HOMEWORK #7

- 1. Construct a surjective map $S^n \to S^n$ of degree zero, for each n > 1.
- **2.** Let $f: S^n \to S^n$ be a map of degree zero. Show that there exist points $x, y \in S^n$ with f(x) = x and f(y) = -y.
- **3.** Let $f: S^{2n} \to S^{2n}$ be a continuous map. Show that there is a point $x \in S^{2n}$ so that either f(x) = x or f(x) = -x.
- **4.** A map $f: S^n \to S^n$ satisfying f(x) = f(-x) for all x is called an *even map*. Show that an even map has even degree, and this degree is in fact zero when n is even. When n is odd, show there exist even maps of any given even degree.
- **5.** Describe a cell structure on $S^n \vee S^n \vee \cdots \vee S^n$ and calculate $H_*(S^n \vee S^n \vee \cdots \vee S^n)$.
- **6.** Let $f: S^n \to S^n$ be a map of degree m. Let $X = S^n \cup_f D^{n+1}$ be a space obtained from S^n by attaching a (n+1)-cell via f. Compute the homology of X.
- 7. Let G be a finitely generated abelian group, and fix $n \geq 1$. Construct a CW-complex X such that $H_n(X) \cong G$ and $\tilde{H}_i(X) = 0$ for all $i \neq n$. (Hint: Use the calculation of the previous exercise, together with know facts from Algebra about the structure of finitely generated abelian groups.) More generally, given finitely generated abelian groups G_1, G_2, \dots, G_k , construct a CW-complex X whose homology groups are $H_i(X) = G_i$, $i = 1, \dots, k$, and $\tilde{H}_i(X) = 0$ for all $i \notin \{1, 2, \dots, k\}$.
- 8. Using our notation from the classification of compact surfaces, first describe the CW structure of T_n and respectively P_n , then use the cellular homology to calculate the homology of these spaces.
- **9.** Show that \mathbb{RP}^5 and $\mathbb{RP}^4 \vee S^5$ have the same homology and fundamental group. Are these spaces homotopy equivalent?
- **10.** Let $0 \le m < n$. Compute the homology of $\mathbb{RP}^n/\mathbb{RP}^m$.