
Contemporary Mathematics

Hirzebruch invariants of symmetric products

Laurentiu Maxim and Jörg Schürmann
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Abstract. These notes are an expanded version of the talk given by the

first author at the conference “Topology of Algebraic Varieties”, organized

in honor of Anatoly Libgober’s 60-th anniversary. We provide here a very
elementary proof of a generating series formula for the Hodge polynomials

(with coefficients) of symmetric products of quasi-projective varieties. A more

general result was recently obtained by the authors by using λ-structures and
Adams operations on Grothendieck groups.

1. Introduction

1.1. Symmetric products. The n-th symmetric product of a space X is de-
fined by

X(n) :=

n times︷ ︸︸ ︷
X × · · · ×X /Σn,

i.e., the quotient of the product of n copies of X by the natural action of the
symmetric group on n elements, Σn. Symmetric products are of fundamental im-
portance for understanding the geometry and topology of various spaces built out
of X. For example, if X is a smooth complex projective curve, the symmetric prod-
ucts {X(n)}n are used for studying the Jacobian variety of X ([Mac1]). If X is a
smooth complex algebraic surface, X(n) is used to understand the topology of the n-
th Hilbert scheme X [n] parametrizing closed zero-dimensional subschemes of length
n from X (e.g., see [Che, GS, GLM1], and also [GLM2] for higher-dimensional
generalizations).

The question we address in this note is: “how does one compute invariants
I(X(n)) of symmetric products of spaces?” The standard approach is to encode the
invariants of all symmetric products in a generating series

SI(X) :=
∑
n≥0

I(X(n)) · tn,
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provided I(X(n)) can be defined for all n, and to calculate SI(X) only in terms of
invariants of X. Then I(X(n)) is simply just the coefficient of tn in the resulting
expression in invariants of X.

In this note we shall assume that X is a (possibly singular) complex quasi-
projective variety, so its symmetric products are quasi-projective varieties as well.

1.2. History and results. We begin our discussion by illustrating the gen-
erating series approach in some motivating classical examples.

1.2.1. Euler-Poincaré characteristic and MacPherson-Chern classes. There is
a well-known formula due to Macdonald [Mac2] for the generating series of the
Euler-Poincaré characteristic χ(X) :=

∑
k≥0(−1)k·βk(X) of a compact triangulated

space X (with Betti numbers βk(X), for k ≥ 0), namely:

(1)
∑
n≥0

χ(X(n)) · tn = (1− t)−χ(X) = exp

∑
r≥1

χ(X) · t
r

r

 .

A class version of this result was recently obtained by Ohmoto [O] for the Chern-
MacPherson classes of [M]. Recall that the Euler-Poincaré characteristic of a com-
pact complex algebraic variety is the degree of (the zero-dimensional part of) the
total Chern-MacPherson class.

1.2.2. Arithmetic genus and Todd classes. In his thesis, Moonen [Mo] obtained
generating series for the arithmetic genus χa(X) :=

∑
k≥0(−1)k · dimHk(X,OX)

of symmetric products of a complex projective variety:

(2)
∑
n≥0

χa(X(n)) · tn = (1− t)−χa(X) = exp

∑
r≥1

χa(X) · t
r

r

 ,

and, more generally, for the Baum-Fulton-MacPherson homology Todd classes
([BFM]) of symmetric products of any projective variety.

1.2.3. Signature and L-classes. Hirzebruch and Zagier [Za] obtained such gen-
erating series for the signature σ and L-classes of symmetric products of compact
(rational homology) manifolds. For example, if X is a complex projective manifold
of pure even complex dimension, then

(3)
∑
n≥0

σ(X(n)) · tn =
(1 + t)

σ(X)−χ(X)
2

(1− t)
σ(X)+χ(X)

2

.

1.2.4. Hirzebruch’s χy-genus. Recall that if X is a compact complex algebraic
manifold, then Hk(X; Q) carries a natural weight k pure Hodge structure, i.e., there
is a decomposition of complex vector spaces

(4) Hk(X; C) = ⊕p+q=kHp,q,

with Hp,q = H̄q,p. For our purpose, it is more natural to work with the correspond-
ing decreasing Hodge filtration F � on Hk(X; C) defined by

(5) F i := ⊕p≥iHp,k−p,

so that Hp,q = F p ∩ F̄ q, with F̄ q the complex conjugate of F q with respect to
the real structure H∗(X; C) = H∗(X; R) ⊗ C. This filtration is induced by the
degeneration (at E1) of the Hodge to de Rham spectral sequence

(6) Ep,q1 = Hq(X,ΩpX) =⇒ Hp+q(X; C)
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corresponding to the “stupid” filtration on the holomorphic de Rham complex Ω�
X

on X. Moreover, we have that

(7) Hp,q = Hq(X,ΩpX).

