HOMEWORK #4

1. Show that if X is the union of contractible open subsets A and B, then all cup products of positive-dimensional classes in $H^*(X)$ are zero. In particular, this is the case if X is a suspension. Conclude that spaces such as \mathbb{RP}^2 and T^2 cannot be written as unions of two open contractible subsets.

2.

- (1) Show that $H^*(\mathbb{CP}^n; \mathbb{Z}) \cong \mathbb{Z}[x]/(x^{n+1})$, with x the generator of $H^2(\mathbb{CP}^n; \mathbb{Z})$.
- (2) Show that the Lefschetz number τ_f of a map $f: \mathbb{CP}^n \to \mathbb{CP}^n$ is given by

$$\tau_f = 1 + d + d^2 + \dots + d^n,$$

where $f^*(x) = dx$ for some $d \in \mathbb{Z}$, and with x as in part (1).

- (3) Show that for n even, any map $f: \mathbb{CP}^n \to \mathbb{CP}^n$ has a fixed point.
- (4) When n is odd, show that there is a fixed point unless $f^*(x) = -x$, where x denotes as before a generator of $H^2(\mathbb{CP}^n;\mathbb{Z})$.
- **3.** Use cup products to compute the map $H^*(\mathbb{CP}^n;\mathbb{Z}) \to H^*(\mathbb{CP}^n;\mathbb{Z})$ induced by the map $\mathbb{CP}^n \to \mathbb{CP}^n$ that is a quotient of the map $\mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$ raising each coordinate to the d-th power, $(z_0, \dots, z_n) \mapsto (z_0^d, \dots, z_n^d)$, for a fixed integer d > 0. (*Hint*: First do the case n = 1.)
- **4.** Show that \mathbb{RP}^3 and $\mathbb{RP}^2 \vee S^3$ have the same cohomology rings with integer coefficients, but they are not homotopy equivalent spaces.
- **5.** Let $\mathbb{H} = \mathbb{R} \cdot \mathbb{1} \oplus \mathbb{R} \cdot \mathbb{I} \oplus \mathbb{R} \cdot \mathbb{I} \oplus \mathbb{R} \cdot \mathbb{I} \oplus \mathbb{R} \cdot \mathbb{I}$ be the skew-field of quaternions, where $i^2 = 0$ $j^2 = k^2 = -1$ and ij = k = -ji, jk = i = -kj, ki = j = -ik. For a quaternion q = a + bi + cj + dk, $a, b, c, d \in \mathbb{R}$, its conjugate is defined by $\bar{q} = a - bi - cj - dk$. Let $|q| := \sqrt{a^2 + b^2 + c^2 + d^2}$.

 - (1) Verify the following formulae in ℍ: q·q̄ = |q|², q̄₁q₂ = q̄₂q̄₁, |q₁q₂| = |q₁|·|q₂|.
 (2) Let S⁷ ⊂ ℍ ⊕ ℍ be the unit sphere, and let f: S⁷ → S⁴ = ℍℙ¹ = ℍ ∪ {∞} be given by f(q₁, q₂) = q₁q₂⁻¹. Show that for any p ∈ S⁴, the fiber f⁻¹(p) is homeomorphic to S^3 .
 - (3) Let \mathbb{HP}^n be the quaternionic projective space defined exactly as in the complex case as the quotient of $\mathbb{H}^{n+1} \setminus \{0\}$ by the equivalence relation $v \sim \lambda v$, for $\lambda \in \mathbb{H} \setminus \{0\}$. Show that the CW structure of \mathbb{HP}^n consists of only one cell in each dimension $0, 4, 8, \dots, 4n$, and calculate the homology
 - (4) Show that $H^*(\mathbb{HP}^n;\mathbb{Z}) \cong \mathbb{Z}[x]/(x^{n+1})$, with x the generator of $H^4(\mathbb{HP}^n;\mathbb{Z})$. (5) Show that $S^4 \vee S^8$ and \mathbb{HP}^2 are not homotopy equivalent.