HOMEWORK #5

1. Show that:

- (1) S^n and S^m do not have the same homotopy type if $n \neq m$.
- (2) S^n , for n > 1, is a simply-connected space which is not contractible.

2. Calculate the homology of the 2-torus T^2 .

3. Let A be a retract of X, i.e., there exists a map $r: X \to A$ whose restriction to A is the identity. Let $i: A \to X$ be the inclusion map. Show that $i_*: H_*(A) \to H_*(X)$ is a monomorphism and r_* is an epimorphism.

4. A pair (X, A) with X a space and A a nonempty closed subspace that is a deformation retract of some neighborhood in X is called a **good pair**. Show that for a good pair (X, A), the quotient map $q : (X, A) \to (X/A, A/A)$ obtained by collapsing A to a point, induces isomorphisms $q_* : H_n(X, A) \to H_n(X/A, A/A) \cong \tilde{H}_n(X/A)$, for all n.

5. For a wedge sum $\bigvee_{\alpha} X_{\alpha}$, the inclusions $i_{\alpha} : X_{\alpha} \hookrightarrow \bigvee_{\alpha} X_{\alpha}$ induce an isomorphism

$$\oplus_{\alpha} i_{\alpha*} : \oplus_{\alpha} \tilde{H}_n(X_{\alpha}) \to \tilde{H}_n(\bigvee_{\alpha} X_{\alpha}),$$

provided that the wedge sum is formed at basepoints $x_{\alpha} \in X_{\alpha}$ such that the pairs (X_{α}, x_{α}) are good.

6. Show that $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have isomorphic homology groups in all dimensions. Are these spaces homeomorphic?

7. Show that the quotient map $S^1 \times S^1 \to S^2$ collapsing the subspace $S^1 \vee S^1$ to a point is not nullhomotopic by showing that it induces an isomorphism on H_2 . On the other hand, show that any map $S^2 \to S^1 \times S^1$ is nullhomotopic.

8. For ΣX the suspension of X, show by a Meyer-Vietoris argument that there are isomorphisms $\tilde{H}_{n+1}(\Sigma X) \cong \tilde{H}_n(X)$ for all n.

9. Let $f: (X, A) \to (Y, B)$ be a map such that both $f: X \to Y$ and $f: A \to B$ are homotopy equivalences.

• show that $f_*: H_n(X, A) \to H_n(Y, B)$ is an isomorphism for all n.

• For the case of the inclusion $f: (D^n, S^{n-1}) \hookrightarrow (D^n, D^n - \{0\})$, show that f is not a homotopy equivalence of pairs, i.e., there is no $g: (D^n, D^n - \{0\}) \to (D^n, S^{n-1})$ so that $g \circ f$ and $f \circ g$ are homotopic to the identity through maps of pairs.