The Hirzebruch χy-genus ([H]) of the compact algebraic manifold X is defined by

(8) χy(X) =
∑
p,q

(−1)qhp,q(X) · yp,

with hp,q(X) = dimHq(X,ΩpX) the Hodge numbers of X.
Borisov-Libgober [BL] and Zhou [Zh] proved the following generating series

formula for the Hirzebruch χy-genus: if X is a compact complex algebraic manifold,
then

(9)
∑
n≥0

χ−y(X(n)) · tn = exp

∑
r≥1

χ−yr (X) · t
r

r

 .

More generally, a similar formula holds for the two-variable elliptic genus of sym-
metric products of smooth compact varieties (cf. [BL]). Since for a compact
complex algebraic manifold we have that

(10) χ−1 = χ, χ0 = χa, χ1 = σ,

formula (9) unifies all of the previous results for genera in the smooth compact
complex algebraic context.

In order to amplify the importance of using generating series for the study
of invariants of symmetric products, let us point out some immediate important
applications of formula (9).

Example 1.1. a.) If Xg is a smooth projective curve of genus g, then (9)
yields

(11)
∑
n

χ−y(X(n)
g ) · tn = [(1− t)(1− yt)]g−1

.

(In particular this applies to X = CP1 for which X(n) = CPn.) Therefore,

(12) hp,q(X(n)
g ) =

∑
0≤k≤p

(
g

p− k

)(
g

q − k

)
, 0 ≤ p ≤ q, p+ q ≤ n.

b.) If X is a smooth projective surface and X [n] is the n-th Hilbert scheme of X,
then X [n] is smooth and, moreover, there is a birational morphism [Fo] (in fact, a
crepant resolution)

X [n] → X(n).

Therefore,
hp,0(X [n]) = hp,0(X(n)),

and the generating series formula (9) yields Göttsche’s result [Go]:

(13)
∑
n,p

hp,0(X [n])yptn =
∏
p≥0

(1− (−1)pypt)(−1)p+1hp,0(X).

The remaining Hodge numbers of the Hilbert scheme X [n] are computed by the so-
called “stringy Hodge numbers” hp,qst (X(n)) (cf. [Ba]) of the symmetric product
X(n).
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We should also mention here that more general generating series formulae,
i.e., for the Hodge numbers hp,q,kc (X) := hp,q(Hk

c (X; Q)) of the cohomology with
compact support of a quasi-projective variety X (endowed with Deligne’s mixed
Hodge structure), have been obtained by Cheah in [Che]:
(14)∑
n≥0

 ∑
p,q,k≥0

hp,q,kc (X(n)) · ypxq(−z)k
 · tn =

∏
p,q,k≥0

(
1

1− ypxqzkt

)(−1)k·hp,q,kc (X)

.

The purpose of this note (see also [MS]) is to present a unifying picture of
the above mentioned results and of their extensions to the singular setting, e.g., by
finding generating series for (intersection homology) Hodge polynomials of (possibly
singular) quasi-projective varieties, and in particular, for the intersection homology
Euler characteristic and the Goresky-MacPherson signature [GM]. Our approach
consists of allowing coefficients in mixed Hodge modules, i.e., we also consider twisted
Hodge polynomials, twisted signatures, etc.

Even though the character of this note is mainly expository, we also include here
a very elementary proof (based only on a Künneth isomorphism) of a generating
series formula for Hodge-genera “with coefficients”, which holds for complex quasi-
projective varieties with any kind of singularities (see Sect.4.2). A more general
result on the generating series for Hodge numbers associated to “suitable” mixed
Hodge module complexes was recently obtained by the authors in [MS] by using λ-
structures and Adams operations on Grothendieck groups (see also [Ge] for a similar
approach); this will be reviewed in Sect.4.1. All steps included in the present proof
of Sect.4.2 admit characteristic class generalizations, and yield similar generating
series formulae for the homology Hirzebruch classes of Brasselet-Schürmann-Yokura
[BSY]; see Sect.5.

