (")~ Hy (DY) s By (S —5 7

idy

But 7, = 0 and i, = 0 because Hn_1(D”) = 0. Therefore we have
arrived at a contradiction.

(i) Let f: D" — D" be a continuous map. Assume by contradiction
that f(x) # x for all x € D". Then we may define a function r: D" —
$"1in the following way. Let x € D" and let [f(x),x) denote the
(unique) ray based at f(x) passing through x. Define r(x) to be the
unique element in ([f(x),x) NoD™")\ {f(x)}. Then r is continuous and
is a retraction D" — 9D", contradicting (i). O

The following result is very useful in concrete calculations.

Theorem 5.3.14 (Mayer-Vietoris Sequence). Suppose X = AUB =
int(A) Uint(B). Then there is a long exact sequence:

i 5 Hu(ANB) % Hy(A) @ He(B) 5 Hy(X) % Hy 1(ANB) —

-++ = Hyp(X) — 0.

Proof. Let C,,(A + B) denote the subgroup of C,(X) whose elements
are precisely sums of singular simplices in either A or B. The boundary
maps 0 on C,(X) restrict to boundary maps on C,(A + B), and we get
a chain complex {C, (A + B), 9+ } whose homology is isomorphic to the
homology of X. Hence, we need only produce a long exact sequence
of the form specified in the theorem where each H,(X) is replaced by
the n-th homology group of {C.(A + B), 0 }. To this end, for n € Z>,
consider the following sequence:

0 —— Ca(ANB) — Co(A) @ C(B) —'— Cu(A + B) —— 0

(5.3.1)
where, ¢(x) = (x, —x) for all x € C,(ANB) and ¥(x,y) = x +y for all
(x,y) € Cu(A) & Cy(B). We claim that this sequence is exact:

* 1 is surjective by the definition of C,(A + B).

* ¢ is injective, since a chain in A N B which is zero as a chain in A (or
in B) must be the zero chain.

e Forall x € C,(ANB), pog¢p(x) = x —x = 0. Therefore Im(¢) C
ker(y).
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e If (x,y) € ker(y), then x is a chainin A, yis a chainin B, and y = —x.
This implies that x is a chain in AN B and ¢(x) = (x, —x) = (x,y).
Therefore ker(¢) C Im(¢).

It is easy to see that ¢, commute with the boundary operators, so
(5.3.1) yields a short exact sequence of chain complexes, and the Mayer-
Vietoris sequence is simply the associated long exact sequence in ho-
mology. O

Remark 5.3.15. By using augmented chain complexes in (5.3.1), we
also obtain a corresponding Mayer-Vietoris sequence for the reduced
homology groups.

Example 5.3.16. Let X = S§", A = S§"\ {S}, and B = 5"\ {N} where S
and N are the south pole and north pole, respectively. Then A = R”,
B>~ R",and ANB ~ "1, From the reduced Mayer-Vietoris sequence,
we get H;(S") = H;_1(S" 1) for all i. By induction, we find as before:

Z, i=n

Hi(s") g{ 0, i#n

Example 5.3.17 (Homology of the Klein Bottle). Let K be the Klein
bottle. It may be decomposed as K = M; U My where M; and M;
are Mobius bands that are glued along their boundary circles (see the
figure below).

b K
M,
a My a S M, p
b

Each of M;, M, is homotopy equivalent to its core circle S!, and
M; N M, = S! is the common boundary circle. By the reduced Mayer-
Vietoris sequence, H,(K) = 0 for all n > 2. Consider the segment of
the reduced Mayer-Vietoris sequence below:

0 — Ho(K) — Hy(M; N M) 5 Hy (M) @ Hy(Mp) 5 Hy(K) = 0

Then ¢: Z — Z O Z maps 1 to (2,—2). By exactness, Hp(K) =
ker(¢) = 0 and H;(K) = Coker(¢) = (Z® Z) /(2(1,—1)). If we con-
sider the basis {(1,0),(1,—1)} of Z@® Z, then (Z&® Z) /(2(1,-1)) =
Z. & Z,. We conclud the following:

[ zez, i=1
Hi(K):{O i £1



Exercises

1. Show that if X is a path-connected topological space and f : X — X
is a continuous function, then the induced map f, : Hy(X) — Ho(X) is
the identity map.

2. Show that Hy(X, A) = 0 if and only if A meets each path-component
of X.

3. Show that Hy (X, A) = 0 if and only if Hy(A) — H;(X) is surjective
and each path-component of X contains at most a path-component of
A.

4. A pair (X, A) with X a space and A a nonempty closed subspace
that is a deformation retract of some neighborhood in X is called
a good pair. Show that for a good pair (X, A), the quotient map
g:(X,A) — (X/A,A/A) obtained by collapsing A to a point, induces
isomorphisms g, : Hy(X, A) — H,(X/A, A/ A) = H,(X/A), for all n.

5. For a wedge sum V/, X, the inclusions i, : Xy — V, Xx induce an

Pias : P Ha(Xe) = Ha(\/ Xa),

provided that the wedge sum is formed at basepoints x, € X, such

isomorphism

that the pairs (Xq, x4) are good.

6. Show that:
(i) S"™ and S™ do not have the same homotopy type if n # m.

(if) S", for n > 1, is a simply-connected space which is not contractible.

7. Calculate the homology of the 2-torus T?.

8. Show that S! x S! and S!V S!' Vv §? have isomorphic homology
groups in all dimensions. Are these spaces homeomorphic?

9. Show that the quotient map S x S! — S? collapsing the subspace
S v §! to a point is not nullhomotopic by showing that it induces an
isomorphism on H,. On the other hand, show that any map S? —
S! x S! is nullhomotopic.

10. For XX the suspension of X, show by a Mayer-Vietoris argument
that there are isomorphisms H, 1 (XX) 2 H,(X) for all n.

11. For the case of the inclusion f : (D",5""!) — (D",D" — {0}),
show that f is not a homotopy equivalence of pairs, i.e., there is no
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¢: (D", D" —{0}) — (D",S" 1) so that g o f and f o g are homotopic
to the identity through maps of pairs.

12. A graded abelian group is a sequence of abelian groups A. :=
(An)n>0. We say that A, is of finite type if

) rankA, < co.
n>0
The Euler characteristic of a finite type graded abelian group A, is the
integer
X(As) := ) (—1)" - rankA,.

n>0
(i) Suppose

N G S N O e )
is a chain complex such that the graded abelian group C, is of finite
type. Denote by H,, the n-th homology group of this complex and
form the corresponding graded group He = (H;),>0. Show that H,
is of finite type and

X(He) = x(Ce).

(ii) Suppose we are given three finite type graded abelian groups A.,
B., Co, which are part of a long exact sequence

---%AkinﬂckiAkq—>---—>A0—>B0—>C0—>0.

Show that
X(Be) = x(As) + x(Co).



5.4 71 0s. Hy

Let X be a topological space. A continuous map f : I = [0,1] — X can

be viewed as a path in X or as a singular 1-simplex. If f(0) = f(1),

then of = f(1) — f(0) =0, so a loop in X can be viewed as a 1-cycle.
In this section, we discuss the following.

Theorem 5.4.1. By regarding loops as singular 1-cycles, one gets a homomor-
phism

h: 7'[1(X,X0) — H1<X)
If X is path-connected, then h is onto, with kerh = [y, 71|, the commu-
tator subgroup of 11 1= 11(X, x0). In this case, h induce an isomorphism
(X, x0)ap = Hi(X), ice., the first homology group can be seen as the
abelianization of the fundamental group.

Remark 5.4.2. An equivalent definition of /1 can be given as follows: if
f: S — X is an element of m (X, xp), define

h([f]) = fi(w),

for « € Hy(S') a generator represented by o : I — S!, s > €2, Then
both [f] € m1(X, x9) and fi(a) are represented by the loop fo: I —
X. A consequence of this formulation is that h([f]) = h([g]) if f is
homotopic to g.

Proof. (i) If f = consty, is the constant path, then f is a 1-cycle since
it is a loop, and f must be a boundary since Hj(point) = 0. In fact,
f =9(0), for o the constant singular 2-simplex with the same image as
f, since

d(o) = a|[01,02] - 0|[vo,vz] + U|[vo,vl] =f—f+f=*

(ii) If f is homotopic to g through a path-homotopy preserving
basepoints, we show that f and g are homologous, hence correspond to
the same element in H;(X). Indeed, let F : I x I — X be a homotopy
from f to g, so f(0) = g(0) = F(0) = xo, f(1) = g(1) = Fs(1) = xo,
where F(t,s) = F(t).

(%)

X0 Yo

0

HOMOLOGY 81



82 ALGEBRAIC TOPOLOGY

Let 07 and o7 be 2-simplices as in the above figure. Then:
d(0q1 — ) = f — g — consty, + consty,.

Hence f — g is a boundary, whence f and g define the same element in
Hy(X).

(iii) We next show that multiplication (concatenation) of loops trans-
lates into cycle addition. i.e., if f,g : I — X are loops at xy we show
that f - g is homologous to f + g, or equivalently, that f - ¢ — f —gisa
boundary. Consider the singular 2-simplex o depicted below. Then

do)=g—f-g+f

(iv) If f is the inverse path of f, we show that f is homologous
as a l-cycle to —f. Indeed, f + f — f - f is a boundary by (iii) and
f+ f ~ consty, is (homologous to) a boundary by (i).

It then follows from (ii) and (iii) that /1 : 711 (X, x9) — Hj(X) is a well
defined homomorphism. Hence, since H;j(X) is abelian, there is an
induced homomorphism 771 (X, xp)a — H1(X), also denoted by h. To
show that this is an isomorphism for X path connected, we construct
an inverse

j : Hl(X) — 7T1(X, xO)ab'

For each x € X, let ¢« be a fixed path in X from xp to x, with ¢, =
consty, the constant path at xy. For ¢ a singular 1-simplex in X with
endpoints x; and x, set

T 1= Py, * 0 % Px,.

Then the map o — 0 defines a homomorphism C;(X) — 711 (X, x0)ap
on its basis of singular 1-simplices.

Let us next note that if p is a singular 2-simplex, then d(p) maps to
the identity element. Indeed, if d(p) = 09 — 01 + 02,



X3

%] %

X1 X2
0o

then d(p) maps to the homotopy class of the path

B %00 By * e ¥ 0T % By # oy 02 % iy ~ by # (00 07 % 02) * .

But o * 07 * 05 = p«(7), for 7y a loop in A? based at x1. And since A? is
simply connected, one has that g * 07 * 02 ~ consty,. Therefore,

Px, * (00 * 07 % 0) * Py ~ Py, * CONSty, * Py, ~ CONSty.

Therefore, if we restrict C1(X) — 71(X, x0)ap to Z1(X) and use the fact
that B;(X) — consty,, we get an induced homomorphism

jrHi(X) = m11(X, X0) ab-

Finally, we show that I and j are inverse homomorphisms. First, if
o is a loop at xp € X, then 0 = ¢, hence jo h = id. Suppose now that
¢ = Y_; n;0; is a singular 1-cycle. Then, under /1 o j, 0; maps to 7; which,
by (iii), is homologous to

— (iv)
Pp; +0i + g = Pp; +0i — Pg;,

where p;, q; are the endpoints of ¢;. Hence ¢ maps under h o j to
ZTZ,U'I' + Zni(¢Pi - 4’%‘) =c+ Zni(¢Pi - %[)'
1 1 1

At this end, note that that since 0 = d(c) = Y; n;(p; — q;), it follows
readily that Y, n;(¢p, — ¢g,) = 0. O

5.5 Cellular Homology

In this section, we introduce cellular homology, which is a new homology
theory for certain nice spaces called CW complexes, and show that for
such spaces cellular homology is isomorphic to singular homology. We
begin by introducing and studying the notion of degree of a self-map
of a sphere; the degree will play a fundamental role in computing the
boundary maps in the cellular chain complex, whose homology gives
the cellular homology.
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Degrees

Definition 5.5.1. The degree of continuous map f: S* — S" is defined as:

deg f = fi(1) (5:5.1)

where f,: Hy(S") = Z — H,(S") = Z is the homomorphism induced by f
in homology, and 1 € Z denotes the generator.

The degree has the following properties:

1. degidgn = 1.

Proof. This is because (idgn)s = id which is multiplication by the
integer 1. O

2. If f is not surjective, then deg f = 0.

Proof. Indeed, if f is not surjective, there is some y ¢ Imf. Then we
can factor f in the following way:

Fr8m S e\ {yy 2 sn

Since S\ {y} = R" is contractible, H,(5" \ {y}) = 0. Therefore
f« =hsg« =0,s0deg f =0. O

3. If f ~ g are homotopic maps, then deg f = degg.”

Proof. This is because f, = g.. O
4. deg(gof) =degg-degf.

Proof. Indeed, we have that (go f)s = g« © f. O
5. If f is a homotopy equivalence, then deg f = +£1.

Proof. By definition, there exists a map g: S — S" so that go f ~
idgn and f og =~ idgs. The claim follows directly from 1, 3, and
4 above, since f o ¢ =~ idgs implies that deg f - degg = degidgn =
1. O

6. If r: S" — S" is a reflection across some n-dimensional subspace of
R"*1 then degr = —1.

' By a theorem of Hopf, the converse of
this statement is also true.



Proof. Without loss of generality we can assume that the subspace is
R" x {0} c R"*!, with

r(xg, ... xn) = (X0, , Xn_1, —Xn).

The upper and lower hemispheres U and L of 5" can be regarded as
singular n-simplices, via their standard homeomorphisms with A".
Then the generator of H,(S") is [U — L]. The reflection map r maps
thecycleU—-LtoL—U=—(U—-L). So

re(U=L) =[L-U]=[-(U-L)] = (1) [U-L]
so degr = —1. O
. Ifa: S" — S" is the antipodal map x ++ —x, then dega = (—1)"*1.

Proof. Note that a is a composition of n 4 1 reflections, since there
are n + 1 coordinates in x, each changing sign by an individual
reflection. From 4 above we know that composition of maps leads to
multiplication of degrees. O

. If f: 8" — S" is a continuous map, and Sf: S"*1 — S+l is the
suspension of f then degSf = deg f.

Proof. Recall that if f: X — X is a continuous map and
X =Xx[-1,1]/(X x {—1}, X x {1})

denotes the suspension of X, then Sf := f xid|_y/ ~, with the
same equivalence as in ZX. Note that £5" = S"*1.
The Suspension Theorem states that

Hi(X) = Hiuq (TX), Vi > 0.

We already proved this fact by using the excision theorem 5.3.9. Here
we give another proof by using the Mayer-Vietoris sequence 5.3.14
for the decomposition

X = C.XUx C_X,

where C X and C_X are the upper and lower cones of the suspen-
sion joined along their bases:

-+ = Hi1(C4 X) @ Hi1(C-X) = Hi1 (EX) =
— H;(X) — Hi(C1X) @ H(C_X) — - --

Since C4 X and C_X are both contractible, the end groups in the
above sequence are both zero. Thus, by exactness, we get H;(X) =

HOMOLOGY 85



86 ALGEBRAIC TOPOLOGY

H;,1(2X), as desired.

Let C+S" denote the upper cone of £5”. Note that the base of CS"
is §" x {0} C £5". The map f induces a map Cf : (C4+.S",5") —
(C4S",5") whose quotient is Sf. The long exact sequence of the pair
(C4+S",S™) in homology gives the following commutative diagram:

~ 9 ~
0 —— Hi(C1S",8") = Hiyy(Ci8"/S") —» Hi(S") —— 0

~

\(Sf)* lf*

N 3 -
Hip1 (8"') —— Hi(S")

~

Note that C;S"/S" = §"*! so the boundary map 9 at the top and
bottom of the diagram are the same map. So by the commutativity
of the diagram, since f. is defined by multiplication by some integer
m, then (Sf), must be given by multiplication by the same integer
m. O

Example 5.5.2. Consider the reflection map: r,: S — S" defined
by (xo,...,Xn) — (—Xo,Xx1,...,Xx,). Since r, leaves x1,xp,..., %y
unchanged we can unsuspend one coordinate at a time to get

degr, = degr,_1 = --- = degry,
where r;: St — Siby (x0,%1,-..,%x;) — (—=x0,x1,...,%;). Sorg : [SJUNN
S0 is given by xo — —xg. Note that S” is two points but in reduced
homology we are only looking at one integer. Consider

0 — Hy(S%) = Hy(S°) S Z -0
where Hy(S%) = {(a,—a) | a € Z}, Hy(S°) = Z® Z, and ¢ :
(a,b) — a+b. Then (rg)s« : Hy(S®) — Hy(S°) is given by (a, —a)
(—a,a) = (—1)-(a,—a). So degr, = —1.

9. If f: S" — S" has no fixed points then deg f = (—1)"*1.

Sl’l



10.

Proof. Consider the above figure. Since f(x) # x, the segment
(1—1t)- f(x) 4+t (—x) from —x to f(x) does not pass through the
origin in R"*1. So we can normalize to obtain a homotopy:

@0 @D e e
S =10y fo oS

Note that this homotopy is well defined since (1 —1t) - f(x) +¢-
(—x) # 0 for any x € §" and t € [0,1], because f(x) # x for all x.
Then g; is a homotopy from f to 4, the antipodal map, so they same

the same degree. O

The n-sphere 5" has a continuous field of non-zero tangent vectors
if and only if # is odd.

Proof. Suppose x — v(x) is a tangent vector field on S", assigning
to a vector x € S" the vector v(x) tangent to 5" at x. Regarding
v(x) as a vector at the origin, tangency implies that x and v(x) are
orthogonal in R"*1. If v(x) # 0 for all x, we may normalize so that
[[o(x)|| = 1 for all x. Assuming this has been done, the vectors
(cost)x + (sint)v(x) lie in the unit circle in the plane spanned by x
and v(x). Letting t go from 0 to 77, we obtain a homotopy:

fi(x) = (cost)x + (sint)v(x)

from the identity map of S” to the antipodal map. In terms of degree,
this yields (—1)"*! = 1, which implies that 7 is odd.

Conversely, if n = 2k — 1, the vector field defined by

v(X1, %2, , Xok—1, Xok) = (—X2, X1, -+, =Xk, X2k—1)

is a nowhere vanishing tangent vector field, since v(x) is orthogonal
to x, and ||v(x)|| =1 for all x € S". O

Exercises

1. Let f : S — S" be a map of degree zero. Show that there exist points
x,y € S" with f(x) =xand f(y) = —y.

2. Let f : S — S2" be a continuous map. Show that there is a point
x € §?" so that either f(x) = x or f(x) = —x.

3. Amap f:S" — S" satisfying f(x) = f(—x) for all x is called an
even map. Show that an even map has even degree, and this degree is in

fact zero when 7 is even. When # is odd, show there exist even maps

of any given even degree.

HOMOLOGY 8y
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How to Compute Degrees?

Assume f: S" — S" is surjective, and that f has the property that there
exists some y € Im(S") so that f~!(y) is a finite number of points, say
f’l(y) = {x1,%2,..., X }. Let U; be a neighborhood of x; so that all
U;’s get mapped to some neighborhood V of y. So f(U; \ x;) C V \ y.
As f is continuous, we can choose the U;’s to be disjoint.

Uy

\ .

B — e

U,

e

Un

Let f[y,: U; — V be the restriction of f to U;, with induced homomor-
phism
f* : Hn(ui, U; \ xi) — Hn(V, %4 \ y)
Note that by using excision and homology long exact sequences, one
has:
Hy (Ui, Ui \ x;) & Hy (S, 8"\ x;) 2 Hy (S") = Z
and
Ha(V,V\y) = Hy(S",$"\ y) = Hy(S") = Z.

Let us define the local degree of f at x;, denoted by deg f|y,, to be the
effect of f.: H,(U;, U; \ x;) — Hy(V,V \ y). We then have the following
result:

Theorem 5.5.3. The degree of f equals the sum of local degrees at points in a
generic fiber, that is,

deg f =) degfly.
i=1

Proof. Consider the following commutative diagram, where the isomor-
phisms labelled by “exc” follow from excision, and “l.e.s” stands for a
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long exact sequence.

Z%H,,(U,‘,U,’\x,‘) 4f*> ,I(V,V\}/)%Z

H,
'dng|X,
= o< ki 2 | exc
A
p. " exc »
Z = H,(S",5" \ x;) <= EB Hy (U, Ui \ ;) = Hy(S", 8"\ f1(y)) f4> H,(5",5"\y)
>~ les
S > Hn<sn) =Z
-deg f

By examining the diagram above we have:
ki(1) =(0,...,0,1,0,...,0)

where the entry 1 is in the ith place. Also, P; 0 j(1) =1, for all i, so

The commutativity of the lower square gives:

deg f = fj(1) —f*(ﬁkim)

..,0,1,0,...,0)

I
M=
™
o

Il
—_

I
NgE

degf|xi’

I
A

where the last equality follows from the commutativity of the upper
square. O

Example 5.5.4. Let us consider the power map f : S' — S, f(x) = xk,
k € Z. We claim that deg f = k. We distinguish the following cases:

e If k = 0 then f is the constant map which has degree 0.

 If k < 0 we can compose f with a reflection r: S — S! by (x,y) —
(x, —y). This reflection has degree —1. So since composition leads to
multiplication of degrees, we can assume that k > 0.

e Ifk > 0, then for all y € S!, f~!(y) consists of k points (the k roots
of y), call them x1,x7,...,x, and f has local degree 1 at each of
these points. Indeed, for the above y € S we can find a small open
neighborhood centered at y, call this neighborhood V, so that he
pre-images of V are open neighborhoods U; centered at each x;, with
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flu,: Ui = V a homeomorphism (which has possible degree +1). In
our case, these homeomorphisms are restrictions of a rotation, which
is homotopic to the identity, and thus the degree of f|y;, equals 1, for
each i.

So the degree of f is indeed k. Note that this implies that we can
construct maps S” — S" of arbitrary degrees for any n, simply by
suspending the power map f.

CW Complexes

We next introduce cellular complexes (also referred to as cell-complexes
or CW complexes), and discuss a few important examples.

Start with a discrete set X, whose points are called 0O-cells. In-
ductively, we form the n-skeleton X, from X,,_; by attaching n-cells

¢! = Int(D¥) via maps 9D = S ~! P Xy, e,
Xy = Xy_1 11, D!/ ~

with the identification x ~ ¢ (x) for all x € dD}. As a set, X;, =
Xpn—1 I, e}, where e/ is the homeomorphic image of Int(D}) = D} \
dD’f under the quotient map. We can either stop this inductive process
at a finite stage, setting X = X for some /, or continue indefinitely, in
which case we set X = |J,, X,. Such a space X is called a CW (cell-)
complex.

Each cell ¢/ has a characteristic map ®'; defined by the composition:

D} — X,—1 1, D} — X, — X.

Note that 1 |1, py) is a homeomorphism onto ¢’{, while the restriction
of @ to 9D} is the attaching map ¢’.

A CW complex is endowed with the weak topology, i.e., A C X
is open <= AN Xj is open for all n. An n-cell will be denoted by
et = Int(DY). One can think of X as a disjoint union of cells of various
dimensions, or as I, y DY / ~, where ~ means that we are attaching
the cells via their respective attaching maps.

A CW complex X is finite if it has finitely many cells. A CW complex
is of finite type if it has finitely many cells in each dimension. Note
that a CW complex of finite type may have cells in infinitely many
dimensions. If X = U, X, and X,;, = X,, for all m > n for some n, then
X = X, and we say that the skeleton stabilizes. The smallest n for
which X = X, is called the dimension of X.

Remark 5.5.5. One space X may admit many CW structures, see the
case of 5" below.

Example 5.5.6. On the n-sphere 5" we have a CW structure with one
0-cell ¢* and one n-cell e”. The attaching map for the n-cell is the



constant map ¢ : S"~! = 9D" — ¢’ = point, and there is only one such
map, the collapsing map. Think of taking the disk D" and collapsing
its entire boundary to a single point, giving S".

Example 5.5.7. A different CW structure on S” can be constructed
so that there are two cells in each dimension from 0 to n. Start with
Xo = S° = {e9,ed}. Then X; = S! where the two 1-cells D}, D}
are attached to the 0-cells by homeomorphisms on their boundary.
Similarly, two 2-cells can be attached to X; = S! by homeomorphism
on their boundary giving X, = S?. Continuing in this manner, i.e.,
adding two cells in each new dimension, yields the above-mentioned
CW structure of S”. Note that if we identify each pair of cells in the
same dimension by the antipodal map, we get a CW structure on the
real projective space RP", with one cell in each dimension from 0 to 7.

Example 5.5.8. The complex projective space CP" = (C"*1\ {0}) /C* is
identified with the collection of complex lines through the origin in
C"*1. Tt is also the orbit space of the C*-action on C"*1\ {0} given by

A(zo, e yzn) = (Azg, ..., Azy).

Let [zg : ... : z,] € CP" be the equivalence class of (zg,- - ,z,) € crtl
under this action. Define

®: D¥ — CP"
by

(zoy--rZn_1) > |20t 2y 1:

Then ® takes 9D?" into the set of points with z, = 0, i.e., into cpr1,
Let ¢ := @y Itis easy to check that ® factors through CP"~1 U, D"
and, moreover, the resulting map

cP*'u, D* — CP"

is a homeomorphism (it is a bijective map from a compact space to a
Hausdorff space, hence it is a homeomorphism onto its image). So it
follows inductively that CP" has a CW structure with one cell in each
even dimension 0,2, ...,2n, where the attaching maps are the maps
labelled by ¢. There are no cells of odd dimension.

Example 5.5.9. A covering space of a CW complex has a canonical
structure as a CW complex. Let f: X — Y be a covering map so that
Y is a CW complex with characteristic maps ®,: D} — Y. As D}
is simply-connected, each ®, lifts to a map CTDK: DY — X, which are
unique upon specification of the image of any point. The collection of
all such liftings of all ®} define a cell structure on X.
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Exercises

1. Let X and Y be finite CW complexes. Show that X x Y has the
structure of a finite CW complex with an (open) n + m dimensional cell
e x ¢’ for each n dimensional cell e in X and each m dimensional cell ¢’
inY.

Cellular Homology

In this section, we show how to compute the homology of a CW
complex (assumed, for simplicity, to be of finite type). We first introduce
cellular homology and then we show that it can be identified with the
singular homology.

We start with the following preliminary result:

Lemma 5.5.10. If X is a CW complex of finite type, then:

0, k#n
Z#n—cells, k=n.

(@) Hi(Xu, Xn-1) = {
(b) Hy(Xn) = 0if k > n. In particular, if X is finite dimensional, then
Hi(X) =0 if k > dim(X).

(c) The inclusion i : X,, — X induces an isomorphism Hy (X, ) 5 Hy(X) if
k < n.

Proof. (a) We know that X, is obtained from X,,_; by attaching the
n-cells (e)). Pick a point x, at the center of each n-cell e, and let
A = X, — {x)},. Then A deformation retracts to X;_1, so we have
that

Hk(Xn/ Xn—l) = Hk(Xn/ A)

Since the closure of X,,_; is contained in the interior of A, by excising
Xy—1 the latter group is isomorphic to @, Hy(D%, D} — {x,}). More-
over, the homology long exact sequence of the pair (D, D} — {x,})

yields that

~ Z, k=n
Hy (D", D" — {x,}) = H,_{(S" 1 ’
(D3, DY —{x)}) = Hk_1(S} ) {O, kA

1

So the assertion follows.

(b) Consider the following portion of the long exact sequence of the
pair for (X, X,,—1):

Hi1 (X, Xu-1) = Hi(Xn-1) = He(Xn) = He(Xn, Xpp—1)



If k+1 # n and k # n, we have from part (a) that Hy 1(Xy, X;,—1) =0
and Hy(Xn, X,—1) = 0. Thus Hi(X,,—1) = Hg(Xy). Hence if k > n (so
in particular, n # k + 1 and n # k), we get by iteration that

Hi(Xy) = Hi(X;—1) = - -+ = Hi(Xo).

Note that Xj is just a collection of points, so Hi(Xp) = 0. Thus when
k > n we have Hy(X,) = 0 as desired.

(c) For simplicity, we only prove here the statement for finite dimen-
sional CW complexes. Let k < n and consider the following portion of
the long exact sequence for the pair (X,41, X;):

Hy (X1, Xn) = He(Xn) = Hi(Xpy1) = Hi(Xpy1, Xn)

Since k < n we have k +1 # n+1 and k # n + 1, so by part (a) we get
that Hy1(X;41, Xn) = 0 and Hg(Xy41, X»n) = 0. Thus

Hi(Xn) = Hy(Xn41)-
By repeated iterations, we obtain:
Hi(Xn) = He(Xn41) = Hi(Xpy2) = -+ = He(Xpp) = Hi(X),

where [ is so that X,,,; = X (since we assumed X is finite dimensional).
This proves the claim. O

In what follows we define the cellular homology of a CW complex X
in terms of a given cell structure, then we show that it coincides with
the singular homology, so it is in fact independent on the cell structure.
Cellular homology is a very useful tool for computations.

Definition 5.5.11. The cellular homology HEW (X) of a CW complex X is
the homology of the cellular chain complex (Cy(X), d.) indexed by the cells of
X, ie.,

CH<X) = Hn(Xn/ anl)/ (5.5.2)
and with differentials
dy: Cu(X) — Cyp1(X)

defined by the following diagram, with diagonal arrows induced from long
exact sequences of pairs:
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Hn (XVHrl/ sz) =0

pd

Xn 1 Xn+] X)
0w (Xn)
WS \
n+l X1, Xn n+1 > Xn X l 4’ H,_ 1 Xy l/Xn—Z)
Hya Xn 1
Hy 1(Xy—2) =0

Here we use Lemma 5.5.10 for the identifications
Ha(Xu1) = 0, Hyo1(Xo2) = 0, Hy(Xya1) = Hy(X)

in the diagram. In the notations of the diagram, we set:

dy = jy—100 : Cu(X) = Cy—1(X), (5.5.3)
and note that we have
dpodyir =0. (5.5.4)

Indeed,
dnodyi1 = jy-10070jn0dyy1 =0,

since d;; o j; = 0 as the composition of two consecutive maps in a long
exact sequence. So {C«(X),d.} is a chain complex.

The following result asserts that cellular homology is independent
on the cell structure used for its definition:

Theorem 5.5.12. There are isomorphisms
HEW(X) = Hy(X)
for all n, where H, (X)) is the singular homology of X.

Proof. Since Hy(Xy41,Xy) = 0 and Hy(X) = Hy(Xj41), we get from
the diagram above that

Hn(X) = Hy(X,)/ keriy, = Hy(Xpn)/Im 9y41.

Now, Hy(X,) = Im j, = kerd, = kerd,. The first isomorphism
comes from j, being injective, the second follows by exactness, and



kero, = kerd, since d, = j,_1 09y and j,_1 is injective. Also, we have
Im 9,41 = Im d,,41, since d, 11 = ju 0 9,41 and jy is injective.
Altogether, we have

Hy(X) 2 Hy(Xn) /Im 8,41 = kerdy /Im dy g = HSW (X),
thus proving the theorem. O

Let us now discuss some immediate consequences of Theorem
5.5.12.

(@) If X has no n-cells, then H,(X) = 0.
Indeed, in this case we have C, = Hy,(Xy, X;,_1) = 0. Therefore,
HSY(X) = 0.

(b) If X is connected and has a single 0-cell then di: Cy — Cy is the zero
map.
Indeed, since X contains only a single O-cell, Cy = Z. Also, since X
is connected, Hy(X) = Z. So by the above theorem, Z = Hy(X) =
kerdy/Im dy = Z/Im dy. This implies that Im d; = 0, so d; is the
zero map as desired.

(c) If X has no cells in adjacent dimensions then d, = 0 for all n and
H,(X) = Z*m<ells for all n.
Indeed, in this case all maps d,, vanish. So for any n, HSW(X) =
C, 27 #n-cells

Example 5.5.13. Recall that CP" has one cell in each even dimension
0,2,4,...,2n. So CP" has no two cells in adjacent dimensions, meaning
we can apply Consequence (c) above to obtain:

Z, i=0,2,4,...,2n
H;(CP") =
0, otherwise.

Example 5.5.14. When n > 1, 5" x S" has one 0-cell, two n-cells, and
one 2n-cell. Since n > 1, these cells are not in adjacent dimensions so
again Consequence (c) above applies to give:

Z 1=0,2n
Hi(SnXSn): Z2 i=n

0 otherwise.

We next discuss how to compute in general the maps

dn . Cn(X) -7 # n-cells — Cnfl(X) _ Z#(n—l)—cells
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of the cellular chain complex. Let us consider the n-cells {e} }, as the
basis for C,,(X) and the (n — 1)-cells {egfl}/g as the basis for C,_1(X).
In particular, we can write:

dn(ey) = Zdaﬁ : egilr (5.5-5)
B

with dyg € Z. The following result provides an explicit way of comput-
ing the coefficients d,g:

Theorem 5.5.15. The coefficient d,p in (5.5.5) is equal to the degree of the
map DAyp: sl ngl defined by the composition:

n
sit =D ¥ X1 = Xya Uy el !

collapse

—— Xp1/ (Xn—2Uy2p e’;‘l) = 5731_1,

where @y, is the attaching map of ey, and the collapsing map sends Xy U, 2p

elt =1 to a point.

Xn72

Proof. We will proceed with the proof by chasing the following diagram:

J(@a’)* (@) Tqﬂ*
)

n qx ~
Hn(an Xn—l) — H; (Xn—l) —_— Hn—l(Xn—l /Xn72)

Jn-1 o~
Xn-1 Xn—2

Hn—l(Xn—LanZ) - Hn—l(X 2/X N
n— n—

where:
e @} is the characteristic map of the cell ¢} and ¢} is its attaching map.

© e Hy1(Xu1) = Hia(Xao1/Xu2) = @p ﬁnfl(DZ_l/aDg_l)
is induced by the quotient map g : X,,_1 — X;;—1/X,—2.

n—1

* g Xy-1/Xn—2—S B collapses the complement of the cell egfl

n—1

to a point, the resulting quoting sphere being identified with S g =

Dg_l / E)Dg_1 via the characteristic map CDE_l.



* Aup: Sl = 9D" — ngl is the composition g4 o g 0 ¢f, i.e., the

n—1

attaching map of e} followed by the quotient map X,,_1 — S B

collapsing the complement of egfl in X,,_1 to a point.

Note that (A,p) is defined so that the top right square commutes.

Recall that our goal is to compute d, (e} ). The upper left square is
natural and therefore commutes (it is induced by the characteristic map
® : (D*,8*71) — (X4, X,_1) of a cell), while the lower left triangle
is part of the exact diagram defining the chain complex C.(X) and
is defined to commute as well. The map (P}). takes the generator
[DI'] € Hy(D?,S" 1) to a generator of the Z-summand of H, (X;, X, _1)
corresponding to ¢ff, i.e.,

(@%)«([Dy]) = ea-

Since the top left square and the bottom left triangle both commute,
this gives that

dn(ey) = dn o (P4)«([Dg]) = ju-10 (i)« 0 A([Dy]).

Looking to the bottom right square, recall that since X is a CW complex,
(Xn, X;—1) is a good pair. This gives the isomorphism

Hy1(Xn—1, Xn-2) ~ Hy1(Xn-1/Xn—2).
Moreover, we also have that
Hn—l(Xn—l /anz) ~ Hy 1 (Xn—l/anb Xn72/Xn72)‘

The bottom right square commutes by the definition of j,_; and g,
which combined with the commutativity of the top left square yields
that
dn(ex) = qx 0 I 0 ()« ([Dg]) = g+ © (9)« 0 ([D]),

where formally we should precompose on the left hand side with the
isomorphism between H,_1(X;_1,X;—2) and Hy 1(Xp_1/Xn_2) so
that everything is in the same space. This last map takes the generator
[Dg] to a linear combination of generators in ©p anl([)g—l /aD/S
To see which generators it maps to, we project down to the respective
summands to obtain

dn(ey) = §%* ©qx © (@)« 0 9([Dy])-

As noted before, we have defined (Ayp)« = g« © 4« 0 (¢} )+. So writing
du(e) = ) _(Bup)-0([Dz)),
p

we see from the definition of the above maps and the fact that o([DY])
is a generator of H, _1(S#~1), that (Ayp)+« is multiplication by d,g. [

n—l).
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Example 5.5.16. Let M, be the closed oriented surface of genus g, with
its usual CW structure: one 0-cell, 2¢ 1-cells {ay,bq, - - “dg, bg}, and one
2-cell attached by the product of commutators [ay, by] - - - [ag, bg]. The
associated cellular chain complex of My is:

0z iz gz Ny

Since My is connected and has only one 0O-cell, we get that d; = 0. We
claim that d; is also the zero map. This amounts to showing that dy(e) =
0, where e denotes the 2-cell. Indeed, let us compute the coefficients
deq; and d,p in our degree formula. As the attaching map sends the
generator to alblaflbfl . agbgaglbg’l, when we collapse all 1-cells
(except a;, resp., b;) to a point, the word defining the attaching map
alblal_lbl_l . ..agbgag_lbg_l reduces to aiai_l and, resp., bibi_l. Hence
deg; =1 —1=0, resp., dpp, =1 —1 =0, for each i. Altogether,

dz(e):a1+b1—al—b1+---ug+bg—ag—bg:0.

So the homology groups of M, are given by

Z i=0,2
0 otherwise.

Example 5.5.17. Let N, be the closed nonorientable surface of genus g,
with its cell structure consisting of one 0-cell, g 1-cells {ay, - -, ag}, and
one 2-cell e attached by the word a2 - - - aé. The cellular chain complex
of Ng is given by

d d d d,
0—Z 23781740

As before, d; = 0 since Ny is connected and there is only one cell in
dimension zero. To compute d; : Z — Z8 we again apply the cellular
boundary formula, and obtain

A1) = (2,2, ,2)

since each a; appears in the attaching word with total exponent 2,
which means that each map A,z is homotopic to the map z — 22 of
degree 2. In particular, d, is injective, hence H(Ny) = 0. If we change
the standard basis for Z¢ by replacing the last standard basis element
en=1(0,---,0,1)bye, =(1,---,1), thendy(1) =2-¢), so

Hy(Ng) 2 Z8/Imdy 2 Z8 /22 =278 ' $Z/2.

Altogether,



Z i=0
Hn(Ng) =78 tez, i=1
0 otherwise.

Example 5.5.18. Recall that RP" has a CW structure with one cell ¥ in
each dimension 0 < k < n. Moreover, the attaching map of ek in RP"
is the two-fold cover projection ¢ : S¥~1 — RP¥~1. The cellular chain
complex for RP" looks like:

dy 1 d d d
gl DBy B, D

To compute the differential d, we need to compute the degree of the
composite map

A: sk 2y jpk-1 1, Rpk-1/RpF-2 — k-1,

The map A is a homeomorphism when restricted to each component of
Gk-1 \ Sk=2 and these homeomorphisms are obtained from each other
by precomposing with the antipodal map a of S¥~1, which has degree
(—1)*. Hence, by our local degree formula, we get that:

deg A = degid + dega = 1+ (—1)~.
In particular,

dp =
2 if kis even,

{O if k is odd

and therefore we obtain that

Z, ifkisodd, 0<k<mn
H (RP")=<Z k=0, and k = n odd

0 otherwise.

Finally, note that an equivalent definition of the above map A is obtained
by first collapsing the equatorial S¥~2 to a point to get S*~1 v S¥=1, and
then mapping the two copies of S¥=! onto S¥~1, the first one by the
identity map, and the second by the antipodal map (see Figure 5.2).

Exercises

1. Describe a cell structure on S” vV §" \ - - - VV §" and calculate H,(S"
CLAVERRAVASOR

2. Let f : §" — S" be a map of degree m. Let X = S" Uy D"*! be a
space obtained from S" by attaching a (1 + 1)-cell via f. Compute the
homology of X.
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Skfl

3. Let G be a finitely generated abelian group, and fix n > 1. Construct a
CW-complex X such that H, (X) 2 G and H;(X) = 0 for all i # n. (Hint:
Use the calculation of the previous exercise, together with know facts
from Algebra about the structure of finitely generated abelian groups.)
More generally, given finitely generated abelian groups Gy, Go, - - -, Gy,
construct a CW-complex X whose homology groups are H;(X) = G;,
i=1,---,k and H;(X) =0foralli ¢ {1,2,--- ,k}.

4. Show that RP® and RP* V S° have the same homology and funda-
mental group. Are these spaces homotopy equivalent?

5. Let 0 < m < n. Compute the homology of RP" /RP™.

6. The mapping torus Ty of a map f : X — X is the quotient of X x I

Xx1I

(x,0) ~ (f(x),1)"

Let A and B be copies of S!, let X = AV B, and let p be the wedge
point of X. Let f : X — X be a map that satisfies f(p) = p, carries A
into A by a degree-3 map, and carries B into B by a degree-5 map.

Ty =

(@) Equip Ty with a CW structure by attaching cells to X Vv St
(b) Compute a presentation of 771 (7).

(c) Compute Hy(Tf;Z).

Figure 5.2: The map A
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7. The closed oriented surface M, of genus g, embedded in R? in the
standard way, bounds a compact region R. Two copies of R, glued
together by the identity map between their boundary surfaces Mg,
form a space X. Compute the homology groups of X and the relative
homology groups of (R, M).

8. Let X be the space obtained by attaching two 2-cells to S, one via
the map z + z3 and the other via z — z°, where z denotes the complex
coordinate on S C C.

(a) Compute the homology of X with coefficients in Z.

(b) Is X homeomorphic to the 2-sphere $%? Justify your answer!

9. Homology of Lens Spaces.

Given m > 1 and integers Iy, - - - , I, so that (I, m) = 1 for all k, define
the Lens space L = Ly, (I3, - - - ,1,) to be the orbit space s2n=1,7.. of the
unit sphere $2"~! with the Z,,-action generated by the rotation:

p(zll e /ZTZ) = (eznlll/mzlr e ,627Tlly,/mzn) 7

rotating the j-th C-factor of C" by an angle 27il;/m. (In particular,
when m = 2, p is the antipodal map, so L = RP?*~1)

(a) Show that one can construct a CW-structure on L with one cell ef in
each dimension k < 2n — 1.

(b) Compute the differentials dj of the resulting cellular chain complex.

(c) Compute the homology of L.

5.6 Euler Characteristic

In this section we introduce a very important topological invariant,
namely, the Euler characteristic. As we will see below, this invariant
alone suffices to distinguish (non)orientable compact surfaces (as it is
in this case equivalent to the surface genus).

Definition 5.6.1. Let X be a finite CW complex of dimension n and denote
by c; the number of i-cells of X. The Euler characteristic of X is defined as:

X(X) = (1) e (5:61)

It is natural to question whether or not the Euler characteristic
depends on the cell structure chosen for the space X. As we will
see below, this is not the case. For this, it suffices to show that the
Euler characteristic depends only on the cellular homology of the space
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X. Indeed, cellular homology is isomorphic to singular homology (cf.
Theorem 5.5.12), and the latter is independent of the cell structure on X.
Recall that if G is a finitely generated abelian group, then G decom-
poses into a free part and a torsion part, i.e.,
G2 XLy X -+ L.
The integer r := rk(G) is the rank of G. The rank is additive in short
exact sequences of finitely generated abelian groups.

Theorem 5.6.2. The Euler characteristic of a finite CW complex X can be
computed as:

X(X) = V(1) bi(X) (56.2)

with b;(X) := rk(H;(X)) the i-th Betti number of X. In particular, x(X) is
independent of the chosen cell structure on X.

Proof. We use the following notation: B; = Im(d; 1), Z; = ker(d;), and
H; = Z;/B;. Consider a (finite) chain complex of finitely generated
abelian groups and the short exact sequences defining homology:

dy, dy d d d,
04 e, —2s 0 — 5y —250
d;
0 Z; C; B: 4 0
0 B Z; H; 0

The additivity of the rank yields that
c; :=rk(C;) = rk(Z;) + rk(B;_1)

and
rk(Zi) = I'k(B,’) + I'k(Hl').

Substitute the second equality into the first, multiply the resulting
equality by (—1), and sum over i to get that x(X) = Y/ o(—1)" - rk(H;).

Finally, we apply this result to the cellular chain complex C; =
H;(X;, X;_1), and use the identification between the cellular and singu-
lar homology. O

Example 5.6.3. If My and N, denote the orientable and, resp., nonori-
entable closed surfaces of genus g, then x(Mg) =1—-2¢+1=2(1-g)
and x(Ng) =1—¢+1=2—g¢. So all the orientable and, resp., non-
orientable surfaces are distinguished from each other by their Euler
characteristic, and there are only the relations x(Mg) = x(Nzg)-
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Exercises

1. A graded abelian group is a sequence of abelian groups A. :=
(An)n>0. We say that A, is of finite type if

) rankA, < co.

n>0

The Euler characteristic of a finite type graded abelian group A, is the
integer
X(As) := ) (—1)" - rankA,.

n>0

A short exact sequence of graded groups A., Be, C,, is a sequence of
short exact sequences

0—-A,—-B,—~C,—0, n>0.

Prove that if 0 -+ As — B — Co — 0 is a short exact sequence of
graded abelian groups of finite type, then

X(Be) = x(Ae) + x(Co).

2. Suppose we are given three finite type graded abelian groups A., B.,
C., which are part of a long exact sequence

s A B e B A = Ay By — Co — 0.
Show that
X(Bo) = x(As) + x(Co).

3. For finite CW complexes X and Y, show that

X(XxY) = x(X)-x(Y).

4. If a finite CW complex X is a union of subcomplexes A and B, show
that

x(X) = x(A) +x(B) — x(ANB).

5. For a finite CW complex and p : Y — X an n-sheeted covering space,
show that

x(Y) =n-x(X).

6. Show that if f : RP?" — Y is a covering map of a CW-complex Y,
then f is a homeomorphism.
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5.7 Lefschetz Fixed Point Theorem

Let G be a finitely generated abelian group. Given an endomorphism
¢ : G — G, we define its trace by

Tr(¢) = Tr (¢ : G/Torsion(G) — G/Torsion(G)) (5.7.1)

where the latter trace is the linear algebraic trace of the map ¢ : Z" —
Z’, with r = rk(G). It is a fact that the trace is independent of the
choice of a basis for Z'.

Definition 5.7.1. If X has the homotopy type of a finite CW complex and
f: X — X is a continuous map, then the Lefschetz number of f is defined as:

dim(X) )
()= Y (=1 Tr(fe: Hi(X) = Hi(X)). (5.7:2)
i=0
Remark 5.7.2. Notice that homotopic maps have the same Lefschetz
number since they induce the same maps on homology.

Example 5.7.3. If f ~ idx, then 7(f) = x(X). This follows from the fact
that the map induced in homology by the identity map is the identity
homomorphism, and the trace of the latter is the corresponding Betti
number of X.

We can now state the following important result.

Theorem 5.7.4. (Lefschetz)
If X is a retract of a finite CW complex and if the continuous map f: X — X
satisfies T(f) # 0, then f has a fixed point.

Before sketching the proof of this theorem, let us consider a few
examples.

Example 5.7.5. Suppose that X has the homology of a point (up to
torsion). Then

T(f) = Tr(fe: Ho(X) = Ho(X)) = 1.
This follows from the fact that the map f induces the identity on Hy,
whereas all other homology groups of X vanish.

This example leads immediately to two nontrivial results, the first of
which is the Brower fixed point theorem.

Example 5.7.6. (Brower) If f: D" — D" is continuous then f has a
fixed point.

Example 5.7.7. If X = RP?", then, modulo torsion, X has the homology
of a point. Hence any continuous map f: RP?" — RP?" has a fixed
point.



Finally, we are led to an example which does not follow from the
computation for a point.

Example 5.7.8. If f: S" — S" is a continuous map and deg(f) #
(—1)"*1, then f has a fixed point. To verify this, we compute

T(f) = Tr(f« : Ho(S") = Ho(S")) + (=1)" - Tr(fs : Hu(S") — Ha(S"))
=1+ (-1)"-deg(f)
£0.

Corollary 5.7.9. If a: S" — S" is the antipodal map, then deg(a) =
(_1)n+1_

Now we return to outlining the proof.

Definition 5.7.10. Amap f: X — Y between CW complexes is called cellular
if f(Xn) C Yy for all n, with X, denoting the n-skeleton of X and similarly
forY.

We'll need the following fundamental result from homotopy theory.

Theorem 5.7.11 (Cellular Approximation). Any continuous map f: X —
Y between CW complexes is homotopic to a cellular map.

The proof of this result is omitted for now. We proceed with sketch-
ing the proof of the Lefschetz theorem.

Proof. (sketch)

The general case reduces to the case when X is a finite CW complex.
Indeed, if r: K — X is a retraction of a finite CW complex K onto X,
the composition f or: K — X C K has exactly the same fixed points as
f and since r,: H;(K) — H;(X) is projection onto a direct summand,
we have that Tr(fi or.) = Tr(f«), so T(f or) = 7(f). We can therefore
assume that X is a finite CW complex.

Let us suppose that f has no fixed points.

By cellular approximation, the map f: X — X is homotopic to a
cellular map g: X — X. In particular, 7(f) = 7(g). Moreover, since
f(x) # x for all x € X, it is possible to choose the cellular map
g: X — X so that g(¢}) Ne} = @, for all i and A. Since the {¢} },
generate C;(X) := H;(X;, X;_1), we get that

Y (—1)7 Tr(gw : Ci(X) — Ci(X)) =0.
i
Furthermore, using the fact that the trace is additive for short exact
sequences, if follows as in the case of the Euler characteristic (Theorem
5.6.2) that

(g) = (=) - Tr(gs : Gi(X) — Ci(X)).

i

Altogether, we get that 7(f) = 7(g) = 0, which is a contradiction. [
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Exercises

1. Is there a continuous map f : RP*~!1 — RP?~1 with no fixed
points? Explain.

2. Is there a continuous map f : CP?~1 — CP?~1 with no fixed
points? Explain. We will see later that any map f : CP?* — CP? has a
fixed point.

5.8 Homology with arbitrary coefficients

In this section we introduce homology with coefficients in an arbitrary
abelian group G. From this point of view, the previously introduced
notions of homology should be thought of as homology with integer
coefficients.

We begin by overviewing tensor products, which play an essen-
tial role in defining the singular (or cellular) chain complex with G-
coefficients.

Tensor Products
Let A, B be abelian groups. Define the abelian group
A®B=(a®blac A beB)/ ~ (5.8.1)

where ~ is generated by the relations (¢ +4') @ b=a®b+a’ ® b and
a®(b+V)=a®b+axb. The zero element of A®Bis 0®b =
1@0=0®0=04yp since, e.g, 00b=(0+0)b=00b+0®b so
0®b = 04p. Similarly, the inverse of an element a ® b is —(a @ b) =
(—a)®b = a® (—b) since, e.g., Opgp = 0D = (a+ (—a)) b =
a®@b+(—a)@b.

Lemma 5.8.1. The tensor product satisfies the following universal property
which asserts that if ¢ : A x B — C is any bilinear map, then there exists a
unique map ¢ : A® B — C such that ¢ =@ oi, wherei: AXB -+ A®B
is the natural map (a,b) — a® b.

AxB%A@B

C
Proof. Indeed, 9 : A ® B — C can be defined by a @ b — ¢(a,b). O
Proposition 5.8.2. The tensor product satisfies the following properties:
(1) A® B = B® A via the isomorphism a ® b — b ® a.
(2) (P; A;) ® B ®;(A; ® B) via the isomorphism (a;); @ b — (a; @ b);.



(3) A® (B®C) = (A® B) ® C via the isomorphism a @ (b®c) — (a ®
b)®c.

(4) Z ® A= A wvia the isomorphism n ® a — na.

(5) Z/nZ @ A = A/nA via the isomorphism [ @ a — la.

