HOMEWORK $#6$

1. Show that if M^n is connected, non-compact manifold, then $H_i(M; \mathbb{Z}) = 0$ for $i > n$.

2. Show that the Euler characteristic of a closed, oriented, $(4n + 2)$ -dimensional manifold is even.

3. Let M be a closed oriented manifold with fundamental class $[M]$. Consider the following *cup product pairing* between cohomology groups of complementary dimensions (after moding out by the corresponding torsion subgroups):

$$
(\ ,\) : H^i(M;\mathbb{Z})/\text{Tor} \otimes H^{n-i}(M;\mathbb{Z})/\text{Tor} \to \mathbb{Z}
$$

given by $(\alpha, \beta) = \langle \alpha \cup \beta, [M] \rangle$. Here $\langle , \rangle : H^n(X; \mathbb{Z}) \otimes H_n(X; \mathbb{Z}) \to \mathbb{Z}$ is the Kronecker pairing defined in Homework $#1$.

- (1) Show that the cup product pairing is nonsingular in the following sense: for each choice of a \mathbb{Z} -basis $\{\beta_1, \cdots, \beta_r\}$ of $H^{n-i}(M;\mathbb{Z})$ /Tor, there exists a \mathbb{Z} basis $\{\alpha_1, \cdots, \alpha_r\}$ of $H^i(M;\mathbb{Z})/\text{Tor}$ such that $(\alpha_i, \beta_j) = \delta_{ij}$. (Hint: Use the Universal Coefficient Theorem and Poincaré Duality.)
- (2) As an application, re-prove the following facts about the ring structures on the cohomology of projective spaces:
	- (a) $H^*(\mathbb{RP}^n; \mathbb{Z}_2) \cong \mathbb{Z}_2[x]/(x^{n+1}), \quad |x|=1,$
	- (b) $H^*(\mathbb{CP}^n;\mathbb{Z})\cong \mathbb{Z}[y]/(y^{n+1}), \quad |y|=2,$
	- $(c) H^*(\mathbb{HP}^n; \mathbb{Z}) \cong \mathbb{Z}[w]/(w^{n+1}), \quad |w| = 4.$

4. Let M be a closed, oriented $4n$ -dimensional manifold, with fundamental class [M]. The middle intersection pairing

$$
(\ ,\) : H^{2n}(M;\mathbb{Z})/\text{Tor} \otimes H^{2n}(M;\mathbb{Z})/\text{Tor} \to \mathbb{Z}
$$

given by $(\alpha, \beta) = \langle \alpha \cup \beta, [M] \rangle$ is symmetric and nondegenerate. Let $\{\alpha_1, \dots, \alpha_r\}$ be a Z-basis of $H^{2n}(M;\mathbb{Z})/\text{Tor}$, and let $A=(a_{ij})$ for $a_{ij}:=(\alpha_i,\alpha_j)\in\mathbb{Z}$. Then A is a symmetric matrix with $\det(A) = \pm 1$, so it is diagonalizable over R. Define the signature of M to be

 $\sigma(M) :=$ (the number of positive eigenvalues)–(the number of negative eigenvalues)

- (1) Compute $\sigma(\mathbb{CP}^n)$, $\sigma(S^2 \times S^2)$.
- (2) Show that the signature $\sigma(M)$ is congruent mod 2 to the Euler characteristic $\chi(M)$.

5. Show that if a connected manifold M is the boundary of a compact manifold, then the Euler characteristic of M is even. Conclude that \mathbb{RP}^{2n} , \mathbb{CP}^{2n} , \mathbb{HP}^{2n} cannot be boundaries.

6. Show that if M^{4n} is a connected manifold which is the boundary of a compact oriented $(4n + 1)$ -dimensional manifold V, then the signature of M is zero.

7. Show that if M is a compact contractible n-manifold then ∂M is a homology $(n-1)$ -sphere, that is, $H_i(\partial M; \mathbb{Z}) \simeq H_i(S^{n-1}; \mathbb{Z})$ for all i.

8. Let M be a closed, connected, oriented n-manifold and let $f: S^n \to M$ be a continuous map of non-zero degree, i.e., the morphism

$$
f_*: H_n(S^n; \mathbb{Z}) \to H_n(M; \mathbb{Z})
$$

is non-trivial. Show that M and $Sⁿ$ have the same Q-homology.

9. Show that there is no orientation-reversing self-homotopy equivalence $\mathbb{CP}^{2n} \rightarrow$ \mathbb{CP}^{2n} .

2