2. Mixed Hodge modules and Hodge polynomials

2.1. Extensions of Hirzebruch’s χy-genus to the singular setting. The
Hirzebruch χy-genus of a compact complex algebraic manifold, χy(X), admits sev-
eral generalizations to the singular setting. We begin by recalling the following

Definition 2.1. A mixed Hodge structure is a Q-vector space V endowed with
an increasing weight filtration W�, and with a decreasing Hodge filtration F � on
VC := V ⊗ C, so that F � induces a pure weight k Hodge structure (cf. Sect.1.2.4
for a definition) on GrWk V := WkV/Wk−1V for each k. The corresponding Hodge
numbers of V are defined by

(15) hp,q(V ) := dimGrpFGr
W
p+qVC.

Definition 2.2. The χy-genus transformation is the ring homomorphism

χy : K0(mHs)→ Z[y, y−1]

[(V, F �,W�)] 7→
∑
p,q

hp,q(V ) · (−y)p =
∑
p

dim(GrpF (V ⊗Q C)) · (−y)p,

where K0(mHs) is the Grothendieck ring of the category of mixed Hodge structures
(with the ring structure on K0(mHs) defined by the tensor product in the abelian
category mHs).
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Example 2.3. Let X be a complex algebraic variety. Then the cohomology
(with compact support) H∗(c)(X; Q) carries Deligne’s canonical mixed Hodge struc-
ture [De1, De2], and we define Hodge polynomials by setting

(16) χ(c)
y (X) := χy([H∗(c)(X; Q)]) =

∑
j

(−1)j · χy([Hj
(c)(X; Q)]).

Also, by Saito’s theory [Sa1, Sa2], for X pure-dimensional the (middle perversity)
intersection cohomology (with compact support) IH∗(c)(X; Q) carries a mixed Hodge
structure, therefore we can define intersection homology Hodge polynomials by:

(17) Iχ(c)
y (X) := χy([IH∗(c)(X; Q)]).

More generally, if L is a “good” 1 variation of mixed Hodge structures defined on a
smooth Zariski open and dense subset U of a pure-dimensional X, then IH∗(c)(X;L)
carries a mixed Hodge structure, and twisted intersection homology Hodge polyno-
mials Iχ(c)

y (X,L) are defined in a similar manner. In particular, for X smooth and
pure-dimensional, and L defined on all of X (i.e., U = X), we have

IH∗(c)(X;L) = H∗(c)(X;L) .

Note that if X is a compact algebraic manifold, then χ
(c)
y (X) = Iχ

(c)
y (X) is

exactly the Hirzebruch χy-genus. Also, if X is projective (but possibly singular), it
follows from Saito’s Hodge index theorem for intersection cohomology [Sa1] that

(18) Iχ1(X) = σ(X)

is the Goresky-MacPherson signature [GM] defined via Poincaré duality in inter-
section cohomology. Similarly,

(19) Iχ1(X,L) = σ(X,L)

is the corresponding twisted signature, provided L is a polarizable variation of pure
Hodge structures of even weight (with quasi-unipotent monodromy at infinity), de-
fined on a smooth Zariski open dense subset of X. If y = −1, the Hodge-polynomials
χ

(c)
y (X) and Iχ

(c)
y (X) reduce to the corresponding (intersection homology) Euler

characteristics of X, and similar identifications hold in the twisted case.

2.2. Hodge polynomials of mixed Hodge modules. For a complex al-
gebraic variety X, let Perv(X,Q) and MHM(X) denote respectively the abelian
categories of perverse sheaves (for the middle perversity) [BBD] and algebraic
mixed Hodge modules [Sa2] on X. The forgetful functor

rat : MHM(X)→ Perv(X,Q)

associating to a mixed Hodge module the underlying perverse sheaf, extends to a
derived functor

rat : DbMHM(X)→ Db
c(X)

to the derived category of bounded constructible complexes of Q-sheaves on X.
These triangulated categories come equipped with the usual functors f∗, f∗, f!, f !,
⊗, D, compatibly under the (derived) functor rat.