Proof. These are easy to prove by using the above universal property.

We sketch a few.

(1) The map ¢ : A x B— B® A defined by (4,b) — b ® a is clearly
bilinear and therefore induces a homomorphism ¢ : A® B — B® A
with a ® b + b ® a. Similarly, there is the reverse map ¢ : Bx A —
A ® B defined by (b,a) — a ® b which induces a homomorphism
P:BRA > A®QBwithb®a— a®b. Clearly, g o¢p = idpga and
@o@zl‘dA@B and AR B B® A.

(4) The map ¢ : Z x A — A defined by (n,a) — na is a bilinear
map and therefore induces a homomorphism 9 : Z® A — A with
n®a — na. Now suppose p(n®a) = 0. Thenna =0and n®a =
1® (na) =1®0 = 0zg4. Thus ¢ is injective. Moreover, if a € A, then
P(1®a) = a and ¢ is surjective as well.

(5) The map ¢ : Z/nZ x A — A/nA defined by (I,a) — lais a
bilinear map and therefore induces a homomorphism ¢ : Z/nZ ® A —
A/nA with | ® a — la. Now suppose ¢(Il ®a) = la = 0. Then
la =Y\ na;and I®a =1® (la) = 1@ (T, na;) = Ty (n@a;) =
0z/nzsA, SO @ is injective. Now let a € A/nA. Then ¢(1 ® a) = a and
@ is surjective as well.

O

More generally, if R is a ring and A and B are R-modules, a tensor
product A ®g B can be defined as follows:

(1) if R is commutative, define the R-module A ®x B := A® B/ ~,

where ~ is the relation generated by ra @b =a®@rb=r(a®b).

(2) if R is not commutative, we need A a right R-module and B a left
R-module and the relation is ar ® b = a ® rb. In this case A Qg B is
only an abelian group.

In both cases, A ®g B is not necessarily isomorphic to A ® B.

Example 5.8.3. Let R = Q[v/2] = {a +bv2 | a,b € Q}. Now R®g R =
R which is a 2-dimensional Q-vector space. However, R® R as a
Z-module is a 4-dimensional Q-vector space.

Lemma 5.8.4. If G is an abelian group, then the functor — @ G is right

.. j . @1 i®1
exact,thatzs,lfAL)BQC—)Ozsexact,thenA@G@—G>B®Gj®—c>

C® G — 0is exact.
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Proof. Let c® g € C® G. Since j is onto, there exists, b € B such that
j(b) =c. Then (j®15)(b®g) = c® g and j® 1¢ is onto.

Since joi = 0, we have (j®1g)o (i®1g) = (joi)®1g = 0 and
thus, Im(i ® 1) C ker(j ® 1¢).

It remains to show that ker(j ® 1) C Im(i ® 1g). It is enough to
show that
P:B®G/Im(i®wls) = C®G,

where ¢ is the map induced by j ® 1. Construct an inverse of ¥,
induced from the homomorphism

p:CxG—=B®G/Im(i®1g)

defined by (c,g) — b ® g, where j(b) = c. We must show that ¢
is a well-defined bilinear map and that the induced map ¢ satisfies
poy =idand Yo =id.

If j(b) =j(b') =c, thenb—b' € ker j =Imi,sob— b =i(a) for some
a€ A Thus,beg—-bog=(b-V)®g=ila)®g e Im(i®1lg). So
@ is well defined.

Now ¢((c+¢’,g)) = d® g where j(d) = ¢+ ¢’. Since j is surjective,
choose b,V' € B such that j(b) = cand j(b') =¢’. Thend — (b+ V') €
ker j = Im i and so there exists a € A such thati(a) =d— (b+ ).
Thus, ¢((c+c,g)) =d®g=(b+V)®g=bg+Vg=19(c,g)+
¢(c’,g) and ¢ is linear in the first component. For the second compo-

nent, ¢(c,g +¢') =b®(g+g) =bwg+bxg = ¢(cg) +o(cg).

Thus, ¢ is bilinear.
Now by the universal property of the tensor product, the bilinear
map ¢ induces a homomorphism
9:C®G—BG/Im(i®1g)
defined by c ® g — ¢(c,g) =b® g, where j(b) =c. Forc® g € C®G,
pop(c®g) =9p(b®g) =jb)®g=c®g,

SO P o = idcgg. Similarly, for b® g € B G/Im(i®1g), po (b ®
8) =9(j(b)®g) = ¢(j(b),g) =b®g. Thus goyp = id. 2

Remark 5.8.5. Tensoring with a free abelian group is an exact functor.

Homology with Arbitrary Coefficients

Let G be an abelian group and X a topological space. We define the
homology of X with G-coefficients, denoted H,(X; G), as the homology



of the chain complex
CG(X;G6)=C(X)®G (5.8.2)

consisting of finite formal sums ) ; #; - 0; (with 0; : A; = X and #; € G),
and with boundary maps given by

¢ := 9, ®idg.

Since 0; satisfies 9; 0 d;11 = 0 it follows that af o al.GH =0, so

(C«(X;G),07)

forms indeed a chain complex. We can construct versions of the usual
modified homology groups (relative, reduced, etc.) in the natural way.
Define relative chains with G-coefficients by

Ci(X,A;G):=Ci(X;G)/Ci(A; G),

and reduced homology with G-coefficients via the augmented chain
complex

o oF o oF e
A GXG) - S G(XG) B Go(X;G) = G =0,

where e(Y_;7;0;) = Y_;17; € G. Notice that H;(X) = H;(X; Z) by defini-
tion.
By studying the chain complex with G-coefficients, it follows that

G i=0

Hipt; G) = {o P40

Nothing (other than coefficients) needs to change in describing the
relationships between relative homology and reduced homology of
quotient spaces, so we can compute the homology of a sphere as before
by induction and using the long exact sequence of the pair (D", S") to
be

G i=0,n

0 otherwise.

H;(§";G) = {

Finally, we can build cellular homology with G-coefficients in the
same way, defining

CE(X) = Hi(X;, X;-1; G) = GHi-eells,
The cellular boundary maps are given by:

dz‘G(ZWaef;c) = Zﬂadtxﬂe;;lr
14 p(,‘B
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where d,z is as before the degree of a map Ayp : Si=1 — §=1. This
follows from the easy fact that if f : S¥ — S¥ has degree m, then
fi : H(S%;G) ~ G — Hy(S¥;G) ~ G is the multiplication by m. As it
is the case for integers, we get an isomorphism

HWY(X;G) ~ Hi(X; G)
for all 1.

Example 5.8.6. We compute H;(IRP";Z;) using the cellular homology
with Z-coefficients. Notice that over Z the cellular boundary maps
are d; = 0 or d; = 2 depending on the parity of i, and therefore with
Zy-coefficients all of boundary maps vanish. Therefore,

H(RPYZy) = {72 O =1=n
1 7 -
0 otherwise.

Example 5.8.7. Fix n > 0 and let g : " — 5" be a map of degree m.
Define the CW complex

X = g" Ug en+1/

where the (1 + 1)-cell "1 is attached to S" via the map g. Let f be the
quotient map f : X — X/S". Define Y = X/S" = §"*1. The homology
of X can be easily computed by using the cellular chain complex:

dny2 i1 dn dq dy do

0 7Z——7Z 0 Z 0
Therefore,
Z i=0
H{(X;Z)=<Z, i=n
0 otherwise.

Moreover, as Y = §"*!, we have

Z i=0n+1

0 otherwise.

HZ(Y,Z) = {

It follows that f induces the trivial homomorphisms in homology with
Z-coefficients (except in degree zero, where f, is the identity). So it is
natural to ask if f is homotopic to the constant map. As we will see
below, by considering Z,,-coefficients we can show that this is not the
case.

Let us now consider H,(X; Z,,) where m is, as above, the degree of
the map g. We return to the cellular chain complex level and observe
that we have

d d d d d d
0 n+2 Zm n+1 Zm n 1 0 1 Zm 0 0

m



Multiplication by m is now the zero map, so we get

Z i=0,nn+1
Hi(X} Zm) = " .
0 otherwise.

Also, as already discussed,

Zy i=0n+1
Hi(Yr' Zm) = " .
0 otherwise.

We next consider the induced homomorphism f. : H, 11 (X; Zy) —
H,11(Y;Zy). The claim is that this map is injective, thus non-trivial,
so f cannot be homotopic to the constant map. As noted before, we
have an isomorphism Iflnﬂ (Y;Zy) ~ Hy11(X,S"; Zyy,). This leads us
to consider the long exact sequence of the pair (X,S") in dimension
n + 1. We have

ey Hyor (S Zom) — Har (X6 Zm) 255 Hipsr (X, S™5 Zo) — -

But, H,11(5";Z,) = 0 and so f. is injective on H,1(X;Z,,). Since
Hps1(X;Zm) = Zy # 0 and H,,41(X,S";Zy) =~ Hyy1(Y;Zy) it fol-
lows that f is not trivial on H,11(X;Z,,), which proves our claim.

Exercises

1. Calculate the homology of the 2-torus T? with coefficients in Z, Z,
and Z3, respectively. Do the same calculations for the Klein bottle.

5.9 The Tor functor and the Universal Coefficient Theorem

In this section, we explain how to compute H,(X; G) in terms of G and
H.(X;Z). More generally, given a chain complex

) Oy o)
Co:vi o= Cn B Crqg =5 B Cr—0

of free abelian groups and G an abelian group, we aim to compute
H,(Cs;G) := H.(Ce ® G) in terms of H,(C,;Z) and G. The answer is
provided by the following result:

Theorem 5.9.1. (Universal Coefficient Theorem)
For each n, there are natural short exact sequences:

0 — Hy(Co) ® G — Hy(Co;G) — Tor(H,—1(Ce),G) = 0. (5.9.1)

Naturality here means that if Ce — C, is a chain map, then there is an
induced map of short exact sequences with commuting squares. Moreover,
these short exact sequences split, but not naturally.
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In particular, if Co = Co(X, A) is the relative singular chain complex
of a pair (X, A), then there are natural short exact sequences

0 = Hu(X,A) ® G = Hp(X, A;G) — Tor(H,_1(X, A),G) — 0.
(5.9:2)
Naturality is with respect to maps of pairs (X, A) N (Y, B). The exact
sequence (5.9.2) splits, but not naturally. Indeed, if we assume that
A = B = @, then we have splittings

Hy(X;G) = (Ha(X) ® G) & Tor(Hy-1(X), G),

Hn(Y/' G) = (HH(Y) ® G) & Tor(Hn—l (Y)/ G)'

If these splittings were natural, and f induces the trivial map fi =0
on H,(—;Z) then f induces the trivial map on H,(—;G), for any coef-
ficient group G. But this is in contradiction with Example 5.8.7.

