HOMEWORK #6

1. Show that if M^n is connected, non-compact manifold, then $H_i(M; \mathbb{Z}) = 0$ for $i \geq n$.

2. Show that the Euler characteristic of a closed, oriented, (4n + 2)-dimensional manifold is even.

3. Let M be a closed oriented manifold with fundamental class [M]. Consider the following *cup product pairing* between cohomology groups of complementary dimensions (after moding out by the corresponding torsion subgroups):

$$(,): H^{i}(M;\mathbb{Z})/\mathrm{Tor} \otimes H^{n-i}(M;\mathbb{Z})/\mathrm{Tor} \to \mathbb{Z}$$

given by $(\alpha, \beta) = \langle \alpha \cup \beta, [M] \rangle$. Here $\langle , \rangle : H^n(X; \mathbb{Z}) \otimes H_n(X; \mathbb{Z}) \to \mathbb{Z}$ is the Kronecker pairing defined in Homework #1.

- (1) Show that the cup product pairing is nonsingular in the following sense: for each choice of a \mathbb{Z} -basis $\{\beta_1, \dots, \beta_r\}$ of $H^{n-i}(M; \mathbb{Z})/\text{Tor}$, there exists a \mathbb{Z} basis $\{\alpha_1, \dots, \alpha_r\}$ of $H^i(M; \mathbb{Z})/\text{Tor}$ such that $(\alpha_i, \beta_j) = \delta_{ij}$. (Hint: Use the Universal Coefficient Theorem and Poincaré Duality.)
- (2) As an application, re-prove the following facts about the ring structures on the cohomology of projective spaces:
 - (a) $H^*(\mathbb{RP}^n; \mathbb{Z}_2) \cong \mathbb{Z}_2[x]/(x^{n+1}), \quad |x|=1,$
 - (b) $H^*(\mathbb{CP}^n;\mathbb{Z}) \cong \mathbb{Z}[y]/(y^{n+1}), \quad |y|=2,$
 - (c) $H^*(\mathbb{HP}^n;\mathbb{Z}) \cong \mathbb{Z}[w]/(w^{n+1}), \quad |w| = 4.$

4. Let M be a closed, oriented 4n-dimensional manifold, with fundamental class [M]. The middle *intersection pairing*

$$(,): H^{2n}(M;\mathbb{Z})/\mathrm{Tor} \otimes H^{2n}(M;\mathbb{Z})/\mathrm{Tor} \to \mathbb{Z}$$

given by $(\alpha, \beta) = \langle \alpha \cup \beta, [M] \rangle$ is symmetric and nondegenerate. Let $\{\alpha_1, \dots, \alpha_r\}$ be a \mathbb{Z} -basis of $H^{2n}(M; \mathbb{Z})/\text{Tor}$, and let $A = (a_{ij})$ for $a_{ij} := (\alpha_i, \alpha_j) \in \mathbb{Z}$. Then A is a symmetric matrix with $\det(A) = \pm 1$, so it is diagonalizable over \mathbb{R} . Define the signature of M to be

 $\sigma(M) := (\text{the number of positive eigenvalues}) - (\text{the number of negative eigenvalues})$

- (1) Compute $\sigma(\mathbb{CP}^n)$, $\sigma(S^2 \times S^2)$.
- (2) Show that the signature $\sigma(M)$ is congruent mod 2 to the Euler characteristic $\chi(M)$.

5. Show that if a connected manifold M is the boundary of a compact manifold, then the Euler characteristic of M is even. Conclude that \mathbb{RP}^{2n} , \mathbb{CP}^{2n} , \mathbb{HP}^{2n} cannot be boundaries.

6. Show that if M^{4n} is a connected manifold which is the boundary of a compact oriented (4n + 1)-dimensional manifold V, then the signature of M is zero.

7. Show that if M is a compact contractible *n*-manifold then ∂M is a homology (n-1)-sphere, that is, $H_i(\partial M; \mathbb{Z}) \simeq H_i(S^{n-1}; \mathbb{Z})$ for all *i*.

8. Let M be a closed, connected, oriented n-manifold and let $f: S^n \to M$ be a continuous map of non-zero degree, i.e., the morphism

$$f_*: H_n(S^n; \mathbb{Z}) \to H_n(M; \mathbb{Z})$$

is non-trivial. Show that M and S^n have the same \mathbb{Q} -homology.

9. Show that there is no orientation-reversing self-homotopy equivalence $\mathbb{CP}^{2n} \to \mathbb{CP}^{2n}$.

 $\mathbf{2}$