1Here, a graded-polarizable variation of mixed Hodge structures is called “good” if it is

admissible, with quasi-unipotent monodromy at infinity. By Saito’s theory [Sa2], such a “good”
variation L on an algebraic manifold Z gives rise to a smooth mixed Hodge module, i.e., to an

element LH [dim(Z)] ∈ MHM(Z) so that rat(LH [dim(Z)]) = L[dim(Z)].
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The category MHM(pt) of mixed Hodge modules over a point is equivalent to
Deligne’s category mHsp of (polarizable) mixed Hodge structures, and the forgetful
functor rat associates to an object in mHsp the underlying rational vector space.
By analogy, one can regard (complexes of) mixed Hodge modules as constructible
complexes of sheaves with “additional structure” of Hodge-theoretic nature. Let
QH
pt ∈ MHM(pt) denote the canonical object with the property that rat(QH

pt) = Q
is the mixed Hodge structure Q of weight (0, 0). Then if k : X → pt denotes the
projection to a point, let

QH
X := k∗QH

pt ∈ DbMHM(X)

denote the constant Hodge sheaf on X. Assume X is pure-dimensional. If X is
smooth, then QH

X [dim(X)] ∈ MHM(X) is pure of weight dim(X). More generally,
the intersection cohomology module ICHX is pure of weight dim(X), with under-
lying perverse sheaf rat(ICHX ) = ICX . And similarly, for L a “good” variation
of mixed Hodge structures on a smooth Zariski open dense subset U of X, the
twisted intersection cohomology module ICHX (L) is an algebraic mixed Hodge mod-
ule with rat(ICHX (L)) = ICX(L). Also, in the case when X is smooth, a “good”
variation L defined on all of X corresponds to a shifted mixed Hodge module
LH ∈ MHM(X)[−dim(X)] ⊂ DbMHM(X) with rat(LH) = L.

Note that if M∈ DbMHM(X), then

k∗M, k!M∈ DbMHM(pt) = Db(mHsp),

therefore

(20) H∗(X;M) = H∗(k∗M)

and

(21) H∗c (X;M) = H∗(k!M)

carry mixed Hodge structures. Moreover, if M = QH
X , these structures coincide

with Deligne’s canonical mixed Hodge structures mentioned earlier (cf. [Sa3]).

Definition 2.4. Given a complex algebraic variety X and a bounded complex
M∈ DbMHM(X), the Hodge-polynomial of M on X is defined by

(22) χ(c)
y (X,M) := χy([H∗(c)(X;M)]).

In the notations of Ex.2.3 we have that

(23) χ(c)
y (X) = χ(c)

y (X,QH
X),

(24) Iχ(c)
y (X) = χ(c)

y (X, IC ′HX ),

and

(25) Iχ(c)
y (X,L) = χ(c)

y (X, IC ′HX (L)),

where IC ′HX := ICHX [−dimX], and similarly IC ′HX (L) := ICHX (L)[−dimX].
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3. Mixed Hodge modules on symmetric products of varieties

3.1. Symmetric powers of mixed Hodge modules.

Definition 3.1. Let pn : Xn → X(n) be the projection to the symmetric prod-
uct X(n) = Xn/Σn. The n-th symmetric power of M ∈ DbMHM(X) is defined
as:

(26) M(n) := (pn∗M�n)Σn ∈ DbMHM(X(n)),

where:

(1) M�n ∈ DbMHM(Xn) is the n-th exterior product of M, with the Σn-
action defined as in [MSS]; this action is, by construction, compatible
with the natural Σn-action on the underlying Q-complexes.

(2) (−)Σn := 1
n!

∑
σ∈Σn

ψσ is the projector on the Σn-invariant sub-object,
with ψσ : pn∗M�n → pn∗M�n the isomorphism induced by σ ∈ Σn on
pn∗M�n (here we use the fact that Σn acts trivially on the symmetric
product X(n)).

Let us illustrate the above construction by the following important special cases:

Example 3.2. a.) If M = QH
X then (cf. Remark 2.4 in [MSS]):

(27)
(
QH
X

)(n)
= QH

X(n) .

b.) If M = IC ′HX := ICHX [−dimX] then (cf. Remark 2.4 in [MSS]):

(28)
(
IC ′

H
X

)(n)

= IC ′
H
X(n) .

c.) If L is a “good” variation of mixed Hodge structures on a Zariski open dense
subset U ⊂ X, then pn : Un → U (n) is a finite ramified covering branched along the
“fat diagonal”, i.e., the map induced on the configuration spaces of n (un)ordered
points in U :

pn : F (U, n)→B(U, n) := F (U, n)/Σn,

with
F (U, n) := {(x1, x2, . . . , xn) ∈ Un | xi 6= xj for i 6= j},

is a finite unramified covering. It then follows that L(n)|B(U, n) is again a “good”
variation of mixed Hodge structures on B(U, n), and the following identification
holds (cf. Remark 2.4 in [MSS]):

(29)
(
IC ′

H
X(L)

)(n)

= IC ′
H
X(n)(L(n)).