Let us next explain the Tor functor appearing in the statement of the
universal coefficient theorem.
Definition 5.9.2. A free resolution of an abelian group H is an exact sequence:

~~~—>F2f—2>F1f—l>F0f—0>H—>O,

with each F, a free abelian group.

Given an abelian group G, from a free resolution F, of H, we obtain
a modified chain complex:

FoRG: - —-HhRG—-FH®RG—->FRKG—0.

We define
Tor,(H,G) := Hy(Fse ® G). (5.9-3)

Moreover, the following holds:

Lemma 5.9.3. For any two free resolutions Fe and F, of H there are canonical
isomorphisms Hy,(Fe ® G) = Hy,(F, ® G) for all n. Thus, Tor,(H,G) is
independent of the free resolution Fo of H used for its definition.

Proposition 5.9.4. For any abelian group H, we have that
Tor,(H,G) =0ifn > 1, (5.9.4)

and
Torg(H,G) = H® G. (5.9.5)

Proof. Indeed, given an abelian group H, take Fj to be the free abelian

group on a set of generators of H to get K ﬁ; H — 0. Let F; := ker(fp),



and note that F is a free (and abelian) group, as it is a subgroup of a
free abelian group Fy. Let F; < Fy be the inclusion map. Then

O0—-FK—F—>H—=0

is a free resolution of H. Thus, Tor,(H,G) = 0 if n > 1. Moreover, it
follows readily that Torg(H,G) =2 H® G. O

Definition 5.9.5. In what follows, we adopt the notation:
Tor(H, G) := Tory(H, G).
Proposition 5.9.6. The Tor functor satisfies the following properties:
(1) Tor(A,B) = Tor(B, A).
(2) Tor(p; A, B) = @; Tor(A;, B).
(3) Tor(A,B) = 0 if either A or B is free or torsion-free.

(4) Tor(A,B) = Tor(Torsion(A), B), where Torsion(A) is the torsion sub-
group of A.
(5) Tor(Z/nZ,A) = ker(A 5 A).

(6) For a short exact sequence: 0 — B — C — D — 0 of abelian groups, there
is a natural exact sequence:

0 — Tor(A,B) — Tor(A,C) — Tor(A, D)
— A®B—A®C—A®D — 0.

Proof. (2) Choose a free resolution for @; A; as the direct sum of free
resolutions for the A;’s.

(5) The exact sequence 0 — Z 5 Z — Z/nZ — 0 is a free resolution
of Z/nZ. Tensoring with A and dropping the right-most term yields
the complex Z® A —= "la 7 ® A — 0, which by property (4) of the
tensor product is A %> A — 0. Thus, Tor(Z/nZ, A) = ker(A 5 A).

(3) If A is free, we can choose the free resolution:
F=0—-F=A—-A—=0

which implies that Tor(A,B) = 0. On the other hand, if B is free,
tensoring the exact sequence 0 - F; — Fy = A — 0 with B = Z° gives
a direct sum of copies of 0 — F; — Fy — A — 0. Hence, it is an exact
sequence and so H; of this complex is 0. For the torsion free case, see
below.
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(6) Let0 - F; & Fy — A — 0 be a free resolution of A, and tensor
it with the short exact sequence 0 -+ B — C —+ D — 0 to get a
commutative diagram:

0 0 0

l l l

00— F®B — FRXC — FFXD — 0

l ! l

00— FH®B — [KC — D — 0

l l l

0 0 0

Rows are exact since tensoring with a free group preserves exactness.
Thus we get a short exact sequence of chain complexes. Recall now
that for any short exact sequence of chain complexes 0 — B, — Co —
De — 0, there is an associated long exact sequence of homology groups

ce = Hp(Ba) = Hu(Co) = Hp(Ds) — Hy_1(Bas) — ...

So in our situation, with Be = Fe ® B, Ce = Fe @ C and Dy = Fe ® D,
we obtain the homology long exact sequence:

0 — Hy(Fs ® B) — Hy(Fs ® C) — Hy(Fs ® D)

Since H; (Fs ® B) = Tor(A, B) and Hy(F. ® B) = A ® B, the above long
exact sequence reduces to:

0 — Tor(A, B) — Tor(A,C) — Tor(A, D)
-+ A®B—-A®RC—-A®D —0.

(1) Apply (6) to a free resolution 0 — F; — Fy — B — 0 of B, and get
a long exact sequence:

0 — Tor(A, F;) — Tor(A, Fy) — Tor(A, B)
—-AQF - AQRF —>A®B —0.

Because Fj, F are free, by (3) we have that Tor(A, F;) = Tor(A, Fy) =0,
so the long exact sequence becomes:

0— Tor(A,B) > A®F - A®F —+A®B —0.
Also, by definition of Tor, we have a long exact sequence:

0— Tor(B,A) = FF®A—FR®A—>BRA—0.



So we get a diagram:

0 — Tor(A,B) — A®F — A®F — A®B — 0

N

0 — Tor(B,A) — F®A — FH® A — B®A — 0

with the arrow labeled ¢ defined as follows. The two squares on the
right commute since ® is naturally commutative. Hence, there exists
¢ : Tor(A, B) — Tor(B, A) which makes the left square commutative.
Moreover, by the 5-lemma, we get that ¢ is an isomorphism.

We can now prove the torsion free case of (3). Assume that B is torsion

free. Let 0 — F; i) Fy — A — 0 be a free resolution of A. The claim
about the vanishing of Tor(A, B) is equivalent to the injectivity of the
map f ®idg : F; ® B — Fy ® B. Assume ) ; x; ® b; € ker(f ®idp). So
Y. f(x;) ®b; =0 € F; ® B. In other words, }_; f(x;) ® b; can be reduced
to zero by a finite number of applications of the defining relations for
tensor products. Only a finite number of elements of B, generating a
finitely generated subgroup By of B, are involved in this process, so in
fact -, x; ® b; € ker(f ®idp,). But By is finitely generated and torsion
free, hence free, so Tor(A, By) = 0. Thus }; x; ® b; = 0, which proves
the claim. The case when A is torsion free follows now by using (1) to
reduce to the previous case.

(4) Apply (6) to the short exact sequence: 0 — Torsion(A) — A —
A/Torsion(A) — 0 to get:

0 — Tor(B, Torsion(A)) — Tor(B, A) — Tor(B, A/Torsion(A)) — - - -

Because A/Torsion(A) is torsion free, Tor(B, A/Torsion(A)) = 0 by

(3), sor
Tor (B, Torsion(A)) ~ Tor(G, A)

Now by (1), we get that Tor(A, B) ~ Tor(Torsion(A), B).

Remark 5.9.7. It follows from (5) that

Tor(Z/nZ,Z/mZ) =

L mZ =2Z/nZ QZ./mZ,

where (1, m) is the greatest common divisor of # and m. More generally,
if A and B are finitely generated abelian groups, then

Tor(A, B) = Torsion(A) ® Torsion(B) (5.9.6)

where Torsion(A) and Torsion(B) are the torsion subgroups of A and
B respectively.
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Let us conclude with some examples:
Example 5.9.8. Suppose G = Q, then Tor(H,_1(X),Q) =0, so
Hy(X;Q) ~ Hy(X) ® Q.
It follows that the n-th Betti number of X is given by
by (X) := rkH,(X) = dimg H,(X; Q).

Example 5.9.9. Suppose X = T2, and G = Z/4. Recall that H(T?) =
Z2. So:
Hy(T%Z/4) = Hy(T?>) @ Z/4 = Z./4

Hi(T%2/4) = (Hi(T?) ® Z/4) & Tor(Hy(T?),Z/4)
=72’07/4=(Z/4)

Hy(T%2/4) = (Hy(T?) ® Z2/4) @ Tor(Hy(T?),Z/4) = Z /4.
Example 5.9.10. Suppose X = K is the Klein bottle, and G = Z/4.
Recall that H1(K) = Z ® Z/2, and Hy(K) = 0, so:

Hy(K;Z/4) = (Hay(K) ® Z/4) & Tor(Hy(K), Z/4)
=Tor(Z,Z/4) ®Tor(Z/2,7Z/4)
=002Z/2
=27/2.

Exercises
1. Prove Lemma 9.2.

2. Show that Fln(X;Z) = 0 for all » if, and only if, ﬁn(X;Q) =0and
H,(X;Z/p) = 0 for all n and for all primes p.



6
Basics of Cohomology

Given a space X and an abelian group G, in this chapter we define
cohomology groups H'(X; G) by “dualizing” the definition of homol-
ogy, and study their properties and methods of computation. In the
next chapter we will show that, via the cup product operation, the
graded group @; H (X;G) becomes a ring. The ring structure will
help us distinguish spaces X and Y which have isomorphic homology
and cohomology groups but non-isomorphic cohomology rings, for
example X = CIP? and Y = S? v S%.

6.1 Cohomology of a chain complex: definition

Let G be an abelian group, and let (C,, ds) be a chain complex of free
abelian groups:

..._>Cn+1a”JCni>Cn,1a"4--- (6.1.1)

By dualizing the chain complex (6.1.1), i.e., by applying Hom(—; G) to
it, one gets the cochain complex:

S lhycEs LAY (oo I (6.1.2)
with
C" := Hom(Cy, G), (6.1.3)
and where the coboundary map
ot — L (6.1.4)
is defined by
(") (w) = P(9y+1a), for p € C" and & € Cyp41. (6.1.5)
It follows that
(0" 0 ™) () = P(9p4100n12) =0, VP, (6.1.6)

since ;41 © dy42 = 0 in the chain complex (6.1.1). We can therefore
make the following.
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Definition 6.1.1. The n-th cohomology group H" (Ce; G) with G-coefficients
of the chain complex C, is defined by:

H"(C,;G) := H"(C®;6%) :=ker(6 : C" — C""1)/Im(6 : C"~ 1 — C").
(6.1.7)

6.2 Relation between cohomology and homology

In this section, we explain how each cohomology group H"(C.;G)
can be computed only in terms of the coefficients G and the integral
homology groups H.(Cs) of (Ce, ).

Ext groups

Let H and G be given abelian groups. Consider a free resolution of H,

B BpIhp o

Dualize it with respect to G, i.e., apply Hom(—,G) to it, to get the
cochain complex

LE RIS

where we set H* = Hom(H, G) and similarly for F*. After discard-
ing H*, we get the cochain complex involving only the F/’s, and we
consider its cohomology groups

H"(F,;G) = ker f; 1 /Imf,
The Ext groups are defined as:
Ext"(H,G) := H"(F.;G). (6.2.1)
Then the following result, left here as an exercise, holds:

Lemma 6.2.1. The Ext groups are well-defined, i.e., they are independent of
the choice of the free resolution Fo of H.

As in the case of the Tor functor, one can thus work with the free
resolution of H given by

0—FK —F—H—0,

where F is the free abelian group on the generators of H, while F; is
the free abelian group on the relations of H. In particular, it follows
that

Ext"(H,G) =0, Vn > 1,



and we also get that
Ext’(H,G) = Hom(H, G).
For simplicity, we set:
Ext(H,G) := Ext'(H, G). (6.2.2)

Proposition 6.2.2. The Ext group Ext(H, G) satisfies the following proper-
ties:

(a) Ext(H® H',G) = Ext(H, G) ® Ext(H’, G).

(b) If H is free, then Ext(H, G) = 0.

(c) Ext(Z/n,G) = G/nG.

Proof. For (a) use the fact that a free resolution of H @ H’ is a direct
sum of free resolutions of H and, resp., H'. For (b), if H is free, then
0 — H — H — 0 is a free resolution of H, so Ext(H,G) = 0. For
part (c), start with the free resolution of Z/n given by

0—Z-5%7 —7Z/n—0,

dualize it and use the fact that Hom(Z,G) = G to conclude that
Ext(Z/n,G) = G/nG. O

As an immediate consequence of these properties, we get the follow-
ing:

Corollary 6.2.3. If H is a finitely generated abelian group, then :
Ext(H, G) = Ext(Torsion(H), G) = Torsion(H) ®z G. (6.2.3)

Proof. Indeed, H decomposes into a free part and a torsion part, and
the claim follows by Proposition 6.2.2. O

Universal Coefficient Theorem

The following result shows that cohomology is entirely determined by
its coefficients and the integral homology:

Theorem 6.2.4. Given an abelian group G and a chain complex (C,,ds) Of
free abelian groups with homology H.(Ca ), the cohomology group H" (Ca; G)
fits into a natural short exact sequence:

0 — Ext(H,_1(Ca),G) — H"(Ca; G) — Hom(H,(C.),G) — 0

(6.2.4)
In addition, this sequence is split, that is,

H"(C.; G) =2 Ext(H,_1(C.),G) @ Hom(H,(C,.), G). (6.2.5)
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Proof. (Sketch)

The homomorphism & : H"(Co; G) — Hom(H,(C.), G) is defined as
follows. Let Z, = kerdy, B, =Imd,,11, iy : By < Z, the inclusion map,
and H,(Ce) = Z,/By. Let [¢p] € H"(C,; G). Then ¢ is represented by a
homomorphism ¢ : C;;, = G, so that 6"¢ := ¢9,, 11 = 0, which implies
that ¢|p, = 0. Let ¢ := ¢|z,, then ¢ vanishes on By, so it induces a
quotient homomorphism ¢g : Z,/B, — G, i.e., g € Hom(H,(C,), G).
We define h by

h([¢]) = o

Notice that if ¢ € Im 6", i.e.,, ¢ = 6" 1¢p = 3, then ¢|z, = 0, so
¢o = 0, which shows that & is well-defined. It is not hard to show that
h is an epimorphism, and

kerh = Coker(i;,_1:Z;_1 — B;,_1) = Ext(H,-1(Cs),G),  (6.2.6)
where the Ext group is defined with respect to the free resolution of
H,_1(C,) given by
0By "3 7, 1 — Hy 1(Ce) — 0.
O

Remark 6.2.5. The splitting in the above universal coefficient theorem
is not natural; see Exercise 8 at the end of this chapter for an example.

The following special case of Theorem 6.2.4 is very useful in calcula-
tions:

Corollary 6.2.6. Let (Co,0s) be a chain complex so that its (integral) homol-
ogy groups H, are finitely generated, and let T,, = Torsion(Hy). Then we
have natural short exact sequences:

0—T,.1 — H"(Ce;Z) — Hy/Ty — 0 (6.2.7)
This sequence splits, so:
H"(Ce;Z) = T, 1% Hy/Thy. (6.2.8)
Finally, we have the following easy application of Theorem 6.2.4:

Proposition 6.2.7. If a chain map « : Cq — C,, between chain complexes Ca
and C,, induces isomorphisms ., on integral homology groups, then w induces
isomorphisms a* on the cohomology groups H*(—; G) for any abelian group
G.

Proof. By the naturality part of Theorem 6.2.4, we have a commutative
diagram:
0 — Ext(H,-1(Cs),G) — H"(Cs; G) — Hom(H,(C,),G) — 0

()" o (o)
0 — Ext(H,_1(C,),G) — H"(C,; G) — Hom(H,(C,),G) — 0



The claim follows by the five-lemma, since «, and its dual are isomor-
phisms. O

6.3 Cohomology of spaces

We can now attach cohomology groups to topological spaces, by work-
ing, e.g., with the singular or cellular chain complex of such a space.

Definition and immediate consequences

Let X be a topological space with singular chain complex (Ce(X), d).
The group of singular n-cochains of X with G-coefficients is defined as:

C"(X;G) := Hom(C,(X), G). (6.3.1)

So n-cochains are functions from singular n-simplices to G.
The coboundary map

o CM(X;G) — C"T(X;G)

is defined as the dual of the corresponding boundary map 9,1 :
Cpi1(X) = Cu(X), ie., for p € C"(X; G), we let

Iy ¥
8" = Papy1 : Cuia (X) 5 Cu(X) > G. (6.3-2)
It follows that
5" =0, (6:3.3)
and for a singular (1 + 1)-simplex o : A"*! — X we have:
n+1 .
") = Y (1) 9(liuy, - 0, 0] (6-3.4)
i=0

Definition 6.3.1. The cohomology groups of X with G-coefficients are defined
as:

H"(X;G) := ker(6") /Im(6"1). (6.35)
Elements of ker 6" are called n-cocycles, and elements of Im 6"~ are called
n-coboundaries.

Remark 6.3.2. Note that ¢ is an n-cocycle if, by definition, it vanishes
on n-boundaries.

Since the groups C,,(X) of singular chains are free, we can employ
Theorem 6.2.4 to compute the cohomology groups H"(X; G) in terms
of the coefficients G and the integral homology of X. More precisely,
we have natural short exact sequences:

0 — Ext(H,-1(X),G) — H"(X;G) — Hom(H,(X),G). — 0
(6.3.6)
Moreover, these sequences split, though not naturally.
Let us now derive some immediate consequences from (6.3.6):
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(a) If n =0, (6.3.6) yields that
H'(X;G) = Hom(Hy(X),G), (6.3.7)

or equivalently, H'(X;G) consists of all functions from the set of
path-connected components of X to the group G.

(b) If n = 1, the Ext-term in (6.3.6) vanishes since Hy(X) is free, so we
get:
HY(X;G) = Hom(H;(X), G). (6.3.8)

Remark 6.3.3. Theorem 6.2.4 also works for modules over a PID. In
particular, if G = F is a field, then

H"(X; F) = Hom(Hy (X), F) = Homp (Ha(X; F), F) = Ha(X, F)”
Thus, with field coefficients, cohomology is the dual of homology.
Example 6.3.4. Let X be a point space. From (6.3.6), we have:

H!(X;G) = Hom(H;(X),G) & Ext(H;_1(X), G).

And since

0, otherwise,

Hi(X):{z, i=0

we get

G, i=0
Hom(H;(X),G) =
0, otherwise.

Furthermore, since H;(X) is free for all i, we also have that
Ext(H;_1(X),G) =0, for all i.

Altogether,
G, i=0

0, otherwise.

H(X;G) = {
Example 6.3.5. Let X = S". Then we have

Z, i=0,n
0, otherwise.

Thus the Ext-term in the universal coefficient theorem vanishes and we
get:
G, i=0orn

H'(X;G) = Hom(H;(X),G) = { 0, otherwise.



Reduced cohomology groups
We start with the augmented singular chain complex for X:

50X L (X)) -z —0,

with e(}; n;x;) = Y; n;. After dualizing it (i.e., applying Hom(—; G)),
we get the augmented cochain complex
X 6) X COX;G) < G 0.

Note that since €d = 0, we get by dualizing that ée* = 0. The homology
of this augmented cochain complex is the reduced cohomology of X with
G-coefficients, denoted by H(X;G).

It follows by definition that

H(X;G) = H(X;G),if i >0,

and by the universal coefficient theorem (applied to the augmented
chain complex), we get

H°(X; G) = Hom(Hy(X), G).

Relative cohomology groups

To define relative cohomology groups H"(X, A; G) for a pair (X, A),
we dualize the relative chain complex by setting

C"(X,A;G) :=Hom(Cy(X, A),G). (6.3.9)

The group C"(X, A; G) can be identified with functions from the set
of n-simplices in X to G that vanish on simplices in A, so we have a
natural inclusion

C"(X,A;G) = C"(X;G). (6.3.10)

The relative coboundary maps
5:C"(X,A;G) — C"™(X, A; G) (6.3.11)

are obtained by restricting the absolute ones, so they satisfy 62> = 0. So
the relative cohomology groups H" (X, A; G) are defined.
We next dualize the short exact sequence

0 — Cu(A) —55 Cu(X) L5 Cu(X, A) — 0

to get another short exact sequence

0+— C"(A;G) . C"(X;G) L C"(X,A;G) «+—0, (6.3.12)
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where the exactness at C"(A;G) follows by extending a cochain in
A “by zero". More precisely, for i € C"(A;G), we define a function
¥ : Cu(X) = Gby
(o) = Y(o), ifoeCy(A)

0, ifIm(c)NA=0Q.
Then ¢ is a well-defined element of C*(X; G) since C,(X) has a basis
made of simplices contained in A and those contained in X \ A. It is
clear that i*(9) = .

Since i and j commute with 9, it follows that i* and j* commute with
4. So we obtain a short exact sequence of cochain complexes:

04— C*(A;G) ¢ C*(X;G) €— C*(X,A;G) «— 0.  (6.313)

By taking the associated long exact sequence of homology groups, we
get the long exact sequence for the cohomology groups of the pair
(X, A):
S HY(X, A;G) D HYXG) B HY(A;G) S HYU(X, A;G) - -
(6.3.14)
We can also consider above the augmented chain complexes on X and
A, and get a long exact sequence for the reduced cohomology groups,
with H"(X, A; G) = H"(X, A; G):

.- = HY(X,A;G) = H(X;G) — H"(A;G) = H"' (X, A;G) — - -

(6.3.15)
In particular, if A = x¢ is a point in X, we get by (6.3.15) that

H"(X;G) = H"(X, x0; G). (6.3.16)

Induced homomorphisms

Recall that if f : X — Y is a continuous map, we have induced chain
maps

f#: CH(X) Cn(Y)
(a:A”—>X)|—>(foa:A”1>Xi>Y)

satisfying f40 = dfy. Dualizing fy with respect to G, we get maps
f*.C"(Y;G) — C(X;G),

with f#(¢) = ¢(fs) and 6f* = f*5 (which is obtained by dualizing
f40 = 9dfy). Thus, we get induced homomorphisms on cohomology
groups:

f*:H"(Y,G) - H"(X,G).



In fact, we can repeat the above construction for maps of pairs, say
f:(X,A) — (Y,B). And note that the universal coefficient theorem

also works for pairs because C, (X, A) = Cn(X)/Cn(A) is free abelian.

So, by naturality, we get a commutative diagram for a map of pairs
f:(X,A) = (Y,B):

0 — Ext(H,_1(X, A),G) —— H"(X, A;G) — Hom(H,(X, A),G) —— 0

T(M* Tf* T(f*)*

0 — Ext(H,_1(Y,B),G) —— H"(Y,B;G) — Hom(H,(Y,B),G) —— 0

Homotopy invariance

In this subsection we show that cohomology groups are homotopy
invariants of spaces.

Theorem 6.3.6. If f ~ ¢: (X, A) — (Y, B) are homotopic maps of pairs and
G is an abelian group, then

f*=g"+H"(Y,B;G) - H"(X, A;G).

Proof. Recall from the proof of the similar statement for homology that
there is a prism operator

P:Cu(X,A) = Cps1(Y,B) (6.3.17)

satisfying
f# — g4 = Po+ 9P, (6.3.18)

with fy and g4 the induced maps on singular chain complexes. In
fact, if F: X x I — Y denotes the homotopy, with F(x,0) = f(x)
and F(x,1) = g(x), then the prism operator is defined on generators
(0 : A" = X) € Cy(X) by pre-composing Fo (0 xid) : A" x I =Y
with an appropriate decomposition of A" x I into (n + 1)-dimensional
simplices. Then one notes that such a P takes C,(A) to C,41(B), hence
it induces the relative prism operator of (6.3.17).

So the difference of the middle maps in the following diagram equals
to the sum of the two side “paths”:

Cu(X, A) —25 Cpy(X, A)

Sl A

Cpi1(Y,B) —2— Cu(Y, B)

Then it follows from (6.3.18) that f. = g« on relative homology groups.

The claim about cohomology follows by dualizing the prism operator
(6.3.17) to get
P*: C"Y(Y,B;G) — C"(X, A;G) (6.3.19)
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which satisfies an identity dual to (6.3.18), that is,
f*—g* =6P* + P*o. (6.3.20)
This implies readily that f* = ¢* on relative cohomology groups. [
The following is an immediate consequence of Theorem 6.3.6:

Corollary 6.3.7. If f: X — Y is a homotopy equivalence, then f*: H"(Y;G) —
H"(X; G) is an isomorphism, for any coefficient group G.

Example 6.3.8. We have:

G, i=0
0, otherwise.

H(R"%;G) = {

This follows immediately by the homotopy invariance of cohomology
groups, since R” is contractible.

Excision

Theorem 6.3.9. Given a topological space X, suppose that Z C A C X, with
cl(Z) C int(A). Then the inclusion of pairsi : (X\Z,A\Z) — (X, A)
induces isomorphisms

i*: H'(X, A;G) —» H"(X\ Z,A\ Z; G) (6.3.21)

for all n. Equivalently, if A and B are subsets of X with X = int(A) U
int(B), then the inclusion map (B, AN B) — (X, A) induces isomorphisms
in cohomology.

Proof. By the naturality of universal coefficient theorem, we have the
commutative diagram:

0 — Ext(H,_1(X, A),G) ——— H"(X, A;G) —— Hom(H,(X,A),G) —> 0

(M)*J{ i*l (W)*J{

0 — Ext(H,_1(X\ Z, A\ Z),G) — H"(X\ Z,A\ Z; G) — Hom(H,(X\ Z,A\ Z),G) — 0

By excision for homology, the maps i, hence (ix)*, are isomorphisms.
So by the five-lemma, it follows that i* is also an isomorphism. O

Mayer-Vietoris sequence

Theorem 6.3.10. Let X be a topological space, and A and B be subsets of X
so that
X =int(A) Uint(B).

Then there is a long exact sequence of cohomology groups:

o H'(X;G) Y H"(A;G) @ H"(B; G) -%5 H"(AN B;G)
— H"(X;G) — --- (6.3.22)



Proof. There is a short exact sequence of cochain complexes, which at
level n is given by:

0 — C*"(A+B;G) — C"(A;G) & C"(B;G) % C"(ANB;G) — 0

Hom(Cy (A + B), G)

where C,,(A + B) is the set of simplices in X which are sums of simplices
in either A or B, and the maps are defined by

(1) = (Mlc,a)Mlc,a)

and

¢(a, B) = alc,(anB) — Blc,(anp)-
Moreover, since Cyx(A + B) < C.(X) is a chain homotopy, it follows
by dualizing that C*(A + B;G) and C*(X;G) are chain homotopic,
and thus H*(A + B; G) = H*(X; G). The cohomology Mayer-Vietoris
sequence (6.3.22) is the long exact cohomology sequence of the above
short exact sequence of cochain complexes. O

Remark 6.3.11. A similar Mayer-Vietoris sequence holds can be ob-
tained for the reduced cohomology groups.

Example 6.3.12. Let us compute the cohomology groups of 5" by
using the above Mayer-Vietoris sequence. Cover S” by two open sets
A =S5"\{N} and B = §"\ {S}, where N and S are the North and,
resp., South pole of S”. Then we have ANB ~ S" ! and A ~ B ~ R".
Thus by the Mayer-Vietoris sequence for reduced cohomology, together
with Example 6.3.8, homotopy invariance and induction, we get:

H'(S";G) = H (" 1;G) = -.. =2 H"(s%G)
~ G, i=n
] 0, otherwise.

Cellular cohomology

Definition 6.3.13. Let X be a CW complex. The cellular cochain complex of
X, (C*(X;G),d*), is defined by setting:

C"(X;G) := H"(Xn, Xp-1;G),
for X, the n-skeleton of X, and with coboundary maps

d}’lzéﬂoji’l
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fitting in the following diagram (where the coefficient group for cohomology is
by default G):

H"(Xy-1)
j gn—1

_ dﬂ—l Aan
s HH(Xm1, Xpen) ————— H" (X, Xuo1) ——— H™™ (Xp1, X)) + -

H"(X,)
Here, the diagonal arrows are part of cohomology long exact sequences for the
relevant pairs. For this reason, it follows that j"6" 1 = 0, and therefore

dndnfl _ 57’!]'1’15?!71]'1’171 =0.

So (C*(X;G),d*®) is indeed a cochain complex. The cellular cohomology
HEw (X5 G) of X with G-coefficients is by definition the cohomology of the
cellular cochain complex (C*(X;G),d®).

Just like in the case of cellular homology, we have the following
identification:

Theorem 6.3.14. The singular and cellular cohomology of X are isomorphic,
ie.,
H"(X;G) = Héw (X G) (6-3.23)

for all n and any coefficient group G. Moreover, the cellular cochain com-
plex (C*(X; G),d®) is isomorphic to the dual of the cellular chain complex
(Ce(X),ds), obtained by applying Hom(—; G).

Proof. Recall from Section 5.5 that for the cellular chain complex of X
we have that

Cn(X) 1= Hy(Xy, X;_1) = Vi ofn—cells/

and H;(X,, X,—1) = 0 whenever i # n. So by the universal coefficient
theorem, we obtain:

C"(X;G) := H"(Xy, X;—1; G) = Hom(Cy(X), G) (6.3.24)

since the Ext term vanishes. The universal coefficient theorem also
yields that
HI(Xn/ Xn_1; G) =0ifi #n, (6.3.25)

since the groups H;(X,, X,,_1) are either free or trivial. From the long
exact sequence of the pair (X, X,,_1), that is,

.- — H"(Xyy, X,_1; G) — HY(X,; G) — HN(X,,_1;G)
— Hk+1 (Xn/ X?Z—l; G) — 7
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we thus get for k # n,n — 1 the isomorphisms
H(X; G) = H(X,1;G). (6.3.26)
Therefore, if k > n, we obtain by induction:

H*(X,; G) = H*(X,_1;G) = H*(X,,_2;G) = - - - = HF(X; G) = 0

(6.3.27)
since X is just a set of points.
We next claim that there is an isomorphism
H"(Xy+1;G) = H'(X; G). (6.3.28)

First recall from Lemma 5.5.10(c) that the inclusion X, ;1 — X induces
isomorphisms on homology groups Hy, for k < n+ 1. So by the
naturality of the universal coefficient theorem, we get the following
diagram with commutative squares:

0 — Ext(H,_1(X),G) —— H"(X;G) LN Hom(H,(X),G) — 0

(i) |= | iy |2

0 — Ext(Hy_1(Xp11),G) — H"(Xy41;G) =5 Hom(Hp(Xy11),G) — 0
Then, by using the five-lemma, it follows that the middle map
i*: H'(X;G) - H"(Xy41,G)

is also an isomorphism.
Altogether, by using (6.3.27) and (6.3.28), we get the following dia-
gram (where the diagonal arrows are part of long exact sequences of

pairs):
Hni](Xn—Z) =0
H" 1 X/r l
/ x
d”
o> H'" N (X1, Xy2) —————— H" (X, Xum1) —————— H" 7 (X1, X)) » -+
"(Xn)
r1+1 H”(Xn 1 g0

Thus, by using the definition d" = §"j" of the cellular coboundary
maps, and after noting that j”~! and j" are onto and « is injective, we
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obtain the following sequence of isomorphisms:

H'(X;G) = H*(Xu11;G)
= Im(a)
= ker(d")
= ker(d")/ ker(j") (6.3.29)
= ker(d")/Im(5" ")
>~ ke (dn)/l ((5” 1n 1)
> ker(d") /Im(d"~ 1)
The only claim left to prove is that
d" = (dyy1)". (6:3:30)

By definition, the cellular coboundary map d" is the composition:
A" H" (X, Xp_1;G) = H"(Xp; G) - H™ (X041, Xu; G),

and, similarly, the boundary map d,,;1 of the cellular chain complex is
given by:

an ‘n
dnJrl :Hyp (Xn+1/ Xn) ;% Hn(Xn) ]*> Hn(Xn/ Xn71)~

Let us now consider the following diagram:

in

] 5”
H" (Xn/ Xn—l}G) _— H" (XH}G) —_— Hn+1 (Xn+1/ Xn/'G)

L

(an+1)

Hom (Hy (Xp, Xp_1), G) —— Hom(H,(X), G) ——— Hom(Hy41(Xp+1, Xn), G)

The composition across the top is the cellular coboundary map 4", and
we want to conclude that it is the same as the composition (d,11)*
across the bottom row. The extreme vertical arrows labelled / are iso-
morphisms by the universal coefficient theorem, since the relevant Ext
terms vanish (by using (6.3.25)). So it suffices to show that the diagram
commutes. The left square commutes by the naturality of universal
coefficient theorem for the inclusion map (X, @) < (X, X,—1), and
the right square commutes by a simple diagram chase. O

Example 6.3.15. Let X = RP2. Then X has one cell in each dimension
0,1, and 2, and the cellular chain complex of X is:

2 0

0 Z Z Z 0.

To compute the (cellular) cohomology H*(X;Z), we dualize (i.e., apply
Hom(—,Z)) the above cellular chain complex, and get:

2 0

0 Z Z Z 0.



Thus, we have

Z, i=0
H(RP}Z) =< Z/2, i=2
0, otherwise.

Similarly, in order to calculate H*(X;Z/2), we dualize the cellular
chain complex of X with respect to Z/2 (i.e., by applying the functor
Hom(—,Z/2)) to get:

0 0

0 Z/2

zZ/2 Z/2 0

We then have:

Z/2, i=0,1,0or2

H'(RP%2Z/2) =
( /2) { 0, otherwise.

Example 6.3.16. Let K be the Klein bottle. We compute H.(K;Z/3)

and H*(K;Z/3). The cellular chain complex of K is given by:

2,0
0— 727z 7 0

So the cellular chain complex of K with Z/3-coefficients is given by:

2,0
0— 732 7/302/3—7/3— 0

Note that the map (2,0) : Z/3 — Z/3 @ Z/3 is an isomorphism on
the first component, so we get:

Z/3, i=0orl
0, otherwise.

H;(K;Z/3) = {

In order to compute the cohomology with Z /3-coefficients, we dualize
the cellular chain complex of K with respect to Z/3 to get:
2,0
0e—2/327/362/32/3—0
Therefore, we have

Z/3, i=0o0rl
0, otherwise.

H{(K;Z/3) = {

Exercises
1. Prove Lemma 6.2.1.
2. Show that the functor Ext(—, —) is contravariant in the first variable,

thatis, if H, H' and G are abelian groups, a homomorphism « : H — H’
induces a homomorphism a* : Ext(H', G) — Ext(H, G).

BASICS OF COHOMOLOGY
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3. For a topological space X, let

(,):C"(X)@Ci(X) = Z
be the Kronecker pairing given by (¢,0) := ¢(c). In terms of this
pairing, the coboundary map ¢ : C*(X) — C"*!(X) is defined by
(6(¢),0) = (¢,90) for all ¢ € Cy11(X). Show that this pairing induces
a pairing between cohomology and homology:

(,):H'(X;Z)® Hy(X; Z) — Z.

4. Compute H*(5"; G) by using the long exact sequence of a pair,
coupled with excision.

5. Compute the cohomology of the spaces S! x S!, RP? and the Klein
bottle first with Z coefficients, then with Z /2 coefficients.

6. Show that if f : S" — S" has degree d, then f* : H"(S";G) —
H"(S"; G) is multiplication by d.

7. Show that if A is a closed subspace of X that is a deformation retract
of some neighborhood, then the quotient map X — X/A induces
isomorphisms

H"(X,A;G) = H"(X/A;G)

for all n.

8. Let X be a space obtained from S" by attaching a cell ¢"*! by a
degree m map.

* Show that the quotient map X — X/S" = S"*! induces the trivial
map on H;(—;Z) for all i, but not on H"*!(—;Z). Conclude that the
splitting in the universal coefficient theorem for cohomology cannot
be natural.

e Show that the inclusion S" < X induces the trivial map on reduced
cohomology Hi(—;Z) for all i, but not on H,(—; Z).

9. Let X and Y be path-connected and locally contractible spaces such
that H'(X;Q) # 0 and H'(Y;Q) # 0. Show that X VY is not a retract
of X xY.

10. Let X be the space obtained by attaching two 2-cells to S, one via
the map z — z3 and the other via z — z°, where z denotes the complex
coordinate on S! C C. Compute the cohomology groups H*(X; G) of
X with coefficients:

(@) G=Z.
by G=2/2.
() G=2/3.
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7
Cup Product in Cohomology

Let us motivate this chapter with the following simple, but hopefully
convincing example. Consider the spaces X = CP? and Y = S? Vv S§%.
As CW complexes, both X and Y have one 0-cell, one 2-cell and one
4-cell. Hence the cellular chain complex for both X and Y is:

0—wz-20 %z %o %7z 0

So X and Y have the same homology and cohomology groups. Note
that X and Y also have the same fundamental groups, namely

A natural question is then whether X and Y are homotopy equivalent.
Similarly, one can ask if there is a map f: X — Y inducing isomor-
phisms on (co)homology groups. We will see below that by using cup
products in cohomology, we can show that the answer to both questions
is negative.

7.1 Cup Products: definition, properties, examples

Definition 7.1.1. Let X be a topological space, and fix a coefficient ring R
(eg.,7Z,7Z/nZ, Q). Let ¢ € C¥(X;R) and ¢ € C'(X;R). The cup product
¢ U € CKHI(X;R) is defined by:

(4) U l/))(o— : Ak+l — X) = 4)(0_‘ [?}0,"' ,’Uk]) ' lP(U| [Uk,“- ’Uk+l])’ (7'1‘1)
where - denotes the multiplication in ring R.

The aim is to show that this cup product of cochains induces a cup
product of cohomology classes. We need the following result which
relates the cup product to coboundary maps.

Lemma 7.1.2.
(puyp) =spuy+ (-1)fpusy, (7.1.2)
for ¢ € CX(X;R) and ¢ € CH(X; R).
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Proof. For o : AFH'+1 — X we have

k+1 ,
(54) U lp) (U) = Z (_1)14)(U| [00,“' ,‘17,*,“‘ ,‘UkJr]]) : lp(0| [‘I)k+],~' rvk+l+l])
i=0
and
k+1+1

(_1)k(¢ U 5110) (U) = 2 (_1)Z(P(U| ['Uo,”- ,'Uk]) : (P(0'| [Uk,"- ,17,','-- /Uk+l+l] )
i=k
When we add these two expressions, the last term of the first sum
cancels with the first term of the second sum, and the remaining terms
are exactly (¢ Uy)(0) = (¢ U)(do) since

k+1+1

do = Z (-D'e |09, 1+ ok 111] -
=0

As immediate consequences of the above Lemma, we have:

Corollary 7.1.3. The cup product of two cocycles is again a cocycle. That is,
if ¢, i are cocycles, then §(¢p U ) = 0.

Proof. This is true, since é¢ = 0 and d¢ = 0 imply by (7.1.2) that
s(pUy) =0. O

Moreover, we have the following

Corollary 7.1.4. If one of ¢ or ¢ is a cocycle and the other a coboundary, then
¢ U is a coboundary.

Proof. Say 6¢ = 0 and ¢ = é5. Then pUp = ¢ Udy = £5(p U7).
Similarly, if 6¢ = 0and ¢ = éy then pU P =y Uy =(n U ). O

It follows from Corollary 7.1.3 and Corollary 7.1.4 that we get an
induced cup product on cohomology:

H¥(X;R) x H'(X;R) = H*"!(X;R). (7.1.3)

It is distributive and associative since it is so on the cochain level. If R
has an identity element, then there is an identity element for the cup
product, namely the class 1 € H%(X; R) defined by the 0-cocycle taking
the value 1 on each singular O-simplex.

Considering the cup product as an operation on the the direct sum
of all cohomology groups, we get a (graded) ring structure on the
cohomology @;H'(X;R). We will elaborate on the ring structure on
cohomology groups induced by the cup product after looking at a few
examples and properties of the cup product.
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Example 7.1.5. Let us consider the real projective plane RP?. Its Z/2Z-
cohomology is computed by:

. Z/27Z fori=0,1,2
Hi(RPY; 2/27) = { 21?2 fori
0 otherwise.
Leta € H! (]RP2 ;Z/27Z) = Z/27Z be the generator, and consider
#?:=aUa € HX(RIP% Z/27).

We claim that a2 # 0, so &2 is in fact the generator of H2(RP?; Z/2Z).

Consider the cell structure on RP? with two 0-cells v and w, three
1-cells e, e; and e;, and two 2-cells Ty and T,. The 2-cell Tj is attached
by the word ejee, 1 and the 2-cell T, is attached by the word eyee; 1
(see the figure below). We can of course regard these cells as singular
simplices as well.

w

Since « is a generator of H'(RP?;Z/2Z) = Hom(H,(RP?),Z/27), it
is represented by a cocycle

¢ : C1(RP?) — Z/2Z

with ¢(e) = 1, where we use the fact that e represents the generator of
Hi(IRP?). The cocycle condition for ¢ translates into the identities:

0=(6¢)(Th) = p(0T1) = P(e1) + ¢p(e) — ¢p(e2).

0= (0¢)(T2) = ¢(0T2) = ¢p(e2) + P(e) — ¢p(en).
As ¢(e) = 1, without loss of generality we may take ¢(e;) = 1 and
$(e2) = 0.

Next, note that a?> = a U « is represented by ¢ U ¢, and we have:

(PUP)(T1) = gler) - ¢e) =1
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since Tj : [vww] — RP?. Similarly,

(@U@)(T2) = ¢(e2) - Pple) = 0.
Since the generator of Hy(RP?;Z/2Z) is Ty + T, and we have

(PUP)(T1+T2) = (U P)(T1) + (pUP)(T2) =1+0=1,

it follows that a? (which is represented by ¢ U ¢) is the generator of
H?(RP%,Z/2Z). O

The cup product on cochains
CK(X;R) x CH(X;R) — CF(X; R)

restricts to cup products:

CK(X, A;R) x CH(X;R) — CM(X, A;R),

ck(X, A;R) x C!(X, A;R) — CH(X, A;R),

and

CF(X;R) x C'(X, A;R) — CMI(X, A;R)
since C’(X, A; R) can be regarded as the set of cochains vanishing on

chains in A, and if ¢ or ¢ vanishes on chains in A, then so does ¢ U .
So there exist relative cup products:

H¥(X, A;R) x H'(X;R) — H*(X, A;R),
H¥(X, A;R) x H'(X, A;R) — H*(X, A;R),

and

H*(X;R) x H'(X, A;R) — H*'(X, A;R).
In particular, if A is a point, we get a cup product on the reduced
cohomology H*(X;R).

More generally, there is a cup product
H¥(X, A;R) x H (X, B;R) — H*'!(X, AUB;R)

when A and B are open subsets of X or subcomplexes of the CW
complex X. Indeed, the absolute cup product restricts first to a cup
product

(X, A;R) x C'(X,B;R) — C**!(X, A + B;R),

where CK*(X, A + B;R) is the subgroup of CK*!(X;R) consisting of
cochains vanishing on sums of chains in A and chains in B. If A and
B are opens in X, then C**/(X, AU B; R) < CK*!(X, A + B; R) induces
an isomorphism in cohomology, via the five-lemma and the fact that
the restriction maps C'(A U B;R) — C!(A + B; R) induce cohomology
isomorphisms.

Let us now prove the following simple but important fact:
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Lemma 7.1.6. Let f: X — Y be a continuous map with the induced maps on
cohomology f': H'(Y;R) — H'(X;R). Ifa € H*(Y;R) and p € H'(Y;R),
then

fraup) = fr(a)Uf(B), (7.1.4)

and similarly in the relative case.

Proof. It suffices to show the following cochain formula

fHlouy) = f@) U (w),
with ¢, cochain representatives of « and f, respectively. For ¢ €

Ck(Y;R) and ¢ € C'(Y;R) we have:

POV W)@ 8 = X) = (F9) iy, - a) - (P9 @ljog, )
= () [og,-- o)) - W) oy 0 1])
= (pUY)(fr0)
= (fflpup))(o).

O

Definition 7.1.7. A graded ring is a ring A with a sum decomposition
A = © Ay where the Ay are additive subgroups so that the multiplication of
A takes Ay x Aj to Ayy. Elements of Ay are called elements of degree k.

Definition 7.1.8. The cohomology ring of a topological space X is the graded
ring

H*(X;R) := (@ Hk(X;R),U> ,

k>0

with respect to the cup product operation. If R has an identity, then so does
H*(X; R). Similarly, we define the cohomology ring of a pair H*(X, A; R) by
using the relative cup product.

Remark 7.1.9. By scalar multiplication with elements of R, we can
regard these cohomology rings as R-algebras.

The following is an immediate consequence of Lemma 7.1.6:

Corollary 7.1.10. If f: X — Y is a continuous map then we get an induced
ring homomorphism

f*+H*(Y;R) - H*(X;R).
Example 7.1.11. The isomorphisms

H* (| XaiR) = [T H* (Xui R) (7.1.5)

whose coordinates are induced by the inclusions i,: Xy — ||, X4 is a
ring isomorphism with respect to the coordinate-wise multiplication
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in a ring product, since each coordinate function i} is a ring homomor-
phism. Similarly, the group isomorphism

H*(\/ X;R) 2 [[H*(Xa; R) (7.1.6)

is a ring isomorphism. Here the reduced cohomology is identified to
cohomology relative to a basepoint, and we use relative cup products.
(We also assume the basepoints x, € X, are deformation retracts of
neighborhoods.)

Example 7.1.12. From our calculations in Example 7.1.5 we have that:
H*(RP%;Z/2Z) = {ag + aja + aya?| a; € Z./27Z}
= (2/22)[a]/ (&%),
where « is a generator of H'(RP?;Z/27Z).

Example 7.1.13.
H*(S",Z) = Z[a]/ (a?)

where « is a generator of H"(S";Z). Indeed, we have

Z fori=0,n
0 otherwise.

H(S";2) = {

So if w is a generator of H"(S";Z), then the only possible cup products
are « U1 and o U w. However, x U € HZ”(S”;Z) = 0. Hence a2 = 0.

Let us now recall that the cell structure on

RP* = | J RP"
n>0

consists of one cell in each non-negative dimension. The following
result will be proved later on in this section:

Theorem 7.1.14. The cohomology rings of the real (resp. complex) projective
spaces are given by:

(a)
H*(RP";Z/27) = (Z/2Z)[a]/ (a" 1)

where a is the generator of H' (RP"; Z/27Z).

(b)
H*(RP%;Z/2Z) = (Z./2Z)[a]

where « is the generator of H' (RP"; Z./27Z.).

(c)
H*(CP";Z) = Z[]/ (")

where B is the generator of H>(CP"; Z).
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(d)
H*(CP*;Z) = Z|[p]

where B is the generator of H>(CP"; Z).

Before discussing the proof of the above theorem, let us get back to
the following motivating example:

Example 7.1.15. We saw at the beginning of this chapter that the spaces
X = CP? and Y = S? v $* have the same homology and cohomology
groups, and even the same CW structure. The cup products can be
used to decide whether these spaces are homotopy equivalent. Indeed,
let us consider the cohomology rings H*(X;Z) and H*(Y;Z). From
the above theorem, we have that:

H*(CP%;Z) = Z[B/ (),

where B is the generator of H?(CP?;Z). We also have a ring isomor-
phism
H*(S?v s z) = H*(S%,7) @ H* (S%,Z),

where H*(S%,Z) = Z[a]/(#?) and H*(S%;2Z) = Z[v]/(7?*), with de-
gree of & equal to 2 and degree of v equal to 4. Moreover, a> = 0,
9?2 =0 and a Uy = 0. Next, we consider the cohomology generators in
degree 2 and square them. In the case of H*(CP?;Z), ? is a generator
of H*(CP?;Z), hence B> # 0. However, in the case of H*(S?>V $%;,Z),
a? € H*(S%,Z) = 0. Hence the two cohomology rings of the two spaces
are not isomorphic, hence the two spaces are not homotopy equivalent.

Let us now get back to the proof of Theorem 7.1.14. We will discuss
below the proof in the case of RP". The result in the case of RP*
follows from the finite-dimensional case since the inclusion RP" —
RP* induces isomorphisms on Hi(— ;Z2/27) for i < n by cellular
cohomology. The complex projective spaces are handled in precisely
the same manner, using Z-coefficients and replacing H* by H* and R
by C.

We next prove the following result:

Theorem 7.1.16.
H*(RP";Z/2Z) = (Z./2Z)[a]/ («"™ 1), (7.1.7)
where  is the generator of H' (RP"; Z./27Z.).
Proof. For simplicity, we use the notation
P" := RP"

and all coefficients for the cohomology groups are understood to be
Z./2Z-coefficients.
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We prove (7.1.7) by induction on 1. Let a; be a generator for H!(IP")
and «; be a generator for H/(P"), with i +j = n. Since for any k < n
the inclusion map u : P¥ < P" induces isomorphisms on cohomology
groups H I for I < k, it suffices by induction on # to show that a; U o =+
0.

Recall now that P" = §"/(Z/2), with

n

S*" = {(xp, -+ ,xy) € IR”H| fo =1}.

1=0
Let ‘
. 1
St ={(xp,---,x;,0,---,0) | lez =1}
1=0
and

Sj:{(0,~~~,0,xn7]~,-~xn) | Z 'x1221}

be the i-th and j-th (sub)sphere respectively. Note that since i +j =,
we have that x,,_; = x;. Hence Ssinsi=1{(0,---,0,41,0,---,0)} with
+1 in the i-th position, i.e., the intersection consists of the two antipodal
points with i-th coordinate 1 and all other coordinates zero.

SYI

Hence, P’ = S'/(Z/2) and P/ = S//(Z/2) are subsets of P" =
5" /(Z/2) so that

P NP/ ={p}=(0:---:0:1:0:---:0)

with 1 in the i-th place.
Let U C IP" be the open subset consisting of points (xp : -+ : x,)
with x; # 0, i.e,,

U={(xg:--:xj1:1:x01: - :x4)},
and notice that the map
P((xo - ixiq:slixipg oo 1x0)) = (X0, 0+, Xio1, Xig1,°** , Xn)

is a homeomorphism U = R"” which takes p to 0 € R".
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We clearly have that P" = P"~! U U, where IP" ! is identified to the
set of points in IP" with the i-th coordinate equal to zero. Regarding
U as the interior of the n-cell of P" (attached to IP"~1), it follows that

— {p} deformation retracts to P"~'. Similarly, as {p} = P' NP/,
we have that P" — {p} ~ P"~1 and P/ — {p} ~ P/, All of this is
represented schematically in the figure below, where IP" is represented
by a disc with its antipodal boundary points identified.

Pi-1

P/

Pi-1

Let us now write R” = R’ x IR/, with coordinates of factors denoted
by (xo,---,x;_1) and (x;41,- -, X»), respectively. Consider the follow-
ing commutative diagram with horizontal arrows given by the (relative)
cup product:

H(P") x H/ (IP") H"(IP")

T |

H(P",P" — P/) x H/(P",P" — P') — H"(P",P" — {p})

| |

H (R",R" —R) x H/(R",R" — RY) —— H"(R",R" — {0})
The diagram commutes by the naturality of the cup product. Let us
examine the bottom row in the above diagram. Let D' denote a small

closed i-disc in R with boundary S'~!. Then by homotopy equivalence
and excision we have:

H{(R",R" — R/)

1

H'(R",R" — int(D') x R))
(D' x R/, 51 x RY)
(D' x D/, §'=1 x DJ)
(
(D'

1R

1%

(D', 51) x D)

H'
H
H'
H(D!, 5.

Il

Similarly,
H/(R",R" — RY) = HI((D/,$/71) x D)
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~ H/(D/,sI71)
and

H"(R",R" — {0}) = H"(D",s""1)
~ H"(D' x D/,5'71 x DU S/~ x D).

Since D" is an n-cell, its class [D"] (in the Z/2-cellular cohomology)
generates H"(D",S$"1), and similar considerations apply to [D'] €
H(D',5'=1') and [D/] € H/(D/,SI71). So the above isomorphisms and
cellular cohomology show that the cup product of the bottom arrow in
the above commutative diagram takes the product of generators to a
generator, i.e., it is given by

[D'] x [D'] = [D"].

The same will be true for the top row, provided we show that the four
vertical maps in the above diagram are isomorphisms.
For the bottom right vertical arrow, we have by excision that

H'(P",P" — {p}) = H'(U, U — {p}) = H"(R",R" - {0}), (7.1.8)

where the last isomorphism follows by using the homeomorphism
¢:U—R"

For the top right vertical arrow, we already noted that P" — {p} defor-
mation retracts to P"~1, so we have

H"(P",P" — {p}) = H*'(P",P" ) = 7/227, (7.1.9)

where the second isomorphism follows by cellular cohomology. More-
over, by using the long exact sequence for the cohomology of the
pair (P",P"~1) and the fact that H*(IP"~!) = 0, we get that the map
Z/2 = H"(P",P""!) — H"(P") = Z/2 is onto, hence an isomor-
phism. Thus we get:

H"(P",P" — {p}) = H" (P") (7.1.10)

To show that the two left vertical arrows are isomorphisms, consider
the following commutative diagram.

HI(P") «—— Hi(P", PF1) «— Hi(P", P — Py — Oy Hi(R", R" — RY)

2 (4)
l(l) l(fl) J((@ l(7)

H'(PY) r H' (P, P o H(P, P — {p}) — 25 HI(R], R — {0})
It suffices to show that all these maps are isomorphisms. (Then
to finish the proof of the theorem, just interchange i and j.) First

note that (R”,R" — R/) = (R/, R’ — {0}) x R/ deformation retract to
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(R, R’ — {0}), so arrow (7) is an isomorphism. As already pointed out,
(10) is an isomorphism by (7.1.8). Moreover, (9) is an isomorphism as
in (7.1.9), and (8) is an isomorphism as in (7.1.10). The arrow (1) is
an isomorphism by cellular homology, and the arrow (3) is an isomor-
phism by cellular homology and the naturality of the cohomology long
exact sequence. By commutativity of the left square, it then follows that
(2) is an isomorphism. In order to show that (4) is an isomorphism,
we note that P" — P/ deformation retracts onto IP'~!. Indeed, a point
v=(xp:-:xy) € P" — TP has at least one of the first i coordinates
non-zero, so the function

fr(v) == (xp:---txj_q 1 txjc--- 1 txy)

gives, as t decreases from 1 to 0, a deformation retract from P" — P/
onto P~ 1,

Since (3), (4) and (9) are isomorphisms, the commutativity of the
middle square yields that (6) is an isomorphism. Finally, since (6),
(7) and (10) are isomorphisms, the commutativity of the right square
yields that (5) is an isomorphism, which completes the proof of the
theorem. O

Example 7.1.17. Let us consider the spaces RP?"*1 and RP?" v §27+1,
First note that these spaces have the same CW structure and the same
cellular chain complex, so they have the same homology and coho-
mology groups. However, we claim that RP?**! and RP?" v §27+1
are not homotopy equivalent. In order to justify the claim, we first
compute their Z/2Z-cohomology rings. From the above theorem, the
cohomology ring of RP?"*1 is:

H*(RP*,2/27) = (Z/22Z)[a]/ (a*"12),

where a is a degree one element generating H!(RP?"+1;7Z/27Z). We
also have a ring isomorphism

H*(RP? v §2"+1. 7./27) = H*(RP?; 2/2Z) & H* ($*"*1;2/27)

with H*(RP?%;Z/27Z) = (Z/2Z)[B]/(B*"*!) for B the degree 1 gen-
erator of H' (RP?";Z/2Z), and H*(S*"*1,2/27) = (Z/2Z)[v]/ (v*)
for  the generator of H2"+1(S?"+1,Z/27) of degree 2n + 1. If there
was a homotopy equivalence f : RP?**!1 — RP?"* v §2"*1 then the gen-
erators of degree one would correspond isomorphically to each other,
i.e.,, we would get f*(B) = a. But as f* is a ring isomorphism, this
would then imply that: f*(g2*+1) = (f*(B))?>"*! = a?"*1. However,
this yields a contradiction, since g#"*! = 0, thus f*(?**!) = 0, while
w21+l £ 0 since a?"+! generates H2"1(RP?"+1;72/27).
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7.2 Application: Borsuk-Ulam Theorem

In this section we use cup products in order to prove the following
result:

Theorem 7.2.1 (Borsuk-Ulam). If n > m > 1, there are no maps g : S™ —
S™ commuting with the antipodal maps, i.e., for which ¢(—x) = —g(x), for
all x € S™.

Proof. We prove the theorem by contradiction. Assume that there is a
map g : 5" — S™ commuting with the antipodal maps. Then g carries
pairs of antipodal points (x, —x) in S" to pairs of antipodal points
(g(x),8(—x) = —g(x)) in S™. So, by passage to the quotient by the
antipodal actions on the domain and tarrget, g induces a map

f:RP" — RP™

[x] = [g(x)]

which makes the following diagram commutative:

gn 8 gm

| o )
RP" L> RP™
Here p and p’ are the two-sheeted covering maps.

We claim that there exists a lift f’ of f, i.e., f = pf’ in the following
diagram:

Zsm
£ lp
Ve
RP" —— RP™

Let us for now assume the claim and complete the proof of the theorem.
Consider the following diagram:

Sm
8
i Jp
s RP" RP™

4 f
We have pg = fp' = pf'p/, the second equality following from the
above claim. This implies that both g and f'p’ are lifts of fp’. Under
the two-sheeted covering map p, antipodal points in S™ are mapped
to the same point in RP™. Therefore, pg = pf’p’ implies that at a
point x € §", we have g(x) = f'p'(x) or ag(x) = f'p’(x), where
a:S™ — S™ is the antipodal map. But ag(x) = —g(x) = g(—x) and
f'p'(x) = f'p’(—x). Thus at x € S§", one of following equalities holds:
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g(x) = f'p'(x) or g(—x) = f'p'(—x). Since g and f'p’ are lifts of fp’
and they coincide at a point, it follows by the uniqueness of the lift
that ¢ = f'p’. But this is a contradiction since p’(x) = p’(—x), hence

f'p'(x) = f'p'(=x), while g(x) # g(—x) = —g(x).
It remains to prove the claim. A lift for f exists if and only if

Ffe(mr (RP™)) C py (11 (S™)). (7.2.1)
If m = 1, the only homomorphism
fi : 1 (RP") =2 Z./27Z — 11 (RPY) = Z

is the trivial one, so (7.2.1) is satisfied. If m > 1, both groups 71 (RP")
and 71y (RP™) are Z/2Z. We will use cup products to show that the
induced map fi : Z/2 — Z/2 on fundamental groups is the trivial
map. Let o), € H*(RP™;Z/2Z) and a, € H*(RP";Z/2Z) be the
generators of degree 1, and consider the induced ring homomorphism

f*: H*(RP™; Z/2Z) — H*(RP"; Z/2Z).
We have:
0= f*(ap ™) = f* (an)"",
so f*(am) € HY(RP";Z/2) has order m + 1 < n + 1. Therefore,
fH(am) # an.
Since H'(RP"; Z/2Z) = Z./2Z = (&), this implies that
f*(am) =0.

Let i : RP! — RP" and j : RP! < RRP™ be the inclusions ob-
tained by setting all but the first two homogeneous coordinates equal
to zero. By cellular cohomology, the map j*: H'(RP™;,Z/2Z) —
H! (]RP1 ;Z/2Z) is an isomorphism, so j*(ay) is the generator of
H! (]R]P1 ;Z./27), and in particular,

j* (am) # 0.

On the other hand,
(foi)*(wm) = i*(f*(am)) = 0.

So (f oi)* # j*, hence the maps f oi and j are not homotopic.
But the homotopy classes of i and j generate the groups 711 (RP")
and 711 (RP™), respectively. So the homomorphisms
fo :m(RP") ~Z/2Z — m(RP™) ~Z/2Z
[} = [fei #j]
maps the generator [i] to an element of Z/2Z other than the generator
[jl, i.e., f« = 0. This proves the claim, and completes the theorem. [
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Exercises

1. Show that if X is the union of contractible open subsets A and B,
then all cup products of positive-dimensional classes in H*(X) are
zero. In particular, this is the case if X is a suspension. Conclude that
spaces such as RIP? and T? cannot be written as unions of two open
contractible subsets.

2. Is the Hopf map
f:83CcC?—S*= CU{w}, (z,w)

z
w

nullhomotopic? Explain.

3. Is there a continuous map f : X — Y inducing isomorphisms on
all of the cohomology groups (ie., f* : H\(Y;Z) = H!(X;Z), for all
i) but X and Y do not have isomorphic cohomology rings (with Z
coefficients)? Explain your answer.

4. Show that RP3 and RP? V S3 have the same cohomology rings with
integer coefficients.

5.
(a) Show that H*(CP";Z) = Z[x]/(x"*!), with x the generator of
H?(CP™; Z).
(a) Show that the Lefschetz number 77 of a map f : CP" — CP" is given
by
Tr=1+d+d*+---+d",
where f*(x) = dx for some d € Z, and with x as in part (a).

(c) Show that for n even, any map f : CP" — CP" has a fixed point.

(d) When n is odd, show that there is a fixed point unless f*(x) = —x,
where x denotes as before a generator of H>(CP"; Z).

6. Use cup products to compute the map H*(CP";Z) — H*(CP"; Z)
induced by the map CP" — CP" that is a quotient of the map C"*! —
crtl raising each coordinate to the d-th power, i.e.,

(20, ,2n) > (28, ,29),

for a fixed integer d > 0. (Hint: First do the case n = 1.)
7. Describe the cohomology ring H*(X V Y) of a join of two spaces.

8.LetH=R-1@&R-i®R-j® Rk be the skew-field of quaternions,
where > = 2 =k* = —1land ij = k = —ji, jk =i = —kj, ki = j = —ik.
For a quaternion g = a + bi +c¢j +dk, a,b,c,d € R, its conjugate is
defined by § = a — bi — cj — dk. Let || := v/a? + b2 + 2 + d2.
