HOMEWORK #4

- 1. Show that the map $p: S^1 \to S^1$, $p(z) = z^n$ is a covering. (Here we represent S^1 as the set of complex numbers z of absolute value 1.)
- **2.** Let $p: E \to B$ be a covering map, with E path connected. Show that if B is simply-connected, then p is a homeomorphism.

3.

- (1) Show that if n > 1 then any continuous map $f: S^n \to S^1$ is nullhomotopic.
- (2) Show that any continuos map $f: \mathbb{RP}^2 \to S^1$ is nullhomotopic.

4.

- (1) Classify all coverings of the Möbius strip up to equivalence.
- (2) Show that every covering of the Möbius strip is homeomorphic to either \mathbb{R}^2 , $S^1 \times \mathbb{R}$ or the Möbius strip itself.

5.

- (1) Show that the torus T^2 is a two-fold cover of the Klein bottle.
- (2) Is it possible to realize the Klein bottle as a two-fold cover of itself?
- (3) Find the universal cover of the Klein bottle.
- **6.** Let $p: E \to B$ be a covering map with E simply-connected. Show that given any covering map $r: Y \to B$, there is a covering map $q: E \to Y$ such that $r \circ q = p$.
- 7. Show that a simply-connected space is semilocally simply-connected.