3.2. Alternating powers of mixed Hodge modules.

Definition 3.3. In the notations of Def.3.1, the n-th alternating power of
M∈ DbMHM(X) is defined by

(30) M{n} := (pn∗M�n)sign−Σn ∈ DbMHM(X(n)),

where (−)sign−Σn := 1
n!

∑
σ∈Σn

(−1)sign(σ) · ψσ is the projector on the alternating
Σn-equivariant sub-object.
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Let j : B(X,n) = X{n} := F (X,n)/Σn ↪→ X(n) be the open inclusion of the
configuration space B(X,n) = X{n} of all unordered n-tuples of different points in
X, and i the closed inclusion of the complement of X{n} into X(n). Assume that
rat(M) is a constructible sheaf (so a sheaf complex concentrated only in degree
zero). Then (cf. Eq.(25) in [MS])

(31) j!j
∗M{n} 'M{n} and i∗M{n} ' 0 ,

thus there is an isomorphism of mixed Hodge structures

(32) H∗(X(n);M{n}) ' H∗c (X{n};M{n}).

Example 3.4. (see [MS])
a.) (QH

X){n}|X{n} = εHn , with rat(εHn ) = εn the rank-one locally constant sheaf
εn on X{n} corresponding to the sign-representation of π1(X{n}) induced by the
quotient homomorphism π1(X{n})→ Σn of the Galois covering F (X,n)→ X{n}.
b.) If L is a “good” variation of mixed Hodge structures on a smooth pure-
dimensional quasi-projective variety X, then

(33)
(
LH
){n}

= εn ⊗ (LH)(n) ,

with εn the corresponding local system on the smooth quasi-projective variety X{n}.

4. Generating series for Hodge numbers and Hodge polynomials

4.1. Generating series via pre-lambda structures. The main result of
[MS] can now be stated as follows:

Theorem 4.1. Let X be a complex quasi-projective variety and fix a mixed
Hodge module complex M∈ DbMHM(X). For p, q, k ∈ Z, denote by

hp,q,k(c) (X,M) := hp,q(Hk
(c)(X;M)) := dim(GrpFGr

W
p+qH

k
(c)(X;M))

the corresponding Hodge numbers. Then:

∑
n≥0

 ∑
p,q,k

hp,q,k(c) (X(n),M(n)) · ypxq(−z)k
 · tn

=
∏
p,q,k

(
1

1− ypxqzkt

)(−1)k·hp,q,k(c) (X,M)

Let us sketch the main ideas of the proof of Thm.4.1. We recall that a pre-
lambda structure on a commutative ring R with unit 1 is a group homomorphism

σt : (R,+)→ (R[[t]], ·) ; r 7→ 1 +
∑
n≥1

σn(r) · tn

with σ1 = idR, where “·” on the target side denotes the multiplication of formal
power series. Equivalently, this corresponds to a family of self-maps σn : R → R
(n ∈ N0) satisfying for all r ∈ R:

σ0(r) = 1, σ1(r) = r and σk(r) =
∑
i+j=k

σi(r) · σj(r) .

Let K̄0(DbMHM(pt)) be the Grothendieck ring associated to the abelian monoid of
isomorphism classes of objects with the direct sum, with the product induced by the
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tensor structure ⊗, and unit [QH
pt]. Since DbMHM(pt) is Q-linear and Karoubian

([BS, LC]), it follows by [He] that K̄0(DbMHM(pt)) has a canonical pre-lambda
structure defined by

(34) σt([V]) := 1 +
∑
n≥1

[(V⊗n)Σn ] · tn.

Let us now consider the “counting” polynomial

h : K̄0(DbMHM(pt))→ Z[y±1, x±1, z±1]

given by
[V] 7→

∑
p,q,k

hp,q(Hk(V)) · ypxq(−z)k

Then h becomes a homomorphism of pre-lambda rings, i.e.,

(35) h(σt([V])) = σt(h([V])),

with the pre-lambda structure on the Laurent polynomial ring Z[x±1
1 , . . . , x±1

r ] given
by

(36) σt

∑
~k∈Zn

a~k · ~x
~k

 :=
∏
~k∈Zn

(
1− ~x ~k · t

)−a~k
.

The generating series formula of Thm.4.1 follows now by taking V = k∗(!)M, after
noting that (V⊗n)Σn ' k∗(!)(M(n)).