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(a) Verify the following formulae in H: q-§ = |q|?, 7192 = 4241, |9192] =
7] - 1q2].

(b) Let 7 C H @ H be the unit sphere, and let f : S7 — §* =HP! =
H U {co} be given by f(q1,42) = q192~". Show that for any p € S*,
the fiber f~1(p) is homeomorphic to S°.

(c) Let HP" be the quaternionic projective space defined exactly as in
the complex case as the quotient of H"*!\ {0} by the equivalence
relation v ~ Av, for A € H\ {0}. Show that the CW structure of
HP" consists of only one cell in each dimension 0,4,8, - - - ,4n, and
calculate the homology of IHP".

(d) Show that H*(HP";Z) = Z[x]/(x"*!), with x the generator of
H*(HP"; Z).

(e) Show that $* v S8 and HP? are not homotopy equivalent.

9. Foramap f : §2n=1 5 gn with n > 2, let Xf = S§" Uy D?" be the
CW complex obtained by attaching a 2n-cell to 5" by the map f. Let
a € H'(Xf;Z) and b € HZ”(Xf;Z) be the generators of respective
groups. The Hopf invariant H(f) € Z of the map f is defined by the
identity a®> = H(f)b.

(@) Let f : S — S2 = CU {0} be given by f(z1,22) = z1/z,, for
(z1,22) € $° C C%. Show that Xy = CP? and H(f) = +1.

(b) Let f : 7 — S* = HU {co} be given by f(q1,42) = 142" " in
terms of quaternions (g1,92) € S, the unit sphere in TH2. Show that
Xy =HP? and H(f) = +1.

7.3 Kiinneth Formula

Cross product

The aim of this section is to discuss a formula for the (co)homology
of a product of two topological spaces. To motivate the discussion
below, we start by consider the spaces S? x % and S? v $® v S°. Both
spaces are CW complexes with cells {60, e2,e3, 65} in degrees, 0,2,3 and
5, respectively. So the cellular chain complex for both spaces is:

02Z =072 -Z30Z—0

Hence both spaces have the same homology and cohomology groups.
It is then natural to ask the following:

Question 7.3.1. Are the spaces S? x S® and S?> v S3 \/ S° homotopy equiva-
lent?
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As we will see below, the answer is no. More precisely, we will show
that the two spaces have different cohomology rings.

The cohomology ring H*(S? V S® V S°; Z) can be computed from the
ring isomorphism

H*(S?Vv SV $°;z) = H*(S%Z) @ H*(S%,2) & H*(S°; Z),

with H*(S%,Z) = Z[a]/(«?), H*(S%;Z) = Z[B]/(B*) and H*(S>,Z) =
Z[v]/(?*), where a is the generator of H?(S%;Z), B is the generator of
H3(S3 ;Z) and vy is the generator of H5(S5 ;Z). Moreover, we have that
« U B = 0. Indeed, let

p:52vsivs® »§2vse

be the natural retraction map. Then p* induces isomorphisms on H?
and H3. So if & and B are the generators of H?(S?V S%) and H3(S? Vv S®),
then « = p*& and B = p*B. So

aUp=paup'p=p(aup)=0
sincea Up = 0.

By the end of this section, we will show that the product of the
generators of degree 2 and degree 3 in the cohomology ring of 5% x S3
is the generator in degree 5, so it is non-zero. This will then completely
answer the above question.

The following result is proved in [Hatcher, Theorem 3.11]:

Theorem 7.3.2. Let R be a commutative ring, and o € Hk(X, A;R) and
B € H (X, A;R). Then the following holds:

aUB=(—1D". gua. (7.3.1)

Definition 7.3.3. A graded ring which satisfies a condition as in the pre-
vious theorem is called graded commutative. Hence the cohomology ring
H*(X, A; R) is a graded commutative ring.

Corollary 7.3.4. If « € H*(X; R) is of odd degree and if H*(X; R) has no
elements of order two, then « Ua = 0.

Definition 7.3.5. Cross product or External cup product

Let X and Y be topological spaces, and denote by p and q the projections
p: X XY = Xand q: X xY — Y. By using the cohomology maps defined
by these projections, we have an induced map denoted by x:

X

H*(X;R) x H*(Y;R) — H*(X x Y;R)
a b = axb:=p*(a)Ug*(b)
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All cohomology groups H'(X; R) and H'(Y; R) have an R-module structure,
hence so do the corresponding cohomology rings H*(X; R) and H*(Y; R).
Since the map X is bilinear, the universal property for tensor products yields a
group homomorphism called the cross product, which we again denote by x:
H*(X;R) ®g H*(Y;R) = H*(X x Y;R) (7.3.2)
So, by definition, we have that:
x(a®b):=axb.

The cross-product becomes a ring homomorphism if we put a ring structure on
H*(X; R) ®r H*(Y; R) by the following multiplication operation:

(a@Db)-(c@d) = (—1)38)de8() (40 @ bd) (7:3:3)
Indeed, we have:
x((a®@b)-(c@d)) = (—1)%sl)deelc) » (40 bd)
= (—1)des(b)deg(c) (50 x pd)
= (—1)(degb)deg(c) pr (3 ) Ug(bUA)
)

= (— 1)) p*(a) U p*(c) Ug* (b) Uq" (d)

72D pr(a) U gt (b) U p*(c) U (@)

=x@®b)Ux(c®d).

Kiinneth theorem in cohomology. Examples

The following result is very helpful for finding the cohomology ring of
a product of CW complexes:

Theorem 7.3.6. Kiinneth Formula
If X and Y are CW complexes, and H*(Y;R) is a finitely generated free
R-module for all k, then the cross product
H*(X;R) @g H*(Y;R) = H*(X X Y;R)
is a ring isomorphism. Moreover, we have the following isomorphism of groups:

H"(X x Y;R) = @ H'(X;R)®r H(Y;R) (7.3-4)
i+j=n
In the next section, we will explain the content of Theorem 7.3.6 in a

more general context. Let us now work out some examples.

Example 7.3.7. Let us find the cohomology ring of S? x S3, which
appeared at the beginning of this section. According to the Kiinneth
formula, we have the following ring isomorphism:

H*(S? x §3,72) =~ H*(S*,2) @z H*(S%,Z)
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If we let a € H*(S%;,Z) denote the degree 2 element which generates
H?(S%,Z) and b € H*(S%Z) the degree 3 element which generates
H3(S%Z), then x(a® 1) and x (1 ® b) (where 1 denotes the identity
in the respective cohomology rings) will be the generators in H*(S? x
S3,Z) of degree 2 and 3, respectively. Moreover, x (a®1) U x(1®b) =
x (a ® b) will be a generator of degree 5 in H*(S? x S%;,Z).

In order to simplify the notations, we make the following definition.

Definition 7.3.8. Exterior Algebra
Let R be a commutative ring with identity. The exterior algebra over R,
denoted

AR[Dél,Déz, .. .],
is the free R-module generated by products of the form:
Kj gy =+ Wy, with iy <iy < --- <1,
and with associative and distributive multiplication defined by the rules:
wia; = —wajg, ifi £ j
a? = 0.

The empty product of w;’s is allowed and it gives the identity element 1 €
AR [061,062, .. ]

Example 7.3.9. Let us now show that
H*(S° x §° x §7;Z) = Azlas, as, a7, (7.3:5)

where g; is the generator of degree i in H*(S® x S° x §7;Z), for i =
3,5,7. By the Kiinneth formula applied to the product of CW complexes
S x §° x §7, we have the following ring isomorphism:

H*(S® x §° x §7;Z) = H*(S%,2) ®z H*(S°,Z) ®z H*(S7; Z).

Let a; be the generator of degree i in H *(S8,Z) for i = 3,5,7. Then
the generators of degree 3, 5 and 7 in H*(S® x S° x S7;Z) are given
respectively by:

® (g3 = X(Oé3®1®1)

e s =Xx(1®as®1)
* g7 = X(1®1®OC7)

The product of these generators produce generators of higher degrees,
ie., 8,10, 12 and 15, in the cohomology ring H* (53 x §5 x S7;Z). Let
us compute some products of the elements:

B = x(we1e)Ux(we1el)
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x[(a321®1) (3®1®1)]
x(@i®1®1)

and a similar result for a% and a%.

aza5 = x(3®101)Ux(1®as®1)
x[(az®1®1)- (1@as1)]
(1) % (3@ as®1)
= X(az®as®1)

asa3 = x(1Qas01)Ux(i3®@1®1)
x[(1®as®1) (3011)]
(-1*° x (3@ a5 ®1)
= —azas

We have similar results for the other products too. The above cal-

culations show that we have an isomorphism H*(S3 x $° x §7;Z) =
Azlas, as, az].

Remark 7.3.10. It is easy to see that a similar result holds for the
cohomology ring of any (finite) product of odd dimensional spheres.

Example 7.3.11. By the Kiinneth formula we have the following ring

isomorphism:

H*(RP® x RP*;Z/2Z) = H"(RP%;Z/2Z) @z, H(RP*;Z/2Z)
= Z/ZZ[[X] Rz /27 Z/ZZ[ﬁ]
= Z/2Z[a, ]

where « and  are generators of degree 1, and they commute since we
work with Z /2Z-coefficients.

Example 7.3.12. Let us now investigate if the spaces CP® and S? x S* x
S are homotopy equivalent. Fortunately, there is an easy answer to this
question. Consider the usual CW structure for CP® and the product
CW structure for S? x S* x S®. Both spaces have cells only in even
dimensions, but CP? has one cell in dimension 6, whereas $2 x §* x §°
has two cells in dimension 6. It follows that H6(CP6) = Z, whereas
Hg(S? x S* x S%) = Z® Z. So CP® and S? x S* x S° are not homotopy
equivalent. A different approach to answer the question would be to
show that the cohomology rings for these spaces are not isomorphic.
We will do this in the following example.

Example 7.3.13. Let us show that, if n > 1, the spaces
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n(n+1)

CP 2z and $?2 x S* x .- x §%
are not homotopy equivalent. Consider the following cases:
e If n = 1, then CP! is homeomorphic to S2.

e If n = 2, then both the spaces CP? and S? x S* have one cell in each
of the dimensions {O, 2,4, 6}. Thus they also have the same cellular
chain/cochain complex and, in particular, their homology/cohomol-
ogy groups are isomorphic. We will, however, distinguish these
spaces by their cohomology rings.

e If n > 3, then CP" has one cell in each of the even dimensions
{0,2,4,...,2n}, but the cell structure of §2 % 6% x ... x §2 ig differ-
ent from that of CP”" since, for example, 2 % §% x ... x §2" has two
6-cells. As both spaces have cells only in even dimensions, we can
already conclude that they have different homology and cohomology
groups since they have different cell structures.

We will now show that for n > 1 the two spaces have non-isomorphic
cohomology rings. First, the Kiinneth formula yields that:

H*(S% x §* x - .- x 82", 7)
~ H*(S%Z) @z H*(S4Z) ®z - - @z H* (S*; Z)
So a degree 2 element in this ring looks like x(1 ®1®1®---®1),
where a € H?(S?). The square of this element is:
x@R101® --®1)]? = X[@Ee1®l®- - -®1)?
= x(@R101®---01)

. . n(n+1)
since a> € H*(S?) = 0. However, in the case of CP~ 2, we know that

square of a non-zero degree 2 element is a non-zero degree 4 element.
Hence the cohomology rings of the two spaces are not isomorphic.

Example 7.3.14. Let us use cup products and the Kiinneth formula in
order to show that S" VvV S is not a retract of S” x S™, for n,m > 1.
First, consider the product CW structure on S§” x §™: it consists of cells
{e,e™, e, ™t} with attaching maps ¢ : de™ — €¥ and ¢’ : de”" — ¢°
coming from the factors. Hence S" \V §™ is a subset of 5" x S§™. (Note
that we also allow the case n = m.) Next, suppose by contradiction that
there is a retract
r:S"x §"— S§"v S

So,ifi: S" Vv S™ — S" x §™ denotes the inclusion, then the composition
r oi is the identity map on S vV §™. It follows that the cohomology map
(roi)* =i* or* is the identity, so (with Z-coefficients)

o H*(S™ v S™) —s H*(S™ x S™)
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is a monomorphism. By the Kiinneth formula, we have a ring isomor-
phism
X
H*(S") ® H*(S™) = H*(S" x §™).

Hence, a non-zero element in H"(S" x §™) is of the form a x 1 :=
x(a®1), with a € H"(S") a non-zero class. Similarly, a non-zero
element in H™(S" x §™) is of the form 1 x b := X (1® b), for some non-
zero class b € H™(S™). Let us now consider the product of non-zero
elements 2 x 1 € H"(S" x §™) and 1 x b € H™(S" x §™) in the ring
H*(S" x §™). We get:

(ax1)U(lxb)=x(a®1)Ux(1®Db)
=x[a®1) - (1b)]
= x(a®b) (7.3.6)
=axb
#0,

since a®b # 0in H*(S") ® H*(S™). We also have a ring isomorphism
H*(S" v S™) = H*(S") @ H*(S™).

Leta, p € H*(S" V S™) be the generators of degree 1 and m, respectively.
Then
aUB e H"™M(S" v S™M) =0.
On the other hand, since r* is a monomorphism, the classes r*(«) and
r*(B) are non-zero elements of degree n and, resp., m in the cohomology
ring H*(S" x §™), so by the above calculation, their product is non zero.
But
r(a)Ur*(B) =r"(aUp) =r"(0) =0,

which gives us a contradiction.

Kiinneth exact sequence and applications

In this section, we provide the necessary background for Kiinneth-type
theorems.

Let us fix coefficients in a PID ring R.
Given two chain complexes (C,,ds) and (C,,d,) of R-modules, we
define (C ® C’), to be the complex with:

n

(Col)=PCeC,) (7:3.7)
p=0

and boundary map d,, : (C®C")y — (C®C’),-1 whichon C, ® C;,_,,

is given by:

dn(a®b) = (9pa) @b+ (1) (a ®9;,_pb). (7.3.8)
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Then we have:

(dod)(a®b) = d[(@a)®b+ (—1)P(a®d'b)]
(0%a) @ b+ (—=1)P"1(9a) ® (9'b)
)

1 [( 0) @ (3'0) + (—=1)Pa @ (a%)}

+ (=
= 0,
where we use that 9> = 0 = 92. So {(C ® C')s,ds} is a chain complex.

It is therefore natural to ask the following question:

Question 7.3.15. How is the homology H.((C ® C’)s) related to H,(C,)
and H,(C,)?

The answer is provided by the following homological algebra result:

Theorem 7.3.16 (Kiinneth exact sequence). Let R be a PID, and assume
that for each i, C; is a free R-module. Then for all n, there is a split short exact
sequernce:

0 — @ (Hp(Ce) ®r Hu—p(C,)) — Ha((C®C)a)
p

— @ Torr (Hy(Ca), Hy—p-1(C.)) — 0 (7.3.9)
p

In what follows we discuss several applications of Theorem 7.3.16.

Kiinneth Formula for homology.

Let X and Y be two spaces, and let C, and C, denote the singular
chain complexes of X and Y, respectively. Then it is not hard to see
that the singular chain complex Co(X X Y) of X x Y is chain homotopy
equivalent to (C ® C')., so they have the same homology groups. We
thus have the following important consequence of Theorem 7.3.16:

Corollary 7.3.17 (Kiinneth Formula for homology). If X and Y are
topological spaces, then the following holds (with R-coefficients):

n n—1
Hy(X xY) 2P (Hp(X) ® Hy—p(Y)) & €D Tor (Hp(X), Hy—p-1(Y)).
p=0 p=0

(7.3.10)
In particular, if all homology groups of X or Y are free R-modules, then:

(X xY) @ Hy(X) @ Hy—p(Y). (7.3.11)

As a consequence of Corollary 7.3.17, we have:

Corollary 7.3.18. If the Euler characteristics x(X) and x(Y) are defined,
then x(X x Y) is defined, and:

X(X X Y) = x(X) - x(Y). (7.3.12)



CUP PRODUCT IN COHOMOLOGY

Universal Coefficient Theorem for homology

The Universal Coefficient Theorem for homology can be seen as a conse-
quence of Theorem 7.3.16 as follows: take C, to be the singular chain
complex of X and let C,, to be the chain complex defined by: C;, = 0 if
n#0,C, =R, and 9;, = 0 for all n > 0. We then get by Theorem 7.3.16
that:

Hy(X;R) = (Hu(X) ® R) @ Tor(H,_1(X), R). (7.3.13)

Remark 7.3.19. Note that (7.3.13) can also be obtained from (7.3.10) by
taking Y to be a point.

Kiinneth formula for cohomology
Finally, we also have the following cohomology Kiinneth formula:

Corollary 7.3.20. Kiinneth formula for cohomology
If R is a PID, and all homology groups H;(X; R) are finitely generated, then
there is a split exact sequence (with R-coefficients):

n
0— P (H/(X) @ H" P(Y)) — H"(X xY)
p=0
n+1
— P Tor (HP(X), H* P*1(Y)) — 0.

p=0

Moreover, if all cohomology groups H'(X) of X (or Y) are free over R, we get

the following isomorphism:

H"(X x Y) = é HP(X) @ H"P(Y). (7.3.14)
p=0

Proof. (Sketch.) Let us indicate how this result is obtained from Theo-
rem 7.3.16. We would like to apply the Kiinneth exact sequence to the
chain complexes defined by:

C_y:=C"X;R), 0—y :=0%
and
c',=C"Y;R), 9", := .
However, note that C; and C; are not necessarily R-free. Indeed,
C"(X;R) = Homg(Cn(X;R), R),

but C,(X;R) is not necessarily a finitely generated R-module. In or-
der to get around this problem, the idea is to replace the chain com-
plex Co(X; R) by a chain homotopic one, which has finitely generated
components. Here is where the assumption that H;(X; R) are finitely
generated is used. O
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Exercises

1. Are the spaces S? x RP* and $* x IRP? homotopy equivalent? Justify
your answer!

2. Using cup products, show that every map S¥*/ — Sk x S! induces the
trivial homomorphism Hy;(S**!) — Hy;(S¥ x S!), assuming k > 0
and [ > 0.

3. Describe H*(CP*®/ CPL; Z) as a ring with finitely many multiplica-
tive generators. How does this ring compare with H*(S® x HP®; Z)?

4. Show that the two cohomology rings H*(RP* v §%*+1;7Z) and
H*(RP?**1;Z) are isomorphic. (Recall that the Z/2Z-cohomology
rings of these spaces are not isomorphic.)

5. Show that if H,(X;Z) is finitely generated and free for each #, then
H*(X;Zp) and H*(X;Z) ® Z, are isomorphic as rings, so in particular
the ring structure with Z-coefficients determines the ring structure with
Z.,-coefficients.

6. Show that the cross product map H*(X;Z) ® H*(Y;Z) — H*(X x
Y;Z) is not an isomorphism if X and Y are infinite discrete sets.

7. Show that for n even S" is not an H-space, i.e., there is no map
p:S" x §" — S" so that poiy = idgn and y o iy = idgs, where iy, iy are
the inclusions on factors.

8. Let A be the union of two once linked circles in S, and B be the
union of two unlinked circles. Show that the cohomology groups of
S3\ A and S®\ B are isomorphic, but their cohomology rings are not.

9. Compute the ring structure of H*(T";Z), where T" is the torus of
dimension 7 (i.e., a product of n circles S'). Do the same for H*(T" \
{x};Z), where x € T" is any point.



8
Poincaré Duality

8.1 Introduction

In this chapter, we show that oriented n-manifolds enjoy the following
very special symmetry on their (co)homology groups:

Theorem 8.1.1. Let M be a closed (i.e., compact without boundary), ori-
ented and connected manifold of dimension n. Then for all i > 0 we have
isomorphisms:

H;(M;Z) = H'{(M; Z). (8.1.1)
In particular, we get:
Corollary 8.1.2. For all i > 0, the isomorphisms

8.1.1) (u

(8.1. , T
Hi(M;Q) = H"'(M;Q)

IR

Hom(H,-{(M;Q),Q)  (8.1.2)
yield a non-degenerate bilinear pairing
H;(M;Q) x H,—{(M;Q) — Q.
Hence the complementary Betti numbers of M are equal, i.e.,
Bi(M) = Bu—i(M).

In the next section we will explain in more detail the notion of
orientability of manifolds. Later on, we will describe explicitly the
nature of the isomorphism (8.1.1) by using the cap product operation N,
i.e., we will show that it is realized by

N[M] : H" {(M; Z) — H;(M; Z), (8.1.3)

where [M] € H,(M;Z) is the “fundamental (orientation) class" of the
manifold M.
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8.2 Manifolds. Orientation of manifolds

Definition 8.2.1. A Hausdorff space M is a (topological) manifold if any
point x € M has a neighborhood U, homeomorphic to R" (where such a
homeomorphism takes x to 0).

Let us now compute the local homology groups of a manifold M at

some point x € M:

(1)
H(M, M\ {x};Z) & Hy(Uy U, \ {x};Z)

—
N
~—

H;
Hy(R",R"\ {0};Z)

14

—
w
=

Hi—1(R"\ {0};Z) (8.2.1)
H; 1(8"2)
)z, ifi=n
0, otherwise,
where (1) follows by excision, (2) by using the homeomorphism U, =

R", (3) by the homology long exact sequence of a pair, and (4) by using
a deformation retract.

1

—
S
=

1%

Definition 8.2.2. The dimension of a manifold M, denoted dim(M), is the
only non-vanishing degree of the local homology groups of M.

Definition 8.2.3. A local orientation of an n-manifold M at x € M is a
choice py of one of the two generators of the local homology group Z. =
Hy(M,M\ {x};Z).

Remark 8.2.4. A local orientation iy at x € M induces local orientations
at all nearby points y, i.e., if x and y are contained in a small ball B,
then we have induced isomorphisms:

s € Z = Hy(M, M\ {x};Z) & H,(M,M\ B;Z)
= Hy(M,M\{y};Z) = Z € uy,

where the above isomorphisms are induced by deformation retracts.

Definition 8.2.5. A (global) orientation on an n-manifold M is a continuous
choice of local orientations, i.e., for every x € M there exists a closed ball
B C Uy = R" and a (generating) class ug € Hy,(M, M\ B;Z) such that
py : Hi(M, M\ B;Z) — H,(M, M\ {y}; Z) takes pp to p, forall y € B.

Definition 8.2.6. The pair consisting of manifold and orientation is called an
oriented manifold.
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Notation: Let M be an n-manifold and K C L C M be compact subsets.
Consider the map induced by inclusion of pairs:

ok : Hi(M, M\ L; Z) — H;(M, M\ K; Z).

Then for a € H;(M, M\ L;Z), px(a) is called the restriction of a to K.

In the above notations, we have the following important result:

Theorem 8.2.7. For any oriented manifold M of dimension n and any compact
K C M, there is a unique pug € H,(M, M\ K;Z) such that py(px) = px
forall x € K.

An immediate corollary of the above theorem is the existence of the
fundamental class of compact oriented manifolds. More precisely, by
taking K = M in Theorem 8.2.7, we get the following;:

Corollary 8.2.8. If M is a compact oriented n-manifold, there exists a unique
Unm € Hy(M; Z) so that px(pup) = sy for all x € M.

Definition 8.2.9. The homology class [M] := up of Corollary 8.2.8 is called
the fundamental class of M.

The proof of Theorem 8.2.7 uses the following:
Lemma 8.2.10. If K is a compact subset of an n-manifold M, we have:
(i) Hi(M,M\K;Z) =0ifi > n.
(i) a € Hy(M, M\ K; Z) is equal to 0 if and only if px(a) = 0 for all x € K.

Before proving the above lemma, let us finish the proof of Theorem
8.2.7.

Proof. (of Theorem 8.2.7)
For the uniqueness part, if u} and p% are as in the statement of the
theorem, then for all x € K we have p,(uk — y%) = px — px = 0. Then
by using Lemma 8.2.10(ii), we get that u} — u% =0, or uk = 2.

We prove the existence part in several steps:

Step I: If K is contained in a sufficiently small euclidean closed ball (of

finite positive radius) B centered at a point y € M, as in the definition
of orientability, then for all x € K, the composition

H.(M,M\ B;Z) * H,(M, M\ K;Z) 2 H,(M,M\ {x};Z) (8.2.2)

is an isomorphism. Then set jig := px(up), with up € H,(M, M\ B; Z)
as in the definition of orientability.
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Step II: If the theorem holds for compact subsets K7 and K; and for their

intersection K7 N Ky, we show that it holds for their union K = K; U K».
Indeed, the Mayer-Vietoris sequence for the open cover

M\ (K NKy) = (M\ Ky) U(M\ Ky),
with intersection
M\ K = (M\Ky) N (M\ Ko)
gives the long exact sequence:
0 — Hy(M, M\ K;Z) % Hy(M, M\ Ky;Z) & Hy (M, M\ Kp; Z)
5 Hy (M, M\ (K N K Z) — ...

where ¢(a) = px, (a) ® pk,(a) and (b @ c) = pk,nk, (b) — PK K, (©)-
By our assumption, there exist unique g, € Hy(M, M\ Ky;Z) and

1k, € Hy(M, M\ Ky; Z) restricting to local orientations at points x € K;
and, resp., x € K3, hence

Px © PKNK, (VK,') = PX(P‘Ki) = Hx (8'2'3)
forall x € KN K, and i = 1,2. Then we have
Px(PKsz(lflK]) — PK;NK; (,MKZ)) = Ux — Ux = 0 (8.2.4)
for all x € K31 N Ky. So by Lemma 8.2.10 we get that
1,0(]1](1 @ .uKz) - PKsz(P‘Kl) - PKsz(P‘Kz) =0, (8.2.5)
ie, pk, ® pk, € kerip = Im ¢. Since ¢ is injective, there exists a unique
ux € Hi(M,M\ K;Z)

such that ¢(ug) = g, ® pk,- By the uniqueness part, we also have that
px restricts to local orientations at points x € K.

Step III: For an arbitrary compact K, we write K as a finite union
K =K UKy U...UK,; with each K; as in Step 1. Then the claim follows
by induction on r by using Step II. O

Let us now get back to proving Lemma 8.2.10:

Proof. (of Lemma 8.2.10)
The proof is done in several steps, as indicated below.

Step I: Assume that M = R" and K is a convex compact subset. Let
B be a large ball in R” with K C B, and let S = 9B be the bounding




sphere. Then for all x € K, both M\ K and M \ {x} deformation retract
to S. So we have:
H;(M,M\ K;Z) = H;{(M,M\ {x};Z)
H;(R", 5" 1, 7)
Hi_1(S" % 2) (8.2.6)
Z fori=mn
0 otherwise.
Step II: We next show that if the Lemma holds for compact sets K,

K, and for their intersection K; N K5, then it holds for K := K; U K.
Indeed, we have the Mayer-Vietoris sequence

14

o~

o Hiq (M, M\ (K1 MKy ); Z) — Hi(M,M\ K;Z) 5

Hi(M,M\Kl;Z)EBH,‘(M,M\Kz,'Z) i) H,‘(M,M\ (Kl ﬁKz);Z) —

If i > n, we have by our assumption that H; 1 (M, M\ (K1NK3);Z) =0,
H;(M, M\ Ky;Z) = 0and H;(M, M\ Kp; Z) = 0. Therefore, H;(M, M \
K;Z) = 0.

If i = n, the Mayer-Vietoris sequence takes the form

0 — Hy(M,M\ K;Z) % H,(M, M\ K1;Z) & Hy(M, M\ Kp; Z)

by Hy(M, M\ (Ky NKp); Z) — ...

with ¢ injective. So for a € H,(M, M \ K;Z), we have the following
sequence of equivalences:

a=0 <= 0=¢(a) = pk, (a) ® pk, (a)
<= pk,(a) =0and pk,(a) =0
<= papk,(a) =0Vx € Ky, and pypok,(a) =0Vy € Ky (8.2.7)
(since, by assumption, the lemma holds for K; and K3)
< px(a) =0, Vx € K1 UKs.
Step III: If M = R" and K = K; UKy U - - - U K, with each K; convex and

compact (which also implies that each K; N K; is convex and compact),
then the lemma holds for K by Step I and Step II.

Step IV: Assume that M = R” and K is an arbitrary compact subset

in R". Choose a compact neighborhood N of K in R". Then for
any a € H;(M, M\ K;Z) there exists a' € H;(M, M\ N;Z) such that
pk(a’) = a. Indeed, if v is a cycle representative of a, we have that
v € Ci(R") and 9y € C;_1(R" \ K). So 9y NK = @. Choose N small
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enough so that 0y N N = @. Next, we cover K by a union of closed
balls B; such that B; C N and B; N K # @. Then pk factors as

PK

Hi(Rn/]Rn \ N/Z) > Hi(]Rn/ R" \ K,Z)

Q‘é

H;(R",R"\ U;B;; Z)
If i > n, then H;(R",R" \ U;B;;Z) = 0 by Step III. So for any a €
H;(R",R" \ K; Z), we have that
a= pK(a/) = PK(PUiBi (ﬂ/)) =0.

If i = n, then py(a) = 0 for all x € K implies by a deformation retract
argument that py(a) = 0 for all x € U;B;. By using Step III, we then get
that py;p,(a") = 0. Hence we have a = px(py.,(a")) = 0.

Step V: If K is contained in some euclidean neighborhood in (arbitrary)

M, we have by excision
H;(M,M\K;Z) = H;(R",R" \ K; Z). (8.2.8)

So the Lemma holds for K by Step IV.

Step VI: Finally, note that any compact subset K of M can be written
as a union K = Ky UKy U... UK, with each K; as in Step V. Then the
Lemma follows by using Step V, Step II and induction. O

Exercises

1. Show that every covering space of an orientable manifold is an
orientable manifold.

2. Given a covering space action of a group G on an orientable manifold
M by orientation-preserving homeomorphisms, show that M/G is also
orientable.

3. For amap f : M — N between connected closed orientable n-
manifolds with fundamental classes [M] and [N], the degree of f is
defined to be the integer d such that f,([M]) = d[N], so the sign of the
degree depends on the choice of fundamental classes. Show that for
any connected closed orientable #n-manifold M there is a degree 1 map
M — S".

4. Show that a p-sheeted covering space projection M — N has degree
p, when M and N are connected closed orientable manifolds.



5. Given two disjoint connected n-manifolds M; and My, a connected
n-manifold M#M), their connected sum, can be constructed by deleting
the interiors of closed n-balls By C M; and B, C M, and identifying
the resulting boundary spheres 9By and 9B, via some homeomorphism
between them. (Assume that each B; embeds nicely in a larger ball in
M;.)

(a) Show that if M; and M, are closed then there are isomorphisms
Hi(Ml#Mz;Z) ~ Hi(Ml;Z) D Hi(Mz,'Z), for0<i<mn,

with one exception: If both M; and M, are non-orientable, then
H,_1(M#Mjy; Z) is obtained from H,,_1(My;Z) & H,,_1(My; Z) by
replacing one of the two Z;-summands by a Z-summand.

(b) Show that x(M#M,) = x(My) + x(Mz) — x(5") if M; and M, are
closed.

8.3 Cohomolgy with Compact Support

Let X be a topological space, and we work with Z-coefficients (unless
otherwise specified).
We define the compactly supported i-cochains on X by:

Ci(X) := U Ci(X, X\ K) c C{(X). (8.3.1)

K compact in X
Equivalently,

Ci(X) = {¢: Ci(X) = Z | 3 compact Ky C X
s.t. ¢ = 0 on chains in X \ Ky }.

Define a coboundary operator by

Sp(0) := @(d0),

and note that if ¢ € C.(X) vanishes on chains in X \ K, then d¢ is also
zero on all chains in X \ Ky, and so 8¢ € Cit1(X). Therefore we get a
cochain (sub)complex {C?(X),d°}.

Definition 8.3.1. The i-th cohomology of X with compact support is defined
by
H{(X) == H'(C{(X),8%).

In what follows, we give an alternative characterization of the coho-
mology with compact support, which is more useful for calculations.
We begin by recalling the notion of direct limit of groups.
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Definition 8.3.2. Let G, be abelian groups indexed by some directed set I,
i.e., I has a partial order < and for any w, B € I, there exists v € I such
that &« < v and B < <. Suppose also that for each pair « < B there is a
homomorphism fupg : G — Gg such that fun = idg, and fuy = fp, © fup.
Consider the set

oG/ ~

where the equivalence relation ~ is defined as: if x € Gy, x' € Gy, then
x ~ x"if fay(x) = for, (") with a, &’ <. For x € Gy and x" € Gy, the
equivalence classes [x] and [x'] have representatives lying in the same G,
with a, o’ < vy, so we can define

[x] + [%] = [fay () + fary (x)]-

This is a well-defined binary operation, and it gives an abelian group structure
on the set I1,Gy/ ~. The direct limit of the groups G, is then the group
defined as:

lim Gy = MGy / ~ (8.3.2)

el
Remark 8.3.3. If | C I so that Va € I,38 € ] with a« < B, then
lim Gy = lim Gg. In particular, if ] = {B} (i-e, I contains a maximal
acl €
element), tﬁhe]n hg Gy = Gﬁ.

acl

We can now prove the following result:

Proposition 8.3.4. There is an isomorphism

H(X) 2 lim H'(X, X\ K) 833)
Kel

where I := {K C X| K compact}.

Proof. First note that I is a directed set since it is partially ordered by
inclusion, and the union of two compact sets is also compact. Moreover,
if K C L are compact subsets of X, then there is a homomorphism
fxr : H(X, X\ K) = H'(X,X\ L) induced by inclusion. Hence the
direct limit group lim,  H i(X, X\ K) is well-defined.

Each element of lim, _, H' (X, X \ K) is represented by some cocycle
¢ € C(X,X \K) for some compact subset K of X. Regarding ¢ as
an i-cochain with compact support, its cohomology class yields an
element [p] € H(X). Moreover, such a cocycle ¢ € C'(X, X \ K) yields
the zero element in li_n;Hi(X,X \ K) if and only if ¢ = i for some
¢ € C1(X, X\ L) with L D K, and so [¢] = 0 in H:(X). 0

Remark 8.3.5. If X is compact, then Hé(X) = Hi(X), for all i > 0, since
in this case there is a unique maximal compact set K C X, namely X
itself.



Example 8.3.6. Let us compute the cohomology with compact support
of R". By Proposition 8.3.4,

H((R") = lim H'(R", R" \ K),
K
where the direct limit is over the directed set of compact subsets of R”.
Note that it suffices to let K range over closed balls By of integer radius

k centered at the origin since each compact K C IR" is contained in such
a ball. So we have that

thi(]R”,]R" \K) = lim H'(R",R"\ By).
K kEZZU
Moreover, we have isomorphisms
H"(R",R"\ By) = H"(R", R" \ Bxy1)
induced by inclusion, since for all k:
Z ifi=n
0 otherwise.

H'(R",R"\ B) = H'(R",R" \ {0}) = {

Altogether,

HY(R") = limy H'(R", R"\ K) = lim H/(R",R"\ By)

kEZZO
Z ifi=n
0 otherwise.

Remark 8.3.7. It follows from the previous example that the cohomol-
ogy with compact support H} (—) is not a homotopy invariant.

Remark 8.3.8. Let X = X U £ be the one point compactification of X.
Then
H{(X) = H{(X, %) = H(X). (8.3.4)

For example, H:(R") = H!(S"). This follows from the following gen-
eral fact. If U is an open subset of a topological space V, with closed
complement Z := V \ U, then there exists a long exact sequence for the
cohomology with compact support

-+ — HY(U) — H(V) — H{(Z) - H (U) — - -
If we apply this fact to the case X = XUZ, we get a long exact sequence
-+ = HY(X) = HY(X) — Hi(%) = -

Since X and £ are compact, this yields that H.(X) = H/(X, %) = H'(X),
as claimed.

POINCARE DUALITY

165



166 ALGEBRAIC TOPOLOGY

8.4 Cap Product and the Poincaré Duality Map

In this section we introduce the cap product, relating cohomology to
homology, which plays an essential role in defining the Poincaré duality
isomorphism.

Definition 8.4.1. We define the cap product operation
CH(X) @ Ca(X) = Cyi(X) (8.4.1)
as follows: for b € C'(X) and & € Cy(X), bN& € C,_;i(X) is defined by
a(bNg) = (aUb)() (8.4.2)
where a € C"(X).

Remark 8.4.2. In view of the definition of the cup product, one can
reformulate the above definition of the cap product as follows: if
o : Ay, — X is an n-simplex and b € C!(X), then

bNo= b(a‘ [v,,,,»,'--,vn]) : U|[v0,-~~,v,1,i] . (8'4-3)

€Z €Cu—i(X)
Moreover, for a,b € C*(X) and ¢ € C«(X) one has the identity
an(bng)=(aUb)NE.
The following result is a direct consequence of the definition:
Lemma 8.4.3. Forany b € C/(X) and & € Cy(X), we have:
A(bNE&) = (—~1)""6bN&+ bNOE. (8.4.4)
Proof. Forany a € C"i~1
a(a(bNg))

—~

X), we have
a(bng)

6aUb)(S)

3(aUb) — (—1)"1qU (Sb) (@)

Il
<,

—~

Il
/N

= (aUb)(32) - (-1)"""1a(6bN7)
= a(bNag) + (—1)"'a(6bNE).
O
As a consequence, the cap product descends to (co)homology:
Corollary 8.4.4. There is an induced cap product operation
H'(X) © Hy(X) = Hyi(X). (8.4.5)

Moreover, for a,b € H*(X) and ¢ € H.(X) one has the identity
an(bNg)=(aub)Ng.

Hence the cap product makes the homology H.(X) a module over the ring
H*(X).



Remark 8.4.5. A relative cap product
H'(X, A) @ Hy(X, A) & H,_i(X) (8.4.6)
can be defined as follows. First note that the restriction
C'(X, A) ® Cu(X) = Cyi(X)

of absolute cap product (8.4.1) vanishes on C'(X,A) ® C,(A), so it
induces:
Ci(X,A)®Cy(X,A) 5 C,p_i(X).

Since (8.4.4) still holds in this relative setting, we get a relative cap
product operation:

H'(X,A)® Hy(X,A) & H,_i(X).

The following result states that the cap product N is functorial. Its
proof is a direct consequence of the definition of cap products and is
left as an exercise:

Lemma 8.4.6. If f : X — Y is a continuous map, then

9N fi8 = f((ff@)NE) (8.4.7)

forall p € H'(Y) and & € Hy(X). This fact is illustrated in the following
diagram:

HI(X) @ Hu(X) —"— H, (X)

Aol

Hi(Y) ® Ha(Y) —"— H, i(Y)

Let us next move towards the definition of the Poincaré duality
map. Let M be a n-dimensional orientable connected manifold (not
necessarily compact), and let K C L C M where K, L are compact
subsets. Consider the diagram, with i the inclusion of pairs:

Hi(M,M\L) ® H,(M,M\L) —— H,_;(M)

] 3 |

Hi(M,M\K) ® H,(M,M\K) —"— H,_;(M)

By the functoriality of the cap product, we have for any ¢ € H'(M, M \
K) that:

(@) NpuL = @ Nix(pr), (8.4.8)

where pg and yj denote the orientation classes of Theorem 8.2.7. More-
over, the following identification holds:
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Lemma 8.4.7. For compact subsets K C L of M, we have:

ix(pL) = pk- (8.4.9)

Proof. The claim follows from the commutativity of the following di-
agram and the uniqueness of ug in H,(M, M \ K) which restricts to
local orientations py, Vx € K.

ux € Hy(M, M\ K) Hy(M, M\ x)

ur € Hy(M,M\ L)

Therefore, we have from (8.4.8) and (8.4.9) that:

(") = @ Nix(ur) = ¢ Nk, (8.4.10)

for all ¢ € H'(M, M \ K). Let us now recall from Proposition 8.3.4 that
we have an isomorphism:

H(M) = @H” (M, M\ K), (8.4.11)
K

where the direct limit on the right-hand side is taken over all compact
subsets K of M. We can now define the Poincaré duality map

HE(M) = H, (M) (8.4.12)

as follows: its value on ¢ € H.(M) is defined as ¢x N ug, where
px € H'(M, M \ K) is a representative of ¢ and ux € H,(M, M\ K) is
the orientation class defined by K (cf. Theorem 8.2.7). Note that the
Poincaré duality map (8.4.12) is well-defined (i.e., independent of the
choice of the representative ¢x) by the commutativity of the following
diagram (which follows from the identity (8.4.10)):

H (M, M\ K) H' (M, M\ L)

Npk NpL

Hn—i(M)

8.5 The Poincaré Duality Theorem

We have now all the necessary ingredients to formulate and prove the
main theorem of this chapter:



Theorem 8.5.1 (Poincaré Duality). If M is an n-dimensional oriented
connected manifold, then the Poincaré duality map:

; n
He(M) — H,—i(M)
is an isomorphism for all i.

Proof. Recall that on an element

peHi(M)= lim H(M,M\K),
KcX
K—compact

the Poincaré duality map takes the value ¢x N g, with px € H (M, M \
K) a representative of ¢, and g the orientation class of H, (M, M \ K).

The proof of the theorem will be divided into several steps. We first
show that the statement holds locally, then we glue the local isomor-
phisms by a Mayer-Vietoris argument.

Step I: We first show that the theorem holds for M = R".
Let By denote the closed ball of integer radius k in R". Then

. . Z ‘f | —
Hi(R") 2 lim H'(R", R" \ B;) & nre=n
in .
By 0 otherwise

and

Z ifi=n

0 otherwise.

H,_;(R") ~ {
The Universal Coefficient Theorem yields that

H"(R",R" \ B) = Hom(H,(R",R" \ B); Z).

So H"(R",R" \ By) is generated by some class a; so that a;(up ) =1 €
Z.let1 € H°(R") = Z be the generator. Then:

1= ar(pp,) = (1 a) (up) = 1ax N pgy)-
Hence a; N up, is a generator of Hy(R"). In particular, the map
Npg, : H'(R",R"\ B) — Hp(R")

is an isomorphism. Taking the direct limit over the By’s, we get an
isomorphism
H{ (R") = Ho(R"),

which by the above considerations coincides with the Poincaré duality
map. Also, both groups are trivial for i # 1, so the claim follows.
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Step II: Assuming the theorem holds for opens U, V C M and for their
intersection U NV, we show that it holds for the union UU V.
For this purpose, we construct a commutative diagram

<. — H{(UNV) —— Hi{(U)® H{(V) —— H(UUV) —> HF'(UNV) —> ---

8 8 8 8

= Hy(UNV) = Hyi(U) @ Hyi (V) — Hyi(UUV) —> Hyq(UNV) — -
(8.5.1)
Once the diagram is constructed, the claim follows by the 5-lemma.
The bottom row in (8.5.1) is just the Mayer-Vietoris homology sequence.
The top row of the above diagram can be constructed as follows. For
compact subsets K C U and L C V, consider the cohomology Mayer-
Vietoris sequence for the pairs (M, M \ K) and (M, M\ L):

.- = H(M,M\ (KNL)) = H(M,M\ K) & H(M,M\ L)
— H(M,M\ (KUL)) = ---

By excision, we get a long exact sequence:

> H(UNV,UNV\KNL) = H(U,U\K)®H (V,V\L)
— H(UUV,UUV\KUL) = ---

Taking direct limits over K C U and L C V, we get the top long exact
sequence in (8.5.1):

.- H(UNV) = H(U)®H(V) - H(UUV) = -

The commutativity follows by using the definition of the Poincaré dual-
ity map.

Step III: Assume M is a union of nested open subsets U, so that the
theorem holds for each U,. We show that the theorem holds for M.
First note that any compact subset in M (in particular, the support of
a singular (co)chain) is contained in some U,. Then we claim that the
following identifications hold:

H;(M) = lim H;(Ux) (8.5.2)
and
HL(M) = lim H{(Uy). (8.5.3)

o

This claim and Poincaré duality for each U, imply the Poincaré dual-
ity isomorphism for M, since the direct limit of isomorphisms is an
isomorphism. In order to prove the claim, we note that the inclusions
ig : Uy — M induce homomorphisms iy, : H;(Uy) — H;(M) so that
for Uy — Uy the following diagram commutes:



We therefore get a well-defined map
f: li%)nHl-(Ua) — H;(M).

We next show that f is an isomorphism.

e fisonto: any [¢] € H;(M) is represented by a cycle whose sup-
port is contained in a compact subset of M, thus in some U,. The
corresponding homology class in H;(U,) maps onto [¢].

* fis one-to-one: if { = 9y, for 7 € C;11(M), then ¢ is a cycle in some
Uy, but not necessarily a boundary in U,. On the other hand, 7 is
contained in some larger Up, so ¢ can be regarded as a boundary in
Ug. Therefore, [¢] = 0 € H;(Ug), hence it represents the zero class
in lin Hj(Un).

So (8.5.2) follows. The identification in (8.5.3) is obtained similarly.

Step IV: We next show that the theorem holds when M is an open
subset of R".

If M is convex, then M is homeomorphic to R", so the theorem holds
by Step L. If M is not convex, then M = Ucz_, Vi, with each V} open
and convex in R"”. By induction and Step II, the theorem holds for the

sets Uy = V43 U - - - U V. Note that {Uy }4 forms a nested cover of opens
for M, hence the theorem follows by Step IIL

Step V: Finally, we show that the Poincaré duality isomorphism holds

for an arbitrary M.

We first cover M by open sets V,, each of which is homeomorphic to
an open subset of R"”. We next choose a well ordering < of the index
set, which exists by Zorn’s lemma (if M has a countable basis, the we
can choose the positive integers as index set). Then the sets

Uy := | V.

B<a

form a nested open cover of M. So by Step III, it suffices to show that the
theorem holds for each U,. But U, = U ﬁ<“V5, and the theorem holds
for each Vj by Step IV. By Step I, Step III, and transfinite induction,
the theorem holds for each U, and the claim follows. O

POINCARE DUALITY

171



172 ALGEBRAIC TOPOLOGY

Remark 8.5.2. By taking coefficients in any commutative ring R, we can
prove the Poincaré duality isomorphism over R via the coefficient map
Z — R. Moreover, for R = Z /2, Poincaré duality holds even without
the orientability assumption.

As an immediate consequence of Theorem 8.5.1, we get the following;:

Corollary 8.5.3. If M is an n-dimensional closed oriented connected manifold,
then the map
HI(M) = Hyi(M)

defined by the cap product with the fundamental class of M, that is, ¢ —
¢ N [M], is an isomorphism for all i.

Exercises

1. Show that if M" is a connected, non-compact manifold, then

H;(M;Z) =0 fori > n.

2. Show that the Euler characteristic of a closed, oriented, (4n + 2)-
dimensional manifold is even.

3. Let M be a closed oriented manifold with fundamental class [M].
Consider the cup product pairing between cohomology groups of com-
plementary dimensions (after moding out by the corresponding torsion
subgroups):

(,):H(M;Z)/Torsion ® H"~'(M; Z)/Torsion — Z

given by (a,B) = (¢ UB, [M]). Here (, ) : H'(X;Z) @ Hy(X;Z) — Z
is the Kronecker pairing defined in Homework #1.

(i) Show that the cup product pairing is nonsingular in the following
sense: for each choice of a Z-basis {B1,-- -, Br} of the free abelian
group H"~'(M;Z)/Torsion, there exists a Z-basis {ay, -+ ,a,} of
H!(M;Z)/Torsion such that («;, Bj) = ¢ij. (Hint: Use the Universal
Coefficient Theorem and Poincaré Duality.)

(ii) As an application, re-prove the following facts about the ring struc-
tures on the cohomology of projective spaces:

(@) H*(RP";Zs) = Zs[x]/ (x"*1), x| =1,
(b) H*(CPZ) = Z[y)/(y"*'), |yl =2,
(0) H*(HP"Z) = Z[w]/(w"), |w| =4



4. Let M be a closed, oriented 4n-dimensional manifold, with funda-
mental class [M]. The middle intersection pairing

(,): H*(M;Z)/Torsion ® H*"(M;Z)/Torsion — Z

given by («, ) = (a U B, [M]) is symmetric and nondegenerate. Let
{ar,- -, } be a Z-basis of H*"(M; Z)/Torsion, and let A = (a;;) for
a;j := (a;,a;) € Z. Then A is a symmetric matrix with det(A) = £1, so
it is diagonalizable over R. Define the signature of M to be

o (M) := #(positive eigenvalues) — #(negative eigenvalues)
(a) Compute o(CP"), o(S? x S?).

(b) Show that the signature o(M) is congruent mod 2 to the Euler
characteristic x(M).

5. Show that if a connected manifold M is the boundary of a compact
manifold, then the Euler characteristic of M is even. Conclude that
RP?", CP2" HP?" cannot be boundaries.

6. Show that if M*" is a connected manifold which is the boundary of a
compact oriented (41 + 1)-dimensional manifold V, then the signature
of M is zero.

7. Show that if M is a compact contractible n-manifold then oM is a
homology (1 — 1)-sphere, that is, H;(dM; Z) ~ H;(S"~1;Z) for all i.

8. Let M be a closed, connected, orientable 4-manifold with fundamen-
tal group 711 (M) = Z/3 « Z /3 and Euler characteristic (M) = 5.

(a) Compute H;(M,Z) for all i.
(b) Prove that M is not homotopy equivalent to any CW complex with
no 3-cells.
9. Let M be a closed, connected, oriented n-manifold and let f : S — M
be a continuous map of non-zero degree, i.e., the morphism
fv 1 Hy(S;Z) — Hy(M; Z)

is non-trivial. Show that M and S” have the same Q-homology.

10. Show that there is no orientation-reversing self-homotopy equiva-
lence CP?* — CP?".
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8.6 Immediate applications of Poincaré Duality

In this section we derive several applications of the Poincaré duality
isomorphism of Theorem 8.5.1. (In particular, we provide answers to
some of the exercises listed in the previous section.)

Proposition 8.6.1. If M" is a closed odd dimensional manifold, then
x(M) =0.

Proof. Letn =2k+1.
If M is oriented, then (with Z-coefficients):

rkH; (M) P2 =i vy Y€ e, (M),
So:
2k+-1 ) k . .
() = X (1) mkH () = 3 (1) (1)) ok ) =

If M is non orientable, the Poincaré duality isomorphism holds with
Z./2-coefficients, and we get:
2k+1
K(M) := Y (1) rkH(M; Z)
n=0
() 2t ‘
= Y (1) -dimg,, Hi(M; Z/2)
n=0
= 0[

where the vanishing follows as before by Poincaré duality (over Z/2).
The equality (x) follows from the Universal Coefficient Theorem:

H'(M,Z/2) = Hom(H;(M),Z/2) ® Ext(H;_1(M), Z/2).
Hence,
¢ a Z-summand of H;(M;Z) contributes

- Hom(Z,Z/2) = Z/2 to H(M;Z/2), and
- Ext(Z,Z/2) =0to HT\(M;Z/2).

e aZ/m summand of H;(M;Z), with m odd, contributes:

- Hom(Z/m,Z/2) = 0 to H'(M;Z/2), and
- Bxt(Z/m,Z/2) = 0 to H*(M;Z/2).

e a Z/m summand of H;(M;Z), with m even, contributes:

- Hom(Z/m,Z/2) = Z/2 to H(M;Z/2), and
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- Ext(Z/m,2/2) = Z/2 to Hi+1(M;Z/2), so these Z /2 contribu-
tions cancel out in Y ;(—1) - dimg , H (M; Z /2).

Finally, note that dimg /» H;(M;Z/2) = dimg,, H(M;Z/2), so the

claim follows. O

Proposition 8.6.2. If M" is a closed, oriented, connected manifold, then
Torsion(H,_1(M)) = 0.

Proof. Indeed,

Torsion(H;(M)) (FD) Torsion(H" ™' (M))

U Ext(H,_1_i(M), Z)

= Torsion(H,_1_;(M))
Since M is connected, Hy(M) is free, so the claim follows. O

We will show later the following:

Proposition 8.6.3. If M" is a closed, connected, non-orientable manifold,
then
Torsion(H, 1(M)) = Z/2
and
H"(M)=2Z/2.

The second part of Proposition 8.6.3 follows from the Universal Coeffi-
cient Theorem and the following consequence of Poincaré duality (to
be proved in the next section, see Corollary 8.7.11:

Lemma 8.6.4. If M" is an n-dimensional closed, connected manifold, then

Hy (M) = Z , if Mis oriented
! 0 , if M isnon-oriented.

8.7 Addendum to orientations of manifolds

Before we explain the proof of Proposition 8.6.3, we need to elaborate
on orientations of manifolds.

Recall that if M" is a n-manifold, a local orientation at x € M is a
generator iy € H,(M, M\ x) = Z. We say that M is oriented if there
exists a global orientation, i.e., a continuous choice x — p, of local
orientations. This means that for all x € M, there is a closed euclidean
ball By (of finite positive radius) around x so that

Z = H,(M,M\ By) % H,(M,M\y)

sends the generator pp, to the local orientation class i, for all y € By.
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Proposition 8.7.1. Any manifold M (oriented or not) has an oriented double
cover M.

Proof. (Sketch)
Define

M := {jx| x € M, piy a local orientation of M at x}

and 77 : M — M by p, — x. Clearly, ris a2 : 1 map.

We need to put a topology on M so that it becomes a manifold and
7T is a covering map. For an open ball B C R" C M of finite radius,
with a generator yip € H,(M, M \ B), define

U(up) = {px € M| x € B, px = px(pp)},

where py denotes the natural map H,(M,M \ B) — H,(M, M \ x).
Then

71 (B) = U(pup) UU(~pp)
and both U(up) and U(—pup) are in bijection to B. Moreover, it can be
shown that the sets {U(yp) } p form basis of opens for the topology of

M so that 7 is continuous. So 7 is 2-fold covering and M is manifold.
Moreover, M is orientable. Indeed, we have,

Hn(M/M\Vx) = Hy(U(pp), U(pp) \ pix) = Hu(B, B\ x)

~ H,(M, M\ x). 67.1)

So at the point yy € M there exists a canonical local orientation
fix € Hy(M,M\ pix) 2 Z

corresponding to i, under the above isomorphism (8.7.1). The consis-
tency of such local orientations follows by construction. O

Example 8.7.2.(a) The oriented double cover of M = RPZis M = S2.

(b) The oriented double cover of the Klein bottle K is the 2-torus T2.

Proposition 8.7.3. If M is a connected manifold, then M is orientable if, and
only if, M has two components. In particular, if 7ty (M) = 0 or has no index
2 subgroup, then M is orientable.

Proof. The oriented double cover M can have one or two components.
If M has two components, each is oriented and homeomorphic to M,
so M is orientable. Conversely, if M is orientable, it can have exactly
two orientations at each point, each defining a sheet of M. O

Example 8.7.4. CP" is orientable.



The oriented double cover M can be embedded in a larger covering
space Mz of M as follows. Let

Mz ={ax| xeM, ay € Hy(M,M\ x) =Z}.
We then have the Z-fold projection map
gy : My - M

defined by ay — x. A basis of opens {U(B)} for Mz can be defined by
the following recipe: for an open ball B C R" C M, set

U(B) = {ay | x € B,ay = px(ap) for ag € Hy(M,M\ B) =2 Z)}

with py : H,(M, M\ B) 5 Hy (M, M\ x) induced by inclusion as before.
For any k € Z, we then get a subcover My C Mz by selecting +k in
the fibre above x. So
Mz = | M
k>0
with Mg = M, My = M_;, and My = M, for any integer k.

Definition 8.7.5. A section of 7z : Mz — M is a continuous map & : M —
My defined by x — ay € Hy(M, M\ x) = Z. An orientation of M is a
section of Tz assigning py to each x € M.

One can generalize the definition of orientability by replacing Z
with any commutative ring R with unit. Note that by the universal
coefficient theorem for homology, we have:

Hy(M,M\ x;R) = H,(M,M\x) ® R=Z®R = R.
The covering Mz can be generalized to:
Mg ={ax| x €M, ay € H,(M, M\ x;R) = R}.

The corresponding covering map 7mg : Mg — M is defined by ay — x
(so the fibre over x € M is R). Each r € R determines a subcovering
M, by selecting the points £, @ r € H,(M, M \ x; R) in each fibre.
If r is an element of order 2 in R, then M, is a copy of M. (Indeed,
Uy @1 = py ® £r = p ®r.) Otherwise, M, is homeomorphic to the
oriented double cover M. We have

MR = U MV/
reR
with all M, being disjoint except for M, = M_,, and M, = M if 2r = 0.
Definition 8.7.6. An R-orientation of an n-dimensional manifold M is a

section of My assigning to each x € M a generator u of H,(M, M \ x;R) =
R.
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Remark 8.7.7. Note that a generator of R is an element u so that Ru = R.
Since R has a unit, this is equivalent to saying that u is invertible in R.

Remark 8.7.8. An orientable manifold is R-orientable, for all commuta-
tive rings R with unit. A non-orientable manifold is R-orientable iff R
contains a unit of order 2. Thus every manifold is Z/2-orientable.

We are now ready to prove the following result, which shows that
orientability of a closed manifold is reflected in the structure of its
homology:

Theorem 8.7.9. Let M be a closed connected n-manifold. Then:

(a) if M is (R-)orientable, then H,(M;R) — H,(M, M\ x;R) = R is an
isomorphism for any x € M.

(b) if M is not orientable, then H,(M;R) — H,(M, M \ x; R) = R is one-
to-one, with image the group generated by the set of elements of order 2 in
R.

(c) Hi(M;R) =0, forall i > n.

The proof of Theorem 8.7.9 is based on the Theorem 8.2.7 and Lemma
8.2.10 (which we formulate here with R-coefficients in parts (a) and (b)
below), together with a slight generalization of Theorem 8.2.7 (see part
(c) below) which holds without the orientability assumption:

Lemma 8.7.10. Let M be a connected n-manifold and K a compact subset of
M. Then:

(a) if M is R-oriented, there exists a unique pugx € H, (M, M \ K; R) such that
px(pik) = px € Hy(M, M\ x;R), for all x € K.

(b) Hi(M,M\ K;R) =0 fori > n, and a class ax € H,(M, M \ K;R) is
zero iff px(ag) = 0 for any x € K.

(c) if x — ay is a section of the covering space Mg — M, then there is a unique
class ax € Hy(M, M \ K; R) so that px(ag) = ay € Hy(M, M\ x;R),
forall x € K.

Note that the proof of part (c) of the above lemma is almost identical
to that of Theorem 8.2.7 (with the uniqueness following from part (b)),
with the only easy modification appearing in Step I of loc.cit. (where the
orientation assumption used in the proof of Theorem 8.2.7 is replaced
by the continuity of the section). We leave the details to the reader.

To deduce parts (a) and (b) of Theorem 8.7.9, choose K = M in the
above lemma, and let I'r (M) be the set of sections of the covering map
Mg — M. With respect to the addition of functions and multiplication



