HOMEWORK #3

- **1.** Show that the functor $\operatorname{Ext}(-,-)$ is contravariant in the first variable, that is, if H, H' and G are abelian groups, a homomorphism $\alpha: H \to H'$ induces a homomorphism $\alpha^*: \operatorname{Ext}(H',G) \to \operatorname{Ext}(H,G)$.
- **2.** For a topological space X, let

$$\langle , \rangle : C^n(X) \otimes C_n(X) \to \mathbb{Z}$$

be the Kronecker pairing given by $\langle \phi, \sigma \rangle := \phi(\sigma)$. In terms of this pairing, the coboundary map $\delta : C^n(X) \to C^{n+1}(X)$ is defined by $\langle \delta(\phi), \sigma \rangle = \langle \phi, \partial \sigma \rangle$ for all $\sigma \in C_{n+1}(X)$. Show that this pairing induces a pairing between cohomology and homology:

$$\langle , \rangle : H^n(X; \mathbb{Z}) \otimes H_n(X; \mathbb{Z}) \to \mathbb{Z}.$$

- **3.** Compute $H^i(S^n; G)$ by using the Meyer-Vietoris sequence and induction. (You may also try the long exact sequence of a pair, coupled with excision.)
- **4.** Compute the cohomology of the spaces $S^1 \times S^1$, \mathbb{RP}^2 and the Klein bottle first with \mathbb{Z} coefficients, then with \mathbb{Z}_2 coefficients.
- **5.** Show that if $f: S^n \to S^n$ has degree d, then $f^*: H^n(S^n; G) \to H^n(S^n; G)$ is multiplication by d.
- **6.** Show that if A is a closed subspace of X that is a deformation retract of some neighborhood, then the quotient map $X \to X/A$ induces isomorphisms

$$H^n(X, A; G) \cong \tilde{H}^n(X/A; G)$$

for all n.

- 7. Let X be a space obtained from S^n by attaching a cell e^{n+1} by a degree m map.
 - Show that the quotient map $X \to X/S^n = S^{n+1}$ induces the trivial map on $\tilde{H}_i(-;\mathbb{Z})$ for all i, but not on $H^{n+1}(-;\mathbb{Z})$.
 - Show that the inclusion $S^n \hookrightarrow X$ induces the trivial map on $\tilde{H}^i(-;\mathbb{Z})$ for all i, but not on $H_n(-;\mathbb{Z})$.