�

Alternatively, we can work with the opposite pre-lambda structure λt = σ−1
−t on

K̄0(DbMHM(pt)) given by

(37) λt([V]) := 1 +
∑
n≥1

[(V⊗n)sign−Σn ] · tn,

where, as before,

(−)sign−Σn :=
1
n!

∑
σ∈Σn

(−1)sign(σ) · ψσ

is the projector onto the alternating Σn-equivariant sub-object. In view of (32), we
obtain as above the following generating series formula for the Hodge numbers of
configuration spaces (with coefficients in the corresponding alternating powers of
mixed Hodge modules):

Theorem 4.2. Let X be a complex quasi-projective variety, and denote by
X{n} := B(X,n) the configuration space of all unordered n-tuples of different points
in X. Fix a bounded complex M ∈ DbMHM(X) of mixed Hodge modules on X,
and assume in addition that the rational sheaf complex rat(M) is a constructible
sheaf (i.e., concentrated in degree zero). Then:

∑
n≥0

 ∑
p,q,k

hp,q,kc (X{n},M{n}) · ypxq(−z)k
 · tn

=
∏
p,q,k

(
1 + ypxqzkt

)(−1)k·hp,q,kc (X,M)
.
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Let us now state the following important corollary of Thm.4.1:

Corollary 4.3. Let fp(c)(X,M) :=
∑
i(−1)idimCGrpFH

i
(c)(X;M), so that

χ
(c)
−y(X,M) =

∑
p f

p
(c)(X,M) · yp. Then:∑

n≥0

χ
(c)
−y(X(n),M(n)) · tn =

∏
p

(
1

1− ypt

)fp(c)(X,M)

= exp

∑
r≥1

χ
(c)
−yr (X,M) · t

r

r

 .

(38)

By letting M be any of QH
X , IC ′HX or IC ′HX(L), we get by Ex.3.2 generating

series for (twisted intersection homology) Hodge numbers and Hodge polynomials
of symmetric products. In particular, if we let M = QH

X in Thm.4.1, we get
back Cheah’s result (14), while (38) yields in this case the Borisov-Libgober-Zhou
formula (9) in the singular setting. Also, if in (38) we take M = IC ′

H
X(L), with

L a “good” variation of mixed Hodge structures on a smooth Zariski open dense
subset of X, we obtain:

(39)
∑
n≥0

Iχ
(c)
−y(X(n),L(n)) · tn = exp

∑
r≥1

Iχ
(c)
−yr (X,L) · t

r

r

 .

In particular, the following generating series formula for the (twisted) intersection
homology Euler characteristic is obtained by letting y = 1 in equation (39):

(40)
∑
n≥0

Iχ(c)(X(n),L(n)) · tn = exp

∑
r≥1

Iχ(c)(X,L) · t
r

r

 = (1− t)−Iχ(c)(X,L) .

Finally, if X is projective of even complex dimension, with L a polarizable variation
of pure Hodge structures of even weight, then by letting y = −1 in (39) we obtain the
following generating series formula for the twisted Goresky-MacPherson signatures
of symmetric products:

(41)
∑
n≥0

σ(X(n),L(n)) · tn =
(1 + t)

σ(X,L)−Iχ(X,L)
2

(1− t)
σ(X,L)+Iχ(X,L)

2

.

Similarly, as a consequence of Thm.4.2, we have the following:

Corollary 4.4. Under the assumptions of Theorem 4.2 and with the notations
of Cor.4.3, the following identity holds:∑

n≥0

χc−y(X{n},M{n}) · tn =
∏
p

(1 + ypt)f
p
c (X,M)

= exp

−∑
r≥1

χc−yr (X,M) · (−t)r

r

 .

(42)

In particular, ifM = QH
X and y = 1, we obtain the well-known formula for the

generating series of Euler-Poincaré characteristics of configuration spaces:

(43)
∑
n≥0

χ(X{n}) · tn = (1 + t)χ(X).
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Here we are using the fact that in the category of complex algebraic varieties we have
the identification χ = χc between the (compactly supported) Euler characteristics,
and moreover, for a locally constant sheaf F on a variety Z, the twisted Euler
characteristic χc(Z,F) depends only on rank(F) (which for F = QZ is one) and
not on the monodromy representation of F (cf. [S1], Ch.2).