by scalars in R, I'r (M) becomes an R-module. Moreover, there exists a
homomorphism
H,(M;R) — T'r(M)

defined by
o — (x— ay),

where ay is the image of « under the map py : H,(M;R) — H,, (M, M\
{x}; R). The above lemma asserts that this is in fact an isomorphism.
Let us now translate the statements about H,(M; R) in Theorem 8.7.9
into statements about the R-module T'g(M):

1. For the oriented case: H,(M;R) = T'r(M) — H,(M, M\ x;R) is an
isomorphism, defined by a — (x — ax) — &y for a given x.

2. For the non-oriented case: H,(M;R) = T'r(M) — Hy(M, M\ x;R) is
a monomorphism, with image the group generated by the elements
of order 2 in R.

Note that since M is connected, each section in I'r (M) is determined by
its value at one point x € M. The injectivity statements in part (a) and
(b) of Theorem 8.7.9 follow from Lemma 8.7.10(b). Also, the surjectivity
in part (a), as reformulated in part 1 above, follows from Lemma

8.7.10(a). The remaining statement in part 2 above can be seen as follows.

Since 7ty is a covering map, the section group I'z (M) can be identified
with the connected components of Mg which map homeomorphically
via g to M. Since M is non-orientable, the oriented double cover
7+ M — M is non-trivial (i.e., connected), thus the components of Mg
are of the form r(M), with r: M — My the continuous map defined by
pt — u ®r. The only points in (M) which under 7 map to x € M are
px @rand —py @1 = py ® (—7r). Thus, 7g|, 5 is a homeomorphism iff
r=—r,or2r=0. O

Corollary 8.7.11. If M is a closed connected orientable n-manifold, then
H,(M;Z) = Z. If M is non-orientable, then H,(M;Z) = 0. In either case,
H,(M;Z/2) =2Z/2.

We can now prove the following:

Corollary 8.7.12. Let M be a closed and connected n-manifold. If M is
oriented, then
Torsion(H,_1(M)) = 0.

Otherwise,
Torsion(H,_1(M)) = Z/2.

Proof. By the universal coefficient theorem for homology, and using
the fact that the homology groups of a closed manifold are finitely
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generated (e.g., see Corollaries A.8 and A.g in [Hatcher, 2002]), we
have:

Hy(M;Z/p) = Huy(M;Z)®Z/p® Tor(Hy-1(M;Z),Z/p)
= Hy(M;Z)®Z/p @ Torsion(H,_1(M; Z)) @ Z/p.

In the orientable case, if H,, (M) contained torsion, then for some
prime p, the group H,(M;Z/p) = Z/p would be larger than the Z/p
coming from the first summand (here we use that H,(M) = Z), which
is impossible. This means Torsion(H,_1(M)) = 0.

In the non-orientable case, we have by Theorem 8.7.9 that H,(M;Z/m)
is either Z/2 or 0, depending on whether m is even or odd. (Indeed,
in this case the map H,,(M;Z/m) — Z/m is injective with image the
elements of order 2 in Z/m. So, if m is odd, there are no elements of
order 2 in Z/m, while if m = 2k is even, then k is the only element of
order 2 in Z/m.) Since in this case we have H,(M; Z) = 0, this forces
the torsion subgroup of H,_1(M) to be Z/2. O

Remark 8.7.13. By using the universal coefficient theorem for the coho-
mology of a closed n-manifold, we have:

H"(M) = Free(H,(M)) & Torsion(H,,_1(M)).

So by using the result of and the previous corollary, we get that if M is
oriented then H" (M) = Z. Otherwise, H"(M) = Z /2.

8.8 Cup product and Poincaré Duality

Let R be a fixed commutative coefficient ring, and fix ¢ € CI(M;R),
¢ € CK(M;R) and o € Cyyj(M; R). Recall that the cap product ¢ N o €
Ci(M;R) is defined by

p(pno)=(puUy)(c) € R. (8.8.1)
Alternatively, if o is a (k + I)-simplex, then
lIJ ﬂ o= lp(0'| [UZ,U[+1,...,Uk+[]) ' U| [UU,Ul,.‘.,UZ]' (882)

Indeed,

(P(lP N U) = lp(a|[vl,vl+1,...,vk+l]> ’ (P(‘T“vo,vl,..,vl]) = ((P U lP) (U) (8'8'3)

This means that — U : C/(M;R) — CK/(M;R) is dual to p N — :
Crr1(M; R) — C;(M; R). Passing to (co)homology, we get the following
commutative diagram:

H'(M;R) —"— Hompg(H;(M;R),R)

o | oy |

H*!'(M;R) —"— Homg(Hy,;(M;R),R)



In particular, if / is an isomorphism (e.g., R is a field, or we work over
Z but H, is torsion-free), then — U ¢y and ¢ N — determine each other.

Definition 8.8.1. Let M be a closed connected R-oriented n-manifold. Then
the cup product pairing

N[M]

H*(M;R) x H" ®(M;R) — H"(M;R) — Ho(M;R) =R (8.8.9)

is defined by
(9 9) = (U ) = (pUp) N [M].
Definition 8.8.2. Let A and B be R-modules. A pairing « : A x B — R
is non-singular if f : A — Hompg (B, R) is an isomorphism, with f defined
by f(a)(b) = a(a,b), and g : B — Hompg (A, R) is an isomorphism, with
g(b)(a) = a(a,b).
We then have the following:

Proposition 8.8.3. Let M be a closed connected R-oriented n-manifold. Then
the cup product pairing is non-singular if R is a field, or if R = Z and torsion
is factored out.

Proof. Consider the composition

£+ HY(M; R) = Homp (Hi(M; R), R) "2 Homg (H" *(M; R), R),

where (P.D.)* denotes the dual of the Poincaré duality isomorphism.

Under our assumptions on R, & is isomorphism. Moreover, by Poincaré
Duality, (PD)* is also an isomorphism, hence f is an isomorphism. For
¢ € H*(M;R) and ¢ € H"%(M; R), we have:

o)) = ((P.D.)" o h(9))(¥)
h(9)(P.D.(y))
h(e)(y N [M])

e(y N [M])

= (puy)[M].

We obtain a similar isomorphism by interchanging k with n — k, so the
claim follows. O

Corollary 8.8.4. Let M be a closed connected Z-oriented n-manifold. Then
for any a € H*(M) a generator of a Z-summand, there exists B € H" ¥ (M)
such that o U B generates H" (M) = Z.

Proof. By hypothesis, there exists a homomorphism (i.e., the projection
to some Z-summand)
¢:H' (M) > 2
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such that ¢(a) = 1. By the non-singularity of the cup product pairing,
¢ is realized by taking the cup product with some g € H"~¥(M) and
evaluating on the fundamental class [M]. We therefore get

1= g(a) = («Up)[M].
This means « U B is the generator of H" (M). O
Corollary 8.8.5. H*(CP";Z) = Z[«]/(«*1), with deg(a) = 2.

Proof. Let a be the generator of H>(CP") = Z. By induction, we
can assume that a"~! generates H?"~2(CP") = Z. Using the previ-
ous corollary, there exists § € H2(CP") so that "~ U B generates
H?"(CP") = Z. Note that since « is the generator of H>(CP") = Z, it
follows that B = ma, for some m € Z. This means that «"~! U g = ma”
generates Z. Thus m = +1, whence a” generates H>"(CP"). O

We can now ask the following:

Question 8.8.6. Does there exist a 2n-dimensional closed manifold whose
cohomology is additively isomorphic to that of CP", but with a different cup
product structure?

If n = 2, the answer is No. Indeed, H*(CP%Z) = Z[«]/(a®), with
deg(a) = 2. If there is such a manifold M, then a also generates
H?(M) = H?(CP?) = Z, so there exists B € H>(M) such that « U 8 gen-
erates H*(M) = Z. So, B = ma, for some m € Z. Hence a U = ma?
generates H*(M), which yields m = +1. This means that M has the
same cup product structure as CP?.

If n > 3, the answer is Yes. Indeed, % x S* and CP? have isomorphic
cohomology groups, but different cup product structures on their coho-
mology rings.

Another application of Poincaré duality is the following:

Corollary 8.8.7. If M is a closed oriented manifold of dimension m = 4n + 2,
then x(M) is even.

Proof. By the definition of the Euler characteristic we have

4n+2

By Poincaré duality, we obtain
rk(H;(M)) = rk(Hy—;i(M)).

Therefore,
X(M) = tk(Ha1(M)) (mod 2).
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Let us now consider the following cup product pairing

A[M]

H2n+l (M) « g2+l (M) L> H4n+2(M) M 7

defined by

(& B) = («Up) = («Up) N [M].
By Poincaré Duality, after moding out by torsion, this pairing is non-
singular. As a result, the matrix A of the cup product pairing is
non-singular and anti-symmetric. By linear algebra, A is similar to a
matrix with diagonal blocks

(%)

rk(H?"H(M)) = rk(A),

Therefore,

which is clearly even. O

Remark 8.8.8. Dualizing the cup product pairing of Proposition 9.11.16,
we get the non-singular intersection pairing

Hi(M) x Hy (M) = Z

defined by
([o], [7]) — (e ny"),

where 7’ is chosen so that it is homologous to # but transversal to ¢ (so
o N7’ is a finite number of points).

Example 8.8.9. Let T be the 2-dimensional torus and S be a meridian
of T. Let M be the pinched torus T/S.

Figure 8.1: pinched torus

Then Poincaré duality fails for M. If not, let « be the longitude of M
(and T) and B be the a meridian of M. Then Poincaré duality for
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M would yield ([«], [8]) — #(a N B) = 1. However, [B] = 0. This is
impossible since the intersection pairing is non-singular. The reason for
the failure of Poincaré duality is that the pinched torus M := T/S is
not a manifold. Indeed, a neighborhood of the pinch point is a wedge
of two 2-disks, thus it is not homeomorphic to R2.

Example 8.8.10. Let X := X(S' LUS!) be the suspension on a disjoint
union of two circles, see Figure 8.2. Then X is not a manifold as
neighborhoods of the suspension points are not of Euclidean type.
Denote the two circles by A and B, with points a € A and b € B. As in
Figure 8.2, denote by cone(a) (resp., cone(b)) the path joining a (resp.,
b) to the top suspension point 1, and let susp(a) (resp., susp(b)) denote
the geodesic path joining the two suspension points, which passes
through a (resp., b). Denote by susp(A), susp(B) the two 2-spheres
obtained by suspending the circles A and, resp., B. Then the homology
groups of X are computed as:

(i) Ho(X;Z) = Z = {[a]) = ([b]), since d(cone(a) — cone(b)) = b — a.
(i) H1(X;Z) =Z = ([susp(a) —susp(D)]).

(i) Hy(X;Z) =Z & Z = ([susp(A)], [susp(B)]).

b

In particular, we see that Poincaré duality for X is not satisfied as the
ranks of Hy(X) and Hy(X) are different. One way to fix the failure of
Poincaré duality for X is to not allow 1-chains to pass through the sus-

Figure 8.2: X = (St U S")

pension (singular) points. This yields a new chain complex IC,(X) with
boundary maps induced from C,(X), and whose homology, denoted by
IH,(X), satisfies the symmetry predicted by Poincaré duality. Indeed,
the 1-chain passing through n which connects a and b is not allowed,



so [Hy(X) = Z & Z = 1H,(X). Note also that [H;(X) = 0. This is the
idea of intersection homology developped by Goresky-MacPherson in the
1980’s in order to restore in the context of singular spaces many of the
homological properties of manifolds.

Exercises

1. Let M, be a closed orientable surface of genus ¢ > 1. Show that for
each non-zero « € H'(M; Z) there exists B € H'(M; Z) with a UB # 0.
Deduce that M is not homotopy equivalent to a wedge sum X V'Y of
CW-complexes with non-trivial reduced homology. Do the same for
closed nonorientable surfaces using cohomology with Z,-coefficients.

8.9 Manifolds with boundary: Poincaré duality and applications

In this section, we discuss the Poincaré duality theorem for manifolds
with boundary. The proofs are routine adaptation of those for closed
manifolds.

Definition 8.9.1. A Hausdorff topological space M is an n-manifold with
boundary if any point x € M has a neighborhood U, homeomorphic to either
R" or R" := {(x1,---,x,) € R"| x,, > 0}. In particular,

(a) if Uy 2 R", then Hy(M, M\ x) = H,(Uy, Uy \ x) = Z.
(b) if Uy = R}, then

Hu(M, M\ x) = Hy(Uy, Uy \ x) = H, (R, R} — {0}) = 0.

The boundary of M is defined to be
OM := {x € M | H,(M,M\ x) = 0}.
Example 8.9.2. We have 9(D") = §"~1, 9(R%) = R"" L.

Remark 8.9.3. If M is an n-manifold with boundary, then the boundary
set M is a manifold of dimension n — 1.

Definition 8.9.4. We say that a manifold with boundary (M,0M) is ori-
entable if M\ 0M is orientable as a manifold with no boundary.

We have the following;:

Proposition 8.9.5. If (M, 0M) is a compact, orientable n-manifold with ori-
ented boundary, then there exists a unique class pp € Hy (M, dM) inducing
local orientations yy € Hy,(M, M \ x) at all points x € M\ OM.
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Remark 8.9.6. If (M,0M) is a compact, orientable n-manifold with
boundary, then in the long exact sequence for the pair (M,0M) we
have:

Ho(M,0M) -2 H,_1(0M)

M] =pm — [0M]

Theorem 8.9.7 (Poincaré Duality). If (M,0M) is a connected, oriented
n-manifold with boundary, then there are isomorphisms

Hi(M) %, |, (M, aM) (8.9.1)
and
i Npm
HC(M’ aM) ? Hn—i(M) (8.9.2)

where H.(M,dM) := i gcompact H (M, (M \ K) UdM) is the cohomology
KcM\oM
with compact support for the pair (M, dM).

Let us now describe some applications of Poincaré duality for mani-
folds with boundary.

Proposition 8.9.8. If M" = V"1 is a connected manifold with V a compact
(n + 1)-dimensional manifold with boundary, then the Euler characteristic
X (M) is even.

An immediate consequence of Proposition 8.9.8 is the following;:

Corollary 8.9.9. RP%",CP?",THP?" cannot be boundaries of compact mani-
folds.

In order to prove Proposition 8.9.8, we need the following result:

Proposition 8.9.10. Assume V?"*! is an oriented, (2n + 1)-dimensional
compact manifold with connected boundary 9V = M?". If R is a field (e.g.,
Z./2Z if M is non-orientable), then dimg H"(M; R) = dimg H,(M;R) is
even.

Proof of Proposition 8.9.10. Start with the cohomology long exact se-
quence for the pair (V, M):

i*

H"(V;R) — H"(M;R) o H"TY(V, M; R)
~ | N[M] >~ N[V]
H,(M;R) L H,(V;R)

where i*, i, are induced by the inclusion i : M = dV < V. By exactness,

PD.
we have that Im i* =2 kerd = keriy, so

dim(Im 7*) = dim(keri,) = dim H, (M; R) — dim(Im ).



Since i*,i, are Hom-dual, we have that dim(Im i*) = dim(Im i,).

Altogether,
dim H"(M; R) = dim H,(M; R) = 2dim(Im i,)
is even. O

Proof of Proposition 8.9.8. If n = dim M is odd, then Proposition 8.6.1
yields that x(M) = 0, thus even. If n = 2m is even, then we work with
Z./2Z-coefficients and get:

2m .
x(M) =) (1) dimg/, H;(M; Z/2)
i=0
m—1 )
o) (—1)"dimgz,» H;(M; Z/2) + (—1)" dimz,» Hu(M; Z/2)
i=0

=dimg,, Hy(M;Z/2) (mod 2)
(—%) 0 (mod?2),

where equation (1) follows by Poincaré Duality, and congruence (2) is
by Proposition 8.9.10. O

The proof of Proposition 8.9.10 also yields the following:

Corollary 8.9.11. Under the assumptions of Proposition 8.9.10, we have
the following:

(@) Im i* C H"(M?"%R) is self-annihilating with respect to the cup
product, ie., if &, € Im i*, thena U f = 0.

(b) dim(Im i*) = } dim H"(M?"; R).
Proof. For any a = i* (), = i*(B) with &, B € H"(V;R), we have
5(aUB) = 5(i* (@) Ui (B)) = 6i*(@UB) = 0

Hence, « U € ker (6 : H*'(M; R) — H>"*1(V, M;R)) = 0, where the
last isomorphism follows by the following commutative diagram

o
H*'(M;R) — H?>"*Y(V, M;R)

= lP.D. = lP.D.
Ho(M; R) Ho(V;R)
with the bottom arrow an injection. O

Exercises

1. Let X be the cone on CP". Show that X is a manifold with boundary
if and only if n = 1.
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Signature

Definition 8.9.12. Let M be a closed oriented manifold. If dim M = 4k,
the signature o(M) of M is defined to be the signature of the symmetric
non-singular cup product pairing

H*(M;R) x H*(M;R) — R
(0, ) — (aU
Otherwise, if dim M is not divisible by 4, we let o(M) = 0.

=
~—

[M]

Remark 8.9.13. Recall that a symmetric non-singular bilinear pairing
has only real (non-zero) eigenvalues, and its signature is defined by
subtracting the number of negative eigenvalues from the number of
positive eigenvalues.

Example 8.9.14.

0 1
SZ 2 —
o( xS)-a(l 0) 0,

o(CP?") =1,

o(CP#CP?) = 2.

The signature ¢ is a cobordism invariant, i.e., if 9W = M U —N, then
(M) = oc(N). Here —N denotes the manifold N but with the opposite
orientation.

Here we prove the following version of this fact:

Theorem 8.9.15. If, in the above notations, M* = aV*+1 is connected with
V compact and orientable, then c(M) = 0.

Proof. Let A = H?*(M;R). The cup product yields a non-singular and
symmetric pairing

p:AxA—R
Let A4 be the subspace on which the pairing is positive-definite, and
A_ the subspace on which the pairing is negative-definite. Let r =
dim A4, 2l = dim A (which is even by Proposition 8.9.10). Then,
dim A_ = 2] — r since the pairing is non-singular, and

oc(M)=r— (2l —r)=2r—-2L
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In order to prove that c(M) = 0, it suffices to show that r = I.
Let B C A be the self-annihilating /-dimensional subspace given by
Proposition 8.9.8. Then A N B = {0} and A_ N B = {0}. Hence,

dimA; +dimB <dimA =2, ie., r+1<2l ie, r<I
dimA_ +dimB <dimA =2, ie, 2l—r+1<2] ie, r>1

In conclusion, r = [ and o (M) = 0. O

Connected Sums

Definition 8.9.16. Let M", N" be closed, connected, oriented n-manifolds.
Their connected sum is defined to be

M#N := (M \ D}') U (N \ D)

where f : 9D} = S"~1 — 9DJ = S"~1 is an orientation-reversing homeo-
morphism.

I M#N

Remark 8.9.17. The connected sum M#N of closed, connected, oriented
n-manifolds is itself a closed, connected, oriented n-manifold. The co-
homology ring H*(M#N)) is isomorphic to the ring resulting from the
direct product of H*(M) and H*(N ), with the unity elements identified,
and the orientation classes identified. In particular, H(M#N) = Z,
H"(M#N) = Z and H*(M#N) = H*(M) @ H*(N), 0 < k < n. More-
over, cup products of positive dimensional classes, one from each of
the two original manifolds, are zero, i.e.,, « U 8 = 0 for any a« € H*(M)
and g € H'(N) with k,I > 0.

Example 8.9.18. By the above description of cup products of a connected
sum, we get:

o(CP*# —CP?) =0.
In fact, it can be shown that CP?# — CP? is the boundary of a connected,
oriented 5-manifold.
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Example 8.9.19. The spaces S? x S? and CP*#CP? have the same coho-
mology groups,

H =7 H>=Z&Z=Za®Zp, H* = Z,

but different cohomology rings, since a U B # 0 in H*(S? x S?), but
aUB = 0in H*(CP?*#CP?).
Example 8.9.20. We have

o(CP?*#CP?) =2 # 0,

so in view of Theorem 8.9.15, CP?#CP? cannot be the boundary of a
compact, oriented 5-manifold. However, CP2#CP? = 9W°, where W°
is a compact non-orientable 5-manifold. The compact manifold W can
be constructed as follows:

(a) Start with (CP? x I)#(RP? x S%).

(b) Run an orientation reversing path 7 from one CP? to the other, by
traveling along an orientation reversing path in RP?.

(c) Enlarge the path to a tube and remove its interior. What is left is a
5-dimensional non-orientable manifold with 9W = CP?#CP?.




9
Basics of Homotopy Theory

In this chapter we introduce the notation of higher homotopy groups,
and discuss two of the most basic results of homotopy theory: the
Whitehead theorem and the Hurewicz theorem.

9.1  Homotopy Groups

Definition 9.1.1. For each n > 0 and X a topological space with xo € X, the
n-th homotopy group of X is defined as

m(X,x0) = {f : (I",0") = (X, x0)}/ ~

where I = [0,1] and ~ is the usual homotopy of continuous maps.

Remark 9.1.2. Note that we have the following diagram of sets:

(1",31") f (X, x0)

8

(I" /31", 31" /3™
with (I" /9I",91" /9I"") ~ (S",s). So we can also define

(X, x0) = {g: (5",50) = (X, x0) }/ ~.

Remark 9.1.3. If n = 0, then 7p(X) is the set of connected components
of X. Indeed, we have I° = pt and 9I° = @, so my(X) consists of
homotopy classes of maps from a point into the space X.

Now we will prove several results analogous to the case n = 1, which
corresponds to the fundamental group.

Proposition 9.1.4. If n > 1, then 7, (X, xo) is a group with respect to the
operation + defined as:

251,52,...,5 0§Sl < z
(F+8) (51,525 = {1 v .
8(2s1 —1,55,...,5:) 5 <51 <1

BASICS OF HOMOTOPY THEORY
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In—l

0 1/2 1 5

(Note that if n = 1, this is the usual concatenation of paths/loops.)

Proof. First note that since only the first coordinate is involved in this
operation, the same argument used to prove that 77 is a group is valid
here as well. Then the identity element is the constant map taking all
of I" to xg and the inverse element is given by

—f(s1,82,--.,5n) = f(1—51,82,...,5n)-

Proposition 9.1.5. If n > 2, then 1, (X, xo) is abelian.

Intuitively, since the + operation only involves the first coordinate, if
n > 2, there is enough space to “slide f past g”.

1
1

Fle | =[] [&

12
oQ
~

Proof. Let n > 2 and let f,¢ € 1y (X,x9). We wish to show that
f+ g~ g+ f. We first shrink the domains of f and g to smaller cubes
inside I" and map the remaining region to the base point x(. Note that
this is possible since both f and ¢ map to xg on the boundaries, so
the resulting map is continuous. Then there is enough room to slide
f past g inside I". We then enlarge the domains of f and g back to
their original size and get ¢ + f. So we have “constructed” a homotopy
between f + ¢ and g + f, and hence 71,,(X, x¢) is abelian. O

Figureg9.1: f + ¢

Figure 9.2: f+ g~ g+ f
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Remark 9.1.6. If we view 7,(X,x9) as homotopy classes of maps
(8",50) — (X, x0), then we have the following visual representation
of f + g (one can see this by collapsing boundaries in the above cube

$%x
N

Next recall that if X is path-connected and x¢, x; € X, then there is

interpretation).

Figure 9.3: f + g, revisited

an isomorphism
,Bry : 71'1(X,X1) — nl(X,xO)

where 1 is a path from x; to xg, i.e., v : [0,1] — X with ¢(0) = x and
(1) = xp. The isomorphism B, is given by

By(f]) = [7 % f %]

for any [f] € 711(X, x1), where 4 = 7! and * denotes path concatana-
tion. We next show that a similar fact holds for all n > 1.

Proposition 9.1.7. If n > 1 and X is path-connected, then there is an
isomorphism B, : 7, (X, x1) — (X, x0) given by

By(fD) =lv-f1,

where vy is a path in X from xq to xo, and vy - f is constructed by first shrinking
the domain of f to a smaller cube inside I", and then inserting the path y
radially from x1 to xy on the boundaries of these cubes.

Xo Figure 9.4: B,
N
X1
X0 E X1 f M E X0
X1
/TN
X0

Proof. It is easy to check that the following properties hold:
Ly (frg)=rft+rg

2. (y-n)-f~q-(n-f), for y a path from xg to x;
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3. Cx, - f =~ f, where cy, denotes the constant path based at xy.
4. B is well-defined with respect to homotopies of «y or f.

Note that (1) implies that B is a group homomorphism, while (2)
and (3) show that B is invertible. Indeed, if () = (1 —t), then
Byl =By H

So, as in the case n = 1, if the space X is path-connected, then 7, is

independent of the choice of base point. Further, if xg = x1, then (2)
and (3) also imply that 711 (X, x¢) acts on 7, (X, x¢) as:

T X Ty — Ty

(v [fD) = [ f]

Definition 9.1.8. We say X is an abelian space if 7ty acts trivially on 1, for
alln > 1.

In particular, this implies that 77 is abelian, since the action of 771 on
7 is by inner automorphisms, which must all be trivial.

We next show that 71, is a functor.

Proposition 9.1.9. A continuous map ¢: X — Y induces group homomor-
phisms ¢s : 1, (X, x0) — (Y, P(x0)) given by [f] — [p o f|, for all
n>1.

Proof. First note that, if f ~ g, then ¢ o f ~ ¢ og. Indeed, if ¢; is
a homotopy between f and g, then ¢ o ¢y is a homotopy between

¢ofand pog. So ¢, is well-defined. Moreover, from the definition
of the group operation on 71, it is clear that we have ¢ o (f + g) =

(@of)+(pog) So¢u([f+8]) = ¢«([f]) + ¢:([g]). Hence ¢, is a

group homomorphism. O

The following is a consequence of the definition of the above induced
homomorphisms:

Proposition 9.1.10. The homomorphisms induced by ¢ : X — Y on higher
homotopy groups satisfy the following two properties:

1 (o) = guop..
2. (ldx)* = idm,(X,xo)'
We thus have the following important consequence:

Corollary 9.1.11. If ¢: (X, x0) — (Y, y0) is a homotopy equivalence, then
¢« 0 (X, x0) = 10 (Y, P(x0)) is an isomorphism, for all n > 1.

Example 9.1.12. Consider R” (or any contractible space). We have
7;i(R") = 0 for all i > 1, since IR" is homotopy equivalent to a point.



The following result is very useful for computations:

Proposition 9.1.13. If p: X — X is a covering map, then p,: (X, %) —
7w (X, p(X)) is an isomorphism for all n > 2.

Proof. First we show that p. is surjective. Let x = p(X) and consider
f (8" s9) — (X,x). Since n > 2, we have that 71(S") = 0, so
fie(r1(S™,50)) = 0 C pu(m(X,X)). So f admits a lift to X, i.e., there

exists f : (S",s59) = (X,X) such that po f = f. Then [f] = [po f] =

p«([f])- So p« is surjective.
(X, %)

.

P

n f

(S",50) —— (X, x)

Next, we show that p. is injective. Suppose [f] € ker p.. So p.([f]) =
[pof] =0. Let pof = f. Then f =~ c, via some homotopy ¢; :
(S",50) = (X, x) with ¢; = f and ¢y = cy the constant map. Again,
by the lifting criterion, there is a unique ¢ : (S%,s0) — (X,X) with

podr = ¢r.

Pt pl

(S™,50) —— (X, x)

Then we have po¢; = ¢ = f and pody = ¢y = cx, 50 by the
uniqueness of lifts, we must have ¢; = f and ¢y = cz. Then ¢; is a
homotopy between f and cz. So [f] = 0. Thus p, is injective. O

Example 9.1.14. Consider S! with its universal coveringmap p : R — S 1
given by p(t) = ¢*™. We already know that 711(S') = Z. If n > 2,
Proposition 9.1.13 yields that 7,(S!) = 71, (R) = 0.

Example 9.1.15. Consider T" = S! x S! x --. x S!, the n-torus. We
have 7r1(T") = Z". By using the universal covering map p : R" — T",
we have by Proposition 9.1.13 that 7;(T") = m;(R") = 0 for i > 2.

Definition 9.1.16. If 71,(X) = 0 for all n > 2, the space X is called
aspherical.

Remark 9.1.17. As a side remark, the celebrated Singer-Hopf conjecture
asserts that if X is a smooth closed aspherical manifold of dimension
2k, then (—1)¥ - x(X) > 0, where x denotes the Euler characteristic.

BASICS OF HOMOTOPY THEORY
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Proposition 9.1.18. Let { X, } 4 be a collection of path-connected spaces. Then

T (H X,X> = H?Tn(Xa)
for all n.

Proof. First note that a map f : Y — [], X, is a collection of maps
fa Y = X,. For elements of 77, take Y = 5" (note that since all spaces
are path-connected, we may drop the reference to base points). For
homotopies, take Y = §" x I. O

Example 9.1.19. A natural question to ask is whether there exist spaces
X and Y such that 71, (X) = 7,(Y) for all n, but with X and Y not
homotopy equivalent. Whitehead’s Theorem (to be discussed later on)
states that if a map f: X — Y of CW complexes induces isomorphisms
on all 7t,, then f is a homotopy equivalence. So for the above question
to have a positive answer, we must find X and Y so that there is
no continuous map f: X — Y inducing the isomorphisms on 7,’s.
Consider

X=52xRP3 and Y = RP? x S3.

Then 7, (X) = 7,(S* x RP?) = 71,,(5?) x 7, (RP3). Since S° is a cov-
ering of RP?, for all n > 2 we have that 7,(X) = 71,(S?) x 71,(S%).
We also have 711 (X) = 711(5?) x 711 (RP3) = Z/2. Similarly, we have
70 (Y) = 7, (RP? x S3) = 71,(RP?) x 71,,(S%). And since S? is a cover-
ing of RP?, for n > 2 we have that 77, (Y) = 71,,(S?) x 71,(S®). Finally,
m(Y) = 1 (RP?) x 1(S3) = Z/2. So

7 (X) = (YY) for all n.

By considering homology groups, however, we see that X and Y are
not homotopy equivalent. Indeed, by the Kiinneth formula, we get that
Hs(X) = Z while Hs(Y) = 0 (since RP? is oriented while RP? is not).

Just like there is a homomorphism 71 (X) — Hj(X), we can also
construct Hurewicz homomorphisms

hx : (X)) — Hu(X)
defined by
[f :§" = X] — f[S"],

where [S"] is the fundamental class of S". A very important result in
homotopy theory is the following;:

Theorem 9.1.20 (Hurewicz). If n > 2 and m;(X) = 0 for all i < n, then
H;(X) =0fori < nand m,(X) = H,(X).



Moreover, there is also a relative version of the Hurewicz theorem
(see the next section for a definition of the relative homotopy groups),
which can be used to prove the following:

Corollary 9.1.21. If X and Y are CW complexes with 111 (X) = m1(Y) =0,
and ifamap f: X — Y induces isomorphisms on all integral homology groups
H,, then f is a homotopy equivalence.

We'll discuss all of these in the subsequent sections.

9.2 Relative Homotopy Groups

Given a triple (X, A, xg) where xg € A C X, we define relative homo-
topy groups as follows:

Definition 9.2.1. Let X be a space and let A C X and xy € A. Let
"' ={(s1,...,50) € I" | s, = 0}

and set
il =am\ L.

Then define the n-th homotopy group of the pair (X, A) with basepoint x as:
(X, A, x0) = {f : (I",0I", " 1) = (X, A, x0) }/ ~

where, as before, ~ is the homotopy equivalence relation.

Sn ]nfl

Infl

Alternatively, by collapsing J"~! to a point, we obtain a commutative
diagram

(1, a1, "1 (X, A, x0)
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where the map (I",91", ]"~1) — (D",S"1,sp) is obtained by collapsing
J"~1. So we can take

ma(X, A, x0) = {g: (D", ", 50) = (X, A, x0)}/ ~.

X0

X0 X0

A

A sum operation is defined on 71,(X, A, x9) by the same formulas
as for 71, (X, xp), except that the coordinate s, now plays a special role
and is no longer available for the sum operation. Thus, we have:

Proposition 9.2.2. If n > 2, then 1,(X, A, xg) forms a group under the
usual sum operation. Further, if n > 3, then 11,,(X, A, xo) is abelian.

Remark 9.2.3. Note that the proposition fails in the case n = 1. Indeed,
we have that

(X, A,x0) = {f £ (L{0,1},{1}) = (X, A,x0)}/ ~ .

Then 711(X, A, x¢) consists of homotopy classes of paths starting any-
where A and ending at x(, so we cannot always concatenate two paths.

X
f

Just as in the absolute case, a map of pairs ¢ : (X, A, x9) — (Y, B, yo)
induces homomorphisms ¢.. : 77, (X, A, x0) — (Y, B,yo) for all n > 2.

A very important feature of the relative homotopy groups is the
following (e.g., see [Hatcher, 2002, Theorem 4.3] for a proof):

Proposition 9.2.4. The relative homotopy groups of (X, A, xo) fit into a long
exact sequence
<= (A, x0) Iy (X, x0) 2 710 (X, A, x0) n, Tu—1(A, x0) = -+

e — ﬂo(X,X()) — O,

where the map 9y, is defined by 0,,[f] = [f|;n—1] and all others are induced by
inclusions.

Figure 9.5: Collapsing J"~!
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Remark 9.2.5. Near the end of the above sequence, where group struc-
tures are not defined, exactness still makes sense: the image of one map
is the kernel of the next, which consists of those elements mapping to
the homotopy class of the constant map.

Example 9.2.6. Let X be a path-connected space, and
CX :=Xx[0,1]/X x {0}

be the cone on X. We can regard X as a subspace of CX via X x {1} C
CX. Since CX is contractible, the long exact sequence of homotopy
groups gives isomorphisms

n(CX, X, x0) = 11,-1(X, x0)-

In what follows, it will be important to have a good description of
the zero element 0 € 71,(X, A, xp)-

Lemma 9.2.7. Let [f] € m,(X, A, x0). Then [f] = 0if, and only if, f ~ g
for some map g with image contained in A.

Proof. (<) Suppose f ~ g for some g with Im g C A.

X0
| A |y ——X
[ 11
A

Then we can deform I" to J"~! as indicated in the above picture, and
SO ¢ ~ cy,. Since homotopy is a transitive relation, we then get that

f o cxp-
(=) Suppose [f] = 0in 7,(X, A, x0). So f =~ cy,. Take g = cx,. O

Recall that if X is path-connected, then 71,(X, xo) is independent
of our choice of base point, and 71 (X) acts on 7, (X) for all n > 1.
Similarly, in the relative case we have:

Lemma 9.2.8. If A is path-connected, then B, : 7w, (X, A, x1) = (X, A, xp)

is an isomorphism, where <y is a path in A from x1 to x.

Remark 9.2.9. In particular, if xy = x1, we get an action of 711 (A) on
(X, A).

It is easy to see that the following three conditions are equivalent:

1. every map S’ — X is homotopic to a constant map,
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2. every map S’ — X extends to a map D'*! — X, with St = aD'*1,
3. mi(X,x9) =0 for all xy € X.
In the relative setting, the following are equivalent for any i > 0:

1. every map (D!,aD') — (X, A) is homotopic rel. 9D to a map
D' — A,

2. every map (D,dD') — (X, A) is homotopic through such maps to a
map D' — A,

3. every map (D,dD?) — (X, A) is homotopic through such maps to a
constant map D' — A,

4. (X, A, xg) =0 for all xg € A.

Remark 9.2.10. As seen above, if a : S = dentl X represents an
element [«] € 7, (X, xp), then [a] = 0 if and only if a extends to a map
el — X. Thus if we enlarge X to a space X' = X U, ¢"*! by adjoining
an (n + 1)-cell e"*! with a as attaching map, then the inclusion j :
X — X’ induces a homomorphism j, : 71, (X, x0) — 7. (X', x9) with
j«[a] = 0. We say that [a] “has been killed” by adding an (1 + 1)-cell.

The following is left as an exercise:

Lemma 9.2.11. Let (X, xo) be a space with a basepoint, and let X' = X U,
"1 be obtained from X by adjoining an (n + 1)-cell. Then the inclusion
j: X < X' induces a homomorphism j, : 7;(X, x0) — 7;(X’, x), which is
an isomorphism for i < n and surjective for i = n.

Definition 9.2.12. We say that the pair (X, A) is n-connected if 77;(X, A) =
0 for i < n. Say that X is n-connected if 7t;(X) = 0 for i < n.

In particular, X is 0-connected if and only if X is connected. More-
over, X is 1-connected if and only if X is simply-connected.

9.3 Homotopy Extension Property

Definition 9.3.1 (Homotopy Extension Property). Given a pair (X, A),
amap Fy : X — Y, and a homotopy f; : A — Y such that fy = Fy|a, we

Figure 9.6: relative



say that (X, A) satisfies the homotopy extension property (HEP) if there is
a homotopy Fy : X — Y extending f; and Fy. In other words, (X, A) has
homotopy extension property if any map X x {0} UA x [ — Y extends to a
map X x I =Y.

Proposition 9.3.2. Any CW pair has the homotopy extension property. In
fact, for every CW pair (X, A), there is a deformation retract v : X x I —
X x {0} UA X I, hence X x I — Y can be defined by the composition
XxI5HXx{0JUAXIT—=Y.

Proof. We have an obvious deformation retract D" x I — D" x {0} U
"1 x 1. For every n, consider the pair (X,;, A, U X;,_1), where X,
denotes the n-skeleton of X. Then

Xp x I =[Xyx{0}U(AyUX,_1)xIJUD" x I,

where the cylinders D" x [ corresponding to n-cells D" in X\ A are
glued along D" x {0} US"~! x I to the pieces X, x {0} U (A, UX,_1) X
I. By deforming these cylinders D" x I we get a deformation retraction

tn: Xy X I — Xy x {0} U (A, UX;—1) X L

Concatenating these deformation retractions by performing r,, over [1 —

1 1

o1 1-— 2—”] , we get a deformation retraction of X x I onto X x {0} U
A x I. Continuity follows since CW complexes have the weak topology
with respect to their skeleta, so a map of CW complexes is continuous

if and only if its restriction to each skeleton is continuous. O

9.4 Cellular Approximation

All maps are assumed to be continuous.

Definition 9.4.1. Let X and Y be CW-complexes. A map f: X — Y is called
cellular if f(X,) C Yy for all n, where X,, denotes the n-skeleton of X and
similarly for Y.

Definition 9.4.2. Let f: X — Y be a map of CW complexes. A map
f': X — Y is a cellular approximation of f if f' is cellular and f is homotopic
to f'.

Theorem 9.4.3 (Cellular Approximation Theorem). Any map f: X =Y

between CW-complexes has a cellular approximation f': X — Y. Moreover, if
f is already cellular on a subcomplex A C X, we can take f'| 4 = f|a.

The proof of Theorem 9.4.3 uses the following key technical result.

Lemma 9.4.4. Let f: XUe" — Y U ek be a map of CW complexes, with e",
ek denoting an n-cell and, resp., k-cell attached to X and, resp., Y. Assume
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that f(X) C Y, fl|x is cellular, and n < k. Then f £ f! (rel. X) , with

C
Im(f") CY.

Remark 9.4.5. If in the statement of Lemma 9.4.4 we assume that X
and Y are points, then we get that the inclusion " — Sk (n < k) is
homotopic to the constant map S" — {sq} for some point sy € S*.

Lemma 9.4.4 is used along with induction on skeleta to prove the
cellular approximation theorem as follows.

Proof of Theorem 9.4.3. Suppose f|x, , is cellular, and let " be an (open)
n-cell of X. Since e” is compact, f(e") (hence also f(e")) meets only
finitely many open cells of Y. Let ¢k be an open cell of maximal
dimension in Y which meets f(e"). If k < n, f is already cellular on
en. If n < k, Lemma 9.4.4 can be used to homotop f|x, ,uer (rel. X;,_1)
to a map whose image on ¢" misses ¢f. By finitely many iterations
of this process, we eventually homotop f|x, ,uer (rel. X,,_1) to a map
fl: Xy—qUe" — Yy, ie., whose image on ¢" misses all cells in Y of
dimension > n. Doing this for all n-cells of X, staying fixed on n-cells
in A where f is already cellular, we obtain a homotopy of f|x, (rel.
Xn—1UAy) to a cellular map. By the homotopy extension property 9.3.2,
we can extend this homotopy (together with the constant homotopy on
A) to a homotopy defined on all of X. This completes the induction
step.

For varying n — oo, we concatenate the above homotopies to define a
homotopy from f to a cellular map f’ (rel. A) by performing the above
construction (i.e., the n-th homotopy) on the t-interval [1 —1/2",1 —
172+, O

We also have the following relative version of Theorem 9.4.3:

Theorem 9.4.6 (Relative cellular approximation). Any map f : (X, A) —
(Y, B) of CW pairs has a cellular approximation by a homotopy through such
maps of pairs.

Proof. First we use the cellular approximation for f|4: A — B. Let
f': A — B Dbe a cellular map, homotopic to f|4 via a homotopy H. By
the Homotopy Extension Property of Proposition 9.3.2, we can regard
H as a homotopy on all of X, so we get a map f': X — Y such that
f'| 4 is a cellular map. By the second part of the cellular approximation

theorem 9.4.3, there is a homotopy f’ e f", with f”: X — Y a cellular
map satisfying f'|4 = f”| 4. The map f” provides the required cellular
approximation of f. O

Corollary 9.4.7. Let A C X be CW complexes and suppose that all cells of
X\ A have dimension > n. Then 11;(X,A) =0 fori < n.



Proof. Let [f] € m;(X, A). By the relative version of the cellular approx-
imation, the map of pairs f: (D, Si~1) — (X, A) is homotopic to a map
¢ with ¢(D?) C X;. But for i < n, we have that X; C A, so Im g C A.
Therefore, by Lemma 9.2.7, [f] = [¢] = 0. O

Corollary 9.4.8. If X is a CW complex, then 1;(X, X,) = 0 for all i < n.

Therefore, the long exact sequence for the homotopy groups of the
pair (X, X,) yields the following:

Corollary 9.4.9. If X be a CW complex, then for i < n we have an isomor-
phism 71;(X) = ;(Xp).

9.5 Excision for homotopy groups. The Suspension Theorem

We state here the following useful result without proof (e.g., see
[Hatcher, 2002, Theorem 4.23]):

Theorem 9.5.1 (Excision). Let X be a CW complex which is a union of
subcomplexes A and B, such that C = AN B is path connected. Assume
that (A, C) is m-connected and (B, C) is n-connected, with m,n > 1. Then
the map 1;(A,C) — m;(X, B) induced by inclusion is an isomorphism if
i < m+ nand a surjection for i = m + n.

The following consequence is very useful for iterating homotopy
groups of spheres:

Theorem 9.5.2 (Freudenthal Suspension Theorem). Let X be an (n — 1)-
connected CW complex. For any map f: St — X, consider its suspension,

Tf: 28 =5t 53X

The assignment
[fl € mi(X) = [Zf] € i1 (2X)

defines a homomorphism 71t;(X) — 71;11(2X), which is an isomorphism for
i < 2n — 1 and a surjection for i =2n — 1.

Proof. Decompose the suspension X as the union of two cones CX
and C_X intersecting in a copy of X. By using long exact sequences
of pairs and the fact that the cones C X and C_X are contractible, the
suspension map can be written as a composition:

mi(X) = 741(Cq, X) — w1 (2X, C-X) = 7341 (2X),

with the middle map induced by inclusion.

Since X is (n — 1)-connected, from the long exact sequence of the pair
(CiX, X), we see that the pairs (C+X, X) are n-connected. Therefore,
the Excision Theorem 9.5.1 yields that 77,1 (C4, X) — ;11 (XX, C_X)
is an isomorphism for i +1 < 2n and it is surjective for i +1 = 2n. [
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9.6 Homotopy Groups of Spheres

We now turn our attention to computing (some of) the homotopy
groups 77;(S") of the n-sphere. Fori <n,i=n+1,n+2,n+3and a
few more cases, these homotopy groups are known (and we will work
them out later on). In general, however, this is a very difficult problem.
For i = n, we would expect to have 7, (S") = Z by associating to each
(homotopy class of a) map f : S" — S" its degree. For i < n, we will
show that 7;(S") = 0. Note that if f: St — §" is not surjective, i.e.,
there is y € S™\ f(S'), then f factors through R”, which is contractible.
So by composing f with the retraction R" — xo we get that f >~ cy,.
However, there are surjective maps S' — S" for i < n, in which case
the above “proof” fails. To make things work, we “alter” f to make it
cellular, so the following holds.

Proposition 9.6.1. For i < n, we have rt;(S") = 0.

Proof. Choose the standard CW-structure on S’ and S". For [f] €
7;(S"), we may assume by Theorem 9.4.3 that f: S' — S" is cellular.
Then f(S') C (S");. But (S"); is a point, so f is a constant map. O

Recall now the following special case of the Suspension Theorem
9.5.2 for X = S§™:

Theorem 9.6.2. Let f: S' — S" be a map, and consider its suspension,
f: 2§ =gt 3gn = gntl
The assignment
[f] € mi(S") = [Ef] € i1 (S"F)

defines a homomorphism m;(S") — m;,1(S"*1), which is an isomorphism
7;(S") =2 71; 1 (S"TY) for i < 2n — 1 and a surjection for i = 2n — 1.

Corollary 9.6.3. The group 1, (S") is either Z or a finite quotient of Z (for
n > 2), generated by the degree map.

Proof. By the Suspension Theorem 9.6.2, we have the following:
7= 7'(1(51) — 7T2(52) = 7'(3(53) = 7'[4(54) ...
O

To show that 711 (S') =2 71,(S?), we can use the long exact sequence for
the homotopy groups of a fibration, see Theorem 9.11.8 below. For any
fibration (e.g., a covering map)

F—E—B
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there is a long exact sequence
-+ — 1(F) — mi(E) — mj(B) — mi_1(F) — ---  (9.6.1)

Applying the above long exact sequence to the Hopf fibration S! —
$3 — S2 we obtain:

s (S — mp(S®) — mp(S?) — m(SY) — T (S%) — ---

Using the fact that 715(S%) = 0 and 711(S®) = 0, we therefore have an
isomorphism:
(%) =2 my(SY) =2 Z.

Note that by using the vanishing of the higher homotopy groups of S!,
the long exact sequence (9.11.8) also yields that

7'[3(52) = 7‘[2(52) =Z.

Remark 9.6.4. Unlike the homology and cohomology groups, the ho-
motopy groups of a finite CW-complex can be infinitely generated. This
fact is discussed in the next example.

Example 9.6.5. For n > 2, consider the finite CW complex S v S". We
then have that

7, (ST Vv S™) = 7, (ST v Sn),

where SV S" is the universal cover of S!V S", as depicted in the
attached figure. By contracting the segments between consecutive

Figure 9.7: universal cover of S v "

integers, we have that

stvst~ \/ st
kez



206 ALGEBRAIC TOPOLOGY

with S} denoting the n-sphere corresponding to the integer k. So for
any n > 2, we have:

(ST V §") = my( \/ Sp),
keZ
which is the free abelian group generated by the inclusions S} —
Vikez Si- Indeed, we have the following:

Lemma 9.6.6. 71, (\/, S) is free abelian and generated by the inclusions of
factors.

Proof. Suppose first that there are only finitely many S}’s in the wedge
V4 Si. Then we can regard \/, S} as the n-skeleton of [, S;. The cell
structure of a particular S” consists of a single o-cell ¢} and a single
n-cell, ¢. Thus, in the product [], S” there is one o-cell e = [, ¢?,
which, together with the n-cells

U] eg) xel,

x PFa
form the n-skeleton V/, S!. Hence [, S¥ \ V, S¥ has only cells of di-
mension at least 2n, which by Corollary 9.4.8 yields that the pair
(I'Ta SE, V4 SE) is (2n — 1)-connected. In particular, as n > 2, we get:

(V) = 0 (TTSE) = TTma(Sh) = D ra(Sh) = DZ.

To reduce the case of infinitely many summands S} to the finite case,
consider the homomorphism ®: @, 7,(S?) — 1, (\V, S4) induced
by the inclusions S; — V/, S. Then @ is onto since any map f: S" —
V. S§ has compact image contained in the wedge sum of finitely many
S%’s, so by the above finite case, [f] is in the image of ®. Moreover, a
nullhomotopy of f has compact image contained in the wedge sum of
finitely many S}’s, so by the above finite case we have that ® is also
injective. O

To conclude our example, we showed that 71, (S' V §") = 71, (V¢ez S,
and 71, (Vgez S};) is free abelian generated by the inclusion of each of
the infinite number of n-spheres. Therefore, 7, (S' vV ") is infinitely
generated.

Remark 9.6.7. Under the action of 711 on 7, we can regard 7, as a
Z[mr1]-module. Here Z[r1] is the group ring of 711 with Z-coefficients,
whose elements are of the form ), 1,7y, with n, € Z and only finitely
many non-zero, and y, € 7. Since all the n-spheres S} in the universal
cover \/icz Si are identified under the my-action, 7, is a free Z[m]-
module of rank 1, i.e.,

= Z[m] = Z[Z) = Z]tt 7Y,



1—t
1 t!

n— t",

which is infinitely generated (by the powers of t) over Z (i.e., as an
abelian group).

Remark 9.6.8. If we consider the class of spaces for which 7y acts
trivially on all of 7,’s, a result of Serre asserts that the homotopy
groups of such spaces are finitely generated if and only if homology
groups are finitely generated.

9.7 Whitehead'’s Theorem

In this section we explain how higher homotopy groups can be used to
detect a homotopy equivalence.

Definition 9.7.1. A map f: X — Y is a weak homotopy equivalence if it
induces isomorphisms on all homotopy groups .

Notice that a homotopy equivalence is a weak homotopy equivalence.
The following important result provides a converse to this fact in the
context of CW complexes.

Theorem 9.7.2 (Whitehead). If X and Y are CW complexes and f: X =Y
is a weak homotopy equivalence, then f is a homotopy equivalence. Moreover,
if X is a subcomplex of Y, and f is the inclusion map, then X is a deformation
retract of Y.

The following consequence is very useful in practice:

Corollary 9.7.3. If X and Y are CW complexes with 1 (X) = my(Y) =0,
and f: X — Y induces isomorphisms on homology groups Hy, for all n, then
f is a homotopy equivalence.

The above corollary follows from Whitehead’s theorem and the fol-
lowing relative version of the Hurewicz Theorem g.10.1 (to be discussed
later on):

Theorem 9.7.4 (Hurewicz). If n > 2, and ;(X, A) = 0 for i < n, with
A simply-connected and non-empty, then H;(X,A) = 0 for i < n and
(X, A) = Hy(X, A).

Before discussing the proof of Whitehead’s theorem, let us give
an example which shows that having induced isomorphisms on all
homology groups is not sufficient for having a homotopy equivalence
(in fact, the example shows that the simply-connectedness assumption
in Corollary 9.7.3 cannot be dropped):
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Example 9.7.5. Let
f:X=8 < (stvsuetl=y (n>2)

be the inclusion map, with the attaching map for the (n + 1)-cell of
Y described below. We know from Example 9.6.5 that 77,,(S! VV S") =
Z[t,t~!]. We define Y by attaching the (n + 1)-cell e"*! to S' vV S" by a
map g : S" = 9"t — S v S" s0 that [g] € 71,(S! V §") corresponds to
the element 2t — 1 € Z[t,t~!]. We then see that

m(Y) = Z[t, 171/ (2t = 1) # 0 = mu(X),

since by setting t = 1 we get that Z[t,+71]/(2t — 1) X Z[}] = CALES
Z>y} C Q. In particular, f is not a homotopy equivalence. Moreover,
from the long exact sequence of homotopy groups for the (n — 1)-
connected pair (Y, X), the inclusion X < Y induces an isomorphism
on homotopy groups 7; for i < n. Finally, this inclusion map also
induces isomorphisms on all homology groups, H,(X) = H,(Y) for all
n, as can be seen from cellular homology. Indeed, the cellular boundary
map
Hiyp1(Yot1, Yu) = Hu(Ya, Yo-1)

is an isomorphism since the degree of the composition of the attaching
map S" — S'V S" of ¢"*! with the collapse map S' Vv S" — S" is
2-1=1

Let us now get back to the proof of Whitehead’s Theorem 9.7.2. To
prove Whitehead’s theorem, we will use the following:

Lemma 9.7.6 (Compression Lemma). Let (X, A) be a CW pair, and (Y, B)
be a pair with Y path-connected and B # Q. Suppose that for each n > 0 for
which X \ A has cells of dimension n, 1,(Y, B, by) = 0 for all by € B. Then
any map f : (X, A) — (Y, B) is homotopic to some map f' : X — B fixing
A (i.e., with f/‘A = f|A)

Proof. Assume inductively that f(X;_; U A) C B. Let e* be a k-cell in
X\ A, with characteristic map a : (DX, S¥=1) — X. Ignoring basepoints,
we regard « as an element [a] € (X, X;_1 UA). Then fi[a] = [fo
] € m(Y,B) = 0 by our hypothesis, since e is a k-cell in X\ A. By
Lemma 9.2.7, there is a homotopy H : (DX,S¥"1) x I — (Y, B) such
that Hy = f oa and Im(H;) C B.

Performing this process for all k-cells in X\ A simultaneously, we
get a homotopy from f to f’ such that f/(X; U A) C B. Using the
homotopy extension property of Proposition 9.3.2, we can regard this
as a homotopy on all of X, i.e., f ~ f" as maps X — Y, so the induction
step is completed.

Finitely many applications of the induction step finish the proof if
the cells of X \ A are of bounded dimension. In general, we have



f% f1, with f1(X1 UA) CB,
1

fl % fz, with fz(Xz UA) C B,
2

fn—1 = fn, with f,(X,UA) CB,

and so on. Any finite skeleton is eventually fixed under these homo-
topies.
Define a homotopy H: X x I — Y as

H=Hjon [1—54,1- 3]

Note that H is continuous by CW topology, so it gives the required
homotopy. O

Proof of Whitehead’s theorem. We can split the proof of Theorem 9.7.2
into two cases:

Case 1: If f is an inclusion X — Y, since 71, (X) = 71, (Y) for all n, we
get by the long exact sequence for the homotopy groups of the pair
(Y, X) that 7, (Y, X) = 0 for all n. Applying the above compression
lemma 9.7.6 to the identity map id : (Y, X) — (Y, X) yields a deforma-
tion retraction v : Y — X of Y onto X.

Case 2: The general case of a map f: X — Y can be reduced to the
above case of an inclusion by using the mapping cylinder of f, i.e.,

Mg = (X xI)UY/(x,1) ~ f(x).

Xx1I
X x {1}

Note that My contains both X = X x {0} and Y as subspaces, and My
deformation retracts onto Y. Moreover, the map f can be written as the
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composition of the inclusion i of X into My, and the retraction r from
M fto Y:

FrX=Xx {0} M5y,

Since My is homotopy equivalent to Y via 7, it suffices to show that My
deformation retracts onto X, so we can replace f with the inclusion
map i. If f is a cellular map, then My is a CW complex having X as
a subcomplex. So we can apply Case 1. If f is not cellular, than f is
homotopic to some cellular map g, so we may work with ¢ and the
mapping cylinder M, and again reduce to Case 1. O

We can now prove Corollary 9.7.3 (assuming the relative Hurewicz
Theorem 9.10.1, to be discussed later on):

Proof. After replacing Y by the mapping cylinder My, we may assume
that f is an inclusion X — Y. As H,(X) = H,(Y) for all n, we have
by the long exact sequence for the homology groups of the pair (Y, X)
that H, (Y, X) = 0 for all .

Since X and Y are simply-connected, we have (Y, X) = 0. So by
the relative Hurewicz Theorem 9.10.1, the first non-zero 77, (Y, X) is
isomorphic to the first non-zero H, (Y, X). So m,(Y,X) = 0 for all n.
Then, by the homotopy long exact sequence for the pair (Y, X), we get
that

7 (X) = 70 (Y)

for all n, with isomorphisms induced by the inclusion map f. Finally,
Whitehead’s Theorem 9.7.2 yields that f is a homotopy equivalence. [

Example 9.7.7. Let X = RP? and Y = S?> x RP*®. First note that
m(X) = m(Y) = Z/2. Also, since S? is a covering of RP?, we have
that

m(X) =2 m(S?), i>2.

Moreover, 7;(Y) = 71;(S?) x 7;(IRP®), and as RP® is covered by S =
Un>0 S", we get that

7'[1'(Y) = ni(Sz) X 7'[1'(500), i>2.

To calculate 77;(S%°), we use cellular approximation. More precisely, we
can approximate any f : S’ — S® by a cellular map g so that Im g C S
for i < n. Thus, [f] = [g] € 7;(S") = 0, and we see that

7T1'(X) = 7'[1'(52) = 7T1'(Y), i > 2.

Altogether, we have shown that X and Y have the same homotopy
groups. However, as can be easily seen by considering homology
groups, X and Y are not homotopy equivalent. In particular, by White-
head’s theorem, there cannot exist a map f : RP? — S? x RP® inducing



isomorphisms on 7, for all n. (If such a map existed, it would have to
be a homotopy equivalence.)

Example 9.7.8. As we will see later on, the CW complexes S? and S3 x
CP* have isomorphic homotopy groups, but they are not homotopy
equivalent.

9.8 CW approximation

Recall that map f : X — Y is a weak homotopy equivalence if it induces
