HOMEWORK #1

1. A graded abelian group is a sequence of abelian groups $A_{\bullet} := (A_n)_{n \ge 0}$. We say that A_{\bullet} is of *finite type* if

$$\sum_{n>0} \operatorname{rank} A_n < \infty.$$

The *Euler characteristic* of a finite type graded abelian group A_{\bullet} is the integer

$$\chi(A_{\bullet}) := \sum_{n \ge 0} (-1)^n \cdot \operatorname{rank} A_n$$

A short exact sequence of graded groups $A_{\bullet}, B_{\bullet}, C_{\bullet}$, is a sequence of short exact sequences

$$0 \to A_n \to B_n \to C_n \to 0, \ n \ge 0.$$

Prove that if $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ is a short exact sequence of graded abelian groups of finite type, then

$$\chi(B_{\bullet}) = \chi(A_{\bullet}) + \chi(C_{\bullet})$$

2. Suppose we are given three finite type graded abelian groups A_{\bullet} , B_{\bullet} , C_{\bullet} , which are part of a long exact sequence

 $\cdots \to A_k \xrightarrow{i_k} B_k \xrightarrow{j_k} C_k \xrightarrow{\partial_k} A_{k-1} \to \cdots \to A_0 \to B_0 \to C_0 \to 0.$

Show that

$$\chi(B_{\bullet}) = \chi(A_{\bullet}) + \chi(C_{\bullet}).$$

3. For finite CW complexes X and Y, show that

$$\chi(X \times Y) = \chi(X) \cdot \chi(Y).$$

4. If a finite CW complex X is a union of subcomplexes A and B, show that

$$\chi(X) = \chi(A) + \chi(B) - \chi(A \cap B).$$

5. For a finite CW complex and $p: Y \to X$ an *n*-sheeted covering space, show that $\chi(Y) = n \cdot \chi(X)$.

6. Show that if $f : \mathbb{RP}^{2n} \to Y$ is a covering map of a *CW*-complex *Y*, then *f* is a homeomorphism.

7. Calculate the homology of the 2-torus T^2 with coefficients in \mathbb{Z} , \mathbb{Z}_2 and \mathbb{Z}_3 , respectively. Do the same calculations for the Klein bottle.

8. Is there a continuous map $f : \mathbb{RP}^{2k-1} \to \mathbb{RP}^{2k-1}$ with no fixed points? Explain.