4.2. Generating series via equivariant genera and traces. In this sec-
tion we give a different proof of Cor.4.3, based on equivariant genera and traces.
We follow here the standard approach to such generating series formulae, which has
the advantage that it can be extended to a characteristic class version as explained
in the next section.

The main ingredient needed in this proof is the fact that the Künneth isomor-
phism

(44) H∗(c)(X
(n);M(n)) ' (H∗(c)(X

n;M�n))Σn ' ((H∗(c)(X;M))⊗n)Σn

holds in the category of graded mixed Hodge structures (see [MS][Rem.2.2] and
[MSS][Thm.1]). Since Σn acts graded anti-symmetrically on H∗(c)(X

n;M�n) '
(H∗(c)(X;M))⊗n, we can take traces of the action and define equivariant Hodge
genera by:

(45) χ
(c)
−y(Xn,M�n;σ) :=

∑
i,p

(−1)itrace
(
σ| GrpFH

i
(c)(X

n;M�n)
)
· yp.

Then it is easy to see that for any n ≥ 0, the following averaging property holds

(46) χ
(c)
−y(X(n),M(n)) =

1
n!

∑
σ∈Σn

χ
(c)
−y(Xn,M�n;σ).

Moreover, if σ ∈ Σn has cycle-type (k1, k2, · · · , kn), i.e., kr is the number of length
r cycles in σ, with

∑n
r=1 kr · r = n, then properties of traces and the Künneth

isomorphism (44) can be used to show that

(47) χ
(c)
−y(Xn,M�n;σ) =

n∏
r=1

χ
(c)
−y(Xr,M�r;σr)kr ,

with σr = (12 · · · r) an r-cycle.
Finally, for any r-cycle σr, the identity

(48) χ
(c)
−y(Xr,M�r;σr) = χ

(c)
−yr (X,M)

can be shown by using the identification of the left-hand side with the polynomial
Ψr(χ

(c)
−y(X,M)), for Ψr the r-th Adams operation on Z[y±1]. However, here we

indicate a more elementary proof of formula (48), which follows directly from the
Künneth isomorphism:

Proof. (of (48))
Recall that the r-cycle σr acts on Xr by the rule

(x1, x2, · · · , xr) 7→ (xr, x1, · · ·xr−1).

The action of σr on H∗(c)(X
r;M�r) can be thought of as the graded anti-symmetric

action of σr on the tensor product (H∗(c)(X;M))⊗r, that is,

σr · (v1 ⊗ · · · ⊗ vr) = (−1)εrvr ⊗ v1 ⊗ · · · ⊗ vr−1,
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where εr = deg(vr) · [deg(v1) + · · ·+ deg(vr−1)]. Since σr acts by algebraic auto-
morphisms, this action also induces one on the graded parts of the Hodge filtration,
call it GrpF (σr), for each p ∈ Z. Here note that by the Künneth isomorphism we
have the identification

(49) Gr�
FH
∗
(c)(X

r;M�r) ∼=
(
Gr�

FH
∗
(c)(X;M)

)⊗r
,

with F � denoting the corresponding Hodge filtrations.
In order to calculate (for a fixed p) the coefficient

trace(σr|GrpFH
∗
(c)(X

r;M�r))

appearing on the left-hand side of formula (48), we need to compute the dimensions
of spaces of vectors

(50) {ξ = v1 ⊗ · · · ⊗ vr ∈ GrpFH
∗
(c)(X

r;M�r) | GrpF (σr)(ξ) = ±ξ}.

For such a vector ξ it is necessary to have that v1 = · · · = vr ∈ GrqFH∗(c)(X;M)
for some integer q satisfying p = r · q (by (49)). Therefore, all powers of y in the
polynomial χ(c)

−y(Xr,M�r;σr) are integer multiples of r. Moreover, if deg(ξ) = i,
i.e., ξ ∈ GrpFH

i
(c)(X

r,M�r), then by (44) we must have that v1 ∈ GrqFH
j
(c)(X,M),

for j an integer satisfying the identity r ·j = i. On the other hand, by the definition
of the action, for such a vector ξ, we know that

GrpF (σr)(ξ) = (−1)(r−1)·[deg(v1)]2ξ = (−1)(r−1)·j2ξ.