isomorphisms on all homotopy groups 77,. As we will see in Theorem
9.10.3, a weak homotopy equivalence induces isomorphisms on all ho-
mology and cohomology groups. Furthermore, Whitehead’s Theorem
9.7.2 shows that a weak homotopy equivalence of CW complexes is a
homotopy equivalence.

In this section we show that given any space X, there exists a (unique
up to homotopy) CW complex Z and a weak homotopy equivalence
f:Z — X.Suchamap f: Z — X is called a CW approximation of X.

Definition 9.8.1. Given a pair (X, A), with @ # A a CW complex, an
n-connected CW model of (X, A) is an n-connected CW pair (Z, A), together
withamap f: Z — X with f|a = idy, so that f.: 7;(Z) — m;(X) is an
isomorphism for i > n and an injection for i = n (for any choice of basepoint).

Remark 9.8.2. If such models exist, by letting A consist of one point in
each path-component of X and n = 0, we get a CW approximation Z
of X.

Theorem 9.8.3. For any pair (X, A) with A a nonempty CW complex such n-
connected models (Z, A) exist. Moreover, Z can be built from A by attaching
cells of dimension greater than n. (Note that by cellular approximation this
implies that 7t;(Z, A) = 0 for i < n).

We will prove this theorem after discussing the following conse-
quences:

Corollary 9.8.4. Any pair of spaces (X, Xo) has a CW approximation (Z, Zy).

Proof. Let fy : Zo — Xo be a CW approximation of Xy, and consider
the map g : Zg — X defined by the composition of fy and the inclusion
map Xo — X. Let Mg be the mapping cylinder of g. Hence we get
the sequence of maps Zy — Mg — X, where the map r: My — X is a
deformation retract.

Now, let (Z,Zy) be a 0-connected CW model of (M, Zg). Consider
the composition:

(f. fo) : (Z,Z0) — (Mg, Zg) ™ (X, Xo)
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So the map f : Z — X is obtained by composing the weak homotopy
equivalence Z — M, and the deformation retract (hence homotopy
equivalence) Mg — X. In other words, f is a weak homotopy equiva-
lence and f|z, = fo, thus proving the result. O

Corollary 9.8.5. For each n-connected CW pair (X, A) there is a CW pair
(Z, A) that is homotopy equivalent to (X, A) relative to A, and such that Z
is built from A by attaching cells of dimension > n.

Proof. Let (Z, A) be an n-connected CW model of (X, A). By Theorem
9.8.3, Z is built from A by attaching cells of dimension > n. We
claim that Z % X (rel. A). First, by definition, the map f : Z — X
has the property that f. is an isomorphism on 7; for i > n and an
injection on 7,. For i < n, by the n-connectedness of the given model,
mi(X) = mi(A) = m;(Z) where the isomorphisms are induced by f
since the following diagram commutes,

]

A A

f
—

(with A — Z and A — X the inclusion maps.) For i = n, by n-
connectedness of (X, A) the composition

n(A) = 7Tn(Z) — 10 (X)

is onto. So the induced map f, : 7m,(Z) = m,(X) is surjective. Alto-
gether, f. induces isomorphisms on all 7t;, so by Whitehead’s Theorem
we conclude that f : Z — X is a homotopy equivalence.

We make f stationary on A as follows. Define the quotient space

Wg = Mg/{{a} x I ~ pt,Va € A}

of the mapping cylinder My obtained by collapsing each segment
{a} x I to a point, for any a € A. Assuming f has been made cellular,
Wy is a CW complex containing X and Z as subcomplexes, and Wy
deformation retracts onto X just as My does.

Consider the map h : Z — X given by the composition Z < Wy —
X, where Wf — X is the deformation retract. We claim that Z is
a deformation retract of Wy, thus giving us that h is a homotopy
equivalence relative to A. Indeed, 7;(Wy) = 7m;(X) (since Wy is a
deformation retract of X) and 7m;(X) = m;(Z) since X is homotopy
equivalent to Z. Using Whitehead’s theorem, we conclude that Z is a
deformation retract of Wr. O

Proof of Theorem 9.8.3. We will construct Z as a union of subcomplexes

A:anzn+lg"‘



such that for each k > n + 1, Z; is obtained from Zj_; by attaching
k-cells.

We will show by induction that we can construct Z; together with
amap f;: Zy — X such that fy|4 = id4 and fj, is injective on 7; for
n <1i < k and onto on 77; for n < i < k. We start the induction at k = n,
with Z, = A, in which case the conditions on 7; are void.

For the induction step, k — k + 1, consider the set {¢a }« of genera-
tors ¢y : Sk — Z of ker (fi, : m(Zx) — me(X)). Define

N k+1
Yk+1 =72 Uy U¢a6a+ ,

where ek*1 is a (k 4 1)-cell attached to Zj along ¢,.

Then f; : Z; — X extends to Y, 1. Indeed, fyo¢, : Sk — 7 — X
is nullhomotopic, since [fx © ¢a] = fri[pa] = 0. So we get a map
g : Y1 — X. Itis easy to check that g. is injective on 71; for n < i <k,
and onto on 7. In fact, since we extend fi on (k + 1)-cells, we only need
to check the effect on 7. The elements of ker(g.) on 7 are represented
by nullhomotopic maps (by construction) Sk — Z; C Yi 1 — X. So g
is one-to-one on 7. Moreover, g, is onto on 7} since, by hypothesis,
the composition 7ty (Zy) — m(Yry1) — 7 (X) is onto.

Let {¢p : S**1 — X} be a set of generators of 7;1(X, x) and let
Zii1 =Yg \ﬁ/ SEH. We extend g to amap fy1 : Zxyy1 — X by defining

Srr1 |S§+1 = ¢p. This implies that fi ;1 induces an epimorphism on 77y 1.

The remaining conditions on homotopy groups are easy to check. [

Remark 9.8.6. If X is path-connected and A is a point, the construction
of a CW model for (X, A) gives a CW approximation of X with a single
0-cell. In particular, by Whitehead’s Theorem 9.7.2, any connected CW
complex is homotopy equivalent to a CW complex with a single O-cell.

Proposition 9.8.7. Let ¢ : (X, A) — (X', A") be a map of pairs, where A, A’
are nonempty CW complexes. Let (Z, A) be an n-connected CW model of
(X, A) with associated map f : (Z,A) — (X, A), and let (Z',A”) be an
n'-connected model of (X', A") with associated map f': (Z',A") — (X', A").
Assume that n > n'. Then there exists a map h : Z — Z', unique up to
homotopy, such that h| s = g|a, and the diagram

(z,4) —L— (x,4)

g g
(Z/I A/) f (X/, A/)
commutes up to homotopy.

Proof. The proof is a standard induction on skeleta. We begin with the
map g : A — A’ C Z/, and recall that Z is obtained from A by attaching
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cells of dimension > n. Let k be the smallest dimension of such a cell,
thus (AU Z, A) has a k-connected model, f; : (Z¥,A) — (AU Z, A)
such that fi|4 = id4. Composing this new map with g allows us to
consider g as having been extended to the k skeleton of Z. Iterating
this process produces our map. O

Corollary 9.8.8. CW-approximations are unique up to homotopy equivalence.
More generally, n-connected models of a pair (X, A) are unique up to homotopy
relative to A.

Proof. Assume that f: (Z,A) — (X,A) and f': (Z/,A) — (X, A) are
two n-connected models of (X, A). Then we may take (X, A) = (X', A’)
and ¢ = id in the above lemma twice, and conclude that there are two
maps hg : Z — Z' and hy : Z' — Z, such that foh; ~ f' (rel. A)
and f' ohy ~ f (rel. A). In particular, f o (hyohgy) ~ f (rel. A) and
flo(hgohy) >~ f' (rel. A). The uniqueness in Proposition 9.8.7 then
implies that 1 o hg and kg o h; are homotopic to the respective identity
maps (rel. A). O

Remark 9.8.9. By taking n = n’ is Proposition 9.8.7, we get a functorial-
ity property for n-connected CW models. For example, a map X — X’
of spaces induces a map of CW approximations Z — Z’.

Remark 9.8.10. By letting n vary, and by letting (Z", A) be an n-
connected CW model for (X, A), then Proposition 9.8.7 gives a tower of
CW models

ZZ
Zl

/4

A—70 X

with commutative triangle on the left, and homotopy-commutative
triangles on the right.

Example 9.8.11 (Whitehead towers). Assume X is an arbitrary CW
complex with A C X a point. Then the resulting tower of n-connected
CW modules of (X, A) amounts to a sequence of maps

e 22 7 70 5 X

with Z" being n-connected and the map Z" — X inducing isomor-
phisms on all homotopy groups 7t; with i > n. The space Z° is path-
connected and homotopy equivalent to the component of X containing



A, so one may assume that Z° equals this component. The space Z!
is simply-connected, and the map Z! — X has the homotopy prop-
erties of the universal cover of the component Z° of X. In general, if
X is connected, the map Z" — X has the homotopy properties of an
n-connected cover of X. An example of a 2-connected cover of S? is the
Hopf map S® — S2.

Example 9.8.12 (Postnikov towers). If X is a connected CW complex,
the tower of n-connected models for the pair (CX, X), with CX the
cone on X, is called the Postnikov tower of X. Relabeling Z" as X1
the Postnikov tower gives a commutative diagram

X3
XZ

/

X —— X!

where the induced homomorphism 77;(X) — 77;(X") is an isomorphism
for i < nand 7;(X") = 0if i > n. Indeed, by Definition 9.8.1 we get
(X" = m(Z") 2 m(CX) =0 fori > n+1.

9.9 Eilenberg-MacLane spaces

Definition 9.9.1. A space X having just one nontrivial homotopy group
7tu(X) = G is called an Eilenberg-MacLane space K(G, n).

Example 9.9.2. We have already seen that S! is a K(Z,1) space, and
RP® is a K(Z/2Z,1) space. The fact that CP* is a K(Z,2) space will
be discussed in Example 9.11.16 by making use of fibrations and the
associated long exact sequence of homotopy groups.

Lemma 9.9.3. If a CW-pair (X, A) is r-connected (r > 1) and A is s-
connected (s > 0), then the map 1;(X,A) — m;(X/A) induced by the

quotient map X — X /A is an isomorphism if i < v+ s and onto if i =
r+s+1.

Proof. Let CA be the cone on A and consider the complex
Y =XU,CA

obtained from X by attaching the cone CA along A C X. Since CA is a
contractible subcomplex of Y, the quotient map

g:Y — Y/CA=X/A
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is obtained by deforming CA to the cone point inside Y, so it is a
homotopy equivalence. So we have a sequence of homomorphisms

(X, A) — mi(Y,CA) «— m(Y) — m;(X/A),

where the first and second maps are induced by the inclusion of pairs,
the second map is an isomorphism by the long exact sequence of the
pair (Y, CA)

0= 7I1(CA> — 7'[1'(Y) — 71'1'(Y, CA) — T (CA) =0,

and the third map is the isomorphism g,. It therefore remains to
investigate the map 7;(X, A) — m;(Y,CA). We know that (X, A) is
r-connected and (CA, A) is (s + 1)-connected. The second fact once
again follows from the long exact sequence of the pair and the fact that
A is s-connected. Using the Excision Theorem 9.5.1, the desired result
follows immediately. O

Lemma 9.9.4. Assume n > 2. If X = (V,S§) UUg egﬂ is obtained
from \/, S§ by attaching (n + 1)-cells eg“ via basepoint-preserving maps
Pp Sg — Sk, then

a(X) = 7t (\/ S3)/ (9p) = (D Z)/ {¢p)-

Proof. Consider the following portion of the long exact sequence for
the homotopy groups of the n-connected pair (X, \/, S}):

]
nnH(X,\/SZ) — nn(\/ S — m(X) — nn(X,\/SZ) =0,
o 4 14

where the fact that 77,(X, \/, Si) = 0 follows by Corollary 9.4.8 of the
Cellular Approximation theorem. So 7, (X) = 71,(V, S!)/Im(9).

We have the identification X/ V/, Sy ~ V SEH, so by Lemma 9.9.3
and Lemma 9.6.6 we get that 71,41(X, Vs §§) = 7041(Vp Sg“) is free
with a basis consisting of the characteristic maps @y of the cells egﬂ.

Since d([®g]) = [¢p], the claim follows. O

Example 9.9.5. Any abelian group G can be realized as 7, (X) with
n > 2 for some space X. In fact, given a presentation G = (g, | 1), we

X = (YSZ) ULﬁJeE“,

can can take

with the S!’s corresponding to the generators of G, and with e/

attached to \/, S} by a map f : Sk = Vu Sy satisfying [f] = rg. Note
also that by cellular approximation, 77;(X) = 0 for i < n, but nothing
can be said about 77;(X) with i > n.



Theorem 9.9.6. For any n > 1 and any group G (which is assumed abelian
if n > 2) there exists an Eilenberg-MacLane space K(G, n).

Proof. Let Xy11 = (Vo Si) U Up egﬂ be the (n — 1)-connected CW
complex of dimension n + 1 with 7,(X,,11) = G, as constructed in
Example 9.9.5. Enlarge X, 1 to a CW complex X, obtained from
Xy11 by attaching (1 + 2)-cells e//*2 via maps representing some set of
generators of 71,41 (X,11). Since (Xy42, Xp41) is (n + 1)-connected (by
Corollary 9.4.8), the long exact sequence for the homotopy groups of
the pair (Xy4+2, X;+1) yields isomorphisms 7;(Xy42) = 7;(Xy41) for
i < n, together with the exact sequence

3
co = T2 (Xar2, Xng1) = 1 (Xag1) = g1 (Xus2) — 0.

Next note that 9 is an isomorphism by construction and Lemma 9.9.3.
Indeed, Lemma 9.9.3 yields that the quotient map X,+2 — Xp42/ X411
induces an epimorphism

Tn2(Xnt2, Xns1) = T2 (Xng2/ Xny1) = nn+2(\/ S;HZ),
v

which is an isomorphism for n > 2. Moreover, we also have an epimor-
phism 77,12 (V,, S,’;Jrz) — Tp4+1(Xy4+1) by our construction of X;,45. As
d is onto, we then get that 71,11 (X;+2) = 0.

Repeat this construction inductively, at the k-th stage attaching (n +
k +1)-cells to X, to create a CW complex X, 1 with vanishing
7, and without changing the lower homotopy groups. The union of
this increasing sequence of CW complexes is then a K(G, n) space. [

Corollary 9.9.7. For any sequence of groups { Gy, }neN, with G, abelian for
n > 2, there exists a space X such that 7, (X) = G, for any n.

Proof. Call X" = K(Gp,n). Then X = [T, X" has the desired prescribed
homotopy groups. O

Lemma 9.9.8. Let X be a CW complex of the form (V, Sg) U Ug eZ*l for
some n > 1. Then for every homomorphism ¢ : 70, (X) — 7, (Y) with Y a
path-connected space, there exists a map f : X — Y such that f, = ¢ on my.

Proof. Recall from Lemma 9.9.4 that 71, (X) is generated by the inclu-
sions iy : S; — X. Let f send the wedge point of X to a basepoint
of Y, and extend f onto S} by choosing a fixed representative for
Y([ia]) € mu(Y). This then allows us to define f on the n-skeleton
Xn =V, S of X, and we notice that, by construction of f : X,, = Y,
we have that

felia]) = [f o da] = [flsz] = $(lia])-

Because the i, generate 7, (X, ), we then get that f, = ¢
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n+1

To extend f over a cell e g s we need to show that the composition

of the attaching map ¢ : S" — X, for this cell with f is nullhomotopic
in Y. We have [f o ¢g] = fi([¢p]) = ¢([9p]) = 0, as the ¢ are precisely
the relators in 77, (X) by Example 9.9.5. Thus we obtain an extension
f: X — Y. Moreover, f, = ¢ since the elements [i,] generate 71, (X,) =
T (X). O

Proposition 9.9.9. The homotopy type of a CW complex K(G, n) is uniquely
determined by G and n.

Proof. Let K and K’ be K(G, n) CW complexes, and assume without loss
of generality (since homotopy equivalence is an equivalence relation)
that K is the particular K(G, n) constructed in Theorem 9.9.6, i.e., built
from a space X as in Lemma 9.9.8 by attaching cells of dimension n 42
and higher. Since X = Kj,;.1, we have that 7,(X) = 71,(K) = 7, (K'),
and call the composition of these isomorphisms ¥ : 71,(X) — 71, (K').
By Lemma 9.9.8, there is a map f : X — K’ inducing ¢ on m,. To
extend this map over K, we proceed inductively, first extending it over
the (n + 2)-cells, than over the (n + 3)-cells, and so on.

Let e/l*2 be an (n + 2)-cell of K, with attaching map ¢, : "™ — X.
Then f o ¢, : S"*! — K’ is nullhomotopic since 77,41(K’) = 0. There-
fore, f extends over e@*z. Proceed similarly for higher dimensional
cells of K to get a map f : K — K’ which is a weak homotopy equiva-
lence. By Whitehead’s Theorem 9.7.2, we conclude that f is a homotopy
equivalence. O

9.10 Hurewicz Theorem

Theorem 9.10.1 (Hurewicz). If a space X is (n — 1)-connected and n > 2,
then H;(X) = 0 for i < nand m,(X) = Hy,(X). Moreover, if a pair (X, A)
is (n — 1)-connected with n > 2, and 71 (A) = 0, then H;(X, A) = 0 for all
i <nand m,(X,A) = Hy(X, A).

Proof. First, since all hypotheses and assertions in the statement deal
with homology and homotopy groups, if we prove the statement for
a CW approximation of X (or (X, A)) then the results will also hold
for the original space (or pair). Hence, we assume without loss of
generality that X is a CW complex and (X, A) is a CW-pair.

Secondly, the relative case can be reduced to the absolute case. In-
deed, since (X, A) is (n — 1)-connected and that A is 1-connected,
Lemma 9.9.3 implies that ;(X,A) = m;(X/A) for i < n, while
H;(X,A) = H;(X/A) always holds for CW-pairs.

In order to prove the absolute case of the theorem, let xy be a 0-cell
in X. Since X, hence also (X, x¢), is (n — 1)-connected, Corollary 9.8.5
tells us that we can replace X by a homotopy equivalent CW complex



with (n — 1)-skeleton a point, i.e., X,_1 = xo. In particular, H;(X) = 0
for i < n. For showing that 71,(X) = H,(X), we may disregard any
cells of dimension greater than # + 1 since these have no effect on 7,
or Hy. Thus we may assume that X has the form (V, S§) UUg egﬂ. By
Lemma 9.9.4, we then have that 77, (X) = (@, Z)/(¢p). On the other
hand, cellular homology yields the same calculation for H,(X), so we
are done. O

Remark 9.10.2. One cannot expect any sort of relationship between
7;(X) and H;(X) beyond n. For example, S has trivial homology in
degrees > n, but many nontrivial homotopy groups in this range, if
n > 2. On the other hand, CP* has trivial higher homotopy groups
in the range > 2 (as a K(Z,2) space), but many nontrivial homology
groups in this range.

Recall the Hurewicz Theorem has been already used for proving the
important Corollary 9.7.3. Here we give another important application
of Theorem 9.10.1:

Theorem 9.10.3. If f : X — Y induces isomorphisms on homotopy groups
1ty for all n, then it induces isomorphisms on homology and cohomology
groups with G coefficients, for any group G.

Proof. By the universal coefficient theorems, it suffices to show that f
induces isomorphisms on integral homology groups H.(—;Z).

We only prove here the assertion under the extra condition that
X is simply connected (the general case follows easily from spectral
sequence theory, and it will be dealt with later on). As before, after re-
placing Y with the homotopy equivalent space defined by the mapping
cylinder My of f, we can assume that f is an inclusion. Since by the
hypothesis, 7, (X) = 7, (Y) for all n, with isomorphisms induced by
the inclusion f, the homotopy long exact sequence of the pair (Y, X)
yields that 71, (Y, X) = 0 for all n. By the relative Hurewicz theorem (as
m1(X) = 0), this gives that H,(Y, X) = 0 for all n. Hence, by the long
exact sequence for homology, H,(X) = H,(Y) for all n, and the proof
is complete. O

Example 9.10.4. Take X = RP? x S3 and Y = S? x RP3. As seen in
Example 9.1.19, X and Y have isomorphic homotopy groups 7, for
all n, but H5(X) 2 Hs(Y). So there cannot existamap f : X — Y
inducing the isomorphisms on the 7;,.

9.11 Fibrations. Fiber bundles

Definition 9.11.1 (Homotopy Lifting Property). A map p : E — B has
the homotopy lifting property (HLP) with respect to a space X if, given a
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homotopy g : X — B, and a lift gy : X — E of g, there exists a homotopy
gt X — E lifting gt and extending .

80
X——E
A
7/
/
s/
7 P
/8t

Definition 9.11.2 (Lift Extension Property). A map p : E — B has the
lift extension property (LEP) with respect to a pair (Z, A) if for all maps
f:Z — Band g: A — E, there exists a lift f : Z — E of f extending g.

Remark 9.11.3. (HLP) is a special case of (LEP), with Z = X x [0,1],
and A = X x {0}.

Definition 9.11.4. A fibration p : E — B is a map having the homotopy
lifting property with respect to all spaces X.

Definition 9.11.5 (Homotopy Lifting Property with respect to a pair).
A map p : E — B has the homotopy lifting property with respect to a pair
(X, A) if each homotopy g : X — B lifts to a homotopy gt : X — E starting
with a given lift go and extending a given lift gy : A — E.

Remark 9.11.6. The homotopy lifting property with respect to the pair
(X, A) is the lift extension property for (X x I, X x {0} UA x I).

Remark 9.11.7. The homotopy lifting property with respect to a disk
D" is equivalent to the homotopy lifting property with respect to the
pair (D",0D"), since the pairs (D" x I, D" x {0}) and (D" x I, D" x
{0} U9D" x I) are homeomorphic. This implies that a fibration has
the homotopy lifting property with respect to all CW pairs (X, A). Indeed,
the homotopy lifting property for disks is in fact equivalent to the
homotopy lifting property with respect to all CW pairs (X, A). This
can be easily seen by induction over the skeleta of X, so it suffices to
construct a lifting g; one cell of X \ A at a time. Composing with the
characteristic map D" — X of a cell then gives the reduction to the case
(X,A) = (D",oD").



Theorem 9.11.8 (Long exact sequence for homotopy groups of a fibra-
tion). Given a fibration p : E — B, points b € Band e € F := p~(b), there
is an isomorphism p. : 70, (E, F,e) =, 704 (B, b) for all n > 1. Hence, if B is
path-connected, there is a long exact sequence of homotopy groups:

- — mu(F,e) — 7a(E, e) = 71,(B,b) — my_1(F,e) — -+ -
- —> mp(E,e) — 0

Proof. To show that p, is onto, represent an element of 7r,(B, b) by a
map f : (I",dI") — (B,b), and note that the constant map to e is a
lift of f to E over J"~! C I". The homotopy lifting property for the
pair (1"1,81"1) extends this to a lift f : I" — E. This lift satisfies
f(aI") C F since f(I") = b. So f represents an element of 71, (E, F, )
with p. ([f]) = [fi since pf = .

To show the 1n]ect1V1ty of ps, let fo, f : (I",0I",J"~1) — (E,F,e)
be so that p*(ﬁ)) = p*(fl) Let H : (I" x I,oI" x I) — (B,b) be a
homotopy from p fo to pf1. We have a partial lift given by fo on I x {0},
fi on I" x {1} and the constant map to e on J"~1 x I. The homotopy
lifting property for CW pairs extends this to a lift H:I"xI—E giving
a homotopy f; : (I",dI", ]"~1) — (E, F,e) from fy to f;.

Finally, the long exact sequence of the fibration follows by plugging
74(B,b) in for 71, (E, F,e) in the long exact sequence for the pair (E, F).
The map 7, (E,e) — m,(E,F,e) in the latter sequence becomes the
composition 7, (E,e) — m,(E,F,e) %5 7,(B,b), which is exactly p. :
mu(E,e) — m,(B,b). The surjectivity of rro(F,e) — mo(E,e) follows
from the path-connectedness of B, since a path in E from an arbitrary
point x € E to F can be obtained by lifting a path in B from p(x) to
b. O

Definition 9.11.9. Given two fibrations p; : E; — B, i = 1,2, a map
f + Ey — Ej is fiber-preserving if the diagram

E14)E2

W

commutes. Such a map f is called a fiber homotopy equivalence if f is both
fiber-preserving and a homotopy equivalence, i.e., there is a map g : Ey — Eq
such that f and g are fiber-preserving and f o g and g o f are homotopic to
the identity maps by fiber-preserving maps.

Definition 9.11.10 (Fiber Bundle). A map p : E — B is a fiber bundle
with fiber F if, for any point b € B, there exists a neighborhood Uy, of b with
a homeomorphism h : p~'(U,) — Uy, x F so that the following diagram
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commutes:

pH(U,) Uy x F

Up

Remark 9.11.11. Fibers of fibrations are homotopy equivalent, while
fibers of fiber bundles are homeomorphic.

Theorem 9.11.12 (Hurewicz). Fiber bundles over paracompact spaces are
fibrations.

Here are some easy examples of fiber bundles.

Example 9.11.13. If F is discrete, a fiber bundle with fiber F is a covering
map. Moreover, the long exact sequence for the homotopy groups
yields that p, : m;(E) — m;(B) is an isomorphism if i > 2 and a
monomorphism for i = 1.

Example 9.11.14. The Mobius band I'x [_1'1]/(0 y)~(1,-y) st
is a fiber bundle with fiber [—1, 1], induced from the projection map
Ix[-1,1] = L

Example 9.11.15. By glueing the unlabeled edges of a Mobius band, we
get K — S! (where K is the Klein bottle), a fiber bundle with fiber S'.

Example 9.11.16. The following is a fiber bundle with fiber S!:
51 N 52n+1(c Cn+1) — s Cp"
(2o, zn) > [z0: oo .t 2n) = [2]

For [z] € CP", there is an i such that z; # 0. Then we have a neighbor-
hood
Uy ={[zo:...:1:...0z]} = C"
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(with the entry 1 in place of the ith coordinate) of [z], with a homeo-
morphism

Pil(u[zp — Up st
(zo, .-, zn) — ([zo: -+t zn), 2i/|2i]).

By letting n go to infinity, we get a diagram of fibrations

Sl\ : Sl\ : ) : Sl\
g2n+1 c g2n+3 c ... c it
cp" C cprtl C ... C CP®

In particular, from the long exact sequence of the fibration
St §® — CP™
with S® contractible, we obtain that

Z i=2

7 (CP®) = ;4 (S') = { 0 P42

ie.,
CP*® =K(Z,2),

as already mentioned in our discussion about Eilenberg-MacLane
spaces.

Remark 9.11.17. As we will see later on, for any topological group
G there exists a “universal fiber bundle” G — EG —% BG with EG
contractible, classifying the space of (principal) G-bundles. That is, any
G-bundle 7t : E — B over a space B is determined by (the homotopy
class of) a classifying map f : B — BG by pull-back: 7 = f*ms:

E EG ~ {pt}
[ %
B 7) BG

From this point of view, CP* can be identified with the classifying
space BS! of (principal) S'-bundles.

Example 9.11.18. By letting n = 1 in the fibration of Example 9.11.16,
the corresponding bundle

Sl 83— Cpl=g? (9.11.1)
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is called the Hopf fibration. The long exact sequence of homotopy group
for the Hopf fibration gives: 715(S?) = 711(S!) and 71,,(S®) = 71,(S?) for
all n > 3. Together with the fact that CP® = K(Z, 2), this shows that s?
and S3 x CP® are simply-connected CW complexes with isomorphic
homotopy groups, though they are not homotopy equivalent as can be
easily seen from cellular homology.

Example 9.11.19. A fiber bundle similar to that of Example 9.11.16 can
be obtained by replacing C with the quaternions H, namely:

§3 y g3 s Hqp.

(Note that S***3 can be identified with the unit sphere in H"*1.) In
particular, by letting n = 1 we get a second Hopf fiber bundle

§% 87 — HP! = g4, (9.11.2)
A third example of a Hopf bundle
§7 ey 515 g8 (9.11.3)

can be constructed by using the nonassociative 8-dimensional algebra
O of Cayley octonions, whose elements are pair of quaternions (a1, a3)
with multiplication defined by

(a1,a2) - (b1, bp) = (a1by — baag, axby + bpay).

Here we regard S'° as the unit sphere in the 16-dimensional vector space
0?, and the projection map S — S8 = O U {oo} is (z9,21) zozl_1
(just like for the other Hopf bundles). There are no fiber bundles
with fiber, total space and base spheres, other than those provided by
the Hopf bundles of (9.11.1), (9.11.2) and (9.11.3). Finally, note that
there is an “octonion projective plane” OP? obtained by glueing a cell
e'® to S® via the Hopf map S'°> — S%; however, there is no octonion
analogue of RP", CP" or HP" for higher n, since the associativity of
multiplication is needed for the relation (zg, - - - ,zx) ~ A(zo,- -+ ,zn) tO
be an equivalence relation.

Example 9.11.20. Other examples of fiber bundles are provided by the
orthogonal and unitary groups:

O(n—1) = O(n) — S}
A Ax,
where x is a fixed unit vector in R”. Similarly, there is a fibration
U(n—1) < U(n) — §2"1
A— Ax,

with x a fixed unit vector in C". These examples will be discussed in
some detail in the next section.



9.12  More examples of fiber bundles

Definition 9.12.1. For n < k, the n-th Stiefel manifold associated to R is
defined as

Vi (R¥) := {n-frames in R¥},

where an n-frame in R is an n-tuple {vy,...,v,} of orthonormal vectors in
RK ie., vq,...,0, are pairwise orthonormal: (v;, U]'> = djj.

We assign V;,(RF) the subspace topology induced from

Vi(RF) € 851 x ... x gk

n times

where S¥=1 x ... x Sk~ has the usual product topology.
Example 9.12.2. V;(RF) = §F—1.
Example 9.12.3. V;,(R") = O(n).

Definition 9.12.4. The n-th Grassmann manifold associated to R* is defined
as:

Gn(RF) := {n-dimensional vector subspaces in R¥}.
Example 9.12.5. G;(R¥) = RPF-!
There is a natural surjection
p: Va(RF) — G, (RY)

given by
{v1,..., 00} = span{vy,..., v, }.

The fact that p is onto follows by the Gram-Schmidt procedure. So
G (IR¥) is endowed with the quotient topology via p.

Lemma 9.12.6. The projection p is a fiber bundle with fiber V,(R") = O(n).

Proof. LetV € G,(R¥) be fixed. The fiber p~!(V') consists on n-frames
in V = R", so it is homeomorphic to V;,(IR"). Let us now choose an
orthonormal frame on V. By projection and Gram-Schmidt, we get
orthonormal frames on all “nearby” (in some neighborhood U of V)
vector subspaces V'. Indeed, by projecting the frame of V orthogo-
nally onto V' we get a (non-orthonormal) basis for V’, then apply the
Gram-Schmidt process to this basis to make it orthonormal. This is a
continuous process. The existence of such frames on all n-planes in
U allows us to identify them with R", so p~!(U) is identified with
U x V,(R"). O
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To conclude this discussion, we have shown that for k > n, there are
fiber bundles:

O(n)—— Vu(RF) —— G, (R) (9.12.1)

A similar method gives the following fiber bundle for all triples
m<n<k:

Viiem (kam)(—> Vi (Rk) —P> Vin (]Rk) (9.12.2)

{v1,...,on} ——A{0v1,...,0m}

Here, the projection p sends an n-frame onto the m-frame formed
by its first m vectors, so the fiber consists of (n — m)-frames in the
(k — m)-plane orthogonal to the given frame.

Example 9.12.7. If k = n in the bundle (9.12.2), we get the fiber bundle
O(n—m)—— O(n) —— V,u(R"). (9.12.3)

Here, O(n — m) is regarded as the subgroup of O(n) fixing the first m
standard basis vectors. So V,,,(R") is identifiable with the coset space
O(n)/O(n —m) Or the orbit space of the free action of O(n — m) on

O(n) by right multiplication. Similarly,

Gm(R") = O(n)/O(m) x O(n—m)

where O(m) x O(n — m) consists of the orthogonal transformations of
R" taking the m-plane spanned by the first m standard basis vectors to
itself.

If, moreover, we take m = 1 in (9.12.3), we get the fiber bundle

O(n—1)¢ O(n) g1 (9.12.4)
s <A o)
0 1
Br—— Bu

with 1 € §"~1 some fixed unit vector. In particular, this identifies gn-1
as an orbit (or homogeneous) space:

-1~ 0
st = (n)/O(n -1y
Example 9.12.8. If m = 1 in the bundle (9.12.2), we get the fiber bundle
Vo1 (R v, (RF) —— 551, (9.12.5)

By using the long exact sequence for bundle (9.12.5) and induction on
n, it follows readily that Vj,(R¥) is (k — n — 1)-connected.



Remark 9.12.9. The long exact sequence of homotopy groups for the
bundle (9.12.4) shows that 71;(O(n)) is independent of n for n large. We
call this the stable homotopy group 7;(O). Bott Periodicity shows that
m;(O) is periodic in i with period 8. Its values are:

i‘1 2 3 4 5 6 7 8
ni(O)‘Z/Z z/2 0 Z 0 0 0 Z

Definition 9.12.10.

Vi (R®) := G V,, (RF) Gn(R®) := G G (RF)
k=1 k=1

The infinite grassmanian G, (IR*) carries a lot of topological informa-
tion. As we will see later on, the space G,(IR®) is the classifying space
for rank-n real vector bundles. In fact, we get a “limit” fiber bundle:

O(n)—— V4,(R*) —— G,(R™). (9.12.6)

Moreover, we have the following:

Proposition g9.12.11. V,(IR®) is contractible.

Proof. By using the bundle (9.12.5) for k — oo, we see that 77;(V,, (R*)) =
0 for all i. Using the CW structure and Whitehead’s Theorem 9.7.2
shows that V;,(IR®) is contractible.

Alternatively, we can define an explicit homotopy k; : R*® — R* by

he(x1,x0,...) = (1 —t)(x1,x2,...) + £(0,x1,x2,...).

Then h; is linear for each t with kerh; = {0}. So h; preserves inde-
pendence of vectors. Applying h; to an n-frame we get an n-tuple of
independent vectors, which can be made orthonormal by the Gram-
Schmidt (G-S, for short) process. We then get a deformation retraction
of V;,(R*) onto the subspace of n-frames with first coordinate zero.
Repeating this procedure 1 times, we get a deformation of V;,(R*) to
the subspace of n-frames with first n coordinates zero.

Let {e1,...,e4} be the standard n-frame in R®. For an n-frame
{v1,...,vn} of vectors with first n coordinates zero, define a homotopy
ki : Vu(R*®) — V,(R*®) by

ki ({v1,...,00}) == [A =) {v1,...,on} +H{er,...,en}] 0 (G=5).

Then k; preserves linear independence and orthonormality by Gram-

Schmidt.
Composing h; and k¢, any n-frame is moved continuously to the
standard n-frame {ey, ..., e, }. Thus k; o h; is a contraction of V,(IR®).
O
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Similar considerations apply if we use C or H instead of R, so we
can define complex or quaternionic Stiefel and Grasmann manifolds,
by using the usual hermitian inner products in C* and HF, respectively.
In particular, O(n) gets replaced by U(n) if C is used, and Sp(n) is
the quaternionic analog of this. Then similar fiber bundles can be
constructed in the complex and quaternionic setting. For example, over
C we get fiber bundles

U (1) Vu(C*) —L— G (CY), (9.12.7)

with V;,(CK) a (2k — 2n)-connected space. As k — oo, we get a fiber
bundle

U(n)—— V,(C?) —— G,(C™), (9.12.8)

with V,(C*®) contractible. As we will see later on, this means that
Vi (C®) is the classifying space for rank-n complex vector bundles. We
also have a fiber bundle similar to (9.12.4)

U(n —1)¢ U(n) san-1 (9.12.9)

whose long exact sequence of homotopy groups then shows that
mi(U(n)) is stable for large n. Bott periodicity shows that this sta-
ble group 71;(U) repeats itself with period 2: the relevant groups are
0 for i even, and Z for i odd. Note that by (9.12.9), odd-dimensional
spheres can be realized as complex homogeneous spaces via

g2n—1 o U(n)/u(n 1y

Many of these fiber bundles will become essential tools in the next
chapter for computing (co)homology of matrix groups, with a view
towards classifying spaces and characteristic classes of manifolds.

9.13 Turning maps into fibration

In this section, we show that any map is homotopic to a fibration.
Given amap f : A — B, define

Ef:={(a,v)|a€ A, v:[0,1] — B with y(0) = f(a)}.

E; is a topological space with respect to the compact-open topology.
Then A can be regarded as a subset of Ef, by mapping 4 € A to
(a,¢f(q)), where cy(,) is the constant path based at the image of a under
f. Define

Ef "+ B
(a,7) = (1)



Then p|4 = f,so f = poi where i is the inclusion of A in E;. Moreover,
i: A — Ey is a homotopy equivalence, and p : Ef — B is a fibration
with fiber A. So f can be factored as a composition of a homotopy
equivalence and a fibration:

Ac h.?. Ef fibration B
i P
f

Example 9.13.1. If A = {b} — B and f is the inclusion of b in B, then
Ef =: PB is the contractible space of paths in B starting at b (called
the path-space of B). In this case, the above construction yields the path
fibration

OB = p Y(b) — PB — B,

where B is the space of all loops in B based at b, and PB — B is
given by v — (1). Since PB is contractible, the associated long exact
sequence of the fibration yields that

7;(B) = m;_1(QB) (9.13.1)

for all 7.

The isomorphism (9.13.1) suggests that the Hurewicz Theorem 9.10.1
can also be proved by induction on the degree of connectivity. Indeed,
if B is n-connected then QB is (n — 1)-connected. We'll give the details
of such an approach by using spectral sequences.

The following result is useful for computations:

Proposition 9.13.2 (Puppé sequence). Given a fibration F — E — B,
there is a sequence of maps

i —O0B—3QF —QF —0OB—3F—E—B

with any two consecutive maps forming a fibration.

9.14 Exercises

1. Let f : X — Y be a homotopy equivalence. Let Z be any other space.
Show that f induces bijections:

fe[Z2,X] = [Z,Y] and f*:[Y,Z] — [X,Z],

where [A, B] denotes the set of homotopy classes of maps from the
space A to B.

2. Find examples of spaces X and Y which have the same homology
groups, cohomology groups, and cohomology rings, but with different
homotopy groups.
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3. Use homotopy groups in order to show that there is no retraction
RIP" — RIP* if n > k > 0.

4. Show that an n-connected, n-dimensional CW complex is con-
tractible.

5. (Extension Lemma)

Given a CW pair (X, A) and amap f : A — Y with Y path-connected,
show that f can be extended to a map X — Y if r,,_1(Y) =0 for all n
such that X \ A has cells of dimension 7.

6. Show that a CW complex retracts onto any contractible subcomplex.
(Hint: Use the above extension lemma.)

7. If p: (X, A %) — (X, A, xp) is a covering space with A = p~1(A),
show that the map p. : 714 (X, A, %9) — 7n(X, A, x¢) is an isomorphism
forall n > 1.

8. Show that a CW complex is contractible if it is the union of an
increasing sequence of subcomplexes X; C X, C --- such that each
inclusion X; — X1 is nullhomotopic. Conclude that S* is contractible,
and more generally, this is true for the infinite suspension £®(X) :=
Uns0 2" (X) of any CW complex X.

9. Use cellular approximation to show that the n-skeletons of homotopy
equivalent CW complexes without cells of dimension n + 1 are also
homotopy equivalent.

10. Show that a closed simply-connected 3-manifold is homotopy
equivalent to S3. (Hint: Use Poincaré Duality, and also the fact that
closed manifolds are homotopy equivalent to CW complexes.)

11. Let X be a finite CW complex which is n-connected (i.e., 77;(X) = 0
for all i < n). Show that, for any 1 < k < n, the k-skeleton Xk of X is
homotopy equivalent to a bouquet of k-spheres.

12. Show that a map f : X — Y of connected CW complexes is a
homotopy equivalence if it induces an isomorphism on 7r; and if a
lift f : X — Y to the universal covers induces an isomorphism on
homology.

13. Let X and Y be connected n-dimensional cell complexes and sup-
pose that f: X — Y is a continuous map such that f,: 7;(X) — m(Y)
is an isomorphism when k < n. Show that f is a homotopy equivalence.

14. Show that 717(S*) is non-trivial. [Hint: It contains a Z-summand.]



15. Prove that the space SO(3) of orthogonal 3 x 3 matrices with
determinant 1 is homeomorphic to RIP2,

16. Show that if S¥ — S™ — §" is a fiber bundle, then k = n — 1 and
m=2n—1.

17. Show that if there were fiber bundles §"~1 — §2"=1 — S for all n,
then the groups 71;(S") would be finitely generated free abelian groups
computable by induction, and non-zero if i > n > 2.

18. Let U(n) be the unitary group. Find 7 (U(n)) for k = 1,2,3 and
n>2.

19. If p : E — B is a fibration over a contractible space B, then p is fiber
homotopy equivalent to the trivial fibration B x F — B.
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SPECTRAL SEQUENCES. APPLICATIONS

10
Spectral Sequences. Applications

Most of our considerations involving spectral sequences will be applied
to fibrations. If F < E — B is such a fibration, then a spectral sequence
can be regarded as a machine which takes as input the (co)homology
of the base B and fiber F and outputs the (co)homology of the total
space E. Our emphasis here is on applications of the theory of spectral
sequences, and not so much on developing the theory itself.

10.1  Homological spectral sequences. Definitions
We begin with a discussion of homological spectral sequences.
Definition 10.1.1. A (homological) spectral sequence is a sequence
{E:,*/ di,* }720
of chain complexes of abelian groups, such that
Etl = H(EL,).
In more detail, we have abelian groups {E}, ; } and maps (called “differentials”)

I3 . r r
Ayt Epg = Eporgrr—

such that (d")? = 0 and

r . rr r
pril._ ker (dp,q o Ep—r,q+r—1)
pa r . r r
Im (derr,qfrJrl : Ep+r,q7r+l - EILq)

We will focus on the first quadrant spectral sequences, i.e., with
E,; = 0 whenever p < 0 or ¢ < 0. Hence, for any fixed (p,q) in
the first quadrant and for sufficiently large r, the differentials d}, ; and
1y q—r41 Vanish, so that

ro _pr+l _ .. _ p®
Ep’q—Ep,q B 7Epr‘7'

233
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dr
g+r—1 |- j}fr
p—rq+r—1
‘ @
g pommmmmmmmes Fomo e ’
| N
0 3 |
0 p—r p

In this case we say that the spectral sequence degenerates at page E’.
When it is clear from the context which differential we refer to, we
will simply write d", instead of ., ,.

Definition 10.1.2. If {H,}, are groups, we say the spectral sequence con-
verges (or abuts) to H,, and we write

(EV/ d}’) 3 H*/
if for each n there is a filtration

Hy=Dyo2Dy112--2D1,-12Dg;, 2D_1,,41 =0

such that, for all p,q,

o _ D
Epy= p/q/Dp—l,q—&-l'

\ Don

Dl,n—l /DO,n

D,_11/Dp_22

Hn/Dn—l,l

~

Figure 10.1: 7-th page E”

Figure 10.2: n-th diagonal of E*
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To read off H, from E*, we need to solve several extension problems.
But if E , and H. are vector spaces, then

Ho= @ Epy
p+q=n

since in this case all extension problems are trivial.

Remark 10.1.3. The following observation is very useful in practice:
e IfEp, =0, forall p+¢ =n, then H, = 0.

e If H, =0, then Ej, = O forall p+4q = n.

Before explaining in more detail what is behind the theory of spectral
sequences, we present the special case of a spectral sequence associated
to fibrations, and discuss some immediate applications (including to
Hurewicz theorem).

Theorem 10.1.4 (Serre). If t: E — B is a fibration with fiber F, and with
m1(B) = 0 and 7ro(F) = O, then there is a first quadrant spectral sequence
with

E; . = Hp(B;Hy(F)) = H.(E) (10.1.1)

converging to Hy(E).

Remark 10.1.5. Fix some coefficient group K. Then, since B and F are
connected, we have:

e E2) = Hy(B; Ho(F;K)) = Hy(B;K),
e E}, = Ho(B; Hy(F;KK)) = Hy(F;K)

The remaining entries on the E2-page are computed by the universal
coefficient theorem.

Definition 10.1.6. The spectral sequence of the above theorem shall be referred
to as the Leray-Serre spectral sequence of a fibration, and any ring of coefficients
can be used.

Remark 10.1.7. If 7711(B) # 0, then the coefficients H,(F) on B are acted
upon by 711 (B), i.e., these coefficients are “twisted” by the monodromy
of the fibration if it is not trivial. As we will see later on, in this case
the E2-page of the Leray-Serre spectral sequence is given by

E; . = Hp(B; Hy(F)),

i.e., the homology of B with local coefficients Hq(F).
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H. (F)

~

H,(B)

10.2 Immediate Applications: Hurewicz Theorem Redux

As a first application of the Leray-Serre spectral sequence, we can now
give a new proof of the Hurewicz Theorem in the absolute case:

Theorem 10.2.1 (Hurewicz Theorem). If X is (n — 1)-connected, n > 2,
then H;(X) =0 fori < n—1and m,(X) = Hy(X).

Proof. Consider the path fibration:
OX ——PX ——X, (10.2.1)

and recall that the path space PX is contractible. Note that the loop
space Q)X is connected, since 71p(QX) = 11 (X) = 0. Moreover, since
m1(X) = 0, the Leray-Serre spectral sequence (10.1.1) for the path
fibration has the E2-page given by

E} . = Hp(X, H;(QX)) = H.(PX).

We prove the statement of the theorem by induction on n. The
induction starts at n = 2, in which case we clearly have H;(X) = 0
since X is simply-connected. Moreover,

7T2(X) = ﬂl(QX) = Hl(QX),

where the first isomorphism follows from the long exact sequence of
homotopy groups for the path fibration, and the second isomorphism
is the abelianization since 712(X), hence also 711 (Q2X), is abelian. So it
remains to show that we have an isomorphism

Hl(QX) = Hz(X) (10.2.2)

Consider the Ey-page of the Leray-Serre spectral sequence for the path
fibration. We need to show that

d*: B3y = Hy(X) — Ej; = Hi(QX)

Figure 10.3: p-axis and g-axis of E2
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is an isomorphism.

H.(OX
(zs ) E2
Hi(QX) ¢
d2
— o e H.(X)

Z Hi(X) H(X)

Since {Erzﬂ,q} = H,(PX) and PX is contactible, we have by Remark
10.1.3 that E%, = 0 for all p,q > 0. Hence, if d? 1 Hy(X) — Hi(QX)
is not an isomorphism, then Eg,l # 0 and Eg,o = kerd? # 0. But the
differentials d® and higher will not affect Eg,l and E%/O. So these groups
remain unchanged (hence non-zero) also on E*, contradicting the fact
that E® = 0 except for (p,q) = (0,0). This proves (10.2.2).

Now assume the statement of the theorem holds for n — 1 and prove
it for n. Since X is (n — 1)-connected, we have by the homotopy long
exact sequence of the path fibration that X is (n — 2)-connected. So
by the induction hypothesis applied to (2X (assuming now that n > 3,
as the case n = 2 has been dealt with earlier), we have that H;(QX) =0
fori <n—1,and 1,1 (QX) = H,_1(QX).

Therefore, we have isomorphisms:

ﬂn(X) = anl(QX) = anl (QX),

where the first isomorphism follows from the long exact sequence
of homotopy groups for the path fibration, and the second is by the
induction hypothesis, as already mentioned. So it suffices to show that
we have an isomorphism

H, 1(QX) = H,(X). (10.2.3)

Consider the Leray-Serre spectral sequence for the path fibration. By
using the universal coefficient theorem for homology, the terms on the
E2-page are given by

E; . = Hp(X, Hy(QX))
= Hp(X) ® Hy(QX) @ Tor(H,—1(X), Hy (QX))
=0

for 0 < g < n — 1, by the induction hypothesis for (1X.
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H*(i)x)
H, 1(QX) ¢
0
n
0
. . . — H.(X)
z Hi(X) Hy(X) 77 Hy(X) Ha(X)

Hence, the differentials d?, d> - - - d"~! acting on the entries on the p-axis
for p < n, do not affect these entries. The entries H,(X) and H,,_1(QX)
are affected only by the differential d". Also, higher differentials starting
with d"*1 do not affect these entries. But since the spectral sequence
converges to H,(PX) with PX contractible, all entries on the E*-page
(except at the origin) must vanish. In particular, this implies that
H;(X)=0for1<i<mn-—1,and d" : H,(X) — H,,_1(QX) must be an
isomorphism, thus proving (10.2.3). O

10.3 Leray-Serre Spectral Sequence

In this section, we give some more details about the Leray-Serre spectral
sequence. We begin with some general considerations about spectral
sequences.

Start off with a chain complex C, with a bounded increasing filtration
F*C,, i.e., each FFC, is a subcomplex of C,, Fr-1c, C FPC, for any p,
FPC, = C, for p very large, and FPC, = 0 for p very small. We get an
induced filtration on the homology groups H;(C.) by

FPH;(C,) := Im(H;(E"C,) — H;(C.)).

The general theory of spectral sequences (e.g., see Hatcher or Griffiths-
Harris), asserts that there exists a homological spectral sequence with
El-page given by:

E,q = Hpyq(FPC./FP7'C.) = H.(C.)
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and differential d' given by the connecting homomorphism in the long
exact sequence of homology groups associated to the triple

(FPC,, FP71C,, FP72C,).

Moreover, we have
Theorem 10.3.1.
-1
E;c:q = FpHerq(C*)/Fp Hp+q(c*)
So to reconstruct H.(C,) one needs to solve a collection of extension
problems.

Back to the Leray-Serre spectral sequence, let F < E ~> B be a
fibration with B a simply-connected finite CW-complex. Let C4(E) be
the singular chain complex of E, filtered by

FPC.(E) := C.(\(By)),
where By, is the p-skeleton of B. Then,
FIC.(E)/F'=1C.(E) = C.(n"'(B,))/C. (7" (B, 1))
= C.(n (By), 7 (Byn)).
By excision,

H.(FFC.(E)/FP~'C.(E)) = @ Hi(m*(e?), w1 (9eP))

where the direct sum is over the p-cells ¢” in B. Since e” is contractible,
the fibration above it is trivial, so homotopy equivalent to e” x F. Thus,

H,(m~(e?), 7 1(deP)) = H,(eP x F,de, x F)
>~ H,(DP x F,SP~1 x F)
~ H,_,(F)
~ H,(D?,SP1; H._,(F)),

where the third isomorphism follows by the Kiinneth formula. Alto-
gether, there is a spectral sequence with E'-page

E;Iq = Hp4q(FPC.(E)/FP7'C.(E)) = @ Hy(DP, SP~1; Hy(F)).
ep

Here, d! takes E;J,q to @, , H,_1(DP~1,8P=2; H,(F)) by the boundary
map of the long exact sequence of the triple (Bp, B, 1, By—2). By cellular
homology, this is exactly a description of the boundary map of the CW-
chain complex of B with coefficients in H;(F), hence

E; . = Hp(B, Hy(F)).
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Remark 10.3.2. If the base B of the fibration is not simply-connected,
then the coefficients H,(F) on B in E? are acted upon by 7;(B), ie.,
these coefficients are “twisted” by the monodromy of the fibration if it
is not trivial, so taking the homology of the E!'-page yields

E; . = Hp(B; Hy(F)),

regarded now as the homology of B with local coefficients #,(F).

The above considerations yield Serre’s theorem:

Theorem 10.3.3. Let F S E T Bre a fibration with 1t1(B) = 0 (or 111(B)
acts trivially on Hy(F)) and my(E) = 0. Then, there is a first quadrant
spectral sequence with E2-page

Efm = H,(B, H,(F))

which converges to H, (E).

Therefore, there exists a filtration
H.(E)=Dyo2Dy-112...2Dgy, 2 D_1,41 =0

such that E;’,f’q = Dy,q/Dp-1,4+1-

n-th diagonal of E*

\ Do

Dl,nfl/DO,n

Dy_11/Dp_zp

Hy(E)/Dy—1,

~
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(a) We have the following diagram of groups and homomorphisms:

2 2 3 3 4 +1
Hy(B) = Ep,() D kerdpro = Ep,O D kerdplo = Ep,O D...D keral?0 = E;O

Moreover, the above diagram commutes, i.e., the composition

Hy(E) - Ejy C E5 g = Hy(B), (10.3.1)

which is also called the edge homomorphism, coincides with 7, :
Hy(E) — Hp(B).

(b) We have the following diagram of groups and homomorphisms:

+2
Hy(F) = E§, — Eg , = Hq(F)/Im(d?) Ej,

Furthermore, this diagram commutes.

(©

Theorem 10.3.4. The image of the Hurewicz map h : 7w, (B) — Hy(B)
is contained in EJ o, which is called the group of transgression elements.
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Furthermore, the following diagram commutes:

n

my(B) ————— Hy(B) =E2y2 ... D "

I.e.sia ld"
hnfl

7y-1(F) = Hy_1(F) = E}, 4 —...—»El, 4

10.4 Hurewicz Theorem, continued

Under the assumptions of the Hurewicz theorem, consider the follow-
ing transgression diagram of Theorem 10.3.4:

hn

(X)) ———— Hy(X) =E2y = ... = EI,
NJa Nld"
1 (QX) h;‘l> Hy 1(QX)=Ej, 1 =...=E}, 4
Ox

The Hurewicz homomorphism h"({xl is an isomorphism by the inductive
hypothesis, 9 is an isomorphism by the homotopy long exact sequence
associated to the path fibration for X, and 4" is an isomorphism by the
spectral sequence argument used in the proof of the Hurewicz theorem.
Therefore, h' : 1,(X) — Hy(X) is an isomorphism since the diagram
commutes.

Remark 10.4.1. It can also be shown inductively that under the assump-
tions of the Hurewicz theorem,

W s g1 (X) — Hpga(X)
is an epimorphism.
In what follows we give more general versions of the Hurewicz
theorem. Recall that even if X is a finite CW-complex the homotopy

groups 77;(X) are not necessarily finitely generated. However, we have
the following result:

Theorem 10.4.2 (Serre). If X is a finite CW-complex with 1(X) = 0 (or
more generally if X is abelian), then the homotopy groups ;(X) are finitely
generated abelian groups for i > 2.

Definition 10.4.3. Let C be a category of abelian groups which is closed under
extension, i.e., whenever

0 A B C 0

is a short exact sequence of abelian groups with two of A, B, C contained in C,
then so is the third. A homomorphism ¢ : A — B is called a
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* monomorphism mod C if ker ¢ € C;
 epimorphism mod C if coker ¢ € C;
e isomorphism mod C if ker ¢, coker ¢ € C.
Example 10.4.4. Natural examples of categories C as above include
{finite abelian groups}, {finitely generated abelian groups}, as well as
{p-groups}.

We then have the following:
Theorem 10.4.5 (Hurewicz mod C). Given n > 2, if mj(X) € C for
1<i< n—l,thenﬁi(X) €Cfori<n—1,hY:m(X)— Hy(X) is an
isomorphism mod C, and Wi : 7,1(X) — Hyy1(X) is an epimorphism

mod C.

We need the following easy fact which guarantees that in the Leray-
Serre spectral sequence of the path fibration we have Ej, , € C.

Lemma 10.4.6. If G € C and X is a finite CW-complex, then H;(X;G) € C
for any i. More generally (even if X is not a CW complex), if A, B € C, then
Tor(A, B) € C.

Then the proof of Theorem 10.4.5 is the same as that of the classical
Hurewicz theorem, after replacing “=” by “= mod C”, and “0” by
IIC/I:

th

(X)) ————— Hy(X) = E2y=...=El,
ﬁJa =~ mod CJ'd”
o~ d C
-1 (QX) % Hy 1(QX)=E}, 1 =...=E},_,
ax

Specifically, h?{xl is an isomorphism mod C by the inductive hypothesis,

0 is an isomorphism by the long exact sequence associated to the path
fibration, and d" is an isomorphism mod C by a spectral sequence
argument similar to the one used in the proof of the Hurewicz theorem.
Therefore, 1% is an isomorphism mod C since the diagram commutes.

Proof of Serre’s Theorem 10.4.2. Let
C = {finitely generated abelian groups}.

Then, H;(X) € C since X is a finite CW-complex. By Theorem 10.4.5,
we have 71;(X) € C fori > 2. O

