INTRODUCTORY TOPOLOGY I

HOMEWORK #2

1. Let A be a real 3×3 matrix, with all entries positive. Show that A has a positive real eigenvalue. (Hint: Use Brower's fixed point theorem.)

2. Show that if $f : \mathbb{D}^2 \to \mathbb{D}^2$ is a continuous map so that the restriction $f_{|S^1}$ is a homeomorphism $S^1 \to S^1$, then f is surjective.

3. Let V be a finite dimensional vector space and W a subspace. Compute $\pi_1(V \setminus W)$.

- **4.** What is the homotopy type of \mathbb{RP}^2 minus a point?
- 5. Calculate the fundamental group of the spaces below:
 - (1) A 2-sphere with a diameter attached to it.
 - (2) A 2-sphere with the ecuatorial disc attached to it.
 - (3) The complement in \mathbb{R}^3 of a line and a circle. Note: There are two cases to consider, one where the line goes through the interior of the circle and the other where it doesn't. Are these two spaces homotopy equivalent?
 - (4) The complement in \mathbb{R}^3 of a line and a point not on the line.
 - (5) $\mathbb{R}^3 \setminus \{x \text{axis and } y \text{axis}\}.$
 - (6) \mathbb{R}^3 minus two disjoint lines.
 - (7) $T^2 \setminus \{x, y\}$, where x, y are two distinct points on the 2-torus.
 - (8) Möbius band. Are the cylinder and the Möbius band homeomorphic?