HOMEWORK #2

1. Show that if X is the union of contractible open subsets A and B, then all cup products of positive-dimensional classes in $H^*(X)$ are zero. In particular, this is the case if X is a suspension. Conclude that spaces such as \mathbb{RP}^2 and T^2 cannot be written as unions of two open contractible subsets.

2.

- (1) Show that $H^*(\mathbb{CP}^n;\mathbb{Z})\cong\mathbb{Z}[x]/(x^{n+1})$, with x the generator of $H^2(\mathbb{CP}^n;\mathbb{Z})$.
- (2) Show that the Lefschetz number τ_f of a map $f: \mathbb{CP}^n \to \mathbb{CP}^n$ is given by

$$\tau_f = 1 + d + d^2 + \dots + d^n,$$

where $f^*(x) = dx$ for some $d \in \mathbb{Z}$, and with x as in part (1).

- (3) Show that for n even, any map $f : \mathbb{CP}^n \to \mathbb{CP}^n$ has a fixed point.
- (4) When n is odd, show that there is a fixed point unless $f^*(x) = -x$, where x denotes as before a generator of $H^2(\mathbb{CP}^n;\mathbb{Z})$.

3. Use cup products to compute the map $H^*(\mathbb{CP}^n;\mathbb{Z}) \to H^*(\mathbb{CP}^n;\mathbb{Z})$ induced by the map $\mathbb{CP}^n \to \mathbb{CP}^n$ that is a quotient of the map $\mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$ raising each coordinate to the *d*-th power, $(z_0, \dots, z_n) \mapsto (z_0^d, \dots, z_n^d)$, for a fixed integer d > 0. (*Hint*: First do the case n = 1.)

4. Use cup products to show that \mathbb{RP}^3 is not homotopy equivalent to $\mathbb{RP}^2 \vee S^3$.

5. Let $\mathbb{H} = \mathbb{R} \cdot 1 \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$ be the skew-field of quaternions, where $i^{2} = j^{2} = k^{2} = -1$ and ij = k = -ji, jk = i = -kj, ki = j = -ik. For a quaternion q = a + bi + cj + dk, $a, b, c, d \in \mathbb{R}$, its conjugate is defined by $\bar{q} = a - bi - cj - dk$. Let $|q| := \sqrt{a^2 + b^2 + c^2 + d^2}$.

- (1) Verify the following formulae in $\mathbb{H}: q \cdot \bar{q} = |q|^2, \overline{q_1 q_2} = \bar{q}_2 \bar{q}_1, |q_1 q_2| = |q_1| \cdot |q_2|.$ (2) Let $S^7 \subset \mathbb{H} \oplus \mathbb{H}$ be the unit sphere, and let $f: S^7 \to S^4 = \mathbb{HP}^1 = \mathbb{H} \cup \{\infty\}$ be given by $f(q_1, q_2) = q_1 q_2^{-1}$. Show that for any $p \in S^4$, the fiber $f^{-1}(p)$ is homeomorphic to S^3 .
- (3) Let \mathbb{HP}^n be the quaternionic projective space defined exactly as in the complex case as the quotient of $\mathbb{H}^{n+1} \setminus \{0\}$ by the equivalence relation $v \sim \lambda v$, for $\lambda \in \mathbb{H} \setminus \{0\}$. Show that the CW structure of \mathbb{HP}^n consists of only one cell in each dimension $0, 4, 8, \dots, 4n$, and calculate the homology of \mathbb{HP}^n .
- (4) Show that $H^*(\mathbb{HP}^n;\mathbb{Z}) \cong \mathbb{Z}[x]/(x^{n+1})$, with x the generator of $H^4(\mathbb{HP}^n;\mathbb{Z})$.

(5) Show that $S^4 \vee S^8$ and \mathbb{HP}^2 are not homotopy equivalent.

6. For a map $f: S^{2n-1} \to S^n$ with $n \ge 2$, let $X_f = S^n \cup_f D^{2n}$ be the CW complex obtained by attaching a 2*n*-cell to S^n by the map f. Let $a \in H^n(X_f; \mathbb{Z})$ and $b \in H^{2n}(X_f;\mathbb{Z})$ be the generators of respective groups. The Hopf invariant $H(f) \in \mathbb{Z}$ of the map f is defined by the identity $a^2 = H(f)b$.

- (1) Let f: S³ → S² = C∪{∞} be given by f(z₁, z₂) = z₁/z₂, for (z₁, z₂) ∈ S³ ⊂ C². Show that X_f = CP² and H(f) = ±1.
 (2) Let f: S⁷ → S⁴ = H ∪ {∞} be given by f(q₁, q₂) = q₁q₂⁻¹ in terms of quaternions (q₁, q₂) ∈ S⁷, the unit sphere in H². Show that X_f = HP² and H(f) = ±1. $H(f) = \pm 1.$