As another application, we can now prove the following result:

Theorem 10.4.7. Let X and Y be any connected spaces and f : X — Y a
weak homotopy equivalence (i.e., f induces isomorphisms on homotopy groups).
Then f induces isomorphisms on (co)homology groups with any coefficients.
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Proof. By universal coefficient theorems, it suffices to show that f
induces isomorphisms on integral homology. As such, we can assume
that f is a fibration, and let F denote its fiber.

Since f is a weak homotopy equivalence, the long exact sequence
of the fibration yields that 7;(F) = 0 for all i > 0. Hence, by the
Hurewicz theorem, ﬁi(F ) =0, for all i > 0. Also, Hy(F) = Z, since F
is connected.

Consider now the Leray-Serre spectral sequence associated to the
fibration f, with E?-page given by (see Remark 10.1.7):

Ejq = Hp(Y, Hy(F)) = Hu(X),

where H,(F) is a local coefficient system (i.e., locally constant sheaf)
on Y with stalk H;(F). Since F has no homology, except in degree zero
(where Ho(F) = Hy(F) is always the trivial local system when F is
path-connected), we get:

E;, =0 forq >0,

and
E3 o = Hp(Y).

Therefore, all differentials in the spectral sequence vanish, so
E>=...=E®
Recall now that
Huy(X)=Dyg2Dy_1102---20

and E;’,‘fq = Dpq/Dp_14+1- Soif g > 0, then Dp,; = Dj_1441 since
E;fq = 0. In particular, D,,_17 = -+ = Doy, = D_1 41 = 0. Therefore,

Hn(X) = E;fo = E%,O = Hn(Y)

and, by our remarks on the Leray-Serre spectral sequence (and edge
homomorphism), the above composition of isomorphisms coincides
with f;, thus proving the claim. O

10.5 Gysin and Wang sequences
As another application of the Leray-Serre spectral sequence, we discuss
the Gysin and Wang sequences.

Theorem 10.5.1 (Gysin sequence). Let F < E 75 B be a fibration, and
suppose that F is a homology n-sphere. Assume that 111 (B) acts trivially on
H,(F), e.g., m1(B) = 0. Then there exists an exact sequence

-+ — H{(E) & Hi(B) = Hi_y_1(B) — Hi_1(E) = H;_1(B) = - --
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Proof. The Leray-Serre spectral sequence of the fibration has

Hy(B) ,9=0,n

E2, = H,(B;H,(F)) =
pA s i 0 , otherwise.

AN H*(B)

O Ezz---:E”‘H

H.(B)

Thus the only possibly nonzero differentials are:

n+1 ., pn+1 n+1
dm L ERSt — BNt

In particular,

£yt ==
for any (p,q), and
0 47 0,n
Ep, =  ker(d"*1: E;fgl — E;jflln) ,q=0 (10.5.1)
coker(d"! 1 EJT, 40— EjSY) g =n.

The above calculations yield the exact sequences

00 n+1 dntl n+1
0 EP/O EP/O Ep—n—l,n E

o0}

p—n—1n » 0.

The filtration on H;(E) reduces to
0CE? = Di—n,n C Di,O = Hl(E)

i—nn

and so the sequences

00— E{’in,n — H;(E) — Ef’% —0 (10.5.2)

are exact for each i.
The desired exact sequence follows by combining (10.5.1), (10.5.2)
and the edge isomorphism (10.3.1). O

Theorem 10.5.2 (Wang). If F — E — S" is a fibration, then there is an
exact sequence:

-+ — Hi(F) — H;(E) — H;_,(F) — H;_1(F) — - -

Proof. Exercise. ]
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10.6  Suspension Theorem for Homotopy Groups of Spheres

We first need to compute the homology of the loop space (3S" for n > 1.
Proposition 10.6.1. If n > 1, we have:

Z ,+x=an-1),aeN

0 , otherwise

H.(QS") = {
Proof. Consider the Leray-Serre spectral sequence for the path fibration
(with 711 (S§™) = mp(QS™) = 0)
QS" < PS" ~ x — S§",
with E2-page

Hy(QS") ,p=0,n

E2, = H,(S"; H,(QS")) =
P A 1 ) {0 ,otherwise

which converges to H.(PS") = H.(point). In particular, Ej}, = 0 for
all (p,q) # (0,0).

H*(QS") F2—..._Fn
H;(QSs") H;(QS")
Q)
H,(QS") Hy(QS")

First note that we have Hy(QS") = Z since 119(QS") = m(S") = 0.
Moreover, H;(QS") = E(%,i = E(3),z‘ = Eg; = 0for 0 <i <n—1,since
these entries are not affected by any differential. Furthermore, d*> =
d® = ... =d""! = 0 since these differential are too short to alter any of
the entries they act on. So

E2=.. . =FE"

Similarly, we have d"*! = d"*2 = ... = 0, as these differentials are too

long, and so
I
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Since E, = 0 for all (p,q) # (0,0), all nonzero entries in E" (except at
the origin) have to be killed in E"*!. In particular,

no. n n
dn,q . En,q ’ EO,q+n71
are isomorphisms.

H, (an) EZ

. — En

HZn—2(QSn)

5 "
H, (QS") 0O
| \

H,_1(QS™") H, 1(QS")
0 0
0 0
\
0 n Z = Hy(QS") ’

For instance, d" : Z = Ho(QS") = E; — Ej, ; = Hy—1(QS")
is an isomorphism, hence H,_1(QS") = Z. More generally, we get
isomorphisms

Hy(0S") = Hy 1y 1(0S")

for any g > 0. Since Hy(QS") 2 Z and H;(QAS") =0for0<i<n-—1,
this gives:

Z ,x=an—-1),aeN

H,.(QS") =
0 , otherwise

as desired. 0

We can now give a new proof of the Suspension Theorem for homo-
topy groups.

Theorem 10.6.2. If n > 3, there are isomorphisms 7;(S"~') = m;, 1(S"),
fori < 2n — 4, and we have an exact sequence:

Z — 7T2n73(5n_1) - 7T2n72(5n) — 0.

Proof. We have Z = 7, (S") = 7, _1(QS"). Let g : S" 1 — QS" be a
generator of 71,_1(QS"). First, we claim that

9+ 1s an isomorphism on H;(—) for all i < 2n — 2.
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This is clear if i = 0, since Q)S" is connected. Given our calculation
for H;(QS") in Proposition 10.6.1, it suffices to prove the claim for
i = n— 1. We have a commutative diagram:

et Hy_1(S"1) H, 1(QS")

h O h
y1(S"71) & m,-1(QS")
[id] = [goid] = [g]

where h is the Hurewicz map. The bottom arrow g, is an isomorphism
on 7,_1 by our choice of g. The two vertical arrows are isomorphisms
by the Hurewicz theorem (recall that n > 3, so both S$"1 and QS" are
simply-connected). By the commutativity of the diagram we get the
isomorphism on the top horizontal arrow, thus proving the claim.

Since we deal only with homotopy and homology groups, we can
moreover assume that g is an inclusion. Then the homology long exact
sequence for the pair (QS",S"1) reads as:

o= Hi(S"Y & H(QS") — Hi(QS", 8" —
— Hl',1(5n71) g—*> Hifl(QSn) —

From the above claim, we obtain that H;(QS",S"~1) = 0, fori < 2n —2,
together with the exact sequence

0 = Z = Hyy_2(QS") = Hpp_»(QS", " 1) =0

Since S"~! is simply-connected (as n — 1 > 2), by the relative Hurewicz
theorem, we get that 77;(Q)S", S”_l) =0fori <2n—2,and

Ton_2(QS", 8" 1) = H,, »,(QS",5" 1) = 7.

From the homotopy long exact sequence of the pair (QS", 5" 1), we
then get 71;(QS") = 71;(S" 1) for i < 2n — 3 and the exact sequence

=2 — 7'[2,1,3(511_1) — 71, —3(QS") = 0

Finally, using the fact that 77;(QS") = 71;,1(S"), we get the desired
result. O

By taking i = 4 and n = 4, we get the first isomorphism in the
following:

Corollary 10.6.3. 714(S%) = 75(S*) = ... = 71,11(S")
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10.7 Cohomology Spectral Sequences

Let us now turn our attention to spectral sequences computing coho-
mology. In the case of a fibration, we have the following Leray-Serre
cohomology spectral sequence:

Theorem 10.7.1 (Serre). Let F < E — B be a fibration, with 711(B) = 0
(or 111(B) acting trivially on fiber cohomology) and rty(F) = 0. Then there
exists a cohomology spectral sequence with Ep-page

Ey" = HP (B, H'(F))
converging to H*(E). This means that, for each n, H" (E) admits a filtration
H"(E)=D > D' 12> . . oD oD 1=0

so that
rAa
Eféq =D /DPJrLEI*l-

Moreover, the differential d'7 : EI1 — EY g satisfies (d,)? = 0, and
E, 1 = H*(E,, d,).

n-th diagonal of Es

\ Hn(E)/Dl,n—l

Dl,nfl / DZ,VI*Z

anl,l /Dn,O

Dn,O

~

The corresponding statements analogous to those of Remarks 10.1.3
and 10.1.5 also apply to the spectral sequence of Theorem 10.7.1.

The Leray-Serre cohomology spectral sequence comes endowed with
the structure of a product on each page E,, which is induced from a
product on Ej, i.e., there is a map

! L / /
o EPT EVA s EPAt
satisfying the Leibnitz condition

dr(x o y) = dy(x) oy + (~1)*Vx 0 d, (y)
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where deg(x) = p + g. On the E;-page this product is the cup product
induced from

HP(B,HY(F)) x H” (B,H" (F)) —» HP*¥ (B, HT7 (F))
m-yxn-v — (mUn)-(yUv)
with m € HI(F), n € H7(F), v € CP(B) and v € C?(B), so that
mUn € H7 (F) and v Uv € CPH¥'(B).

As it is the case for homology, the cohomology Leray-Serre spectral
sequence satisfies the following property:

Theorem 10.7.2. Given a fibration F s E 5 B with F connected and
711(B) = 0 (or 1t1(B) acts trivially on the fiber cohomology), the compositions

HI(B) = B3 - B}’ — .-+ » El° - EIY, = EI’ C HI(E) (107.1)
and

HI(E) —» EY = 2’11 C Eg’q c---C Eg’q = H(F) (10.7.2)

are the homomorphisms 7t* : H1(B) — HY(E) and i* : H1(E) — HY(F),
respectively.

Recall that for a space of finite type, the (co)homology groups are
finitely generated. By using the universal coefficient theorem in coho-
mology, we have the following useful result:

Proposition 10.7.3. Suppose that F — E — B is a fibration with F connected
and assume that 711 (B) = 0 (or 7t1(B) acts trivially on the fiber cohomology).
If B and F are spaces of finite type (e.g., finite CW complexes), then for a field
K of coefficients we have:

E}'" = HP(B;K) @k H(F;K).

Sufficient conditions for the cohomology of the total space of a
fibration to be the tensor product of the cohomology of the fiber and
that of the base space are given by the following result.

Theorem 10.7.4 (Leray-Hirsch). Suppose F L ET Bisa fibration, with
B and F of finite type, 11(B) = 0 and mo(F) = 0, and let K be a field of
coefficients. Assume that i*: H*(E; K) — H*(F;K) is onto. Then

H*(E;K) 2 H*(B;K) ®k H*(F; K).

Proof. Consider the Leray-Serre cohomology spectral sequence
EY" = HP(B; H'(F;K)) = H*(E;K)

of the fibration F — E — B. By Proposition 10.7.3, we have:

E}" = HP(B; K) @k H(F;K).
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In order to prove the theorem, it suffices to show that
E2 == EOO/

i.e., that all differentials d,, d3, etc., vanish. Indeed, since we work with
field coefficients, all extension problems encountered in passing from
Es to H*(E; K) are trivial, i.e.,

H"EK)= @ EX.
ptq=n

Recall from Theorem 10.7.2 that the composite

HI(E;K) - B = BTy C BT C - C By = HI(F;K)

is the homomorphism i* : H1(E; K) — H7(F;K). Since i* is assumed
onto, all these inclusions must be equalities. So all d,, when restricted
to the g-axis, must vanish. On the other hand, at E; we have

, 0 0,
Eg 1= Eg ® E, 1 (10.7.3)

since K is a field, and d, is already zero on Eé’ 0 since we work with a
first quadrant spectral sequence. Since d; is a derivation with respect
to (10.7.3), we conclude that d, = 0 and E3 = E;. The same argument
applies to d3 and, continuing in this fashion, we see that the spectral
sequence collapses (degenerates) at Ep, as desired. O

10.8 Elementary computations

Example 10.8.1. As a first example of the use of the Leray-Serre co-
homology spectral sequence, we compute here the cohomology ring
H*(CP®) of CP*™.

Consider the fibration

Sl ey 6%~y 5 CP™,

The E;-page of the associated Leray-Serre cohomology spectral se-
quence starts with:

H*(SY)

A

E;

K
y H*(CP®)

Z 0 Z !
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Here, H'(CP®) = E;’O = 0 since it is not affected by any differential d,,
and the Ew-page has only zero entries except at the origin. Moreover,
since the cohomology of the fiber is torsion-free, we get by the universal
coefficient theorem in cohomology that

Ey! = HP(CP™, H(s")) = HY(CP¥) @ HI(s").

In particular, we have E;'l =0and Eg’l = H(s") = z.

Since S%° has no positive cohomology, hence the E.-page has only
zero entries except at the origin, it is easy to see that dj : Eg’l — E%’O has
to be an isomorphism, since these entries are not affected by any other
differential. Hence we have H?(CP®) = E%’O = Z. Since all entries on
the E;-page are concentrated at 4 = 0 and g = 1, the only differential
which can affect these entries is d>. A similar argument then shows
that d, : Eg’l — Eg 20 4 an isomorphism for any p > 0. This yields
that H*" (CP®) = Z and H°%(CP*®) = 0.

Let Z = (x) = H'(S'). Let y = dy(x) be a generator of H?>(CP>).

H*(S1)

A E2
x, 0 xy
K X‘
» H*(CP%)
1 0 y 0 e

Then, after noting that xy = (1® x)(y ® 1) is a generator of Z = E3",
we have:

da(xy) = do(x)y + (—1)98Wxd, (y) = 12,

Therefore, H*(CP®) = Z = (y?), since the d, that hits y? is an iso-
morphism. By induction, we get that dp(xy" ') = y" is a generator of
H?"(CP>). Altogether, H*(CP®) = Z[y|, with deg(y) = 2.

Example 10.8.2 (Cohomology groups of lens spaces). In this example
we compute the cohomology groups of lens spaces. Let us first recall
the relevant definitions.

Assume 1 > 1. Consider the scaling action of C* on C"*1\{0}, and
the induced S'-action on S?**1. By identifying Z/r with the group
of 7' roots of unity in C*, we get (by restriction) an action of Z/r on

S21+1. The quotient
52n+1

L(Yl,?") = /Z/T’

is called a lens space.
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The action of Z/r on S*"*! is clearly free, so the quotient map
S+l L(n,r) is a covering map with deck group Z/r. Since S?"*1
is simply-connected, it is the universal cover of L(n,r). This yields that
m1(L(n,r)) = Z/r and all higher homotopy groups of L(n,r) agree
with those of the sphere 5?1,

By a telescoping construction, which amounts to letting n — oo, we
get a covering map S® — L(oo,r) := SOO/Z /r With contractible total
space. In particular,

L(co,7) = K(Z/1,1).

To compute the cohomology of L(n,r), one may be tempted to
use the Leray-Serre spectral sequence for the covering map Z/r —
S21+1 5 L(n,r). However, since L(n,r) is not simply-connected, com-
putations may be tedious. Instead, we consider the fibration

St < L(n,r) — CP" (10.8.1)

whose base space is simply-connected. This fibration is obtained by
noting that the action of S! on $?"*! descends to an action of S! =
SY/(Z/r) on L(n,r), with orbit space CP".

Consider now the Leray-Serre cohomology spectral sequence for the
fibration (10.8.1):

EyT = HP (CP",H(S';Z)) = H'M1(L(n,1);Z)

and note that E}"" = 0 for g # 0, 1. This implies that all differentials d3
and higher vanish, so
E3 T e e e —— Eoo.

On the E>-page, we have by the universal coefficient theorem in coho-
mology that:
EY" = HP(CP";Z) @ H1(S%; Z).

Let a be a generator of Z = Eg'l =~ H!(S%;Z), and let x be a generator
of Z = E5" = H?(CP"; Z). We claim that

dy(a) = rx. (10.8.2)
*(cl
a 0 ax 0 ax? ax"
K K
b H(CP)
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To find dj, it suffices to compute H?(L(n,r); Z). Indeed, by looking
at the entries of the second diagonal of E, = --- = E3, we have:
02 11
H2(L(n,1);Z) = D*?, EX? =P 11 =0, B! = P /500 = 0, and
E20 — p20 — Z/Im( dy) In particular,

H*(L(n,1);Z) = D% = D" =D** = Z4, ). (10.8.3)

On the other hand, since Hy(L(n,7); Z) = my(L(n,r)) = Z/r, we get
by the universal coefficient theorem that

H?(L(n,1);Z) = (free part) & Z/r. (10.8.4)

By comparing (10.8.3) and (10.8.4), we conclude that d(a) = rx and
H2(L(n,r);Z) = Z/r.

By using the Kiinneth formula and the ring structure of H*(CP"; Z),
it follows from the Leibnitz formula and induction that d, (ax*~1) = rx*
for 1 < k < n, and we also have dy(ax") = 0. In particular, all the

nontrivial differentials labelled by d; are given by multiplication by 7.

Since multiplication by 7 is injective, the E3 = - - - = Ex-page is given
by
A EOO
0 0 0 0 0 Z
- - - - - -—--—-—-—@0--—-—-@® - —-—-—— - —— .- - - —-
>
Z 0 Z/r 0 Z/r T Z]r

The extension problems for going from E, to the cohomology of the
total space L(n,r) are in this case trivial, since every diagonal of E
contains at most one nontrivial entry. We conclude that

Z i=0
Z/r i=24,---,2n
Z i=2n+1

0 otherwise.

H(L(n,r);Z2) =

By letting n — oo, we obtain similarly that

Z i=0
H(K(Z/r1);Z) = Z/r i=2kk>1
0 otherwise.

In particular, if r = 2, this computes the cohomology of RP.
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10.9 Computation of 11,11 (S™)

In this section we prove the following result:
Theorem 10.9.1. Ifn > 3,
Tut1(S") =2Z/2.
Theorem 10.9.1 follows from the Suspension Theorem (see Corollary
10.6.3), together with the following explicit calculation:

Theorem 10.9.2.
m4(S%) = Z/2.

The proof of Theorem 10.9.2 given here uses the Postnikov tower
approximation of S3, whose construction we recall here. (A different
proof of this fact will be given in the next section, by using Whitehead
towers.)

Lemma 10.9.3 (Postnikov approximation). Let X be a CW complex with
iy := 1ty (X). For any n, there is a sequence of fibrations

K(T[k,k> — Yk — kal
and maps X — Yy with a commuting diagram
1

Y2 Yy Yy

Y

X

such that X — Yy induces isomorphisms 1t;(X) = m;(Yy) for i < k, and
i(Yy) =0 fori > k.

Proof. To construct Y;, we kill off the homotopy groups of X in degrees
> n+ 1 by attaching cells of dimension > n + 2. We then have 77;(Y,) =
m;(X) for i < nand m;(Y,) = 0if i > n. Having constructed Y;, the
space Y,_1 is obtained from Y}, by killing the homotopy groups of Y}

in degrees > n, which is done by attaching cells of dimension > n + 1.

Repeating this procedure, we get inclusions
XCY,CY, 1 C---CYy =K(m,1),

which we convert to fibrations. From the homotopy long exact sequence
for each of these fibrations, we see that the fiber of Y, — Y;_; is a
K(7ty, k)-space. O

Proof of Theorem 10.9.2. We consider the Postnikov tower construction
in the case n = 4, X = S3, to obtain a fibration

K(7ty4,4) — Y4 — Y3 = K(Z,3), (10.9.1)
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where 714 = 714(S®) = 74(Yy). Here, Y3 = K(Z,3) since to get Y3 we
kill off all higher homotopy groups of S° starting at 7r4. Since Y* is
obtained from $3 by attaching cells of dimension > 6, it doesn’t have
cells of dimensions 4 and 5, thus

Hy(Ys) = H5(Ys) = 0.

Let us now consider the homology spectral sequence for the fibration
(10.9.1). By the Hurewicz theorem,

0 p=12

H,(K(2,3);2) = {Z o,

0 7=1,23

Hq(K(TL’4,4);Z) = {7’[ (53) q= 4
4 = 4.

So the E2-page looks like

HL(K (i, )

Tty
0
0 @
0
y H.(K(Z,3)
Z 0 0 Z Hy Hs

Since Hy(Ys) = 0 = Hs(Y4), all entries on the fourth and fifth diagonals
of E* are zero. The only differential that can affect 74(S%) = I:"(Z],4 =
- =Ey, s

&> : H5(K(Z,3),Z) — m4(S°),

and by the previous remark, this map has to be an isomorphism (note
also that E%,O = H5(K(Z,3),Z) can be affected only by d°, and this
element too has to be killed at E*). Hence

714(S%) = H5(K(Z,3),Z). (10.9.2)

In order to compute H5(K(Z,3),Z), we use the cohomology Leray-
Serre spectral sequence associated to the path fibration for K(Z,3),
namely

QK(Z,3) — PK(Z,3) — K(Z,3),
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and note that, since PK(Z, 3) is contractible, we have 71;(Q0K(Z,3)) =
mi+1(K(Z,3)), i.e., QK(Z,3) ~ K(Z,2) = CP>. Since each H/(CP%) is
a finitely generated free abelian group, the universal coefficient theorem
yields that

Ey" = HP(K(Z,3); H(CP®)) = HF (K(Z,3)) ® H'(CP%), (1093)

and the product structure on E; is that of the tensor product of
H*(K(Z,3)) and H*(CP®).

Since Eé”q = 0 for g odd, we have d, = 0, so E; = E3. Similarly, all
the even differentials dy,, are zero, so Ep, = Ej, 11, for all n > 1. Since
the total space of the fibration is contractible, we have that EXT =0 for
all (p,q) # (0,0), so every non-zero entry on the Ey-page (except at the
origin) must be killed on subsequent pages.

Let a € H?(CP®) = Z be a generator. So af is a generator of
H%*(CP®) = Eg’Zk, for any k > 1. We create elements on E;’O, which
will sooner or later kill off all the non-zero elements in the spectral
sequence.

H*(CP®)

A

5 ¢0 E, = E3

1 0 0 $ 0 0 L g2
0 Y > H'(K(Z,3))
0 1 2 3 4 5 6

Note that Eé’o = E%’O = H'(K(Z,3)) is never touched by any differen-
tial, so
HY(K(Z,3)) = EX = 0.

Moreover, since d, = 0, we also have that
H*(K(2,3)) =E5° =E5° = EX’ =0.

The only differential that can affect (a) = Eg,z = Eg,z is dg,z : Eg,z — Eg’o,
so there must be an element s € Eg,o that kills off 4, i.e., d3(a) =s. On
the other hand, since Eg’o is only affected by d3 and it must be killed
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off at infinity, we must have that dg,z : E(3),2 — Eg’o is an isomorphism,
SO s generates
7z =E) = E° = H*(K(2,3)).

By (10.9.3), we also have that Eg”2 = ES’Z = Z, generated by as. Note
that
d3(a*) = 2adz(a) = 2as,

S0 dg'4 : Eg'4 — Eg'z is given by multiplication by 2. In particular,
EJ* = 0. Next notice that H*(K(Z,3)) = E;° and H*(K(Z,3)) = E°
can only be touched by the differentials d3, d4, or ds, but all of these are
trivial maps because their domains are zero. Thus, as H*(K(Z,3)) and
H5(K(Z,3)) can not killed by any differential, we have

H*(K(Z,3)) = H>(K(Z,3)) = 0.

Similarly, H®(K(Z,3)) = ES° and (as) = E3? are only affected by
ds. Since d3(a®?) = 2as, we have ker(ds: (as) = Eg,z — Eg'o) =
Im(dy: Ey* — E3* = (as)) = (2as) C (as), and hence H®(K(Z,3)) =
Im(dy: Ey* — ES°) = (as) / (2as) = Z/2.

In view of the above calculations, we get by the universal coefficient
theorem that

Hs5(K(Z,3)) =Z/2. (10.9.4)
The assertion of the theorem then follows by combining (10.9.2) and
(10.9.4). O
Corollary 10.9.4.
m4(S?) =2/2.

Proof. This follows from Theorem 10.9.2 and the long exact sequence
of homotopy groups for the Hopf fibration S' < §% — 52, O

10.10 Whitehead tower approximation and 7ts(S3)

In order to compute 715(S%) we make use of the Whitehead tower
approximation. We recall here the construction.

Whitehead tower
Let X be a connected CW complex, with 77, = 774(X) for any g > 0.

Definition 10.10.1. A Whitehead tower of X is a sequence of fibrations
e — Xy — Xy 1 — = X=X
such that

(a) X, is n-connected
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() 1y(Xn) = 1g(X) forqg >n+1
(c) the fiber of X, — X;,_1 is a K(7ty, n — 1)-space.
Lemma 10.10.2. For X a CW complex, Whitehead towers exist.

Proof. We construct X, inductively. Suppose that X,,_; has already
been defined. Add cells to X,,_; to kill off 74(X,_1) for g > n+ 1.
So we get a space Y which, by construction, is a K(7,, n)-space. Now
define the space

Xy =P Xy1:={f:1—=Y,f(0)=xf(1) € Xy—1}

consisting of of paths in Y beginning at a basepoint * € X,_; and
ending somewhere in X,,_;. Endow X, with the compact-open topology.
As in the case of the path fibration, the map 7 : X;, — X,_; defined by
v — (1) is a fibration with fiber QY = K(m,,n —1).

From the long exact sequence of homotopy groups associated to the
fibration

K(my,n—1) = X, — X, 1
we get that 77;(X,) = 74(X,—1) for g > n+1, and 75(X,) = 0 for
q < n — 2. Furthermore, the sequence
0 — mp(Xn) — 7n(Xy—1) — 7y 1(K(7tn,n = 1)) — 71, 1(Xn) — 0

is exact. So we are done if we show that the boundary homomor-
phism 9 : 71, (X,,—1) — 7,_1(K(7ty, n — 1)) of the long exact sequence
is an isomorphism. For this, note that the inclusion X,,_1 C Y =
K(my,n) = X;;—1 U {cells of dimension > n+ 2} induces an isomor-
phism 7, (X;,—1) = m,K(my,n) = m,_1(K(my, n — 1)), which is pre-
cisely the above boundary map 9. O

Calculation of 714(S%) and 7t5(S°)

In this section we use the Whitehead tower for X = S% to compute
7'(5(53).
Theorem 10.10.3.

m5(83) = Z/2.

Proof. Consider the Whitehead tower for X = S%. Since S° is 2-
connected, we have in the notation of Definition 10.10.1 that X =
X; = Xp. Let 71; := m;(S%), for any i > 0. We have fibrations

K(7‘[4,3) —_— X4

|

K(m3,2) — X3

J

53
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Since 713 = Z, we have K(73,2) = CP®. Moreover, since Xy is 4-
connected, we get by definition and Hurewicz that

7'[5(53) = 7T5(X4) = H5(X4).

Similarly,
74(S%) = 714(X3) = Hy(Xs).

Once again we are reduced to computing homology groups. Using the
universal coefficient theorem, we will deduce the homology groups
from cohomology.

Consider now the cohomology spectral sequence for the fibration

CP® — X3 — S5.
The Ep-page is given by
E}? = HP(S® HY(CP*,Z)) = HP(S%) ® H1(CP™) = H*(X3).

In particular, Ej7 = 0 unless p = 0,3 and 4 is even.

H*(CP®
(zs ) 1 EZ — E3
|
|
4 ¢52 1
ds |
340 !
2 |
|
2 X ;xu
|
ds |
1 40 N, |
|
1 0 0 !
0 ——s ;” s H*(5%)

Since Eg’q = 0 for g odd, we have d, = 0, so E; = E3. In addition, for
r>4,d, =0.50 Ey = Eeo.

Since X3 is 3-connected, we have by Hurewicz that H?(X3) =
H3(X3) = 0, so all entries on the second and third diagonals of
Ew = E4 are 0. This implies that d3* : EY*> = Z — E3° = Z is
an isomorphism. Let H*(CP%®) = Z[x| with x of degree 2, and let u be
a generator of H3(S%). Then we have d3(x) = u. By the Leibnitz rule,

dzx" = nx"ldx = nx""!

u, and since x" generates Eg,zn and x"1u
generates Eg,z;qu, the differential dg’zn is given by multiplication by n.
This completely determines E; = E, hence the integral cohomology
and (by the universal coefficient theorem) homology of X3 is easily

computed as:

q 01 2 3 4 5 6 7 e 2k 2k+1
H1(X3)|Z 0 0 0 O Z/2 0 Z/3 --- 0 Z/k
Hy(X3)|Zz 0 0 0 Z/2 0 Z/3 0 o Z/k 0
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In particular, 714 = Hy(X3) = Z/2, which reproves Theorem 10.9.1.

In order to compute 715(S®) = Hs(X4), we use the homology spectral
sequence for the fibration

K(7y,3) = Xq — X3,
with E2-page
E;q = Hp(X3;Hy(K(Z/2,3))) = Hi(Xy).

Note that, by the Hurewicz theorem, we have: H;(K(my,3)) = 0 for
i =1,2and H3(K(my,3)) = my = Z/2. So Ej , = 0 for g = 1,2. Also,
Ef;,o = H,(X3), whose values are computed in the above table.

H.(K(Z/2,3))

5¢7Z/2

Z 0 0 0 Z/2 0 Z/3
0 1 2 3 4 5 6

> H, (X3)

Since X4 is 4-connected, we have by Hurewicz that H3(X4) = Hy(Xy) =
0, so all entries on the third and fourth diagonal of E* are zero. Since
the first and second row of EZ are zero, this forces d* : Eio = Eio —
Eé/3 = E(%,s to be an isomorphism (thus recovering the fact that 74 =
Z./2), and

Hy(K(Z/2,3)) = Ej, = E5; = 0.

Moreover, by a spectral sequence argument for the path fibration of
K(Z/2,3), we obtain (see Exercise 6)

Ejs = H5(K(Z/2,3)) = Z/2,

and this entry can only be affected by d° : Eg,o = Z/3 — E8’5 =
E%,S = Z/2, which is the zero map, so ES‘/’5 = Z /2. Thus, on the fifth
diagonal of E*, all entries are zero except E8?5 = Z /2, which yields
H5(Xy) = 2Z/2,ie., 75(S%) = Z/2. O
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10.11  Serre’s theorem on finiteness of homotopy groups of spheres

In this section we prove the following result:
Theorem 10.11.1 (Serre).

(a) m;(S*+1) is finite for i > 2k + 1.

(b) 7;(S%) is finite for i > 2k, i # 4k — 1, and

mt4x—1(8%) = Z @ {finite abelian group}.

Proof of part (a). The case k = 0 is easy since 77;(S!) is in fact trivial
for i > 1. For k > 0, recall Serre’s theorem 10.4.2, according to which
a simply-connected finite CW complex has finitely generated homo-
topy groups. In particular, the groups 7r;(S?*1) are finitely generated
abelian for all i > 1. Therefore, 7r;(S%**1) (i > 1) is finite if it is a torsion
group.

In what follows we show that

i (8% 2 71,5 (S%*1) mod torsion, (10.11.1)

and part (a) of the theorem follows then by induction. The key to
proving the isomorphism (10.11.1) is the fact that

Moo 1 (PSPHY) 2= 71y 1 (SF1) = 2.

Letting B: S*~1 — (?S%+1 be a generator of 7my_1(Q?S%*+1), we
will show that 8 induces an isomorphism mod torsion on H. (i.e., an
isomorphism on H,(—;Q)). Let us assume this fact for now. WLOG,
we assume that § is an inclusion, and then the homology long exact
sequence of the pair (Q25%+1, §%~1) yields that

H,(025%+1, 621y — 0 mod torsion.

The relative version of the Hurewicz mod torsion Theorem 10.4.5 then

tells us that
;(Q28%+1, 5251y — 0 mod torsion

for all i, so again by the homotopy long exact sequence of the pair

we get that 7;(S%*1) = 7;(Q28%+1) = ;. ,(5%*+1) mod torsion, as

desired.

Thus, it remains to show that the generator f: $?~1 — 25%+1 of
Tror—1 (Q28%+1) induces an isomorphism on H,(—; Q). The bulk of the
argument amounts to showing that H;(Q2S%**1;Q) = 0 for i # 2k — 1,
which we do by computing H;(Q?S**1,Q)V = H(Q25%+1;Q) with
the help of the cohomology spectral sequence for the path fibration
0?8%+1 y  — S?F1. The E,-page is given by

Eé’/q — Hp(052k+1; Hq(QZSZkJrl;Q)) = H*(*;Q),
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and since the total space of the fibration is contractible, we have EFT =0
unless p = g = 0, in which case EX ~ Q.

It is a simple exercise (using the path fibration QS%+1 < 5 — §2k+1)
to show that

H*(QS%+1,Q) = Qle], dege = 2k.
Hence,
EDA = HP (QS¥HL; H1(025%+1;Q))
~ HP (OS5 Q) 20 HI(25%+1, Q)
has possibly non-trivial columns only at multiples p of 2k, with Egkj o=
Q = (¢/). This implies that d,d3, . ..,do_ are all zero, hence E; = Ey.

Furthermore, since the first non-trivial homotopy group 7, (Q2§%+1) =
7g42(S**1) appears at g = 2k — 1, it follows by Hurewicz that

H1(O?s%+1,Q) =0, for 0 < g <2k —1.

Therefore, Eizg’q =0for0<g<2k—1.

H* QZSZk+1;
2k—1 |w 0O ew 0
b - - - --- T e
dok dok
2
0l1 0 >Nge 0 >Ne y HH(QS%HQ)
0 e 2k e 4k

Since E%I};,O =~ HZ(OS%*+1) = (e) and Eg;fk_l >~ H2-1(()28%+1) are
only affected by dg;?k_l : E%czk_l — E%’i’o, we must have that dg;(zk—1 is an
isomorphism in order for E%f’ﬁl = E20 and Eg;ﬁ;l = E&Zk*l to be zero.

So H?~1(028%+1) >~ Q = (w), with dy(w) = e. As a consequence,

2jk,2k—1 i — i i
EZ{( _ H2]k(QS2k+l;Q) ®q H2k 1(0252k+1) _ <€]> ®0 <(U> _ (e]w>

and d;{(k’Zk_l: E;ik’Zk_l — E§£k+2k’0 are isomorphisms since dy (e/w) =
jdor(e)w + eldyi(w) = e/, This implies that, except for g € {0,2k — 1},
EL is always trivial, and in particular that H'(Q25%+1;Q) = Eg;{i is
trivial for i # 0,2k — 1. (If there was anything else in H* (QZSZ"Jrl ;Q),
it would have to also be present at infinity.)

Next note that $%*~1 and 025%+! are (2k — 2)-connected, so by
the Hurewicz theorem, their rational cohomology vanishes in degrees
i < 2k —1. Hence, B: S?71 — 25%+1 induces isomorphisms on
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H'(—;Q) if i # 2k — 1. In order to show that 8 induces an isomorphism
on Hy,_1(—;Q), recall the commutative diagram:

_ B+
Hy_1(S* 1) —= Hy_1(Q?$%H1)

e 1E

To—1(S*71) 5 Mok (QP2S*H)

where the lower horizontal B, is an isomorphism since 8 is the gen-
erator of 7p_1(Q2S%+1), and the vertical arrows are isomorphisms
by Hurewicz. Since the diagram commutes, the top horizontal map
labelled B, is an isomorphism also, and the proof of part (a) is com-
plete. O

Proof of part (b). We shall construct a fibration
e

such that
m;(E) 2 ;($*~1) (mod torsion). (10.11.2)

Assuming for now that such a fibration exists, then since by part (a) we
have that

) finite i # 4k — 1
i(s¥ 1)_{2 i k-1’

we deduce that

finite i#4k—1
mi(E) = o
Z & finite i =4k — 1.
The homotopy long exact sequence:

s — 7'[1'(52]{71) — 7'[1'(E) — 7T,‘(52k) — 7'[1‘,1(52](71) —

together with that fact proved in part (a) that

_ finite i #2k—1
(s = {Z i=2k—1’

then yields that

(%) finite i #2k,4k—1
TC; =
' Z @ finite i—=4k—1,

as desired.
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Note that in order to have (10.11.2), it is sufficient for E to satisfy
H;(E) = H;($*~1) modulo torsion, i.e.,

Hy(E) finite. | 1 #0,4k—1
Z @ finite i =4k — 1.

Indeed, by Hurewicz mod torsion, we then have that 7wy ((E) =
Hy_1(E) mod torsion, and let f: $*%~1 — E be a generator of the
Z-summand of 7y 1(E). WLOG, we can assume that f is an inclu-
sion. The homology long exact sequence of the pair (E,S*~1) then
implies that H,(E,S*~1) = 0 mod torsion. By Hurewicz mod torsion
this yields 7r.(E, $*~1) = 0 mod torsion. Finally, the homotopy long
exact sequence gives 71;(E) = 7;(S*~1) mod torsion.

Back to the construction of the space E, we start with the tangent
bundle TS* — % and let 7 : TpS%* — S2f be its restriction to the
space of nonzero tangent vectors to S?*. Then 7 is a fibration, since it

is locally trivial, and its fiber is R?*\ {0} ~ $%~1 We let
E = T,S%*.

Let us now consider the Leray-Serre homology spectral sequence of
this fibration, with

E} . = Hy(S%; Hy(S* 1)) = Hy(5%) @ Hy(S* ) = H.(E).
Therefore, the page E2 has only four non-trivial entries at (p,q) = (0,0),

(2k,0), (0,2k — 1), (2k — 1,2k), and all these entries are isomorphic to
Z.

2k—1
H(S77) E?—=...=F2
z de °Z
\ 2k
7 A H.(5°%)

Clearly, the differentials d2,d%,...,d%*1 are all zero, as are the dif-

d2,

ferentials The only possibly non-zero differential in the

spectral sequence is d3; : E3¢ — E3%, . Thus, E? = .- = E* and
E%+1 = ... = E®. Therefore, the space E has the desired homology if

and only if
By # 0.
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The map d%]lz,o fits into a commutative diagram

3 _
7ok (§%) —"— 1y (S*71)
] =1h
d _
Hoi(8%) —2 Hy 1(S*°1)

where 9 is the connecting homomorphism in the homotopy long exact
sequence of the fibration, and / denotes the Hurewicz maps. Hence,
dy # 0 if and only if 0 # 0. If, by contradiction, d = 0, then the
homotopy long exact sequence of the fibration 7 contains the exact
sequence

o (E) ™ i (5%) 2 0.

In particular, there is [¢p] € mx(E) so that m.([¢]) = [id], i.e., the
diagram

id
commutes up to homotopy. By the homotopy lifting property of the
fibration, there is then a map ¢: S?* — E so that 7w o ¢ = id. In other
words, ¥ is a section of the bundle 7r. This implies the existence of a
nowhere-vanishing vector field on S2% which is a contradiction. O

Remark 10.11.2. Serre’s original proof of Theorem 10.11.1 used the
Whitehead tower approximation of a sphere, together with the compu-
tation of the rational cohomology of K(Z, n) (see Exercise 13).

10.12  Computing cohomology rings via spectral sequences
The following computation will be useful when discussing about char-
acteristic classes:

Example 10.12.1. In this example, we show that the cohomology ring
H*(U(n);Z) is a free Z-algebra on odd degree generators x1, - - - , X2,,1,
with deg(x;) =1, i.e.,
H*(U(n); Z) = Az[x1, -+ x2n1]-
We will prove this fact by induction on 7, by using the Leray-Serre
cohomology spectral sequence for the fibration

U(n—1) = U(n) — S*~L,

For the base case, note that U(1) = S!, so H*(U(1)) = Az[x;] with
deg(x1) = 1. For the induction step, we will show that

H*(U(n)) = H($>* Y @ H*(U(n — 1)). (10.12.1)
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Since H*(S?"1) = Agz[x,_1] with deg(xp,_1) = 21 — 1, this will then

give recursively that H*(U(n)) = Agz[x1, ..., Xn-3] @z Az[x2n-1] =

Agz[x1, -+, xp,-1], with odd-degree generators x1, - - - , xp,_1, with
deg(x;) = i.

Assume by induction that H*(U(n — 1)) = Agz[xy,- -+, x2,—3], with
deg(x;) =i, and for n > 2 consider the cohomology spectral sequence
EY" = HP(S*"~ 1, HI(U(n —1))) = H*(U(n)).

By the universal coefficient theorem, we have that
EY' =HP(S* ) @HI(U(n—1)) =0 if p#0,2n—1.
So all the nonzero entries on the Ej;-page are concentrated on the
columns p = 0 (i.e., g-axis) and p = 2n — 1. In particular,
dy=-+-=dy »=0,
SO
Ey =---=Ey-1.

Furthermore, higher differentials starting with d,, are also zero (since
either their domain or target is zero), so

Esy = -+ = Eco.

Recall now that x1,- - ,xp,_3 generate the cohomology of the fiber
U(n — 1) and note that, due to their position on E;,_1, we have that
don-1(x1) = -+ = dyy1(x20-3) = 0. Since dp, 1(x2,-1) = 0, we
conclude by the Leibnitz rule that

day—1 =0.

(Here, x5,_1 denotes the generator of H*(S?"~1).) Thus, E,_1 = Eay,
so in fact the spectral sequence degenerates at the Ey-page, i.e.,

Ey=-++ = Eq.

Since the Ex-term is a free, graded-commutative, bigraded algebra, it
is a standard fact (e.g., see Example 1.K in McCleary’s “A User’s guide
to spectral sequences”) that the abutement H*(U(n)) of the spectral
sequence is also a free, graded commutative algebra isomorphic to the
total complex associated to Ess", i.e.,

H(U(n) = @ EXY,

pHq=i

as desired.
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Example 10.12.2. We can similarly compute H*(SU(n)) either directly
by induction from the fibration SU(n — 1) < SU(n) — S$**~! and
the base case SU(2) = S®, or by using our computation of H*(U(n))
together with the diffeomorphism

U(n) = SU(n) x St (10.12.2)

1
iven by A — [ ——=A,det A |. In particular, (10.12.2) yields by the
givenby A (oA detd ). Inp (t0.12:2) yields by

Kiinneth formula:
H*(U(n)) = H*(SU(n)) ® H*(SY),

hence
H*(SU(Yl)) = AZ [X3, . ,x2n_1}

with deg x; = i.

10.13 Exercises

1. Show that 7;(ZIRP?) are finitely generated abelian groups for any
i > 0. (Hint: Use Theorem 10.4.5, with C the category of finitely
generated 2-groups.

2. Compute the homology of QS!. (Hint: Use the fibration QS!
Z — R obtained by “looping” the covering Z — R — S!, together
with the Leray-Serre spectral sequence.)

3. Prove Wang’s Theorem 10.5.2.

4. Let m : E — B be a fibration with fiber F, let K be a field, and
assume that 711 (B) acts trivially on H,(F;K). Assume that the Euler
characteristics x(B), x(F) are defined (e.g., if B and F are finite CW
complexes). Then x(E) is defined and

5. Use a spectral sequence argument to show that §” < S" — Sl is a
fiber bundle, thenn = m+Iland [ = m + 1.

6. Prove that H5(K(74,3)) = Z/2. (Hint: consider the two fibrations
K(Z/2,2) = QK(Z/2,3) — *« — K(Z/2,3),and RP® = K(Z/2,1) <
* — K(Z/2,2). Then compute H,(K(Z/2,2)) via the spectral sequence
of the second fibration, and use it in the spectral sequence of the first
fibration to compute H,(K(Z/2,3)).)

7. Compute the cohomology of the space of continuous maps f :
S! — S3. (Hint: Let X := {f : S' — S3, f is continuous} and define
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: X — S3by f+ f(1). Then 7 is a fibration with fiber QS3. Apply
the cohomology spectral sequence for the fibration Q53 < X — S3 to
conclude that H*(X) = H*(S%) ® H*(QS%).)

8. Compute the cohomology of the space of continuous maps f : S! —
S2.

9. Compute the cohomology of the space of continuous maps f : S! —
cp".

10. Compute the cohomology ring H*(SO(n); Z/2).
11. Compute the cohomology ring H* (Vi (C"); Z).
12. Show that H*(SO(4)) = H*(S®) ® H*(RP?).

13. Show that

Q[zn] , ifniseven

H*(K(Z,n);Q) =
(K(Z,m):Q) {A(zn) , if nis odd,

with deg(z,) = n. Here, A(z,) := Q[z,]/(22).

(Hint: Consider the spectral sequence for the path fibration
K(Z,n—1) < * — K(Z,n)

and induction.)

14. Compute the ring structure on H*(QS").

15. Show that the p-torsion in 77;(S®) appears first for i = 2p, in which
case it is Z/p. (Hint: use the Whitehead tower of S3, the homology
spectral sequence of the relevant fibration, together with Hurewicz mod
Cp, where Cy is the class of torsion abelian groups whose p-primary
subgroup is trivial.)

16. Where does the 7-torsion appear first in the homotopy groups of
s"?
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11
Fiber bundles. Classifying spaces. Applications

11.1  Fiber bundles

Let G be a topological group (i.e., a topological space endowed with

a group structure so that the group multiplication and the inversion

map are continuous), acting continuously (on the left) on a topological

space F. Concretely, such a continuous action is given by a continuous

map p: Gx F — F, (§,m) — g-m, which satisfies the conditions

(gh)-m =g-(h-m)) and eg - m = m, for eg the identity element of G.
Any continuous group action p induces a map

Ad, : G — Homeo(F)

given by ¢ — (f = g-f), with ¢ € G, f € F. Then Ad, is a group
homomorphism since

(Adp)(gh)(f) := (gh) - f =g~ (h- f) = Adp(g)(Ady(h)(f))-
Note that for nice spaces F (e.g., CW complexes), if we give Homeo(F)
the compact-open topology, then Ad,: G — Homeo(F) is a continuous
group homomorphism, and any such continuous group homomor-
phism G — Homeo(F) induces a continuous group action G x F — F.

We assume from now on that p is an effective action, i.e., Ad, is
injective.
Definition 11.1.1 (Atlas for a fiber bundle with group G and fiber F).
Given a continuous map 7t: E — B, an atlas for the structure of a fiber bundle
with group G and fiber F on 7t consists of the following data:

a) an open cover {Uy }4 of B,

b) homeomorphisms hy: w1 (Uy) — Uy % F (called trivializing charts or
local trivializations) for each « so that the diagram

upc —>U,XXF

\/

271



272 ALGEBRAIC TOPOLOGY

commutes,

c) continuous maps (called transition functions) gug: Uy N Ug — G so that
the horizontal map in the commutative diagram

(U N Up)

(Ua N Ug) X F (UxNUg) x F

hﬁoh;1

is given by
(x,m) — (x,gﬁa(x) - m).
(By the effectivity of the action, if such maps g,p exist, they are unique.)

Definition 11.1.2. Two atlases A and B on 1t are compatible if AU B is an
atlas.

Definition 11.1.3 (Fiber bundle with group G and fiber F). A structure
of a fiber bundle with group G and fiber F on rt: E — B is a maximal atlas
for mt: E — B.

Example 11.1.4.

1. When G = {eg} is the trivial group, 71: E — B has the structure
of a fiber bundle if and only if it is a trivial fiber bundle. Indeed,
the local trivializations h, of the atlas for the fiber bundle have
to satisfy hg o hil: (x,m) — (x,eg-m) = (x,m), which implies
hﬁ o h;l = id, so hﬁ = hyon Uy N Uﬁ. This allows us to glue all
the local trivializations h, together to obtain a global trivialization
h: mY(B)=E=~BxF.

2. When F is discrete, Homeo(F) is also discrete, so G is discrete by
the effectiveness assumption. So for the atlas of 7: E — B we have
1 (Uy) 2 Uy X F = Uper Uy x {m}, so 7 is in this case a covering
map.

3. Alocally trivial fiber bundle, as introduced in earlier chapters, is just
a fiber bundle with structure group Homeo(F).

Lemma 11.1.5. The transition functions g,p satisfy the following properties:
(@) 8ap(x)8py(X) = uy(x), forall x € Uy NUg N U,
() gpa(x) = g;l}(x),for all x € Uy N Ug.

(C) glxa(x) == EG.
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Proof. On U, N Ug N U, we have: (hy o hlgl) o (hgohy') = hyohyt.

Therefore, since Ad, is injective (i.e., p is effective), we get that

8ap(X)8py (¥) = gur (%)

forall x € Uaﬂuﬁﬂlly.

Note that (h, o h/gl) o (hgo hy') = id, which translates into

(%, 8ap(¥)8pa(x) - m) = (x,m).
So, by effectiveness, g,5(x)gpa(x) = eg for all x € U, N U, whence
g (x) = g2, (x).

Take v = & in Property (a) to get gup(x)gpa(¥) = aa(x). So by
Property (b), we have gu(x) = eg. O

Transition functions determine a fiber bundle in a unique way, in the
sense of the following theorem.

Theorem 11.1.6. Given an open cover {Uy} of B and continuous functions
gup: Ux NUp — G satisfying Properties (a)-(c), there is a unique structure
of a fiber bundle over B with group G, given fiber F, and transition functions

{gtxﬁ}-

Proof Sketch. Let E = ||, Uy x F x {a}, and define an equivalence rela-
tion ~ on E by
(x,1,0) ~ (%, gap () - m, B),
for all x € Uy N Ug, and m € F. Properties (a)-(c) of {g,s} are used
to show that ~ is indeed an equivalence relation on E. Specifically,
symmetry is implied by property (b), reflexivity follows from (c) and
transitivity is a consequence of the cycle property (a).
Let
E=E/~
be the set of equivalence classes in E, and define 7 : E — B locally by
[(x,m,a)] — x for x € U,. Then it is clear that 7 is well-defined and
continuous (in the quotient topology), and the fiber of 7 is F.

It remains to show the local triviality of r. Let p : E — E be the
quotient map, and let py := ply, xrxfa} : Ua X F x {a} = 71 (Uy).
It is easy to see that p, is a homeomorphism. We define the local
trivializations of 7t by h, := py L. O

Example 11.1.7.

1. Fiber bundles with fiber F = R" and group G = GL(n,R) are called
rank n real vector bundles. For example, if M is a differentiable real
n-manifold, and TM is the set of all tangent vectors to M, then
t: TM — M is a real vector bundle on M of rank n. More precisely,
if gy : Uy =2 R” are trivializing charts on M, the transition functions

for TM are given by g,p(x) = d(¢a © ?El)gpﬁ(x)'
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2. If F=R"and G = O(n), we get real vector bundles with a Rieman-
nian structure.

3. Similarly, one can take F = C" and G = GL(n,C) to get rank n
complex vector bundles. For example, if M is a complex manifold, the
tangent bundle TM is a complex vector bundle.

4. If F=C"and G = U(n), we get real vector bundles with a hermitian
structure.

We also mention here the following fact:

Theorem 11.1.8. A fiber bundle has the homotopy lifting property with respect
to all CW complexes (i.e., it is a Serre fibration). Moreover, fiber bundles over
paracompact spaces are fibrations.

Definition 11.1.9 (Bundle homomorphism). Fix a topological group G

acting effectively on a space F. A homomorphism between bundles E’ LY
and E 5 B with group G and fiber F is a pair (f, f) of continuous maps,
with f : B' — Band f : E' — E, such that:

1. the diagram

E’%E

1

B’;)B

commutes, ie., o f = for.

2. if {(Uu, ha) } is a trivializing atlas of 7t and {(V, Hp) } p is a trivializing
atlas of 7o', then the following diagram commutes:

f

(Vs N F (W) X F e 7 (VM (W) — s o Uy) —s U, P

L T
Pry Pr1

Ve £ (Uy) U,

and there exist functions dyg : Vg O f~1(Uy) — G such that for x €
VN f~1(Uy) and m € F we have:

" of| oHﬁ’l(x,m) = (f(x),dup(x) - m).

An isomorphism of fiber bundles is a bundle homomorphism (f, f) which
admits a map (g, 8) in the reverse direction so that both composites are the
identity.

Remark 11.1.10. Gauge transformations of a bundle 7 : E — B are bundle
maps from 7t to itself over the identity of the base, i.e., corresponding
to continuous map g : E — E so that 77 0 ¢ = 7. By definition, such g
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restricts to an isomorphism given by the action of an element of the
structure group on each fiber. The set of all gauge transformations
forms a group.

Proposition 11.1.11. Given functions dyg : Vg Nf Y (Uy) — Gand dyrpr
Ve N f “(Uy) — G as in (2) above for different trivializing charts of 7t and
resp. 7', then for any x € Vg0 Vg N f~1(Uy N Uy ) # @, we have

dyp (x) = Suwu(f (%)) dup(x) gpp (x) (11.1.1)

in G, where gy, are transition functions for 7 and g g are transition functions
for 1,

Proof. Exercise. O

The functions {d,s} determine bundle maps in the following sense:

Theorem 11.1.12. Given a map f : B' — B and bundles E = B, E’ B,
a map of bundles (f, f) : @' — 7 exists if and only if there exist continuous
maps {dyp} as above, satisfying (11.1.1).

Proof. Exercise. O

Theorem 11.1.13. Every bundle map f over f = idp is an isomorphism. In
particular, gauge transformations are automorphisms.

Proof Sketch. Let dyg : Vg MUy — G be the maps given by the bundle
map f : E' — E. So, if dyg : Vg MUy — Gis given by a different choice
of trivializing charts, then (11.1.1) holds on Vg N Vg N Uy N Uy #+ Q,
ie,

gy () = 8ua () dap(x) g (¥) (1112
in G, where g/, are transition functions for 7 and gz are transition
functions for 7r’. Let us now invert (11.1.2) in G, and set

Tpa(x) = d (x)

to get:

g (x) = 8pp(x) dpa(x) Gaw (x)-
So {dgy} are as in Definition 11.1.9 and satisfy (11.1.1). Theorem 11.1.12
implies that there exists a bundle map ¢ : E — E’ over idp.

We claim that ¢ is the inverse f~! of f, and this can be checked

locally as follows:

(r,m) > (x,dup(x) - 1) 5 (3, B (x) - (dap (x) - m))
= (2, B (X)dup () 1)
———

-
e

= (x,m).

So gof = idp. Similarly,fog =idp 0
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One way in which fiber bundle homomorphisms arise is from the
pullback (or the induced bundle) construction.

Definition 11.1.14 (Induced Bundle). Given a bundle E = B with group
G and fiber F, and a continuous map f : X — B, we define

FE={(xe) € XxE| f(x) = n(e)},
with projections f*rt: f*E — X, (x,e) + x,and f : f*E — E, (x,e) — e,

so that the following diagram commutes:

ffE——E e

x—— f(x)

f*mis called the induced bundle under f or the pullbafk of by f, and as we
show below it comes equipped with a bundle map (f, f) : f*m — 7.
The above definition is justified by the following result:
Theorem 11.1.15.
(a) f*m: f*E — X is a fiber bundle with group G and fiber F.
() (f,f): f*m — mis a bundle map.
Proof Sketch. Let {(Uy, hy) }o be a trivializing atlas of 77, and consider

the following commutative diagram:

(F ) F (U)) — 7 (Uy) ——— Uy x F

L

flu,x—>a

We have
(ff0) (T (U)) = {(xe) € fFH(U) x 71 (Ua) | f(x) = 7(e)}
>, xF
Define
ks (F 1) 7N (F N (Ua)) — (U)X F
by

(x,€) = (x,pry(ha(e)))-
Then it is easy to check that k, is a homeomorphism (with inverse
kyl(x,m) = (x,hg'(f(x),m)), and in fact the following assertions hold:
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(1) {(f"Y(Ua),ka)}a is a trivializing atlas of f*7.

(ii) the transition functions of f*7r are f*g“ﬁ = &up of,ie., f*ga,s(X) _
Sap(f(x)) for any x € F Uy N Up).

O

Remark 11.1.16. It is easy to see that (f o ¢)*m = ¢*(f*m) and (idp)*m =
7t. Moreover, the pullback of a trivial bundle is a trivial bundle.

As we shall see later on, the following important result holds:

Theorem 11.1.17. Given a fibre bundle m : E — B with group G and
fiber F, and two homotopic maps f ~ g : X — B, there is an isomorphism
f*m =2 g*m of bundles over X. (In short, induced bundles under homotopic
maps are isomorphic.)

As a consequence, we have:

Corollary 11.1.18. A fiber bundle over a contractible space B is trivial.

Proof. Since B is contractible, idp is homotopic to the constant map ct.
Let

b :=TIm(ct) Ly B,

so ioct ~ idg. We have a diagram of maps and induced bundles:

ct'i'E——i"E ——

ct*i*ﬂl li*ﬂ lﬁ
B

B ct {b} i

ldB

Theorem 11.1.17 then yields:
= (idg)*rt = ct*i* .

Since any fiber bundle over a point is trivial, we have that i*7t = {b} x F
is trivial, hence 7w = ct*i*7t = B x F is also trivial. O

Proposition 11.1.19. If

E’%E

n’l Jﬂ
B % B

! ~ %

is a bundle map, then 7w’ = f*7t as bundles over B'.
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Proof. Define h : E' — f*E by ¢ + (7'(¢’), f(¢')) € B’ x E. This is
well-defined, i.e., h(e') € f*E, since f(r'(e')) = mt(f(e')).

It is easy to check that h provides the desired bundle isomorphism
over B'.

O

Example 11.1.20. We can now show that the set of isomorphism classes
of bundles over S with group G and fiber F is isomorphic to 77,,_1(G).
Indeed, let us cover S" with two contractible sets U and U_ obtained
by removing the south, resp., north pole of §*. Let iy : U+ — 5" be
the inclusions. Then any bundle 7t over S" is trivial when restricted
to Uy, that is, i, 7t = U4 x F. In particular, Uy provides a trivializing
cover (atlas) for 77, and any such bundle 7t is completely determined by
the transition function g+ : Uy NU_ =~ sl 4G, ie, by an element
in TTy—1 (G)

More generally, we aim to “classify” fiber bundles on a given topo-
logical space. Let B (X, G, F, p) denote the isomorphism classes (over
idx) of fiber bundles on X with group G and fiber F, and G-action
on F given by p. If f : X’ — X is a continuous map, the pullback
construction defines a map

f*:B(X,G,Fp)— B(X,G,Fp)

so that (idx)* =id and (fog)* = g* o f*.

11.2  Principal Bundles

As we will see later on, the fiber F doesn’t play any essential role in the
classification of fiber bundle, and in fact it is enough to understand the
set

P (X,G) := B(X,G,G,mg)

of fiber bundles with group G and fiber G, where the action of G on
itself is given by the multiplication m¢ of G. Elements of P (X, G) are
called principal G-bundles. Of particular importance in the classification
theory of such bundles is the universal principal G-bundle G — EG —
BG, with contractible total space EG.
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Example 11.2.1. Any regular cover p : E — X is a principal G-bundle,
with group G = nl(X)/p* m(E) Here G is given the discrete topology.

In particular, the universal covering X — X is a principal 771 (X)-bundle.

Example 11.2.2. Any free (right) action of a finite group G on a (Haus-
dorff) space E gives a regular cover and hence a principal G-bundle
E—E/G.

More generally, we have the following:

Theorem 11.2.3. Let 7t : E — X be a principal G-bundle. Then G acts freely
and transitively on the right of E so that E/G = X. In particular, 7t is the
quotient (orbit) map.

Proof. We will define the action locally over a trivializing chart for 7.
Let U, be a trivializing open in X with trivializing homeomorphism
hy e (Uy) 5 U, x G. We define a right action on G on 7t~ (U,) by

mH(Uy) x G — (U 2 Uy x G
(e,8) = e-g:=hy' (m(e),pry (ha(e))-g)
Let us show that this action can be globalized, i.e., it is independent of