Since modulo 2 we have that (r − 1) · j2 = (r + 1) · j = i+ j, we conclude that the
space of degree i vectors ξ as in (50) contributes

(−1)i(−1)j · dimCGrqFH
j
(c)(X;M)

to the trace. It then follows that

(51)
∑
i

(−1)itrace
(
σr|GrpFH

i
(c)(X

r;M�r)
)

=
∑
j

(−1)jdimCGrqFH
j
(c)(X;M),

for p and q satisfying q · r = p. Hence

χ
(c)
−y(Xr,M�r;σr) =

∑
p

(∑
i

(−1)itrace
(
σr|GrpFH

i
(c)(X

r;M�r)
))
· yp

=
∑
q

∑
j

(−1)jdimCGrqFH
j
(c)(X;M)

 · (yr)q
= χ

(c)
−yr (X,M).

�

And by standard arguments (e.g., as in [Mo, Za]), formulae (46), (47) and
(48) together imply the generating series formula of Cor.4.3.
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5. Generating series for the Hirzebruch characteristic classes

We conclude this note by announcing a characteristic class version of the gen-
erating series for Hodge polynomials (cf. [CMSS, CMSSY]). For X a compact
complex algebraic variety,

(52) χy(X) =
∫
X

Ty∗(X),

and, if X is also pure-dimensional,

(53) Iχy(X) =
∫
X

ITy∗(X),

for Ty∗(X) and resp. ITy∗(X) the (homology) Hirzebruch class of Brasselet-
Schürmann-Yokura [BSY], resp. the intersection Hirzebruch class of Cappell-
Maxim-Shaneson [CMS], defined via Saito’s theory of algebraic mixed Hodge mod-
ules (e.g., see [S2]).2 The formulae (46), (47) and (48) above admit characteristic
class versions and yield generating series for the Hirzebruch classes of symmet-
ric products (extending a calculation by Moonen [Mo] for the case when X is
smooth and projective). More precisely, by using the equivariant Hirzebruch classes
constructed in [CMSS] and the Lefschetz Riemann-Roch theorem (which in the
context of symmetric products is related to the singular Adams Riemann-Roch
transformation [FL]), we obtain in [CMSSY] the following result:

Theorem 5.1. Let X be a complex quasi-projective variety and X(n) := Xn/Σn.
Then the following identity holds in

∑
n≥0H

BM
2∗ (X(n); Q[y]) · tn:

(54)
∑
n≥0

T(−y)∗(X
(n)) · tn = exp

∑
r≥1

Ψr

(
dr∗T(−yr)∗(X)

)
· t
r

r

 ,

and, if X is pure-dimensional, then the identity

(55)
∑
n≥0

IT(−y)∗(X
(n)) · tn = exp

∑
r≥1

Ψr

(
dr∗IT(−yr)∗(X)

)
· t
r

r

 ,

holds in
∑
n≥0H

BM
2∗ (X(n); Q[y]) · tn, where:

(1) dr : X → X(r) is the composition of the projection Xr → X(r) with the
diagonal embedding X → Xr.

(2) Ψr is the r-th homological Adams operation, which on HBM
2k (X(r); Q)

(k ∈ Z) is defined by multiplication by 1
rk

(and is then linearly extended
over the corresponding coefficient ring).

(3) The multiplication on the right-hand side of (54), (55) is with respect to
the Pontrjagin product induced by

X(m) ×X(n) → X(m+n), m, n ∈ N,
which in turn comes from the product Xm × Xn = Xm+n, with Σm ×
Σn ⊂ Σm+n acting on each factor. (Note that this Pontrjagin product
is associative, commutative, and with unit 1pt ∈ H0(pt), so that the two

2We use here the normalization condition according to which ifX is smooth then both Ty∗(X)

and ITy∗(X) coincide with the Poincaré dual of the un-normalized Hirzebruch cohomology class

defined by the power series Qy(α) :=
α(1+ye−α)

1−e−α ∈ Q[y][[α]].
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exponential series on the right-hand side of formulae (54) and (55) make
sense.)

Note that if the variety X of Thm.5.1 is moreover assumed to be compact
(i.e., projective), then by pushing down the formulae (54) and (55) to a point, we
get back formula (9) in the singular projective context, and also the corresponding
generating series formula for the polynomial Iχy. Indeed, over a point space, the
map dr is the identity, and the r-th Adams operation Ψr also becomes the identity
transformation.

Finally, after a suitable renormalization, formula (54) specializes for the value
y = 1 of the parameter to Ohmoto’s generating series formula [O] for the rational-
ized MacPherson-Chern classes of symmetric products (see [CMSSY] for details).
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[Go] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective
surface. Math. Ann. 286 (1990), no. 1-3, 193–207.
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