the choice of the trivializing open Uy. If (Upg, hg) is another trivializing
chart in X so that e € 71 (U, N Ug), we need to show that e- g =

hgl (7 (e),pr, (hg (e)) - g), or equivalently,

B (e (e) pry (e () - ) = B (7 (e)  pry (g (€)) - g) . (11.2.1)

After applying h, and using the transition function g,z for 7(e) €
Uy N Ug, (11.2.1) becomes

(7t (e),pry (ha(e)) - g) = hahﬁl (7 (e),pry (hp (e)) - 8)
= (7 (e), gap(7t(e)) - (pry (hg () - 8))

which is guaranteed by the definition of an atlas for 7.

It is easy to check locally that the action is free and transitive. More-
over, E/G is locally given as Uy % G/G = Uy, and this local quotient
globalizes to X. O

The converse of the above theorem holds in some important cases.

Theorem 11.2.4. Let E be a compact Hausdorff space and G a compact
Lie group acting freely on E. Then the orbit map E — E/G is a principal
G-bundle.

Corollary 11.2.5. Let G be a Lie group, and let H < G be a compact
subgroup. Then the projection onto the orbit space m : G — G/H is a
principal H-bundle.
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Let us now fix a G-space F. We define a map
P(X,G) = B(X,G,F,p)

as follows. Start with a principal G bundle 77 : E — X, and recall from
the previous theorem that G acts freely on the right on E. Since G acts
on the left on F, we have a left G-action on E x F given by:

g-(e.f)—(e-g',8 f)

Let
ExgF:=ExXL/

be the corresponding orbit space, with projection map w : E Xg F —
E/G = X fitting into a commutative diagram

ExF (11.2.2)
Pry
s
w
X

Definition 11.2.6. The projection w := 71 Xg F : E Xg F — X is called the
associated bundle with fiber F.

The terminology in the above definition is justified by the following
result.

Theorem 11.2.7. w : E Xg F — X is a fiber bundle with group G, fiber
F, and having the same transition functions as 1t. Moreover, the assign-

ment 1T — w := 1T X F defines a one-to-one correspondence P (X,G) —
B (X,G,F,p).

Proof. Let hy : w1 (Uy) — Uy x G be a trivializing chart for 7. Recall
that for e € 771 (U,), f € F and g € G, if we set h,(e) = (rt(e), h) €
U, x G, then G acts on the right on 77! (U,) by acting on the right on
h = pry(ha(e)). Then we have by the diagram (11.2.2) that

-T(u,) xF
o )X/(e,f)~(6~g‘1,g~f)
U,XXGXF/ 1 .

(u,h, f) ~ (w,hg™, 8- f)

1

w! (Ua)

1%

Let us define
ky:w ! (Uy) = Uy x F
by
[(u,h, f)] = (u,h- f).
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This is a well-defined map since

[(u,hg™, - )]+ (u,hg g f) = (u,h- f).

It is easy to check that k, is a trivializing chart for w with inverse
induced by Uy x F — Uy X G X F, (u, f) — (u,idg, f). It is clear that
w and 7t have the same transition functions as they have the same
trivializing opens. O

The associated bundle construction is easily seen to be functorial in
the following sense.

Proposition 11.2.8. If

El———E

Lk

X —X

is a map of principal G-bundles (so f is a G-equivariant map, i.e., f(e- g) =
f(e) - ), then there is an induced map of associated bundles with fiber F,

j?XGl'dp

E'xcF——%"F JExgF

L

X' X

Example 11.2.9. Let 77 : S! — S!, z + 22 be regarded as a principal

Z/2-bundle, and let F = [-1,1]. Let Z/2 = {1,—1} act on F by

multiplication. Then the bundle associated to 7t with fiber F = [—1,1]
1

11 = 5y o), iy

with a : S' — S! denoting the antipodal map. Similarly, the bundle

associated to 7t with fiber F = S! is the Klein bottle.

is the Mobius strip S! xz/,

Let us now get back to proving the following important result.

Theorem 11.2.10. Let 77 : E — Y be a fiber bundle with group G and fiber F,
and let f ~ g : X — Y be two homotopic maps. Then f*m = ¢*m over idx.

It is of course enough to prove the theorem in the case of principal
G-bundles. The idea of proof is to construct a bundle map over idx
between f*7r and g*m:

?

fE : »g"E

N,

X

. APPLICATIONS
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So we first need to understand maps of principal G-bundles, i.e., to
solve the following problem: given two principal G-bundles bundles
E; 25 X and E; 22 Y, describe the set maps (71, 112) of bundle maps

E1L>E2

-,

X——Y

Since G acts on the right of E; and E,, we also get an action on the left
of E; by g3 := e - ¢~ 1. Then we get an associated bundle of 7r; with
fiber E;, namely

w =70 XGE22E1 XGEz—)X.
We have the following result:

Theorem 11.2.11. Bundle maps from 11 to 1y are in one-to-one correspon-
dence to sections of w.

Proof. We work locally, so it suffices to consider only trivial bundles.

Given a bundle map (f, f) : 711 — 7, let U C Y open, and V C
f~1(U) open, so that the following diagram commutes (this is the
bundle maps in trivializing charts)

VXGLUXG

o
|4 % u

We define a section ¢ in

(VxG)xg(UxG)

{|

as follows. For ey € V x G, with x = 7r1(e1) € V, we set

o(x) = [er, f(er)].

This map is well-defined, since for any g € G we have:

le1- g fler-g)] =le1- g fle) gl =le1- 8,8 " fler)] = [er, fler)].

Now, it is an exercise in point-set topology (using the local definition
of a bundle map) to show that ¢ is continuous.
Conversely, given a section of E; x E» ++ X, we define a bundle by

-~

(f, f) by

~

fler) = e,
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where o(71(e1)) = [(e1,e2)]. Note that this is an equivariant map
because

le1-ger-gl=le1-8,8 " ea] = [e1, €0,

hence f(e;-g) =e;-g = f(e1) - g Thus f descends toamap f: X — Y

on the orbit spaces. We leave it as an exercise to check that (f, f) is

indeed a bundle map, i.e., to show that locally f(v,g) = (f(v),d(v)g)
with d(v) € Gand d: V — G a continuous function. O

The following result will be needed in the proof of Theorem 11.2.10.

Lemma 11.2.12. Let 7w : E — X x I be a bundle, and let 7y := iy :
Ey — X be the pullback of 7w under iy : X — X x I, x +— (x,0). Then
= (pry)*my = o x idy, where pry : X x I — X is the projection map.

Proof. Tt suffices to find a bundle map (pry, pr;) so that the following
diagram commutes

i pr
Eg— > E .1t

> EO
o]
i 281

XX x I X

By Theorem 11.2.11, this is equivalent to the existence of a section
ogof w: ExgEy = X xI. Note that there exists a section oy of
wp @ Ey xg Ep = X = X x {0}, corresponding to the bundle map
(idx,idE,) : 19 — . Then composing oy with the top inclusion arrow,
we get the following diagram

X x {O}LEXGEO
."7

Jw

Xxl—" s xx1

Since w is a fibration, by the homotopy lifting property one can extend
sop to a section o of w. O

We can now finish the proof of Theorem 11.2.10.

Proof of Theorem 11.2.10. Let H : X x I — Y be a homotopy between f
and g, with H(x,0) = f(x) and H(x,1) = g(x). Consider the induced
bundle H* 7t over X x I. Then we have the following diagram.
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f*E /H*E L, E
frr g*E H*r T
X x {0}< sin 0 L xx1—tsy

N
X x {1} X

Since f = H(—,0), we get f*m = ijH*7t. By Lemma 11.2.12, H* 71 =
pry (f*m) = pry (§¥m), and thus f*7r = ifH* 7 = ijpri g*m = ¢g*m. O

We conclude this section with the following important consequence
of Theorem 11.2.11

Corollary 11.2.13. A principle G-bundle v : E — X is trivial if and only if
7t has a section.

Proof. The bundle 7 is trivial if and only if 7w = ct*7/, with ¢t : X —
point the constant map, and 77’ : G — point the trivial bundle over a
point space. This is equivalent to saying that there is a bundle map

E > G

X —4 point

or, by Theorem 11.2.11, to the existence of a section of the bundle
w: E xgG — X. On the other hand, w = 7, since E x5 G — X looks
locally like

1 (Uy) XG/Ngua xGxG,

(4,81,82) ~ (w018, g82) = Ja X &

with the last homeomorphism defined by [(1, g1,82)] — (1, 8182)-
Altogether, 77 is trivial if and only if 77 : E + X has a section. O

11.3 Classification of principal G-bundles

Let us assume for now that there exists a principal G-bundle 7 :
EG — BG, with contractible total space EG. As we will see below, such
a bundle plays an essential role in the classification theory of principal
G-bundles. Its base space BG turns out to be unique up to homotopy,
and it is called the classifying space for principal G-bundles due to the
following fundamental result:
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Theorem 11.3.1. If X is a CW-complex, there exists a bijective correspondence

o

®:P(X,G) = [X,BC]

firg < f

Proof. By Theorem 11.2.10, ® is well-defined.

Let us next show that @ is onto. Let 7 € P(X,G), m: E — X. We
need to show that 7w = f*mr; for some map f : X — BG, or equivalently,
that there is a bundle map (f, f):m— ng. By Theorem 11.2.11, this
is equivalent to the existence of a section of the bundle E xg EG — X
with fiber EG. Since EG is contractible, such a section exists by the

following:

Lemma 11.3.2. Let X be a CW complex, and w: E — X € B(X,G,F,p)
with t;(F) = 0 forall i > 0. If A C X is a subcomplex, then every section
of 1t over A extends to a section defined on all of X. In particular, 7t has a
section. Moreover, any two sections of 7t are homotopic.

Proof. Given a section oy : A — E of 7 over A, we extend it to a section
o : X — E of 7 over X by using induction on the dimension of cells in
X — A. So it suffices to assume that X has the form

X:Au¢e”,

where e” is an n-cell in X — A, with attaching map ¢ : de” — A. Since
e" is contractible, 77 is trivial over ", so we have a commutative diagram

o~

(") ——e" x F

de"—— " 7

with i : 771 (¢") — ¢ x F the trivializing chart for 7t over ¢”, and ¢
to be defined. After composing with &, we regard the restriction of oy
over de" as given by

oo(x) = (x,70(x)) € e X F,

with 1y : 9" =2 §"~! — F. Since 7, 1(F) = 0, 19 extends to a map
T : " — F which can be used to extend oy over " by setting

o(x) = (x,t(x)).

After composing with h~1, we get the desired extension of oy over e".

Let us now assume that ¢ and ¢’ are two sections of 7. To find
a homotopy between ¢ and o', it suffices to construct a section ¥. of
mxid : ExI — X x 1. Indeed, if such X exists, then X(x,t) =
(0¢(x),t), and oy provides the desired homotopy. Now, by regarding
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o as a section of 7t x id; over X x {0}, and ¢’ as a section of 7w X id]
over X x {1}, the question reduces to constructing a section of 7t X idj,
which extends the section over X x {0,1} defined by (¢, ¢’). This can
be done as in the first part of the proof. O

In order to finish the proof of Theorem 11.3.1, it remains to show
that ® is a one-to-one map. If 7y = f*ng = ¢*ng = 71, we will show
that f ~ g. Note that we have the following commutative diagrams:

Eo = f"Ec — s kg

ER
X = X x {0} —— B

Ey~E = g'Eg —— Eg

R
X=Xx{1} —2- B

where we regard g as defined on Ej via the isomorphism 7ty = 717. By
putting together the above diagrams, we have a commutative diagram

a=(f,0)u(g1
Eox I <= Eyx {01} ZVOUED, p

J{TL’OXId lnox{o,l} lﬂc

Xx1 = Xx{01) SO 5

Therefore, it suffices to extend («,&) to a bundle map (H, H) : 7y x
Id — 7, and then H will provide the desired homotopy f ~ g.

By Theorem 11.2.11, such a bundle map (H, H) corresponds to a
section ¢ of the fiber bundle

w:(EO XI) XgEg—X x L.

On the other hand, the bundle map («, @) already gives a section oy of
the fiber bundle

wy : (EO X {0,1}) XG EG — X X {0,1},

which under the obvious inclusion (Eg X {0,1}) xg Eg C (Eg X I) Xg
Eg can be regarded as a section of w over the subcomplex X x {0,1}.
Since EG is contractible, Lemma 11.3.2 allows us to extend oy to a
section ¢ of w defined on X x I, as desired. O

Example 11.3.3. We give here a more conceptual reasoning for the
assertion of Example 11.1.20. By Theorem 11.3.1, we have

B(S",G,F,p) = P(S",G) = [S", BG] = m,(BG) = m,_1(G),
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where the last isomorphism follows from the homotopy long exact
sequence for 77, since EG is contractible.

Back to the universal principal G-bundle, we have the following

Theorem 11.3.4. Let G be a locally compact topological group. Then a uni-
versal principal G-bundle 11 : EG — BG exists (i.e., satisfying m;(EG) =0
for all i > 0), and the construction is functorial in the sense that a continuous
group homomorphism y : G — H induces a bundle map (Bu, Ep) : g —
1ty. Moreover, the classifying space Bg is unique up to homotopy.

Proof. To show that BG is unique up to homotopy, let us assume that
n¢ : Eg = Bg and 7 : E; — B{; are universal principal G-bundles.
By regarding 71 as the universal principal G-bundle for 71;;, we get a
map f : B — Bg such that i, = f*71¢, i.e., a bundle map:

EL — s Eg

e ]

B. —— Bg
Similarly, regarding 71, as the universal principal G-bundle for 7,
there exists a map g : BG — B; such that 775 = g*7(;. Therefore,

ne=g'ng =g f g = (fog) .

On the other hand, we have g = (idBc)*r[G, so by Theorem 11.3.1
we get that f o ¢ ~ idp_.. Similarly, we get go f ~ idB/G, and hence

f : B = Bg is a homotopy equivalence.
We will not discuss the existence of the universal bundle here, instead
we will indicate the universal G-bundle, as needed, in specific examples.
O

Example 11.3.5. Recall from Section 9.12 that we have a fiber bundle
O(n)—— V4(R*) —— G,(R%), (11.3.1)

with V,,(R®) contractible. In particular, the uniqueness part of Theorem
11.3.4 tells us that BO(n) ~ G, (R%) is the classifying space for rank n
real vector bundles. Similarly, there is a fiber bundle

U(n)—— V,(C*) —— G,(C™), (11.3.2)

with V,(C®) contractible. Therefore, BU(n) ~ G, (C®) is the classify-
ing space for rank n complex vector bundles.

Before moving to the next example, let us mention here without
proof the following useful result:
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Theorem 11.3.6. Let G be an abelian group, and let X be a CW complex.
There is a natural bijection

T:[X,K(G,n)] — H*(X,G)

[f] = £ (@)
where « € H"(K(G,n),G) = Hom(H,(K(G,n),Z),G) is given by the
inverse of the Hurewicz isomorphism G = 1t,(K(G,n)) — Hu(K(G,n), Z).

Example 11.3.7 (Classification of real line bundles). Let G = Z/2
and consider the principal Z/2-bundle Z/2 — S* — RP*. Since
5% is contractible, the uniqueness of the universal bundle yields that
BZ /2 = RP®. In particular, we see that RP* classifies the real line
(i.e., rank-one) bundles. Since we also have that RP® = K(Z/2,1), we
get:

P(X,Z/2) = [X,BZ/2] = [X,K(Z/2,1)] = H (X, Z/2)

for any CW complex X, where the last identification follows from
Theorem 11.3.6. Let now 7t be a real line bundle on a CW complex X,
with classifying map fr : X — RP%. Since H*(RP®,Z/2) = Z/2[w)],
with w a generator of H' (RP®,Z/2), we get a well-defined degree one
cohomology class

wy (71) = fr(w)

called the first Stiefel-Whitney class of 7. The bijection P(X,Z/2) =
HY(X,Z/2) is then given by 7t — w; (1), so real line bundles on X are
classified by their first Stiefel-Whitney classes.

Example 11.3.8 (Classification of complex line bundles). Let G = S!
and consider the principal S!-bundle S! < S* — CP®. Since S® is
contractible, the uniqueness of the universal bundle yields that BS! =
CP®. In particular, as S! = GL(1,C), we see that CP* classifies
the complex line (i.e., rank-one) bundles. Since we also have that

CP*® = K(Z,2), we get:
P(X,S') = [X,BSY] = [X,K(Z,2)] = H*(X, Z)

for any CW complex X, where the last identification follows from
Theorem 11.3.6. Let now 7t be a complex line bundle on a CW complex
X, with classifying map fr : X — CP*®. Since H*(CP®,Z) = Z|c],
with ¢ a generator of H?>(CP*,Z), we get a well-defined degree two
cohomology class

c1(7) = fr(c)

called the first Chern class of 7. The bijection P (X, S!) = H%(X,Z) is
then given by 7 +— ¢1(77), so complex line bundles on X are classified
by their first Chern classes.
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Remark 11.3.9. If X is any closed oriented surface, then HZ(X, 7)=7Z,
so Example 11.3.8 shows that isomorphism classes of complex line
bundles on X are in bijective correspondence with the set of inte-
gers. On the other hand, if X is a non-orientable closed surface, then
H?(X,Z) = Z /2, so there are only two isomorphism classes of complex
line bundles on such a surface.

11.4 Exercises

1. Let p: 52 — RP? be the (oriented) double cover of RP?. Since RP?
is a non-orientable surface, we know by Remark 11.3.9 that there are
only two isomorphism classes of complex line bundles on RP?: the
trivial one, and a non-trivial complex line bundle which we denote
by 7 : E — RP%. On the other hand, since S? is a closed orientable
surface, the isomorphism classes of complex line bundles on S? are in
bijection with Z. Which integer corresponds to complex line bundle
p*r: p*E — S? on S22

2. Consider a locally trivial fiber bundle S? <+ E 5 S2. Recall that
such 7t can be regarded as a fiber bundle with structure group G =
Homeo(S?) = SO(3). By the classification Theorem 11.3.1, SO(3)-
bundles over S? correspond to elements in

(52, BSO(3)] = m2(BSO(3)) = m(SO(3)).

(a) Show that 711(SO(3)) = Z/2. (Hint: Show that SO(3) is homeo-
morphic to RP3.)

(b) What is the non-trivial SO(3)-bundle over §??

3. Let 7 : E — X be a principal S'-bundle over the simply-connected
space X. Let a € H'(S!,Z) be a generator. Show that

c1(r) = da(a),

where d; is the differential on the E,-page of the Leray-Serre spectral
sequence associated to 7, i.e., E)' = HP (X, H1(S')) = HPYI(E, Z).

4. By the classification Theorem 11.3.1, (isomorphism classes of) sl-
bundles over S? are given by

[S?,BS'] = mp(BSY) =2 my(SY) = Z

and this correspondence is realized by the first Chern class, i.e., 7 —
c1(7).
(a) What is the first Chern class of the Hopf bundle Sl 83 5 522
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(b) What is the first Chern class of the sphere (or unit) bundle of the
tangent bundle TS??

(c) Construct explicitly the S'-bundle over S? corresponding to n €
Z. (Hint: Think of lens spaces, and use the above Exercise 3 and
Example 10.8.2.)
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12

Vector Bundles. Characteristic classes.

Cobordism. Applications.

12.1  Chern classes of complex vector bundles

We begin with the following

Proposition 12.1.1.
H* (BU(n);Z) = Z]c1, - ,cn,
with degc; = 2i

Proof. Recall from Example 10.12.1 that H*(U(n); Z) is a free Z-algebra
on odd degree generators x1, - - -, X3,—1, with deg(x;) =i, i.e.,

H*(U(n);Z) = Az[x1,- -+, Xon—1]-

Then using the Leray-Serre spectral sequence for the universal U(n)-
bundle, and using the fact that EU(n) is contractible, yields the desired
result.

Alternatively, the functoriality of the universal bundle construction
yields that for any subgroup H < G of a topological group G, there
is a fibration G/H < BH — BG. In our case, consider U(n — 1) as a
A

subgroup of U(n) via the identification A — ( 0

(1) ) Hence, there
exists fibration
U(n)/Um—1)=8""1 < BU(n—1) — BU(n).

Then the Leray-Serre spectral sequence and induction on n gives
the desired result, where we use the fact that BU(1) ~ CP* and
H*(CP%;Z) = Z|c] with degc = 2. O

Definition 12.1.2. The generators cy,- - - ,c, of H* (BU(n); Z) are called
the universal Chern classes of U (n)-bundles.
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Recall from the classification theorem 11.3.1, that given 7: E - X a
principal U (n)-bundle, there exists a “classifying map” fr : X — BU(n)
such that 7 = fr7ry(,).

Definition 12.1.3. The i-th Chern class of the U(n)-bundle 1t : E — X with
classifying map fr : X — BU(n) is defined as

() := fi(c;) € H¥(X; Z).

Remark 12.1.4. Note that if 77 is a U(n)-bundle, then by definition we
have that ¢;(7r) =0, if i > n.

Let us now discuss important properties of Chern classes.

Proposition 12.1.5. If £ denotes the trivial U(n)-bundle on a space X, then
ci(€) =0foralli> 0.

Proof. Indeed, the trivial bundle is classified by the constant map ct :
X — BU(n), which induces trivial homomorphisms in positive degree
cohomology. O

Proposition 12.1.6 (Functoriality of Chern classes). If f : Y — X isa
continuous map, and 7 : E — X is a U(n)-bundle, then c;(f*m) = f*c;(m),
forany i.

Proof. We have a commutative diagram

FE-L S E— S EU®m)

[ J [
f f

T

Y —— X—— BU (n)

which shows that f; o f classifies the U(#)-bundle f*mr on Y. Therefore,

ci(f*r) = (frof)ci
= f* (fzei)
= frci ().

O

Definition 12.1.7. The total Chern class of a U(n)-bundle 7 : E — X is
defined by

c(7) = co(m) +c1(m) +- - - en(m) =1+ 1 () + - en(m) € HY(X; Z),

as an element in the cohomology ring of the base space.
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Definition 12.1.8 (Whitney sum). Let 711 € P(X,U(n)), mp € P(X, U(m)).

Consider the product bundle 711 X 1, € P(X x X, U(n) x U(m)), which
can be regarded as a U(n + m)-bundle via the canonical inclusion U(n) x
A 0

U(m) — Un+m), (A B) — 0 B

>. The Whitney sum of the

bundles 1t1 and 715 is defined as:
m D 70 1= A*(ﬂfl X 7'[2),

where A : X — X x X is the diagonal map given by x — (x, x).

Remark 12.1.9. The Whitney sum 711 @ 71, of 711 and 713 is the U (n + m)-

bundle on X with transition functions (in a common refinement of the
1

trivialization atlases for 71y and 717) given by ( g > ) where g/ 8

g pc/S
are the transition function of 77;, i = 1,2.

Proposition 12.1.10 (Whitney sum formula). If 71y € P(X,U(n)) and
mp € P(X,U(m)), then
c(m @ o) = c(my) Ue(mp).
Equivalently, cp (111 @ 12) = Yiyj—k ¢i(711) U ¢j(72)
Proof. First note that
B(U(n) x U(m)) ~ BU(n) x BU(m). (12.1.1)

Indeed, by taking the product of the universal bundles for U(n) and
U(m), we get a U(n) x U(m)-bundle over BU(n) x BU(m), with total
space EU(n) x EU(m):

U(n) x U(m) — EU(n) x EU(m) — BU(n) x BU(m).  (12.1.2)

Since m;(EU(n) x EU(m)) = m;(EU(n)) x m;(EU(m)) = 0 for all i,
it follows that (12.1.2) is the universal bundle for U(n) x U(m), thus
proving (12.1.1).

Next, the inclusion U(n) x U(m) < U(n + m) yields a map

w:B(U(n) x U(m)) ~ BU(n) x BU(m) — BU(n+ m).

By using the Kiinneth formula, one can show (e.g., see Milnor’s book,
p-164) that:

wige =) ¢ixg
i+j=k

Therefore,

k(711 ® 1) = ck(A* (711 X 712))

= A*Ck(ﬂ'l X 7'[2)
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= A*(f;;lxnz(ck))
= A (fr, X fr,)(@"ck)
= ) A (fr(er) x fry(cj))

i+j=k

= ) A(ci(m) x ¢j(m2))

i+j=k

= ), c(m)Ucj(m).

i+j=k

Here, we use the fact that the classifying map for 71y X 71y, regarded as
aU(n+m)-bundle is w o (fr, X fr,)- O

Since the trivial bundle has trivial Chern classes in positive degrees,
we get

Corollary 12.1.11 (Stability of Chern classes). Let ! be the trivial U(1)-
bundle. Then

c(m@ &) =c(n).
12.2  Stiefel-Whitney classes of real vector bundles
As in Proposition 12.1.1, one easily obtains the following
Proposition 12.2.1.
H* (BO(n);Z/2) = Z/2[wy,- - , Wy,
with degw; = i.

Proof. This can be easily deduced by induction on n from the Leray-
Serre spectral sequence of the fibration

O(n)/O(n—1) = 8"1 < BO(n —1) — BO(n),

by using the fact that BO(1) >~ RP® and H*(RP*;Z/2) = Z/2[w].

Definition 12.2.2. The generators wy,--- ,w, of H* (BO(n);Z/2) are
called the universal Stiefel-Whitney classes of O(n)-bundles.

Recall from the classification theorem 11.3.1 that, given 7: E — X a
principal O(n)-bundle, there exists a “classifying map” fr : X — BO(n)
such that 7 = fr71y(,).

Definition 12.2.3. The i-th Stiefel-Whitney class of the O(n)-bundle 7t :
E — X with classifying map fr : X — BO(n) is defined as

w; (1) == fi(w;) € H(X;Z/2).
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The total Stiefel-Whitney class of 7 is defined by
w(rm) =14+ wi(m) + - wy() € H(X;Z/2),
as an element in the cohomology ring with Z /2-coefficients.

Remark 12.2.4. If 77 is a O(n)-bundle, then by definition we have that
w;(rt) =0, if i > n. Also, since the trivial bundle is classified by the
constant map, it follows that the positive-degree Stiefel-Whitney classes
of a trivial O(n)-bundle are all zero.

Stiefel-Whitney classes of O(n)-bundles enjoy similar properties as
the Chern classes.

Proposition 12.2.5. The Stiefel-Whitney classes satisfy the functoriality
property and the Whitney sum formula.

12.3  Stiefel-Whitney classes of manifolds and applications

If M is a smooth manifold, its tangent bundle TM can be regarded as
an O(n)-bundle.

Definition 12.3.1. The Stiefel-Whitney classes of a smooth manifold M are
defined as

Theorem 12.3.2 (Wu). Stiefel-Whitney classes are homotopy invariants, i.e.,
if h : My — My is a homotopy equivalence then h*w;(M;) = w;(My), for
any i > 0.

Characteristic classes are particularly useful for solving a wide range
of topological problems, including the following:

(a) Given an n-dimensional smooth manifold M, find the minimal inte-
ger k such that M can be embedded /immersed in R"*,

(b) Given an n-dimensional smooth manifold M, is there an (n + 1)-
dimensional smooth manifold W such that JW = M?

(c) Given a topological manifold M, classify/find exotic smooth struc-
tures on M.

The embedding problem

Let f : M" — N"*¥ be an embedding of smooth manifolds. Then

ffTN=TM®&v, (12.3.1)
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where v is the normal bundle of M in N. In particular, v is of rank
k, hence w;(v) = 0 for all i > k. The Whitney product formula for
Stiefel-Whitney classes, together with (12.3.1), yields that

ffw(N) =w(M)Uw(v). (12.3.2)

Note that w(M) = 14 w1 (M) + - - - is invertible in H*(M;Z/2), hence

w(v) = w(M)" U ffw(N).

In particular, if N = Rk, one gets w(v) = w(M) .

The same considerations apply in the case when f : M"™ — N"+k
is required to be only an immersion. In this case, the existence of the
normal bundle v is guaranteed by the following simple result:

Lemma 12.3.3. Let

El\—/ﬂfz

be a linear monomorphism of vector bundles, i.e., in local coordinates, i is
given by U x R" — U xR™ (n < m), (u,v) — (u,€(u)v), where £(u)
is a linear map of rank n for all u € U. Then there exists a vector bundle
mti 2 Ef — X so that o = 1 & 7y

To summarize, we showed that if f : M — N™+k is an embedding
or an immersion of smooth manifolds, than one can solve for w(v) in
(12.3.2), where v is the normal bundle of M in N. Moreover, since v has
rank k, we must have that w;(v) = 0 for all i > k.

The following result of Whitney states that one can always solve for
w(v) if the codimension k is large enough. More precisely, we have:

Theorem 12.3.4 (Whitney). Any smooth map f : M™ — N™*K is homotopic
to an embedding for k > m + 1.

Let us now consider the problem of embedding (or immersing) IRP"™
into R"**_ If v is the corresponding normal bundle of rank k, we have
that w(v) = w(RP™)~!

We need the following calculation:

Theorem 12.3.5.
w(RP™) = (14 x)"*1, (12.3.3)

where x € H'(RP™; Z/2) is a generator.

Before proving Theorem 12.3.5, let us discuss some examples.
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Example 12.3.6. Let us investigate constraints on the codimension k of
an embedding of RP? into R°T*. By Theorem 12.3.5, we have:

wRP?) = (1+x0)0 = (1+x)¥(1+x)? = (1+28)(1+2?) = 14+x2+18,
since x!¥ = 0in H*(RP%;Z/2). Therefore,
w(RP?) ™t =1+ x2 + x* + 16,

If an embedding (or immersion) f of RP? into Rt exists, then w(v) =
w1 (RP?), where v is the corresponding rank k normal bundle. In
particular, wg(v) # 0. Since we must have w;(v) = 0 for i > k, we
conclude that k > 6. For example, this shows that RP? cannot be
embedded into R4,

Example 12.3.7. Similarly, if m = 2" then
wRP?) = (1+x)? =1+ (1+x)=1+x+x%.

If there exists an embedding or immersion RP?" < R? ¥ with normal
bundle v, then

wv) =wRP*) T =14+x+22+-- +2F 71,

hence k > 2" —1 = m — 1. In particular, RP8 cannot be immersed in
IR™. In this case, one can actually construct an immersion of RP?" into
R? ¥ for any k > 2" — 1, due to the following result:

Theorem 12.3.8 (Whitney). An m-dimensional smooth manifold can be
embedded in R?" and immersed in R?"~1,

Definition 12.3.9. A smooth manifold is parallelizable if its tangent bundle
TM is trivial.

Example 12.3.10. Lie groups, hence in particular S! and S3, are paral-
lelizable. Moreover, S7 is parallelizable (but not a Lie group).

Theorem 12.3.5 can be used to prove the following;:

Theorem 12.3.11. w(RP™) = 1 if and only if m +1 = 2" for some r. In
particular, if RP™ is parallelizable, then m +1 = 2" for some r.

Proof. Note that if RP™ is parallelizable, then w(IRP™) = 1 since TRP"™
is a trivial bundle. If m + 1 = 27, then w(RP™) = (1 +x)? =14 x% =
14 x™*1 = 1. On the other hand, if m + 1 = 2"k, where k > 1 is an odd
integer, we have

w(RP™) = [(14 )2 = 1+ =1+k? +-- #£1,
since xZ' # 0 (indeed, 2" < 2'k = m +1). O

In fact, the following result holds:

COBORDISM. APPLICATIONS.
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Theorem 12.3.12 (Adams). RP" is parallelizable if and only if m €
{1,3,7}.

Let us now get back to the proof of Theorem 12.3.5

Proof of Theorem 12.3.5. The idea is to find a splitting of (a stabilization
of) TRP™ into line bundles, then to apply the Whitney sum formula.
Recall that O(1)-bundles on RP™ are classified by

[RP™,BO(1)] = [RP™,K(Z/2,1)] = HY(RP";Z/2) = Z /2.

We'll denote by £! the trivial O(1)-bundle, and let 7t be the non-trivial
O(1)-bundle on RP™. Since O(1) = Z/2, O(1)-bundles are regular
double coverings. It is then clear that 7t corresponds to the 2-fold cover
S™ — RP™.

We have w(€') =1 € H*(RP";Z/2). To calculate w(7r), we notice
that the inclusion map i : RP* — RP® classifies the bundle 7, as
the universal bundle S* — IRP* pulls back under the inclusion to
S§™ — RP™. In particular,

wy () =i*w =i'x = x,

where x is the generator of H' (RP*;Z/2) = H'(RP";Z/2). There-
fore,

w(m) =1+ x.
We next show that
TRP" @& 2., (12.3.4)
—_——
m-+1 times

from which the computation of w(IRP™) follows by an application of
the Whitney sum formula.

To prove (12.3.4), start with 5" — R”*! with (rank one) normal
bundle denoted by &,. Note that &, is a trivial line bundle on S, as it
has a global non-zero section (mapping y € S™ to the normal vector vy
at y). We then have

TS" @& = TR gn =Ml =gl ... &,

m+1 times

with £™*1 the trivial bundle of rank m + 1 on S™, i.e., the Whitney sum
of m + 1 trivial line bundles £! on S™, each of which is generated by
the global non-zero section y — dixi |y, i=1,---,m+1.

Let a: S™ — S™ be the antipodal map, with differential da : TS™ —
TS". Lety : (—e,e) — S, 9(0) =y, v = 9(0) € T,S™. Then
da(v) = (aovy(t))|mo = —7'(0) = —v € Ta()S™- Therefore da is an
involution on TS™, commuting with 4, and hence

TS™/da = TRP™.
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Next note that the normal bundle &£, on §™ is invariant under the
antipodal action (as da(vy) = Va(y)), O it descends to the trivial line
bundle on RP™, i.e.,

Ey/da= .

Finally,

d d
m ~ qm ~ ((—1y — o~ QN
S"xR/da=$S XlR/(y’tdxi) (—y, thi)_S xz/2 R,

which is the associated bundle of 7 with fiber R. So,
El/da = m.
This concludes the proof of (12.3.4) and of the theorem. O

Remark 12.3.13. Note that RP3 22 SO(3) is a Lie group, so its tangent
bundle is trivial. In this case, once can conclude directly that w(IRP3) =
1, but this fact can also be seen from formula (12.3.3).

Boundary Problem

For a closed smooth manifold M", let up € Hy, (M, Z/2) be the funda-
mental class. We will associate to M certain Z /2-invariants, called its
Stiefel-Whitney numbers.

Definition 12.3.14. Let & = («y,...,ay) be a tuple of non-negative integers
such that Y} in; = n. Set

W (M) := w (M) U- - Uw, (M)" € H'(M; Z/2).
The Stiefel-Whitney number of M with index « is defined as
Wi (M) == (@™ (M), ) € Z/2,

where (—,—) : H"(M;Z/2) x H,(M;Z/2) — Z/2 is the Kronecker
evaluation pairing.

We have the following result:

Theorem 12.3.15 (Pontrjagin-Thom). A closed n-dimensional smooth mani-
fold M is the boundary of a smooth compact (n + 1)-dimensional manifold W
if and only if all Stiefel-Whitney numbers of M vanish.

Proof. We only show here one implication (due to Pontrjagin), namely
that if M = oW then w(,)(M) = 0, for any « = (ay,...,a,) with
Y in; =n.

If i : M — W denotes the boundary embedding, then

*TW = TM &2,

where 1! is the rank-one normal bundle of M in W.

APPLICATIONS.
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Assume that TW has a Euclidean metric. Then the normal bundle v!
is trivialized by picking the inward unit normal vector at every point in
M. Hence

FTW=TM& £,

where £! is the trivial line bundle on M. In particular, the Whitney
sum formula yields that

we(M) = i*wi (W),

fork=1,---,n,s0 wld (M) = i*wl (W) for any « as above.

Let pw be the fundamental class of (W, M) i.e., the generator of
H,1(W,M;Z/2), and let ys be the fundamental class of M as above.
From the long exact homology sequence for the pair (W, M) and
Poincaré duality, we have that

I(pw) = pm-

Let 6 : H'(M;Z/2) — H"T1(W, M;Z/2) be the map adjoint to 9. The
naturality of the cap product yields the identity:

(Y um) = (y, Opw) = (0y, pw)
for any y € H"(M;Z/2). Putting it all together we have:

’(,U(a) (M) S w[

(@™ (M), jip)
("W (W), duyy)
= (8(i*wl™ (W), pw)
= (0, pw)
—0,

since 4 o i* = 0, as can be seen from the long exact cohomology sequence
for the pair (W, M). O

Example 12.3.16. Suppose M = X U X, i.e,, M is the disjoint union
of two copies of a closed n-dimensional manifold X. Then for any «,
W(q) (M) = 2w,y (X) = 0. This is consistent with the fact that X L X is
the boundary of the cylinder X x [0, 1].

Example 12.3.17. Every RP?*~1! is a boundary. Indeed, the total Stiefel-
Whitney class of RP%~1is (1 + x)% = (1 + x2)k, with x the generator
of H'(RP%*~1,Z/2). Thus, all the odd degree Stiefel-Whitney classes
of RP?~1 are 0. Since every monomial in the Stiefel-Whitney classes of
RP%*~1 of total degree 2k — 1 must contain a factor w; with j odd, all
Stiefel-Whitney numbers of RP?*~1 vanish. This implies the claim by
the Pontrjagin-Thom Theorem 12.3.15.



VECTOR BUNDLES. CHARACTERISTIC CLASSES. COBORDISM.

Example 12.3.18. The real projective space RP? is not a boundary, for
any integer k > 0. Indeed, the total Stiefel-Whitney class of RP? is

2%k +1 2%k+1\ 5
)x +< M )x

1
=1+x+- - +x%

In particular, w2k(IRP2k) = x%. 1t follow that for & = (0,0,...,1) we

have

w(RPH) = (14 x)* 1 =1+ (

Wy (RPF) =1 0.

12.4 Pontrjagin classes

In this section, unless specified, we use the symbol 7 to denote real
vector bundles (or O(n)-bundles), and use w for complex vector bundles
(or U(n)-bundles) on a topological space X.

Given a real vector bundle 7r, we can consider its complexification
n®C, ie., the complex vector bundle with same transition functions
as 7t

Sap : UaNUg — O(n) C U(n),
and fiber R" ® C = C".

Given a complex vector bundle w, we can consider its realization
wr, obtained by forgeting the complex structure, i.e., with transition
functions

Sap U, N u,B — U(n) — O(2n).

Given a complex vector bundle w, its conjugation @w is defined by

transition functions

g Un N U 25 U(n) = U(n),

with the second homomorphism given by conjugation. @ has the same
underlying real vector bundle as w, but the opposite complex structure
on its fibers.

Lemma 12.4.1. If w is a complex vector bundle, then
Wwr®R®C=Zwdw.

Proof. Let j be the linear transformation on Fr ® C given by multiplica-
tion by i. Here F is the fiber of complex vector bundle w, and Fp is the
fiber of its realization wg. Then ]2 = —id, so we have

Fr ® C = Eigen(i) @ Eigen(—i),

where ; acts as multiplication by i on Eigen(i), and it acts as multipli-
cation by —i on Eigen(—i). Moreover, we have F C Eigen(i) and F C
Eigen(—i). By a dimension count we then get that iR @ C <X FF. [0

APPLICATIONS.
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Lemma 12.4.2. Let 7t be a real vector bundle. Then
TRC=2reC.

Proof. Indeed, since the transition functions of 7w ® C are real-values
(same as those of ), they are also the transition functions for 7 @ C. O

Lemma 12.4.3. If w is a rank n complex vector bundle, the Chern classes of
its conjugate w are computed by

foranyk=1,--- ,n.

Proof. Recall that one way to define (universal) Chern classes is by
induction by using the fibration

§%=1 < BU(k—1) — BU(k).

In fact,
¢ = dox(a),
where 4 is the generator of H*~1(5%~1;7Z).

The complex conjugation on the fiber S~ of the above fibration
is a map of degree (—1)F (it keeps k out of 2k real basis vectors in-
variant, and it changes the sign of the other k; each sign change is a
reflection and it has degree —1). In particular, the homomorphism
HZ*-1(8%1,7) — H?1(5%~1;Z) induced by conjugation is defined
by a — (—1)k - a. Altogether, this gives cx (@) = (—1)* - cx(w). O

Combining the results from Lemma 12.4.2 and Lemma 12.4.3, we
have the following:

Corollary 12.4.4. For any real vector bundle 7,
& (m®C) = (M@ C) = (=)' x(mr ® Q).

In particular, for any odd integer k, ¢ (7t ® C) is an integral cohomology class
of order 2.

Definition 12.4.5 (Pontryagin classes of real vector bundles). Let 7 :
E — X be a real vector bundle of rank n. The i-th Pontrjagin class of 7t is
defined as:

pi(n) :== (—1)'ep(m® C) € H¥(X; Z).

If w a complex vector bundle of rank n, we define its i-th Pontryagin class as
pi(w) == pi(wr) = (—1)iczl-(w Dw).

Remark 12.4.6. Note that p;(7r) = 0 for all i > 7.
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Definition 12.4.7. If 7t is a real vector bundle on X, its total Pontrjagin class
is defined as

p(m)=po+p1+- - € H(X;Z).

Theorem 12.4.8 (Product formula). If 7ty and 7ty are real vector bundles on
X, then

p(m @ ) = p(mm1) U p(mp) mod 2-torsion.

Proof. We have (111 @ 115) ® C = (1 ® C) @ (712 ® C). Therefore,

—~

pi(m @ m) = (—1)'ci((m & ) ® C)

= (—1)i (M @C)Uc(m e C)
k+1=2i
= (-1)! c24(11 @ C) U ¢op (71, ® €) + {elements of order 2}
a+b=i
= 2 pa(7r1) U pp(712) + {elements of order 2},
a+b=i
thus proving the claim. O

Definition 12.4.9. If M is a real smooth manifold, we define
p(M) := p(TM).
If M is a complex manifold, we define

p(M) := p((TM)R)-
Here TM is the tangent bundle of the manifold M.

In order to give applications of Pontrjagin classes, we need the
following computational result:

Theorem 12.4.10 (Chern and Pontrjagin classes of complex projective
space). The total Chern and Pontrjagin classes of the complex projective space
CP" are computed by:

c(CP") = (1+¢)"*}, (12.4.1)

p(CP") = (14", (12.4.2)

where ¢ € H?>(CP";Z) is a generator.

Proof. The arguments involved in the computation of c(CP") are very
similar to those of Theorem 12.3.5. Indeed, one first shows that there is
a splitting
TCP' @&l =y@--- @y,
e e e

n+1 times
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were £ is the trivial complex line bundle on CP" and + is the complex
line bundle associated to the principle S'-bundle S' «— §?"+1 — Cp".
Then v is classified by the inclusion

SZnJrl( g

L]

CP"—— CP® = BU(1)

and hence ¢1(7) = ¢, the generator of H2(CP*;Z) = H?(CP";Z). The
Whitney sum formula for Chern classes then yields:

¢(CP") = ¢(TCP") = c(y)"™! = (14 )",
By conjugation, one gets
¢(TCP") = (1 — )",

Therefore,

c((TCP")gr ® C) = ¢(TCP" ® TCP™)
= ¢(TCP")Uc(TCP")

— (1 o C2)n+1l

from which one can readily deduce that p(CP") = (1 + ¢2)"+1. O

Applications to the embedding problem

After forgetting the complex structure, CP" is a 2n-dimensional real
smooth manifold. Suppose that there is an embedding

CPH N RZYH—]{’

and we would like to find constraints on the embedding codimension k
by means of Pontrjagin classes.

Let (TCP")R be the realization of the tangent bundle for CP". Then
the existence of an embedding as above implies that there exists a
normal (real) bundle v¥ of rank k such that

(TCP")R @ vk = TR K| cpn = £20HK, (12.4.3)

with £2"+k denoting the trivial real vector bundle of rank 21 + k.

By applying the Pontrjagin class p to (12.4.3) and using the product
formula of Theorem 12.4.8 together with the fact that there are no
elements of order 2 in H*(CP";Z), we have

p(CP") - p(v*) = 1.
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Therefore, we get

p(v*) = p(CP") . (12.4.4)
And by the definition of the Pontryagin classes, we know that if
pi(vk) # 0, theni < %

Example 12.4.11. In this example, we use Pontrjagin classes to show that
CP? does not embed in RO, First,

p(CP?) = (1+¢*)% =1+3¢,

with ¢ € H?(CP?;Z) a generator (hence ¢ = 0). If there is an embedding
CP? < R** with normal bundle v*, then

p(vf) = p(CP?)~1 =1-3c2

Hence pl(vk) # 0, which implies that k > 2.

12.5 Oriented cobordism and Pontrjagin numbers

If M is a smooth oriented manifold, we denote by —M the same mani-
fold but with the opposite orientation.

Definition 12.5.1. Let M" and N" be smooth, closed, oriented real manifolds
of dimension n. We say M and N are oriented cobordant if there exists a
smooth, compact, oriented (n + 1)-dimensional manifold W't such that
OW = ML (—N).

Remark 12.5.2. Let us say a word of convention about orienting a
boundary. For any x € oW, there exist an inward normal vector v (x)
and an outward normal vector v_(x) to the boundary at x. By using
a partition of unity, one can construct an inward/outward normal
vector field v+ : OW — TW/|,py. By convention, a frame {e,--- ,e,} on
Tx(0W) is positive if {eq,-- - , ey, v—(x)} is a positive frame for T, W.

Lemma 12.5.3. Oriented cobordism is an equivalence relation.

Proof. M is clearly oriented cobordant to itself because M U (—M) is
diffeomorphic to the boundary of M x [0, 1]. Hence oriented cobordism
is reflexive. The symmetry can be deduced from the fact that, if M LI
(=N) ~ oW, then N U (—M) ~ d(—W). Finally, if M; U (—M;) ~ oW,
and M, LI (—Ms3) ~ oW/, then we can glue W and W' along the common
boundary and get a new manifold with boundary M; LI (—M3). Hence
oriented cobordism is also transitive. O

Definition 12.5.4. Let (), be the set of cobordism classes of closed, oriented,
smooth n-manifolds.

Corollary 12.5.5. The set (), is an abelian group with the disjoint union
operation.
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Proof. This is an immediate consequence of Lemma 12.5.3. The zero
element in (), is the class of @, or equivalently, [M] = 0 € Q, if and
only if M = 0W, for some compact manifold W. The inverse of [M] is
[—M], since M U (—M) is a boundary. O

A natural problem to investigate is to describe the group (), by
generators and relations. For example, both [CP*] and [CP? x CP?]
are elements of Qg. Do they represent the same element, i.e., are CP*
and CP? x CP? oriented cobordant? A lot of insight is gained by using
Pontrjagin numbers.

Definition 12.5.6. Let M" be a smooth, closed, oriented real n-manifold,
with fundamental class yp € Hy(M;Z). Let k = [] and choose a partition
w = (ar,- -, ax) € Z* such that E;-;l 4jaj = n. The Pontrjagin number of
M associated to the partition « is defined as:

Pl (M) = (pr(M)™ U= - U pe(M)™, pyr) € Z.
Remark 12.5.7. If n is not divisible by 4, then p(,) (M) = 0 by definition.
Theorem 12.5.8. For n = 4k, each p ) defines a homomorphism
Qn — 7, [M] — p(a)<M)

Hence oriented cobordant manifolds have the same Pontrjagin numbers. In
particular, if M" = dW" T, then P(«)(M) = O for any partition a.

Proof. If M = M; U My, then [M] = [M;] + [Mz] € Qp and pup =
wm, + Hm, € Ho(M;Z). 1t follows readily that p,) (M) = p(o)(M1) +
P(a)(M2).

If M = 9N, then it can be shown as in the proof of Theorem 12.3.15
that p(,) (M) = 0 for any partition a. O

Example 12.5.9. By Theorem 12.4.10, we have that p(CP*") = (1 +
c?)?"+1 where c is a generator of H2(CP?*";Z). Hence p;(CP*") =
(2”f1)c2i. For the partition « = (0,...,0,1), we find that P(a) (CP?") =

<(2n+1)C2n,]/le2n> = (™) # 0. We conclude that CP?" is not an

n
oriented boundary.

Remark 12.5.10. If we reverse the orientation of a manifold M of real
dimension n = 4k, the Pontrjagin classes remain unchanged, but the
fundamental class pp; changes sign. Therefore, all Pontrjagin numbers
P(«)(M) change sign. This shows that, if some Pontrjagin number
p(a)(M) is nonzero, then M cannot have any orientation-reversing
diffeomorphism.

Example 12.5.11. The above remark and Example 12.5.9 show that
CP?" does not have any orientation-reversing diffeomorphism. How-
ever, CP?"*1 has an orientation-reversing diffeomorphism induced by
complex conjugation.



VECTOR BUNDLES. CHARACTERISTIC CLASSES. COBORDISM.

Example 12.5.12. Let us consider Q)y. As CP? is not an oriented
boundary by Example 12.5.9, we have [CP?] # 0 € Q. Recall that
p(CP?) = 1+3c?, s0 p1(CP?) = 3¢%. For the partition « = (1), we then
get that p(;)(CP?) = 3. So

0, "3z 0

is exact, thus rank(Qy) > 1.

Example 12.5.13. We next consider (2g. The partitions to work with in
this case are & = (2,0) and ap = (0,1), and Theorem 12.5.8 yields a
homomorphism

(Plag) Plar))
g — VD 7

We aim to show that
rank(Qg) = dimg(Qg ® Q) > 2.

We start by noting that both CP* and CP? x CP? are compact oriented
8-manifolds which are not boundaries. We calculate the Pontrjagin
numbers of these two spaces. First,

p(CP*) = (1+¢?)° =1+ 5c* +10c*,

where c is a generator of H?>(CP*;Z). Hence, p;(CP*) = 5¢% and
p2(CP*) = 10c*. The Pontrjagin numbers of CP* corresponding to the
partitions a1 = (2,0) and ap = (0,1) are given as:

P(ay) (CP*) = (p1(CP*)?, jeps) = 25,

P(ay) (CP*) = (p2(CP*), pepu) = 10.
In order to compute the corresponding Pontrjagin numbers for CP? x
CP?, let pri: CP?2 x CP?2 — CP?,i =1,2, be the projections on factors.
Then
T(CP? x CP?) = priT(CP?) @ pryT(CP?),

so Theorem 12.4.8 yields that
p(CP? x CP?) = prip(CP?) U pr3p(CP?) = p(CP?) x p(CP?),

where X denotes the external product. Let c; and ¢, denote the genera-
tors of the second integral cohomology of the two CP? factors. Then:

p(CP2 x CP?) = (1+¢3)%- (14 c3)% = (1+3¢3) - (1+3c3)
=1+ 3c] + 3¢5 + 9cic3.

Hence, p1(CP? x CP?) = 3(c? +¢3) and p2(CP? x CP?) = 9c3c3. There-
fore, the Pontrjagin numbers of CP? x CP? corresponding to the parti-
tions a1 and a, are computed by (here we use the fact that cf = 0 = c3):

P(ay) (CP? X CP?) =18, p(y,)(CP? x CP?) =9.
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The values of the homomorphism (p(a,), P(ay)) * Qs —> Z S Z on
CP* and CP? x CP? fit into the 2 x 2 matrix ﬁg 198] with nonzero

determinant. Hence rank(Qg) > 2.

More generally, we the following qualitative description of (), which
we mention here without proof.

Theorem 12.5.14 (Thom). The oriented cobordism group ), is finitely
generated of rank |I|, where I is the collection of partitions w satisfying
Yj4ja; = n. In fact, modulo torsion, Q) is generated by products of even
complex projective spaces. Moreover, @ p(y) @ Qu — Z is an injective
acl

homomorphism onto a subgroup of the same rank.

Example 12.5.15. Our computations from Examples 12.5.12 and 12.5.13
together with Theorem 12.5.14 yield that in fact we have: rank(Qy) =1
and rank(Qg) = 2.

12.6  Signature as an oriented cobordism invariant

Recall that if M* is a closed, oriented manifold of real dimension
n = 4k, then we can define its signature (M) as the signature of the
bilinear symmetric pairing

H*(M;Q) x H*(M;Q) — Q,

which is non-degenerate by Poincaré duality. Recall also that if M
is an oriented boundary then o(M) = 0. This suffices to deduce the
following result:

Theorem 12.6.1 (Thom). o : Qy — Z is a homomorphism.

It follows from Theorems 12.5.14 and 12.6.1 that the signature is a
rational combination of Pontrjagin numbers, i.e.,

o= Z AP (q) (12.6.1)
ael
for some coefficients a, € Q. The Hirzebruch signature theorem provides
an explicit formula for these coefficients a,. In what follows we compute
by hand the coefficients a, in the cases of ()4 and (g.

Example 12.6.2. On closed oriented 4-manifolds, the signature is com-
puted by
o =apq), (12.6.2)

with 2 € Q to be determined. Since 4 is the same for any [M] € Q,
we will determine it by performing our calculations on M = CP2.
Recall that ¢(CP?) = 1, and if c € H?(CP?,Z) is a generator then
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p1(CP?) = 3c%. Hence Pa) (CP?) = 3, and (12.6.2) implies that 1 = 3a,
ora= % Therefore, for any closed oriented 4-manifold M* we have
that

#(M) = (3p1(M), fiaa) = 5p0) (M) € Z.

Example 12.6.3. On closed oriented 8-manifolds, the signature is com-
puted by (12.6.1) as

0 =0a020)P(20) T A01)P(0,1)/ (12.6.3)

with a(50),4(0,1) € Q to be determined. Since ()g is generated rationally
by CP* and CP? x CP?, we can calculate a(2,0) and 4(g 1) by evaluating
(12.6.3) on CP* and CP? x CP2. Using our computations from Example
12.5.13, we have:

1=0(CP*) = 25a(55) +10a(g 1), (12.6.4)

and
1=0(CP? x CP?) = 18a5) + 940 1)- (12.6.5)

Solving for a(; gy and a(g 1) in (12.6.4) and (12.6.5), we get:

1 7
20 = "5 40N T g5

Altogether, the signature of a closed oriented manifold M8 is computed
by the following formula:

o(M®) = %(7;92(1\/1) — p1(M)?, ). (12.6.6)

12.7  Exotic 7-spheres

Now we turn to the construction of exotic 7-spheres. Start with M
a smooth, 3-connected orientable 8-manifold. Up to homotopy, M =~
(S*v.--vSH Us e®. Assume further that B4(M) = 1,ie, M ~ S* Us e,
for some map f : S — S*. By Whitney’s embedding theorem, there is
a smooth embedding S* <+ M. Let E be a tubular neighborhood of this
embedded S* in M; in other words, E is a D*-bundle on S* inside M.
Such D*-bundles on S* are classified by

m3(S0(4)) = m3(SP xS =2z @ Z.

(Here we use the fact that S® x S? is a 2-fold covering of SO(4).) That
means that E corresponds to a pair of integers (i, j).

Let X’ be the boundary of E, so X is a S*>-bundle over S*. If X is
diffeomorphic to a 7-sphere, one can recover M from E by attaching
an 8-cell to X = JE. So the question to investigate is: for which pairs of
integers (i, ) is X diffeomorphic to S”?

One can show the following:
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Lemma 12.7.1. X is homotopy equivalent to S” if and only if i +j = +1.

Suppose i +j = 1. Then for each choice of i, we get an S>-bundle
over 5% namely X = 9E, which has the homotopy type of S7. If X is in
fact diffeomorphic to S’, then we can recover M by attaching an 8-cell
to X, and in this case the signature of M is computed by

o(M) = 2= (79101 (M) ~ pag)(M))

Moreover, one can show that:
Lemma 12.7.2. p(50)(M) = 4(i - )2 =4(2i —1)%

Note that ¢(M) = =41 since H*(M;Z) = Z, and let us fix the
orientation according to which (M) = 1. Our assumption that X was
diffeomorphic to S7 leads now to a contradiction, since

4(2i —1)% 445

pon(M) = TETE
is by definition an integer for all i, which is contradicted e.g., for i = 2.
So far (for i = 2 and j = —1), we constructed a space X which is

homotopy equivalent to S7, but which is not diffeomorphic to S7. In
fact, one can further show the following:

Lemma 12.7.3. X is homeomorphic to S, so in fact X is an exotic 7-sphere.

This latest fact can be shown by constructing a Morse function
g : X — R with only two nondegenerate critical points (a maximum
and a minimum). An application of Reeb’s theorem then yields that X
is homeomorphic to 5.

12.8 Exercises
1. Construct explicitly the bounding manifold for RP3.

2. Let w be a rank n complex vector bundle on a topological space X,
and let c;(w) € H*(X;Z) be its i-th Chern class. Via Z — Z/2, c;(w)
determines a cohomology class ¢;(w) € H*(X;Z/2). By forgetting the
complex structure on the fibers of w, we obtain the realization wg of w,
as a rank 2n real vector bundle on X.

Show that the Stiefel-Whitney classes of wRr are computed as follows:

(@) wyi(wr) =¢i(w), for 0 <i < n.
(b) wyit1(wr) = 0 for any integer i.

3. Let M be a 2n-dimensional smooth manifold with tangent bundle
TM. Show that, if M admits a complex structure, then w,;(M) is
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the mod 2 reduction of an integral class for any 0 < i < #n, and
wyi+1(M) = 0 for any integer i. In particular, Stiefel-Whitney classes
give obstructions to the existence of a complex structure on an even-
dimensional real smooth manifold.

4. Show that a real smooth manifold M is orientable if and only if

5. Show that CP? does not embed in R”.
6. Show that CP* does not embed in R'!.

7. Example 12.5.9 shows that CP? is not the boundary on an oriented
compact 5-manifold. Can CP? be the boundary on some non-orientable
compact 5-manifold?

8. Show that CP?"*! is the boundary of a compact manifold.
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